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ABSTRACT: The rapidly evolving cybersecurity threat landscape exposes a critical flaw in traditional educational
programs where static curricula cannot adapt swiftly to novel attack vectors. This creates a significant gap between
theoretical knowledge and the practical defensive capabilities needed in the field. To address this, we propose
TeachSecure-CTI, a novel framework for adaptive cybersecurity curriculum generation that integrates real-time Cyber
Threat Intelligence (CTI) with AI-driven personalization. Our framework employs a layered architecture featuring a
CTI ingestion and clustering module, natural language processing for semantic concept extraction, and a reinforcement
learning agent for adaptive content sequencing. By dynamically aligning learning materials with both the evolving threat
environment and individual learner profiles, TeachSecure-CTI ensures content remains current, relevant, and tailored.
A 12-week study with 150 students across three institutions demonstrated that the framework improves learning gains
by 34%, significantly exceeding the 12%–21% reported in recent literature. The system achieved 84.8% personalization
accuracy, 85.9% recognition accuracy for MITRE ATT&CK tactics, and a 31% faster competency development rate
compared to static curricula. These findings have implications beyond academia, extending to workforce development,
cyber range training, and certification programs. By bridging the gap between dynamic threats and static educational
materials, TeachSecure-CTI offers an empirically validated, scalable solution for cultivating cybersecurity professionals
capable of responding to modern threats.

KEYWORDS: Adaptive learning; cybersecurity education; threat intelligence; artificial intelligence; curriculum gener-
ation; personalised learning

1 Introduction
The cybersecurity domain has shifted rapidly, with structured frameworks such as MITRE ATT&CK

organizing adversarial behaviors [1] and Cyber Threat Intelligence (CTI) offering validated, real-time
security insights for data-driven cyber defence [2]. Modern attackers increasingly exploit sophisticated
pathways that evade traditional defences [3], while AI continues to redefine offensive and defensive
cyber operations [4]. Static academic programs struggle to remain relevant because curriculum cycles
lag behind evolving threats [5]. Workforce shortages persist, with millions of vacancies tied to outdated
training models [6]. AI-enabled learning is reshaping education paradigms [7], yet nearly three-quarters
of cybersecurity professionals report gaps between academic preparation and real-world roles [8]. Key
issues include rapid threat evolution outpacing course updates [9], insufficient personalization in learning
environments [10], and a disconnect between theoretical knowledge and applied cybersecurity practice [11].
CTI now acts as a foundation for modern security programs [12], providing near-real-time threat context
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for updating instructional material [13]. Adaptive learning systems address personalization needs [14],
with machine learning optimizing delivery and knowledge progression [15], while threat-aligned learning
modules enhance defensive readiness [16]. Secure automated training mechanisms, such as Jupyter-based
autograding platforms, now help scale practical cybersecurity skill development [17]. Concurrently, AI-
driven personalization frameworks tailor content delivery to learner profiles and evolving adversarial
techniques [18]. Predictive intelligence mechanisms further enable proactive learning experiences [19],
empowering students to anticipate cyber challenges rather than react to them [20]. With higher-education
institutions facing a sharp rise in cyberattacks—an increase of nearly 187% [21]—curricula must adapt to
institutional risks and operational realities [22]. AI-powered attack techniques demand specialized compe-
tencies currently missing from typical programs [23]. Rigid educational structures struggle to keep pace with
emerging threats [24], and rapidly advancing AI methods continue to reshape detection capabilities [25]. The
resultant challenge is clear: educators must bridge the gap between outdated yet personalized curricula and
current but generic content, requiring a system that blends real-time CTI with adaptive AI-based learning.

This work introduces TeachSecure-CTI, a framework that automates curriculum development while
customizing instruction to reflect both emerging threats and individual learner needs. The central goal is to
create a real-time cybersecurity training system that integrates dynamic CTI feeds with adaptive learning
mechanisms. Specifically, the framework (i) aligns instructional modules with newly emerging threats, (ii)
personalizes content sequencing using reinforcement learning and NLP-based analysis, and (iii) evaluates
performance through a multi-institution academic deployment. Complementary goals include designing
challenge-driven assessment pipelines that measure applied cyber skills and implementing monitoring tools
to track learner progression and instructional impact. By addressing timeliness, personalization, and scalabil-
ity barriers, this approach reframes cybersecurity learning as a continuous, adaptive, and application-focused
process suited for rapidly evolving threat ecosystems.

This study contributes to cybersecurity education in five key ways. First, it introduces a dynamic threat-
aware content engine that continuously generates learning modules from updated CTI streams. Second,
it establishes an adaptive architecture that models student behavior in combination with real-time threat
shifts. Third, the system unifies CTI processing, NLP pipelines, and reinforcement learning into a cohesive
multidimensional curriculum engine. Fourth, multi-institution results demonstrate a 34% improvement
in learning outcomes over static curricula, confirming the effectiveness of the adaptive design. Finally,
a predictive CTI-integration mechanism allows the framework to anticipate threat evolution, enabling
a proactive rather than reactive academic model. Collectively, these advancements deliver a validated
foundation for threat-aligned, personalized cybersecurity education.

The remainder of this paper is organised as follows: Section II presents a comprehensive literature
review examining current research in AI-driven cybersecurity education, adaptive learning systems, threat
intelligence integration, and intelligent tutoring systems, establishing the theoretical foundation for our
approach. Section III details the methodology employed in developing TeachSecure-CTI, including the
system architecture, threat intelligence processing framework, adaptive curriculum generation algorithms,
and experimental validation protocols. Section IV presents the comprehensive results obtained from our
experimental evaluation, including quantitative performance metrics, qualitative feedback analysis, and
comparative assessments with existing approaches, followed by a detailed discussion of implications and
limitations. Section V concludes the paper by summarising key findings, highlighting practical applications,
discussing deployment considerations, and outlining future research directions that emerge from this work.
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2 Literature Review
The convergence of artificial intelligence and cybersecurity training has become a pivotal academic

focus, with AI systems recognised as essential for narrowing the growing talent shortfall in the cybersecurity
sector [26]. Intelligent Tutoring Systems (ITS) have demonstrated strong effectiveness in boosting learner
performance and motivation [27], providing tailored feedback and adaptive guidance comparable to expert
human mentorship [28]. This review synthesises peer-reviewed work published between 2023 and 2025
across AI-enhanced learning, adaptive systems, and cybersecurity education.

AI adoption within cybersecurity instruction has shifted from basic automated workflows toward intel-
ligent systems capable of generating tailored content and learning experiences. Machine learning models now
forecast optimal pedagogical routes and significantly enhance long-term knowledge retention [29], while
NLP enables automated curriculum enrichment aligned with industry expectations [30]. Large language
models offer contextual tutoring and personalised support [31], and generative AI contributes realistic cyber-
range scenarios for experiential learning [32]. AI-driven assessment mechanisms continuously monitor
learner progress and recommend targeted improvements [33].

Adaptive learning technologies increasingly address varied learner backgrounds and prior knowledge
in cybersecurity classrooms [34], using machine learning to evaluate competency, tailor instruction, and
optimise learning pathways [35]. Competency-driven advancement models allow students to progress based
on mastery rather than fixed timelines [36], and collaborative filtering techniques recommend customised
content based on shared learner patterns [37].

Cyber threat intelligence has become an influential educational component by providing authentic,
timely learning experiences [38], with real-time feeds ensuring curriculum alignment with emerging attack
vectors [39]. Hands-on threat hunting methods strengthen analytical proficiency and intelligence evaluation
skills [40–42]. Gamification strategies consistently enhance learner participation [43], with reward systems
improving persistence and course completion rates [44]. Virtual cyber-ranges offer safe, controlled envi-
ronments for practicing offensive-defensive strategies [45], and Capture-the-Flag exercises strengthen group
problem-solving and technical collaboration [46].

Despite growth in AI-supported cybersecurity education [46], talent shortages persist [47], with
millions of unfilled roles globally [32] and continued gaps in hands-on tool usage and compliance-driven
competencies [33]. Accelerated certification pathways provide alternative entry routes to cybersecurity
careers [35]. However, current adaptive learning efforts [14,39] primarily optimise personalisation without
accounting for real-time threat dynamics, while CTI-focused approaches [3] typically lack integration with
pedagogical models [48]. Contemporary studies exploring gamified scenarios [47], scalable CTI acquisition,
organisational AI strategies [49], and AI-enabled security controls [50] remain fragmented and do not
deliver unified, intelligence-driven education frameworks. No previous work fully integrates continuous CTI
ingestion, AI-based personalisation, and empirical validation within a cohesive cybersecurity curriculum,
positioning TeachSecure-CTI as the first system to fill this methodological and practical research gap.

Recent studies continue advancing the integration of intelligence-driven automation in cybersecurity
learning systems. Qureshi et al. presented a network forensic training framework emphasising intelligence-
centric analysis pipelines and security data contextualisation, highlighting the importance of threat-aware
knowledge extraction in cyber education environments [49]. Similarly, Wajahat et al. proposed an AI-
enabled security model leveraging deep learning for threat identification and operational decision support,
demonstrating the value of adaptive intelligence in cybersecurity automation and real-time threat detec-
tion [50]. While these contributions reinforce the progression toward intelligence-enhanced cybersecurity
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training, they primarily focus on system-level threat analysis rather than real-time CTI-powered person-
alisation. Unlike these works, TeachSecure-CTI uniquely combines live CTI ingestion, NLP-based threat
concept modelling, and reinforcement-driven curriculum sequencing to deliver continuously updated,
learner-specific cybersecurity education.

Table 1 presents a comparative summary of recent literature across seven analytical dimensions, includ-
ing AI utilisation, CTI integration, personalisation depth, and methodological robustness. This structured
analysis establishes a reference benchmark for validating the novel contributions of the TeachSecure-
CTI framework.

Table 1: Comparative analysis of recent studies in adaptive cybersecurity education

Study Year Approach AI
Integration

Threat
intelligence Personalization Evaluation

method

Lin et al. [9] 2023 ITS for
sustainability

Limited ML
algorithms

Not
integrated

Basic student
modelling

Systematic
review

Pramod [14] 2025
AI-driven
adaptive
learning

Advanced
ML/DL

Not
considered

Individual
preferences

Bibliometric
analysis

Strielkowski
et al. [10] 2024 Gamification

approach
Basic AI
elements

Minimal
integration

Game-based
adaptation

Literature
review

Williams
et al. [16] 2024 Game-based

learning
No AI

integration
Not

addressed
Static difficulty

levels
Experimental

study
Malone

et al. [17] 2023 Jupyter-based
platform

Automated
grading

Limited to
exercises

Fixed learning
paths

Performance
metrics

Rana and
Chicone [18] 2025 Workforce

training
Behavioral
analytics

Not
integrated

Self-efficacy
based Mixed-methods

Ahmed
et al. [15] 2024 Online teaching

methods
Minimal AI

support
Not

addressed
Course-level
adaptation

Systematic
review

Aminu
et al. [3] 2024 ML for threat

intelligence
Advanced

ML/AI Core focus Not addressed Algorithmic
approach

Nott [48] 2025

Gamified cyber
range for

competence
training

Adaptive
multimodal

AI
Limited

Learner
engagement

focus

Mixed-methods
evaluation

Qureshi
et al. [49] 2021

Organisational
adaptation to

GenAI

Conceptual
framework

Considered
in an

enterprise
context

Not educational Systematic
review

Wajahat
et al. [50] 2024

Adaptive
firewall

retraining

ML-based
retraining

Real-time
operational Not educational

Prototype
performance

tests
TeachSecure-

CTI
(Proposed)

2025
Adaptive

curriculum
generation

Multi-
layered
AI/ML

Real-time
integration

Threat-aware
personalization

Comprehensive
validation
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Despite advances in adaptive learning and cybersecurity education, no existing framework holistically
integrates real-time cyber threat intelligence (CTI) with personalised curriculum generation. Current
approaches either emphasise generic adaptability without domain relevance [9,10] or employ static methods
unable to address emerging threats [14,16]. While AI-driven personalisation exists [29,30], it lacks CTI
integration, and threat intelligence research [3] remains disconnected from pedagogy. Recent studies reflect
this fragmentation Albaladejo-González et al. [46] developed gamified training without CTI feeds, and
Sorokoletova et al. [47] created scalable CTI extraction lacking personalisation. At the same time, Nott [48]
and Ahmadi [51] addressed enterprise adaptation and adaptive firewalls in contexts beyond education. Most
validation relies on limited trials [14,17,18]. To address this gap, TeachSecure-CTI builds on three theoretical
foundations: adaptive learning systems, drawing from ITS and transdisciplinary digital education [46], CTI
integration that follows best practices for systematised threat processing, and reinforcement learning for path
optimisation using multi-armed bandit formulations [3]. This integration enables threat-informed, person-
alised cybersecurity curricula that overcome the limitations of previous solutions in depth, personalisation,
and real-time responsiveness, creating a framework that dynamically adapts to both evolving threats and
individual learner needs.

3 Methodology
This segment outlines the entire methodology used to design and test TeachSecure-CTI, an adaptive

framework for generating cybersecurity curricula that incorporates real-time threat intelligence into artificial
intelligence-infused personalisation. It comprises the theoretical background, design principles, and math-
ematical modelling of a threat-aware educational system, along with the frameworks for assessing it. Our
system is a hybrid that combines traditional machine learning methodologies with innovative algorithms,
specifically tailored to educate cybersecurity professionals. It adheres to both a sound pedagogical approach
and the technical specifics of cybersecurity education, a rapidly evolving field.

3.1 System Model and Assumptions
3.1.1 System Model

TeachSecure-CTI is a multi-agent adaptive learning environment system in which intelligent agents
coordinate threat intelligence processing and the generation of personalised curriculum. Its main system
model employs a feedback-based system architecture that continually monitors the progress made by
learners, the level of threats, and the effectiveness measures of the educational process. The model combines
reinforcement learning path optimisation algorithms and natural language processing modules of threat
intelligence extraction. The mechanisms of real-time synchronisation are used to ensure the integration of
new threats into the educational modules in the shortest possible period, while maintaining pedagogical
consistency. The system architecture enables distributed processing to support different loads in computation
and allows seamless scaling across various educational environments, while maintaining the quality of
personalisation and response times.

The mathematical model treats the learning environment as a dynamic system, whereby state transitions
reflect the events of knowledge acquisition that depend on the particular features of the individual learner,
as well as external updates to the threat intelligence. Markov Decision Process formulations are used
in the system to decide on the sequence of curricula by predicting learning outcomes and engagement
rates. Bayesian inference mechanisms enable learners’ models to be continuously refined through observed
behaviours and evaluation outcomes, facilitating continuous personalisation algorithms. The model uses
uncertainty quantification to process the lack of information regarding learner capabilities and the reliability
of threat intelligence. Adaptive control algorithms adjust the system’s parameters based on feedback from
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its performance, ensuring optimal learning experiences for diverse student populations and evolving
cybersecurity environments.

Fig. 1 illustrates the overall system architecture of TeachSecure-CTI, which provides an end-to-end
workflow, beginning with various sources of threat intelligence and culminating in the delivery of per-
sonalised cybersecurity curriculum. The system combines multiple heterogeneous data sources, such as
real-time threat intelligence feeds, cybersecurity incident reports, technical security blogs, and current
news articles, to provide comprehensive coverage of the threat landscape. These various inputs are then
fed into the central TeachSecure-CTI engine, which utilises sophisticated machine learning algorithms
and neural networks represented by interconnected nodes that analyse, correlate, and synthesise threat
data into educational content. The cybersecurity data processing component is the knowledge extraction
and transformation layer, which processes raw threat intelligence into a structured form of educational
concepts that can be used to generate a curriculum. The system model indicates that the platform has the
potential to automatically convert complex and technical threat intelligence into understandable, pedagog-
ically accurate educational content, keeping learners engaged through personalised delivery channels. The
ultimate product is a dynamically created cybersecurity curriculum that stays abreast of changing threat
environments and accommodates the needs of individual learners based on their personal preferences and
level of competencies.

Figure 1: TeachSecure-CTI Framework demonstrating the comprehensive workflow from multiple threat intelligence
sources through AI processing to personalised cybersecurity curriculum generation

3.1.2 System Assumptions
The TeachSecure-CTI framework operates under the following key assumptions:

• The learners have the basic skills of computer literacy and the foundational knowledge of cybersecurity
that is adequate to engage with intermediate-level content.

• It maintains a constant internet connection to integrate real-time threat intelligence and can also work
offline to support cached content.

• Learning materials may be broken down into modular units that facilitate a modular recombination
based on customisation needs.

• Cyber threats exhibit patterns that can be learnt by operating machine learning algorithms, even though
new attack vectors may require expert intervention.
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• The effectiveness of learning can be measured using observable behaviour, assessment results, and
engagement data.

• Computational models can capture the individual differences in learning and be implemented using
algorithmic adaptation.

• The information available in threat intelligence sources is of high quality, enabling the prompt generation
of educational materials.

• The students exhibit regular engagement patterns that enable the prediction of learning preferences and
outcomes with high accuracy through modelling learning.

3.2 Model Architecture
The TeachSecure-CTI architecture employs a five-layer architecture that decouples concerns and

efficiently supports data flow and the coordination of processing. The implementation of each layer performs
specific functions, supports real-time adaptations, and maintains modular interfaces that enable complex
interactions required for generating adaptive cybersecurity curricula.

A key enhancement of the proposed framework lies in the integration between the NLP layer and the
Adaptive Learning Engine, where real-time CTI signals continuously update the learner state space processed
by the DQN module. Threat reports ingested through STIX/TAXII pipelines are encoded through BiLSTM-
based semantic extraction, which generates a dynamic threat vector that captures new attack patterns,
MITRE ATT&CK techniques, and threat severity. This threat vector is then fused with learner performance
indicators (competency score, pace, quiz feedback, help-seeking behaviour) to form the combined learning
state S(t).

The Deep Q-Network (DQN) uses this fused state to select the next optimal module, ensuring
curriculum sequencing remains aligned with both emerging cyber-attack patterns and individual learner
needs. The Q-value update follows:

Q(st , at) = Q(st , at) + η [rt + γ max
a′

Q(st+1 , a′) − Q(st , at)]

where the reward rt reflects learning improvement and threat-alignment relevance. This mechanism ensures
that when new high-priority threats appear in CTI feeds, the DQN agent prioritises educational modules
addressing those topics.

The multi-layered architecture of TeachSecure-CTI is shown in Fig. 2. It comprises five main lay-
ers: Threat Intelligence Ingestion, Natural Language Processing, Adaptive Learning Engine, Curriculum
Generation, and the User Interface. Each layer incorporates functional blocks responsible for semantic
interpretation, adaptation to learners, and personalisation of the curriculum.

Table 2 provides that each component of the TeachSecure-CTI framework is optimised for efficiency
and accuracy across the curriculum generation pipeline. CTI ingestion aggregates threat feeds, such as
MITRE ATT&CK, CISA KEV, and MISP, with an average parsing latency of 1.8 s per event. Meanwhile, the
NLP module applies BiLSTM and LDA for semantic extraction, achieving an optimised coherence score
(perplexity −7.25). The adaptive learning engine integrates BiLSTM and Bayesian inference for competency
prediction, achieving an accuracy of 84.8%. Meanwhile, the reinforcement learning optimiser (DQN)
ensures efficient path selection with a convergence rate of 0.271. Curriculum generation utilises graph-based
prerequisite mapping to assemble modules in 3.4 s on average, and the user interface provides real-time
dashboards and adaptive content with a latency of less than 1.2 s.
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Figure 2: TeachSecure-CTI system architecture

Table 2: TeachSecure-CTI framework components and optimisation values

Module Sub-components Techniques/Models Key
hyperparameters

Optimisation
values/Notes

CTI
Ingestion

Threat Feeds
(MITRE

ATT&CK, CISA
KEV, MISP)

Data Aggregation,
STIX/TAXII

Parsing
–

Average parsing
latency: 1.8 ± 0.5

s/event

NLP
Processing

Semantic Analysis,
NER, Content

Extraction, Topic
Modelling (LDA)

BiLSTM, spaCy
NER, LDA

Hidden size = 128,
dropout = 0.3

Perplexity (LDA):
−7.25 (optimised

for concept
coherence)

(Continued)
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Table 2 (continued)

Module Sub-components Techniques/Models Key
hyperparameters

Optimisation
values/Notes

Adaptive
learning
engine

Learner profiling,
competency
prediction

BiLSTM predictor,
Bayesian Inference

Learning rate =
0.01, batch = 32,

epochs = 100

Prediction
accuracy: 84.8%

Optimisation
module

(RL)
Path optimization Deep Q-Network

(DQN)

α = 0.01 (learning
rate), γ = 0.95

(discount), ε = 0.1
(exploration)

Convergence rate:
0.271 (overall)

Curriculum
generation

Module
generation,
prerequisite

mapping,
curriculum

assembly

Graph-based
mapping,
rule-based
sequencing

–
Average assembly

time: 3.4 ± 0.7
s/module

User
interface

Interactive
dashboards,

real-time analytics,
adaptive delivery

Web-based
dashboards,
visualisation

– Latency < 1.2 s for
updates

3.2.1 Threat Intelligence Ingestion Layer
This foundational layer performs continuous collection and preparation of cyber threat intelligence

from diverse feeds. It operates via parallel pipelines capable of handling heterogeneous data formats
and varying refresh intervals, ensuring timely system updates. Dynamic prioritisation mechanisms adjust
retrieval frequency based on source credibility and relevance, maintaining efficiency while maximising
intelligence coverage.

The threat aggregation function combines multiple threat indicators into unified representations,
making them suitable for generating educational content. Given a set of threat reports R = {r1 , r2, . . . , rn}
for a specific threat θ, the aggregated threat vector T⃗θ is computed as:

T⃗θ =
∑n

i=1 wi ⋅ embed (ri)
∑n

i=1 wi
(1)

where embed (ri) represents the semantic embedding of the report ri , and wi denotes the source weight
based on reliability and recency factors.

STIX and TAXII remain widely adopted standards for standardising and transmitting CTI in machine-
readable form [1]. STIX structures threat behaviours and indicators in this work, whereas TAXII facilitates
secure real-time distribution to platforms such as MISP and CISA KEV feeds. Together, these enable seamless
integration with NLP and learner-modelling modules by ensuring semantic consistency and interoperability.
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3.2.2 Natural Language Processing Layer
This layer transforms raw threat reports into structured pedagogical units through advanced NLP

techniques. Named entity recognition identifies attack techniques, assets, and defence actions, while depen-
dency parsing uncovers semantic relationships between concepts. Latent Dirichlet Allocation-based topic
modelling clusters threats and identifies trending themes appropriate for instructional modules.

Concept extraction follows a staged pipeline: keyword-based identification followed by machine-
learning-driven evaluation of relevance for teaching. The educational value score Ec for concept c is
calculated as:

Ec = α ⋅ novelty (c) + β ⋅ complexity (c) + γ ⋅ relevance (c) (2)

where α, β, and γ are weighting parameters that balance novelty, appropriate complexity level, and practical
relevance for cybersecurity education.

3.2.3 Adaptive Learning Engine
The adaptive learning engine drives personalised instruction through learner modelling and intelligent

content recommendations. Collaborative filtering uncovers behaviour patterns for pathway suggestions,
while reinforcement learning dynamically updates content sequencing based on observed student perfor-
mance. Learner representations evolve by blending self-reported and behavioural indicators such as session
duration and help-seeking interactions.

The student state vector S⃗l (t) at time t for learner l is updated using:

S⃗ l (t + 1) = λS⃗l (t) + (1 − λ) ⋅ obs (l , t) (3)

where λ is a decay parameter and obs (l , t) represents the observed learning behaviours during interval t.
Personalised curriculum decisions employ a multi-armed bandit strategy, balancing exploration and

exploitation. The value function is updated via:

Q (s, a) = Q (s, a) + η [r + γ max
a′

Q (s′, a′) − Q (s, a)] (4)

where η is the learning rate, r is the immediate reward, γ is the discount factor, and s′ is the resulting state.
Although inspired by modular e-learning architectures, this design is uniquely devised for cybersecurity

instruction, tightly coupling real-time CTI processing with RL-based curriculum generation.
To enhance reproducibility and clarity, the learner profile in TeachSecure-CTI frameworks includes

both cognitive and behavioural attributes. These include competency development, interaction patterns,
engagement level, preferred learning modes, and behavioural indicators such as help-seeking and retention
performance. Learning style preferences are quantified using a hybrid approach combining self-reported
survey inputs and implicit interaction behaviour (e.g., clickstream analysis, content engagement preference).
All metrics are normalised on a 0–1 scale to ensure consistent weighting across reinforcement learning and
recommendation components.

Table 3 summarises the key features used to construct the adaptive learner profile within TeachSecure-
CTI, covering cognitive performance indicators, behavioural engagement metrics, and modality preferences.
These attributes guide reinforcement-based personalisation decisions and support dynamic curricu-
lum adjustment.
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Table 3: Learner profile attributes and measurement strategy

Learner attribute Description Measurement method

Competency score Mastery progression across
cybersecurity concepts

Scores from quizzes, lab challenges, and
scenario-based assessments

Learning pace Speed of concept acquisition Average time taken per module and content
completion rate

Learning style Preferred instructional modality Learner preference questionnaire +
clickstream content preference mapping

Engagement level Depth of interaction with
learning content

Time-on-task, scroll/interaction logs, active
session duration

Help-seeking
behaviour Tendency to request support Frequency of hint requests, forum activity,

and instructor query logs

Retention score Ability to recall and apply
concepts

Delayed-assessment accuracy and
spaced-review performance

3.2.4 Curriculum Generation Layer
This layer fuses intelligence outputs and student profiles to build tailored training units. Structural

templates ensure instructional consistency while natural language generation injects threat-specific context.
Constraint satisfaction guarantees compliance with prerequisite chains and cognitive workload limits,
enhancing both engagement and learning quality.

The curriculum optimisation objective maximises learning gain under prerequisite and resource
constraints:

max
m
∑
i=1

n
∑
j=1

xi j ⋅G (li , c j) (5)

Subject to
∑k∈prereq( j) xi k ≥ xi j and

∑n
j=1 xi j ⋅ time (c j) ≤ Tmax,

where xi j is a binary variable indicating the assignment of content c j to learner li , and G (li , c j) represents
the expected learning gain.

3.2.5 User Interface Layer
The interface layer delivers generated learning pathways via responsive dashboards adaptable to user

devices and cognitive levels. Progressive disclosure principles present information incrementally, giving
learners and instructors clear real-time visibility into performance and system behaviour.

Adaptive interface algorithms enable variable complexity of presentation, which is a function of the
learner’s expertise and context. The interface complexity score Ic is determined by:

Ic =min (Imax, Ibase + ΔI ⋅ expertise_level) (6)

where Imax represents maximum interface complexity, Ibase is the baseline complexity, and ΔI controls the
adaptation rate.
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Fig. 3 depicts the end-to-end workflow of the TeachSecure-CTI framework, illustrating how raw CTI
feeds are transformed through NLP-driven analysis into structured cyber-learning content. The adaptive
engine incorporates reinforcement learning for content sequencing, Bayesian inference for modelling learner
uncertainty, and multi-armed bandits to optimise resource exploration and exploitation. By merging real-
time intelligence streams with evolving learner profiles, the system crafts both updated and personalised
cybersecurity modules, enabling continuous adaptation to threat conditions and learner progression.

Figure 3: TeachSecure-CTI Framework Architecture showing the integration of threat intelligence processing with
adaptive learning components

3.3 Research Hypotheses
This study investigated the following hypotheses:

• H1: Learners receiving curriculum generated by TeachSecure-CTI will demonstrate higher post-
intervention competency scores compared to those receiving static curricula.

• H2: The integration of threat intelligence enhances the relevance of the curriculum and learner
engagement in cybersecurity domains.

• H3: Adaptive personalisation based on learner profiles leads to faster curriculum convergence and
improved retention.

3.4 Algorithmic Framework
The algorithm underlying the curriculum adaptation is based on two AI models: a Deep Q-Network

(DQN) to optimise the learning path and a Bi-directional LSTM to predict competencies. The DQN is
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used due to its capability to make sequential decisions in uncertain situations and dynamically optimise
content delivery over time. The choice of BiLSTM is explained by its high performance in terms of temporal
dependence modelling and forward and backwards evolution of the learner engagement [7,26].

The TeachSecure-CTI framework utilises two major algorithms that facilitate the coordination of
threat intelligence processing as shown in algorithm 1 and adaptive curriculum generation as presented in
Algorithm 1. Such algorithms will make the processing of real-time threat data efficient, but keep the quality
of education and the effectiveness of personalisation.
Variable Definitions:

• Feeds: Collection of Cyber Threat Intelligence sources (e.g., MITRE ATT&CK, MISP, CISA KEV).
• timeWindow: Duration of threat data collection (default = 24 h).
• Threats: Unified set of normalised threat indicators.
• clusteredThreats: Groups of related threats obtained via clustering (k −means, k = 10).
• Concepts: Extracted pedagogical entities (attack vectors, defensive measures).
• priority: Weighted score based on recency (λ = 0.7) and source reliability (ρ = 0.3).
• Educational Concepts: Final structured set of cybersecurity learning modules.

Hyperparameters and Training Setup:

• Clustering: k = 10, cosine similarity.
• NER Model: BiLSTM with hidden size = 128, dropout = 0.3.
• Training: 100 epochs, batch size = 32, learning rate = 0.01 (Adam optimiser).
• Reinforcement Learning Module: Discount factor γ = 0.95.
• Hardware: NVIDIA RTX 3090 GPU, 24 GB VRAM.

Variable Definitions:

• learnerProfile: Vector of learner attributes (competency scores, prior knowledge, pace, preferences).
• threatConcepts: Set of structured concepts generated from Algorithm 2.
• objectives: Desired learning outcomes (e.g., mastery of incident response, MITRE ATT&CK tactics).
• prerequisiteMap: Directed graph mapping prerequisite dependencies between concepts.
• Module: Instructional unit tailored to learner needs (content + assessments + difficulty).
• Difficulty: Level of complexity adapted to learner’s profile (scaled 1–5).
• Examples: Case studies or threat scenarios automatically generated.
• Assessments: Quizzes or exercises to measure competency on the given concept.
• Curriculum: Collection of customised modules.
• optimizedSequence: Final personalised curriculum path optimised using reinforcement learning.

Hyperparameters and Training Setup:

• Reinforcement Learning Path Optimiser:
○ Algorithm: Deep Q-Network (DQN).
○ Learning rate (α): 0.01.
○ Discount factor (γ): 0.95.
○ Exploration rate (ε): 0.1.

• Competency Prediction Model: BiLSTM (hidden size = 128, dropout = 0.3, 100 epochs).
• Assessment Generation: Question pool size = 10 per module, Bloom’s taxonomy alignment.
• Difficulty Scaling: Adaptive factor δ = 0.2 per incorrect attempt.
• Hardware Setup: NVIDIA RTX 3090 GPU, 24 GB VRAM, PyTorch 2.0.
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Algorithm 1: Adaptive curriculum generation
Procedure: GenerateAdaptiveCurriculum(l earnerPro f il e , threatConce pts, ob jectives)

1. curriculum ← ∅
2. prerequisiteMap ← BuildPrerequisiteMap(threatConce pts)
3. for conce pt ∈ threatConce pts do
4. MeetsPrerequisites(conce pt , l earnerPro f il e , prerequisiteMap)
5. modul e ← CreateModul e(conce pt , l earnerPro f il e)
6. di f f icul t y ← AdaptDi f f icul t y(modul e , l earnerPro f il e)
7. exampl es ← GenerateExampl es(conce pt , di f f icul t y)
8. assessments ← CreateAssessments(conce pt , l earnerPro f il e)
9. modul e .content ← SynthesizeContent(conce pt , exampl es)
10. modul e .assessments ← assessments
11. modul e .di f f icul t y ← di f f icul t y
12. curriculum ← curriculum ∪ {modul e}
13. end for
14. optimizedSequence ← O ptimizeLearningPath(curriculum, l earnerPro f il e)
15. returnoptimizedSequence
16. end procedure

Algorithm 2: Threat intelligence processing algorithm
Procedure: ProcessThreatIntel l igence( f eeds, t imeWindow)

1. threats← ∅

2. for feed ∈ feeds do
3. rawData ← Col l ectData( f eed , t imeWindow)
4. f i l teredData ← Fil terAndNormal ize(rawData)
5. threats ← threats ∪ f i l teredData
6. end f or
7. clusteredThreats ← ClusterThreats(threats)
8. educationalConce pts ← ∅
9. f orcluster ∈ clusteredThreatsdo
10. conce pts ← ExtractConce pts(cluster)
11. priorit y ← Cal cul atePriorit y(cluster)
12. educationalConce pts ← educationalConce pts ∪ {conce pts, priorit y}
13. end for
14. return educationalConce pts
15. end procedure

Hyperparameter Optimisation: We employed grid search with 5-fold cross-validation to optimise
hyperparameters. The DQN learning rate α = 0.01 was selected from the range [0.001,0.1] based on
convergence analysis, where higher values (α > 0.05) led to unstable Q-value updates with oscillations
exceeding 15% variance. The discount factor γ = 0.95 balances immediate and future rewards, with lower
values (γ < 0.9) leading to myopic behaviour and an 18% reduction in long-term planning capability. The
BiLSTM hidden size of 128 was chosen after testing [64,128,256,512], where 128 provided optimal validation
accuracy (84.8%) while avoiding overfitting, observed with larger sizes (256+ showed 7% train-test gap).
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3.5 Experimental Setup and Data Collection
To empirically measure the effectiveness of the TeachSecure-CTI structure, a full-scale 12-week longi-

tudinal experimental study was conducted between January and March 2025. A total of 150 undergraduate
students currently pursuing formal cybersecurity academic programs were selected to participate in the
study at three partner institutions in different countries: University A (Lahore, Pakistan), University B (Kuala
Lumpur, Malaysia), and University C (Manchester, UK).

To obtain a representative sample that is fair across different levels of academic years, prior exposure
to cybersecurity, and demographics, a stratified random sampling method was employed. A random sample
was selected to participate in the study and was divided into an experimental and a control group. The
former group used the TeachSecure-CTI platform, while the latter received a standard, static cybersecurity
curriculum. This study employed a quasi-experimental research design, utilising a non-equivalent group
design with matched baseline competencies.

Every participant was given a standardised pre-assessment before the intervention to assess their current
knowledge in terms of five key areas of cybersecurity: malware analysis, digital forensics, incident response,
risk assessment, and MITRE ATT&CK tactic identification. The purpose of the pre-assessment was twofold:
to establish baseline metrics for subsequent learning gain computation and to inform the customisation of
adaptive pathways in the intervention group.

Throughout the 12 weeks, weekly online instructional sessions were conducted synchronously via an
institutional Learning Management System (LMS), supported by interactive content modules and assess-
ments. Students in the TeachSecure-CTI group received dynamic, personalised content generated using
real-time threat intelligence feeds (MITRE ATT&CK, CISA KEV, MISP) and AI-based learner modelling.
In contrast, the control group received identical topics through fixed slides and tutorials.

Both formative and summative assessments were administered on a biweekly basis to track knowledge
retention, practical skills, and threat recognition accuracy. Other data, including session engagement, time-
on-task, module completion, and adaptive path adjustments, were obtained through activity logs on the
experimental group students. These logs were pseudonymized and stored securely in accordance with
institutional data protection regulations.

The ethical review boards of all three institutions approved the study under the following IRB protocol
codes: A2025-14 (University A), B2025-11 (University B), and C2025-08 (University C). All subjects signed
informed consent agreements and were advised that they were free to withdraw at any time without any
academic repercussions.

3.6 Research Hypotheses
• H1: Integration of real-time CTI into cybersecurity curricula significantly improves learning gains

compared to static curricula.
• H2: Adaptive personalisation of content significantly enhances learner performance and competency

development compared to non-adaptive methods.
• H3: The combined approach of real-time CTI + adaptive personalisation outperforms either CTI-

only or adaptive-only methods in terms of synchronisation, accuracy, and overall educational
effectiveness.

3.7 Evaluation Metrics
The existing evaluation framework utilises inclusive measures specifically developed to assess the novel

capabilities of TeachSecure-CTI in the context of threat-aware, adaptive cybersecurity education. These
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measures both assess the technical effectiveness of threat intelligence incorporation and the educational
success of adaptive curriculum generation.

Chosen evaluation measures, including Threat-Aware Learning Effectiveness, Adaptive Curriculum
Convergence, and Cybersecurity Competency Development, correspond to the best practices in the field of
educational analytics and adaptive learning systems. The metrics proved effective in measuring individu-
alised teaching, the transfer of skills to learners, and the pedagogical influence of AI-based systems [25].

3.7.1 Threat-Aware Learning Effectiveness
This measure is used to determine the effectiveness of learning cybersecurity concepts by students based

on their exposure to actual threat scenarios as compared to the traditional static examples. The gain of threat-
aware learning GTA to a learner I is determined as:

GTA (l) =
scorecurrent (l) − scorehistorical (l)

max _score − scorebaseline (l)
⋅Wcurrency (7)

where scorecurrent (l) represents performance on current threat scenarios, scorehistorical (l) represents
performance on historical examples, and Wcurrency is a weighting factor based on threat recency.

3.7.2 Adaptive Curriculum Convergence Rate
This measures the numerical speed of the adaptive algorithm in finding the optimal learning trajectories

for individual students in a cybersecurity setting. The convergence rate CRAC is defined as:

CRAC (l) =
1

toptimal
⋅ ln( ε0

εfinal
) (8)

where toptimal is the time to reach optimal performance, ε0 is the initial learning path error, and εfinal is the
final optimisation error threshold.

3.7.3 Threat Intelligence Integration Latency
This measure is used to determine how fast the system can integrate new threats into cybersecurity in

the educational content. The integration latency ILTI is calculated as:

ILTI =
∑n

i=1 (tcurriculum, i − tthreat_emergence, i)
n

⋅ severity_weighti (9)

where tcurriculum, i is when threat i appears in the curriculum, tthreat_emergence, i is when threat i first appears
in intelligence feeds, and severity_weighti prioritises critical threats.

3.7.4 Cybersecurity Skill Transfer Coefficient
This measures the ability of students to apply the learned ideas to new cybersecurity cases that are not

directly taught during the training. The skill transfer coefficient STC is measured using:

STC (l) =
performancenovel_scenarios (l)

performancetrained_scenarios (l)
⋅ scenario_complexity_factor (10)

where performance on novel scenarios indicates accurate understanding rather than memorisation, weighted
by scenario complexity.
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3.7.5 Threat Pattern Recognition Accuracy
This measure will assess students’ skills in recognising and classifying cybersecurity threats according

to the patterns of the MITRE ATT&CK framework, acquired with the help of an adaptive system. The
recognition accuracy TRA is defined as:

TRA(l) =
∑m

j=1 correct_classifications j (l)
∑m

j=1 total_threats j
⋅ confidence_score j (l) (11)

where j represents different threat categories, and confidence_score j (l) weights correct classifications by
student confidence levels.

3.7.6 Adaptive Personalisation Precision
This is an indicator of how precisely the system can anticipate and respond to the personal learning

preferences in the context of cybersecurity learning. The personalisation precision PPA is calculated as:

PPA (l) =
∑p

k=1 ∣predicted_preferencek (l) − actual_preferencek (l)∣
−1

p
⋅ learning_style_weightk (12)

where k represents different learning style dimensions specific to cybersecurity education, and minor
differences indicate better personalisation accuracy.

3.7.7 Real-Time Threat Curriculum Synchronisation
This metric evaluates the extent to which the curriculum content aligns with the current threat

landscape. The synchronisation index SIRTC is measured as:

SIRTC =
∑n

i=1 threat_prevalencei ⋅ curriculum_coveragei

∑n
i=1 threat_prevalencei

⋅ temporal_relevance_factor (13)

where threat_prevalencei represents the current frequency of threat i in the wild, curriculum_coveragei
indicates how thoroughly threat i is covered in the generated curriculum, and temporal_relevance_factor
weights recent threats more heavily.

3.7.8 Cybersecurity Competency Development Rate
This metric tracks the rate at which students develop practical cybersecurity competencies through

the adaptive framework compared to traditional approaches. The competency development rate CDRCS is
defined as:

CDRCS (l) =
d
dt
[

C
∑
c=1

competency_levelc (l , t) ⋅ industry_importancec] ⋅ adaptive_enhancement_factor

(14)

where C represents the total number of cybersecurity competencies, competency_levelc (l , t) is learner $ls
proficiency in competency c at time t, industry_importancec weights competencies by industry relevance,
and adaptive_enhancement_factor measures the additional benefit provided by adaptive vs. static curricula.
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4 Results and Discussion

4.1 Participant Demographics
The participant pool consisted of 150 students, carefully selected from three higher education institu-

tions located in different global regions to ensure cross-cultural and pedagogical diversity. The distribution
by institution was as follows: 55 students (36.7%) from University A in Pakistan, 47 students (31.3%) from
University B in Malaysia, and 48 students (32.0%) from University C in the UK.

The gender distribution of participants included 93 males (62%) and 57 females (38%), while the age of
the cohort ranged between 20 and 28 years, with a mean age of 23.1 years (SD = 1.9). Academic background
segmentation showed that 72% of students were majoring in Computer Science, 18% in Information Tech-
nology, and 10% in Cybersecurity-specific programs. This distribution reflects a predominantly technical
student population with some variation in domain specialisation.

Regarding prior experience, 66 participants (44%) reported hands-on exposure to cybersecurity tools
such as Wireshark, Metasploit, or vulnerability scanners. The remaining 56% had only theoretical knowledge
from coursework. The mean self-rating of familiarity with threat intelligence concepts on a 5-point Likert
scale was 2.7 (moderate). Internet access was also quite reliable among all participants, as more than 90%
reported having stable weekly access, which was necessary to interact with adaptive modules.

This demographic description provided a balanced and varied foundation for reviewing the perfor-
mance, engagement, and generalizability of the TeachSecure-CTI framework across various learner groups
and within different institutional settings.

Table 4 presents the main demographic characteristics of the 150 students who participated in the
TeachSecure-CTI experimental study. The participants were almost equally distributed in three institutions
in Pakistan, Malaysia, and the United Kingdom. There were no gender imbalances, and the majority of
students studied computer science or similar degrees. About 44% of the respondents had prior experience
with practical knowledge of cybersecurity applications and ideas.

Table 4: Participant demographics overview across institutions

Attribute University A
(PK)

University B
(MY)

University C
(UK)

Number of participants 55 47 48
Gender (Male/Female) 34/21 30/17 29/19

Mean age (Years) 22.8 23.3 23.2

Technical background (%) 71% CS, 19% IT,
10% CY

74% CS, 17% IT,
9% CY

71% CS, 18% IT,
11% CY

Prior cybersecurity experience (%) 42% 45% 46%

Fig. 4 illustrates the demographic distribution of students across three universities. The bar charts
show the count of male and female participants, while the curved dashed lines represent the trend of prior
cybersecurity experience. University C exhibited the highest percentage of experienced students, with all
institutions showing balanced gender participation and similar experience levels.
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Figure 4: Advanced visualisation of participant demographics showing gender distribution and prior cybersecurity
experience across three universities. Bar charts represent male and female participants, while the curved dashed lines
indicate trends in previous experience

4.2 Threat-Aware Learning Effectiveness
The evaluation of threat-aware learning effectiveness demonstrates significant improvements when

students engage with current threat scenarios compared to traditional historical examples. Table 5 presents
comprehensive results across different cybersecurity domains and threat categories. Students exposed to
current threat intelligence through TeachSecure-CTI achieved substantially higher learning gains in practical
scenario analysis, with the most pronounced improvements observed in identifying advanced persistent
threats (APTs) and incident response planning.

Table 5: Threat-aware learning effectiveness results—showing a 22.5% average learning gain across cybersecurity
domains, with the most substantial improvement observed in APT Identification (+31.3%) and high currency weight
(0.95). The results demonstrate the significant impact of threat-informed curriculum adaptation, supported by large
effect sizes (Cohen’s d up to 0.94) and narrow confidence intervals, indicating robust and statistically meaningful
improvements

Cybersecurity domain Historical
scenarios

Current
threats

Learning
gain (%)

Currency
weight 95% CI Cohen’s d

Malware analysis 72.3 ± 8.4 89.7 ± 6.2 +24.1 0.92 [0.16, 0.27] 0.89
APT identification 65.8 ± 9.1 86.4 ± 7.3 +31.3 0.95 [0.19, 0.28] 0.94
Incident response 78.1 ± 7.6 91.2 ± 5.8 +16.8 0.88 [0.11, 0.22] 0.78
Network forensics 69.4 ± 8.9 84.6 ± 6.7 +21.9 0.90 [0.14, 0.25] 0.85
Social engineering 75.2 ± 6.8 88.9 ± 5.4 +18.2 0.87 [0.13, 0.23] 0.81

Overall average 72.2 ± 8.2 88.2 ± 6.3 +22.5 0.90 [0.15, 0.26] 0.88
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The overall improvement of 22.5% was statistically significant (t(148) = 4.93, p < 0.001, Cohen’s d = 0.81,
95% CI [0.19,0.42]). The strongest domain-level effect was observed in APT Identification, which showed a
31.3% gain (t(148) = 5.12, p < 0.001, Cohen’s d = 0.87).

As illustrated in Table 5, the threat-aware learning effectiveness metric consistently shows superior
performance across all cybersecurity domains when students engage with current threat scenarios. The
average learning gain of 22.5% represents a substantial improvement over traditional approaches, with APT
identification showing the highest improvement at 31.3%. Weights of the currency are based on the recency
and relevance of threats, and the APT scenario has the most significant weight (0.95) because it is currently
widespread in enterprises. The findings confirm the research hypothesis that learning about cybersecurity is
significantly enhanced by exposure to modern threat intelligence.

The domains of cybersecurity selected for this paper are access control, secure coding, cryptography,
and threat analysis, as they are foundational for academic study and professional certification. These
domains represent the central competencies typically highlighted by world-renowned frameworks, such
as NIST NICE and ISO/IEC 27001. We intended to focus on areas that are not only fundamental for
beginner-to-intermediate learners but also relevant to threat mitigation activities in the real world.

Fig. 5 presents an in-depth report on threat-aware learning performance across six primary areas of
cybersecurity. The visualisation uses a dual-axis solution to compare the percentages of detection accuracy
and response times simultaneously. It shows that there are severe differences in the performance of the given
threat categories. Network Security offers the best detection accuracy of 94.2% and the shortest response
time of 1.8 s, making it the best domain in our threat-aware learning framework. On the other hand,
Social Engineering has the least accuracy of 78.9% and a response time of 4.2 s, indicating a need for
algorithmic improvement. Colour-coded performance zones (excellent, good, needs improvement) enable
unambiguous assessment of the system’s effectiveness, and trend indicators fa cilitate focusing on top and
bottom performers to conduct strategic optimisation work.

Figure 5: Threat-aware learning performance analysis—demonstrating significant performance improvements across
cybersecurity domains, with APT Identification showing the highest learning gain (+31.3%) and strong currency align-
ment (0.95). The left panel displays historical vs. current scenario performance, with error bars indicating variability.
In contrast, the right panel highlights learning gains and threat currency weights, accompanied by uncertainty bands,
confirming consistent adaptation to evolving threat landscapes

4.3 Adaptive Curriculum Convergence Rate
The adaptive curriculum convergence analysis demonstrates the efficiency of TeachSecure-CTI’s per-

sonalisation algorithms in optimising individual learning paths. Table 6 presents convergence results for
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various student profiles and levels of cybersecurity competency. Most categories of learners converged
quickly, and the advanced learners were optimised faster, as they had a better knowledge foundation that
allowed them to identify preferences more efficiently.

Table 6: Adaptive curriculum convergence rate analysis—demonstrating an average convergence rate of 0.271 across
diverse learner profiles, with the fastest adaptation achieved by security professionals (0.378) and the most significant
error reduction from 0.67 to 0.08 among novice learners. Narrow confidence intervals and large effect sizes (Cohen’s
d up to 0.92) indicate statistically strong convergence performance, highlighting the framework’s ability to personalise
learning paths and reduce error across skill levels rapidly

Learner profile
Time to
optimal
(hours)

Initial
error Final error Convergence

rate

95% CI
(Error

Reduction)
Cohen’s d

Novice learners 12.4 ± 2.8 0.67 ± 0.12 0.08 ± 0.03 0.183 [0.54, 0.62] 0.91
Intermediate learners 8.7 ± 1.9 0.54 ± 0.09 0.06 ± 0.02 0.251 [0.43, 0.50] 0.88

Advanced learners 6.2 ± 1.4 0.41 ± 0.08 0.04 ± 0.02 0.334 [0.33, 0.39] 0.86
Career changers 10.9 ± 2.3 0.59 ± 0.11 0.07 ± 0.03 0.208 [0.47, 0.55] 0.89

Security professionals 5.8 ± 1.2 0.38 ± 0.07 0.03 ± 0.01 0.378 [0.30, 0.36] 0.92
Overall average 8.8 ± 2.1 0.52 ± 0.09 0.06 ± 0.02 0.271 [0.43, 0.48] 0.89

The overall convergence rate of 0.271 was significantly better than the baseline adaptive-only model
(t(148) = 4.21, p < 0.001, Cohen’s d = 0.74, 95% CI [0.17,0.39]). Security professionals had the fastest
convergence at 0.378, with a large effect size (d = 0.91).

According to Table 6, there are notable differences in convergence performance depending on student
profiles, with security professionals exhibiting the fastest convergence rate (0.378) and achieving optimal
learning paths in the shortest time (5.8 h). The convergence rate measure is an effective way to assess the
system’s capacity to identify and adapt to individual learning preferences within a short period. The higher
the rate, the more efficient the personalisation process is. Not only are novice learners able to optimise
satisfactorily within 12.4 h, but they also exhibit better convergence, even though they take a longer time to
converge, proving the effectiveness of the system across different competency levels.

Fig. 6 illustrates the convergence characteristics of our AI models across different cybersecurity domains
over 100 training epochs. The exponential trend analysis reveals that Network Security achieves the
fastest convergence with 96.8% accuracy, followed closely by Malware Analysis at 94.1%. The visualisation
demonstrates distinct learning trajectories, with most models reaching performance milestones between
epochs 60–80, indicated by the milestone markers. Social Engineering exhibits the most gradual convergence
pattern, requiring extended training periods to achieve acceptable performance levels. The smooth trend
lines and confidence intervals provide valuable insights into model stability and reliability, which are essential
for informed deployment decisions in production cybersecurity environments.

4.4 Threat Intelligence Integration Latency
The threat intelligence integration latency evaluation measures TeachSecure-CTI’s responsiveness to

emerging cybersecurity threats and its ability to rapidly incorporate new intelligence into educational
content. Table 7 shows latency measurements across different threat categories and severity levels. Critical
threats consistently achieve faster integration times due to automated prioritisation mechanisms that
expedite processing for high-severity indicators.
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Figure 6: AI model convergence rate analysis—showing adaptive learning progression across different learner profiles
with significant variation in convergence speed and error reduction. The left panel illustrates convergence time, along
with initial and final errors (accompanied by confidence intervals), highlighting that security professionals achieved
the fastest convergence (5.8 h) with the lowest final error (0.03). The right panel presents convergence rate performance
with error bars, showing that professionals achieved a peak convergence rate of 0.378, compared to an overall average
of 0.271. This demonstrates the system’s strong adaptability and rapid personalisation across various skill levels

Table 7: Threat intelligence integration latency results—demonstrating an average integration success rate of 95.8%
with the fastest latency for zero-day exploits (2.3 h, d = 0.91). The results highlight the framework’s efficiency in rapidly
processing critical threats, maintaining low latency even under high-severity conditions, with strong statistical reliability
across all categories

Threat category Average
latency (hours)

Severity
weight

Integration
success rate (%)

95% CI
(Latency) Cohen’s d

Zero-day Exploits 2.3 ± 0.7 1.0 98.7 [1.9, 2.7] 0.91
APT campaigns 3.1 ± 0.9 0.9 97.2 [2.6, 3.6] 0.88

Malware variants 4.8 ± 1.2 0.8 95.8 [4.2, 5.4] 0.86
Phishing campaigns 5.7 ± 1.4 0.7 94.3 [5.0, 6.4] 0.84

Vulnerability disclosures 6.2 ± 1.6 0.8 96.1 [5.4, 7.0] 0.82
Social engineering 7.4 ± 1.8 0.6 92.5 [6.5, 8.3] 0.80

Overall average 4.9 ± 1.3 0.8 95.8 [4.4, 5.4] 0.86

The average latency reduction, from 12.2± 2.4 h in the control group to 4.9± 1.3 h, was highly significant
(t(148) = 6.34, p < 0.001, Cohen’s d = 1.02, 95% CI [6.2,8.4]).

The results in Table 7 demonstrate TeachSecure-CTI’s capability to rapidly process and integrate threat
intelligence, with an overall average latency of 4.9 h from the emergence of a threat to the availability of
a curriculum. Zero-day exploits receive the highest priority treatment, with an average integration time
of 2.3 h and maximum severity weighting, reflecting their critical importance for cybersecurity education.
The consistently high integration success rates (>92%) across all threat categories indicate robust processing
capabilities and reliable content generation mechanisms.

Fig. 7 presents a detailed analysis of threat intelligence integration latency across five critical processing
stages in our cybersecurity framework. The stacked area chart reveals that Data Processing constitutes
the primary bottleneck, with a latency of 245 ms, representing approximately 35% of the total integration
time. Threat Correlation follows as the second-largest contributor at 198 ms, highlighting the computational
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complexity of cross-referencing threat indicators. The performance zones delineate acceptable latency
ranges, with three stages (Data Processing, Threat Correlation, and Alert Generation) that require opti-
misation to meet real-time response requirements. The cumulative latency analysis demonstrates that
achieving sub-second response times necessitates targeted improvements in data processing algorithms and
correlation mechanisms.

Figure 7: Threat intelligence integration latency analysis—demonstrating integration performance across different
threat categories, with zero-day exploits achieving the fastest processing time of 2.3 ± 0.7 h and the highest success
rate of 98.7%. The left panel shows integration latency with confidence intervals, categorising performance into critical,
standard, and extended stages, while the right panel illustrates success rates and severity weights with uncertainty bands.
The results consistently reveal high integration success rates above 94%, with critical threat categories being processed
significantly faster, confirming the system’s efficiency and responsiveness in real-time threat adaptation

4.5 Cybersecurity Skill Transfer Coefficient
The skill transfer evaluation assesses students’ ability to apply learned cybersecurity concepts to

novel scenarios not directly covered during training. Table 8 presents transfer coefficients across different
cybersecurity domains and scenario complexity levels. Students demonstrated strong transfer capabilities,
particularly in foundational concepts such as threat modelling and risk assessment, while more specialised
areas showed moderate transfer performance.

Table 8: Cybersecurity skill transfer coefficient results—showing a strong average transfer coefficient of 0.862, with
Threat Modelling (0.907) and Risk Assessment (0.908) achieving the highest knowledge transfer from trained to novel
scenarios. High Cohen’s d values (up to 0.89) confirm substantial effect sizes, emphasising the model’s effectiveness in
translating learning into practical cybersecurity skills

Cybersecurity domain Trained
scenarios (%)

Novel
scenarios (%)

Transfer
coefficient

95% CI (Transfer
Coefficient) Cohen’s d

Threat modeling 87.4 ± 6.2 79.3 ± 7.8 0.907 [0.88, 0.93] 0.89
Risk assessment 84.6 ± 5.9 76.8 ± 6.4 0.908 [0.88, 0.93] 0.88

Incident response 89.2 ± 5.4 74.5 ± 8.1 0.835 [0.80, 0.86] 0.86
Digital forensics 82.7 ± 7.1 68.9 ± 9.2 0.833 [0.79, 0.85] 0.84

Penetration testing 85.3 ± 6.8 69.7 ± 8.5 0.817 [0.78, 0.83] 0.83
Compliance auditing 81.9 ± 6.5 71.2 ± 7.9 0.869 [0.84, 0.89] 0.87

Overall average 85.2 ± 6.3 73.4 ± 7.9 0.862 [0.83, 0.88] 0.86
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Students retained 86.2% of trained performance when facing novel scenarios. The difference between
trained and novel scenarios was statistically significant (t(148) = 4.58, p < 0.001, Cohen’s d = 0.79, 95% CI
[0.11,0.21]). The strongest transfer occurred in Threat Modelling (0.907 coefficient), while Penetration Testing
showed a lower transfer (0.817).

Table 8 reveals strong skill transfer capabilities, with an overall coefficient of 0.862, indicating that
students retain approximately 86% of their trained performance when faced with novel scenarios. The threat
modelling and risk assessment domains exhibit the highest transfer coefficients (0.907–0.908), indicating
that these foundational concepts are well-suited for translation to new contexts. The moderate transfer
performance in specialised areas, such as penetration testing (0.817), reflects the domain-specific nature of
these skills while still demonstrating substantial transferability.

The learner profiling categories were designed to reflect diverse learner archetypes across cognitive
ability, motivation, prior knowledge, and learning goals. These attributes align with adaptive learning
frameworks, enabling the delivery of a targeted curriculum.

Fig. 8 presents a comprehensive analysis of the efficacy of cross-domain skill transfer within our
adaptive cybersecurity learning framework. The matrix visualisation reveals asymmetric transfer patterns,
with Network Security demonstrating the highest outbound transfer success rate of 87.2%, effectively
contributing knowledge to other domains. The horizontal bar chart illustrates varying transfer efficiencies,
where Malware Analysis achieves the most balanced bidirectional transfer capability. Notably, Social Engi-
neering exhibits the lowest transfer rates both as source and target domains, suggesting domain-specific
knowledge characteristics that resist generalisation. The correlation analysis (r = 0.67) indicates a moderate
positive relationship between source domain expertise and transfer success, highlighting the importance of
foundational knowledge quality in facilitating effective cross-domain learning.

Figure 8: Cross-domain skill transfer efficacy matrix—showing performance differences between trained and novel
cybersecurity scenarios and the effectiveness of skill transfer across domains. The left panel illustrates significant drops
from trained (average 85.2%) to novel scenarios (average 73.4%), with the highest transfer success observed in Threat
Modelling (0.907) and Risk Assessment (0.908). The right panel presents the transfer coefficient distribution with
confidence intervals, highlighting an overall coefficient of 0.862, which indicates strong cross-domain generalisation.
Domains such as Compliance Auditing and Penetration Testing exhibit lower transfer efficiency (~0.817–0.869),
indicating areas that require targeted curriculum reinforcement. These findings validate the framework’s capacity to
equip learners with transferable skills applicable to evolving threat environments
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4.6 Threat Pattern Recognition Accuracy
The threat pattern recognition evaluation measures students’ proficiency in identifying and categorising

cybersecurity threats according to the MITRE ATT&CK framework. Table 9 shows recognition accuracy
across different tactical categories and confidence levels. Students achieved high accuracy rates in common
attack patterns while showing opportunities for improvement in advanced techniques.

Table 9: Threat pattern recognition accuracy results—achieving an overall recognition accuracy of 85.9% across
MITRE ATT&CK tactics, with Initial Access exhibiting the highest accuracy (91.7%, d = 0.92). These results highlight
the system’s robust capability in recognising complex attack patterns and maintaining high confidence across diverse
adversarial tactics

MITRE ATT&CK
Tactic

Recognition
accuracy (%)

Confidence
score

Weighted
accuracy

95% CI (Recognition
accuracy) Cohen’s d

Initial access 91.7 ± 4.3 0.89 ± 0.08 81.6 [90.5, 92.9] 0.92
Execution 88.4 ± 5.1 0.86 ± 0.09 76.0 [87.0, 89.8] 0.88
Persistence 85.9 ± 5.8 0.83 ± 0.11 71.3 [84.4, 87.4] 0.85

Privilege escalation 82.3 ± 6.4 0.78 ± 0.12 64.2 [80.6, 84.0] 0.81
Defense evasion 79.6 ± 7.2 0.74 ± 0.13 58.9 [77.7, 81.5] 0.78
Credential access 86.7 ± 5.5 0.82 ± 0.10 71.1 [85.3, 88.1] 0.86

Discovery 89.1 ± 4.9 0.85 ± 0.09 75.7 [87.8, 90.4] 0.89
Lateral movement 83.8 ± 6.1 0.80 ± 0.11 67.0 [82.2, 85.4] 0.82

Collection 87.2 ± 5.3 0.84 ± 0.10 73.2 [85.9, 88.5] 0.87
Exfiltration 84.5 ± 5.9 0.81 ± 0.11 68.4 [83.0, 86.0] 0.84

Overall average 85.9 ± 5.7 0.82 ± 0.10 70.7 [85.0, 86.8] 0.86

The overall recognition accuracy of 85.9% significantly exceeded the control baseline of 73.5% (t(148)
= 5.22, p < 0.001, Cohen’s d = 0.86, 95% CI [0.09,0.19]). The highest accuracy was for Initial Access (91.7%),
while Defence Evasion remained the most challenging (79.6%).

As demonstrated in Table 9, students demonstrated strong threat pattern recognition capabilities,
achieving an overall accuracy of 85.9% across MITRE ATT&CK tactics. Initial Access techniques showed
the highest recognition accuracy (91.7%), likely due to their fundamental role in attack chains and extensive
coverage in educational materials. Defence Evasion techniques presented the most significant challenge with
79.6% accuracy, reflecting the sophisticated nature of modern evasion techniques. The weighted accuracy
scores, which incorporate confidence levels, provide a more nuanced view of student competency.

Fig. 9 demonstrates the temporal evolution of adaptive pattern recognition performance across six
distinct periods in our cybersecurity learning system. The line plot with confidence intervals shows a
consistent upward trajectory in recognition accuracy, from 78.4% in Week 1 to 91.7% in Week 6, indicating
the effectiveness of adaptive learning mechanisms. The shaded confidence intervals indicate a decrease in
uncertainty over time, suggesting improved model stability as training progresses. Performance zones clearly
distinguish between development phases, with the system achieving “excellent” performance (≥85%) by
Week 4. The statistical annotations highlight significant performance milestones and the overall improve-
ment trend (R2 = 0.94), validating the effectiveness of our adaptive pattern recognition approach in dynamic
threat environments.
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Figure 9: Adaptive pattern recognition performance analysis—recognition accuracy across MITRE ATT&CK tactics
and confidence-weighted performance benchmarking. The left panel displays tactic-level recognition accuracy, ranging
from 79.6% (Defence Evasion, the most challenging) to 91.7% (Initial Access, the highest accuracy), with an overall
average of 85.9%. Most tactics fall in the “Good” (80%–88%) to “Excellent” (>88%) accuracy bands, highlighting
robust detection capabilities with room for improvement in Privilege Escalation and Defence Evasion. The right panel
correlates confidence scores with weighted accuracy (R2 = 0.963), demonstrating a strong linear relationship where
higher confidence leads to superior weighted performance. High-confidence predictions achieve a weighted accuracy
of up to ~81.6%, validating the model’s reliability and adaptive capability under varied threat conditions

4.7 Adaptive Personalisation Precision
The adaptive personalisation precision metric evaluates how accurately TeachSecure-CTI predicts

and adapts to individual learning preferences in cybersecurity education contexts. Table 10 presents pre-
cision measurements across different learning style dimensions and student characteristics. The system
demonstrated high precision in predicting content preferences and difficulty levels while showing moderate
accuracy in timing preferences.

Table 10: Adaptive personalisation precision results—reporting an overall prediction accuracy of 84.8% with peak
performance in Content Preference (89.3%, d = 0.90) and Interaction Style (87.1%, d = 0.88). The results underscore
the system’s ability to tailor content delivery to individual learner needs while maintaining statistical robustness across
various learning dimensions

Learning dimension Prediction
accuracy (%)

Style
weight

Precision
score

95% CI (Prediction
accuracy) Cohen’s d

Content Preference 89.3 ± 4.7 0.85 0.893 [88.2, 90.4] 0.90
Difficulty Level 86.7 ± 5.2 0.90 0.867 [85.4, 88.0] 0.87
Learning Pace 82.4 ± 6.1 0.80 0.824 [80.9, 83.9] 0.83

Assessment Format 84.9 ± 5.8 0.75 0.849 [83.5, 86.3] 0.85
Interaction Style 87.1 ± 5.4 0.70 0.871 [85.8, 88.4] 0.88

Timing Preference 78.6 ± 7.3 0.60 0.786 [76.8, 80.4] 0.79
Overall Average 84.8 ± 5.7 0.77 0.848 [83.7, 85.9] 0.85

The average precision score of 0.848 was statistically significant compared to the control model without
personalisation (0.72). This improvement was validated with (t(148) = 4.17, p < 0.001, Cohen’s d = 0.71, 95%
CI [0.08,0.16]). The most accurate prediction was for Content Preference (89.3%), while Timing Preference
showed the lowest precision (78.6%).
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Table 10 illustrates the system’s strong personalisation capabilities with an overall precision score of
0.848. Content preference prediction achieved the highest accuracy (89.3%), demonstrating the effectiveness
of collaborative filtering and behavioural analysis algorithms. Timing preference prediction showed the
lowest accuracy (78.6%), indicating opportunities for improvement in modelling temporal learning patterns.
The weighted precision scores reflect the relative importance of different learning dimensions in assessing
the effectiveness of cybersecurity education.

These learning dimensions—such as content complexity, interactivity level, and time-on-task—are
well-established indicators in the instructional design literature. They directly affect learner engagement,
personalisation depth, and content sequencing.

Fig. 10 presents a comprehensive evaluation of adaptive personalisation precision across six learning
dimensions within our cybersecurity education framework. The dual-visualisation approach reveals that
Content Preference achieves the highest prediction accuracy at 89.3% with a precision score of 0.893,
establishing it as the most reliable personalisation dimension. The horizontal bar chart with performance
zones shows that four out of six dimensions achieve “excellent” performance levels (≥85% accuracy),
while Timing Preference requires significant improvement, with an accuracy of 78.6%. The correlation
analysis (r = 0.412) between prediction accuracy and style weights suggests a moderate alignment between
algorithmic confidence and actual performance. The style-weight parameter was empirically tuned through
pilot testing across three cohorts, capturing the influence of instructional modality alignment on learning
gain, and normalised to prevent over-dominance in the utility function. Performance indicators identify top
performers (Content Preference and Interaction Style) and areas needing enhancement (Timing Preference
and Learning Pace), providing actionable insights for refining the personalisation algorithm.

Figure 10: Adaptive personalisation precision analysis—prediction accuracy and precision scores across six learning
dimensions with performance benchmarking. The left panel shows prediction accuracy ranging from 78.6% (Timing
Preference, the lowest) to 89.3% (Content Preference, the highest), with an overall precision of 84.8%. Dimensions
such as Content Preference and Interaction Style demonstrate “Excellent” (>87%) precision, while Learning Pace
and Timing Preference show lower performance, indicating areas for further adaptive optimisation. The right panel
illustrates precision scores with confidence intervals, where Difficulty Level (0.867) and Content Preference (0.893)
outperform the average threshold (0.85), reflecting the system’s strong personalisation capabilities. These results validate
the framework’s ability to tailor learning experiences effectively, with high consistency across diverse learner behaviours
and preferences
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4.8 Real-Time Threat Curriculum Synchronisation
The real-time threat curriculum synchronisation metric evaluates how effectively TeachSecure-CTI

maintains alignment between the generated curriculum and the constantly evolving cyber threat landscape.
As shown in Table 11, the system achieves an overall synchronisation index of 0.872, representing strong
alignment between prevalent threats in CTI feeds and corresponding coverage in educational modules.

Table 11: Real-time threat curriculum synchronisation results—demonstrating an average synchronisation index of
0.872, with ransomware showing the highest alignment (0.963, d = 0.95). The findings reveal strong curriculum–threat
coherence across major categories and pinpoint emerging areas such as AI/ML security (0.789) that require further
integration

Threat category Prevalence
score

Curriculum
coverage

Synchronization
index

95% CI (Syn-
chronisation

Index)
Cohen’s d

Ransomware 0.92 0.94 0.963 [0.95, 0.97] 0.95
Phishing 0.88 0.91 0.945 [0.93, 0.96] 0.92

Supply chain attacks 0.76 0.78 0.847 [0.83, 0.86] 0.85
Cloud security threats 0.84 0.86 0.895 [0.88, 0.91] 0.88

IoT Vulnerabilities 0.71 0.73 0.812 [0.79, 0.83] 0.82
AI/ML security 0.69 0.71 0.789 [0.77, 0.81] 0.80
Mobile threats 0.79 0.82 0.856 [0.84, 0.87] 0.86

Overall average 0.80 0.82 0.872 [0.86, 0.88] 0.87

At the category level, the framework demonstrates excellent responsiveness to ransomware (0.963) and
phishing (0.945), both of which remain highly prevalent and pedagogically significant. These results indicate
that the framework prioritises threats with immediate real-world impact, ensuring that learners are trained
in the most pressing areas. In contrast, newer and less frequently reported categories, such as AI/ML Security
(0.789) and IoT Vulnerabilities (0.812), showed lower synchronisation, highlighting areas that require more
integration mechanisms as these threats increase in prominence.

The synchronisation index of 0.872 indicated strong alignment between emerging threats and curricu-
lum coverage. Compared to the control group baseline of 0.68, the improvement was highly significant (t(148)
= 6.01, p < 0.001, Cohen’s d = 0.98, 95% CI [0.15,0.27]). The highest synchronisation was in Ransomware
(0.963), while AI/ML Security showed relatively lower coverage (0.789).

To assess the real-time circulation of threats, the system was benchmarked for update speed when
incorporating new CTI events. On average, 82% of new threat reports were integrated into the curriculum
within 6 h, with zero-day exploit modules showing the fastest integration time (2.3 ± 0.7 h). Higher latency
was observed in complex categories, such as supply chain attacks (0.847 synchronisation) and AI/ML threats,
where processing requires a deeper level of contextual analysis.

Fig. 11 illustrates the dynamic synchronisation process, showing both the effectiveness and the update
frequency across different categories. Categories with higher synchronisation indices (e.g., ransomware,
phishing) realise near real-time updates, while others experience moderate delays due to data availability or
semantic complexity in CTI reports. Importantly, this dynamic update mechanism enables TeachSecure-CTI
to automatically adjust educational content, ensuring learners are continuously exposed to the most relevant
and up-to-date knowledge, thereby enhancing their preparedness against emerging cyber threats.
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Figure 11: Real-time threat curriculum synchronisation analysis—demonstrates synchronisation effectiveness and
update frequency across major threat categories. The left panel shows a strong positive correlation (r = 0.94) between
threat prevalence and curriculum coverage, indicating that TeachSecure-CTI dynamically aligns educational content
with evolving threat landscapes. High-prevalence threats such as Ransomware and Phishing achieve excellent coverage
above 0.94, while AI/ML Security and IoT Vulnerabilities show relatively lower coverage (<0.82), highlighting areas
for targeted improvement. The right panel illustrates synchronisation indices, with an overall average of 0.872 and
peak alignment in Ransomware (0.963). Categories with moderate synchronisation, such as Supply Chain Attacks
(0.847), suggest where curriculum updates can further reduce lag. These results validate the system’s ability to maintain
curriculum relevance in real time and adapt swiftly to emerging cybersecurity threats

Overall, the results demonstrate that the TeachSecure-CTI framework maintains consistent, statisti-
cally significant, and real-time synchronisation with the evolving threat landscape, while also identifying
categories that need further enhancement to improve alignment in future iterations.

Fig. 11 illustrates the effectiveness of real-time threat synchronisation across various categories of
cybersecurity threats. The analysis reveals the varying performance of synchronisation, whereby some groups
of synchronisation achieve near-real-time updates, whereas others experience delays due to complexity or
data availability. In the visualisation, it is visible that the educational content can be adjusted to change
dynamically depending on the latest threat intelligence, making sure that the learning materials are up to date.
Performance benchmarks reveal the optimal rates of synchronisation and identify categories that require
additional integration mechanisms to achieve effectiveness in real-time cybersecurity education.

4.9 Cybersecurity Competency Development Rate
The competency development rate metric measures the speed at which students acquire practi-

cal cybersecurity skills through TeachSecure-CTI, compared to traditional approaches. Table 12 presents
development rates across core cybersecurity competencies and experience levels. The adaptive framework
consistently accelerated competency development, with the most significant improvements observed in
practical application skills.

The adaptive framework accelerated skill development by 31% on average (overall enhancement factor
= 1.31). Statistical testing confirmed significant differences between adaptive and traditional rates (t(148) =
5.64, p < 0.001, Cohen’s d = 0.92, 95% CI [0.18,0.29]). The strongest improvements were in Technical Skills
and Incident Response (1.33× faster).

Table 12 reveals substantial improvements in competency development rates with an overall enhance-
ment factor of 1.31, representing 31% faster skill acquisition through the adaptive framework. Technical
skills and incident response showed the highest enhancement factors (1.33), demonstrating the particular
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effectiveness of threat-aware adaptive learning for practical competencies. Communication skills showed
the most minor improvement (1.26), suggesting opportunities for enhanced integration of soft skills in
future iterations.

The competency areas correspond to practical skills that cybersecurity professionals must demonstrate,
such as threat detection, incident response, and policy enforcement. These were selected based on alignment
with industry roles and cybersecurity education standards.

Table 12: Cybersecurity competency development rate results—showing a 31% enhancement in overall competency
development, with Incident Response (d = 0.93) and Technical Skills (d = 0.92) achieving the most significant gains. The
results confirm that adaptive methods significantly outperform traditional approaches, accelerating skill acquisition
and improving readiness for real-world cybersecurity challenges

Competency area Traditional
rate

Adaptive
rate

Enhancement
factor

95% CI (Adaptive
rate) Cohen’s d

Technical skills 0.73 ± 0.12 0.97 ± 0.15 1.33 [0.94, 1.00] 0.92
Analytical thinking 0.68 ± 0.14 0.89 ± 0.16 1.31 [0.86, 0.92] 0.89

Problem solving 0.71 ± 0.13 0.94 ± 0.17 1.32 [0.91, 0.97] 0.91
Communication 0.65 ± 0.15 0.82 ± 0.18 1.26 [0.79, 0.85] 0.84
Risk assessment 0.69 ± 0.12 0.91 ± 0.14 1.32 [0.88, 0.94] 0.90

Incident response 0.72 ± 0.11 0.96 ± 0.13 1.33 [0.93, 0.99] 0.93
Overall average 0.70 ± 0.13 0.92 ± 0.16 1.31 [0.90, 0.94] 0.90

Fig. 12 shows substantial improvements in competency development rates, with an overall enhancement
factor of 1.31, indicating a 31% faster skill acquisition through the adaptive framework. Technical skills and
incident response showed the highest enhancement factors (1.33), demonstrating the particular effectiveness
of threat-aware adaptive learning for practical competencies. Communication skills showed the most minor
improvement (1.26), suggesting opportunities for enhanced integration of soft skills in future iterations. The
visualisation tracks skill progression over time, revealing differential learning velocities across competency
areas and identifying optimal learning trajectories that enable accelerated professional development in
cybersecurity fields.

4.10 Comparative Baselines and Ablation Studies
To validate the specific contribution of TeachSecure-CTI, we compared it against three baseline

configurations: (i) a Static Curriculum with fixed content and no adaptive or CTI features, (ii) an Adaptive-
only variant that applied personalisation without integrating live threat intelligence, and (iii) a CTI-only
variant that integrated real-time CTI feeds without personalisation. These ablation models were evaluated
using the same metrics as the whole framework, including learning gain, accuracy, convergence rate, and
synchronisation index. The results, summarised in Table 13, highlight that while both adaptive-only and CTI-
only approaches provided partial improvements, neither matched the comprehensive performance of the
complete TeachSecure-CTI framework.
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Figure 12: Cybersecurity competency development rate analysis—compares traditional and adaptive approaches,
revealing substantial improvements in skill acquisition and learning velocity across six core competency areas. The left
panel shows that the adaptive framework achieves significantly higher development rates in all categories, with Incident
Response (0.96) and Technical Skills (0.97) leading, compared to traditional baselines below 0.73. Communication
skills show the most significant relative improvement (+1.26×), highlighting the framework’s impact beyond purely
technical domains. The right panel illustrates enhancement factors, with an overall average of 1.31 and peak gains in
Incident Response (1.33), demonstrating accelerated competency growth. These results confirm that integrating real-
time CTI with adaptive personalisation not only enhances technical proficiency but also improves analytical thinking,
risk assessment, and problem-solving skills critical to modern cybersecurity practice

Table 13: Comparative baseline and ablation results

Approach Learning
gain (%) Accuracy (%) Convergence

rate
Synchronisation

index
Static curriculum 12.3 ± 3.4 71.2 ± 5.6 N/A 0.41

Adaptive-only 22.1 ± 4.1 79.8 ± 4.9 0.215 N/A
CTI-only 19.4 ± 3.8 76.5 ± 5.3 N/A 0.781

TeachSecure-CTI 34.0 ± 5.2 85.9 ± 4.7 0.271 0.872

As shown in Table 13, the static curriculum achieved the lowest performance (12.3% learning gain,
71.2% accuracy), confirming the limitations of non-adaptive designs. Adaptive-only improved performance
(22.1% gain) but lacked real-time content currency, whereas CTI-only offered timely threat integration
(synchronisation = 0.781) but underperformed in personalisation and convergence. The full TeachSecure-
CTI framework outperformed all baselines, delivering the highest learning gain (34%), accuracy (85.9%),
convergence (0.271), and synchronisation (0.872). These results confirm that the synergy of CTI + adaptivity
is necessary to achieve significant improvements, validating the contribution of the proposed framework.

The adaptive-only and CTI-only baselines were selected because they reflect predominant themes
in prior research: personalisation-driven e-learning systems [14,39] and CTI-driven cyber training plat-
forms [3]. This separation allows isolation of each component’s contribution and validates the hybrid
superiority of TeachSecure-CTI.

To provide a rigorous comparative evaluation, the performance of TeachSecure-CTI was bench-
marked against recent intelligent cybersecurity training systems reported in the literature [49,50]. As
shown in Table 14, TeachSecure-CTI achieved a 34% improvement in learning gain and an 85.9% threat-
pattern recognition accuracy, outperforming the competing approaches. In particular, the models in [49,50]
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demonstrated notable automation and threat analysis capabilities; however, they did not incorporate real-
time CTI-driven personalisation or reinforcement-learning-based adaptive sequencing. Consequently, their
reported accuracy values remained below 78%, with limited evidence of personalised knowledge progression.

Table 14: Comparative performance analysis of TeachSecure-CTI with recent cybersecurity automation frameworks

Method CTI integration Personalisation Learning gain Accuracy
Adaptive-only baseline ✗ ✓ +18% 76.2%

CTI-Only baseline ✓ ✗ +22% 78.5%
Qureshi et al. [49] Partial ✗ +15%–20% 74%–77%
Wajahat et al. [50] ✓ ✗ N/A 77%–78%

TeachSecure-CTI (Proposed) ✓ Real-time ✓ RL-driven +34% 85.9%

A one-way ANOVA was conducted to validate statistical significance across learning gain, adapta-
tion latency, and threat-recognition accuracy. The results confirmed that the performance improvements
achieved by TeachSecure-CTI are statistically significant (p < 0.05). These findings indicate that the
combined integration of real-time CTI, NLP-based threat concept extraction, and reinforcement-learning-
driven curriculum personalisation yields superior effectiveness when compared with existing automated
cybersecurity education systems. Accordingly, TeachSecure-CTI demonstrates strong generalisability and
enhanced capability in preparing learners for evolving adversarial environments.

5 Discussion
This study aimed to develop an adaptive cybersecurity curriculum framework (TeachSecure-CTI)

integrating real-time cyber threat intelligence with AI-driven personalisation. The objectives were threefold:
(i) to align curricula with emerging threats in near real-time, (ii) to adapt learning content to diverse learner
profiles, and (iii) to validate the system through multi-institutional experiments. These objectives were
successfully achieved, as evidenced by improvements across all evaluation metrics, robust synchronisation
with current threats, and statistically significant gains in learning outcomes.

The results support the central hypothesis that threat-informed adaptive curricula provide superior
outcomes compared to static or partially adaptive methods. In particular, H1 (threat integration improves
learning gains) was validated by the significant improvements in threat-aware learning effectiveness (22.5%
average gain). H2 (adaptive personalisation enhances learner performance) was confirmed by the precision
of learner modelling (84.8% accuracy) and competency growth rates (1.31× faster). H3 (the combination
of CTI and adaptivity outperforms either approach in isolation) was supported by ablation studies, which
showed that TeachSecure-CTI consistently outperformed both CTI-only and adaptive-only baselines.

These findings are consistent with recent work on AI-enhanced education systems, but they extend
the state of the art by combining real-time CTI with personalisation. Table 15 presents a comparison
between the proposed TeachSecure-CTI with prior nine studies and updated 2025 research. For example,
Albaladejo-González et al. [46] demonstrated adaptive gamification for cyber training but lacked real-time
CTI ingestion. Sorokoletova et al. [47] introduced scalable CTI extraction but did not address pedagogy.
Nott [48] examined organisational adaptation to generative AI, while Ahmadi [51] focused on adaptive
operational firewalls—both outside the education domain. In contrast, TeachSecure-CTI integrates these
dimensions into a unified, learner-centred framework, achieving the highest reported improvement in
learning gains (34%).
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Table 15: Comparative analysis with previous studies

Study Year Learning
gain Engagement Threat

integration Personalization Evaluation
period

Sample
size

Huang & Lu 2023 12% Moderate None Basic 8 weeks 45
Pramod 2024 18% High Minimal Game-based 6 weeks 62

Williams et al. 2024 15% High None Static levels 10 weeks 78
Bitrián et al. 2024 14% High Limited Behavioral 8 weeks 156
Albaladejo-

González
et al.

2025 19% Very High None Gamified
adaptive 8 weeks 92

Sorokoletova
et al. 2024 N/A N/A

Core focus
(CTI

extraction)
None Benchmark –

Nott 2025 N/A N/A
Conceptual

(GenAI
adaptation)

None Review –

Ahmadi 2025
20%

(opera-
tional)

High Real-time Not educational Prototype –

TeachSecure-
CTI

(Proposed)
2025 34% Very High Real-time Threat-aware 12 weeks 150

While the results demonstrate the effectiveness of TeachSecure-CTI, there are important limitations.
First, the evaluation period was limited to 12 weeks, which does not capture long-term knowledge retention.
Second, participants were primarily drawn from academic institutions, which limits the generalizability to
professional or workforce learners. Third, the system currently relies on English-only CTI feeds, which may
restrict applicability in multilingual contexts. Finally, scalability has not yet been tested for huge learner
populations (e.g., 10,000+ concurrent users).

While the current system processes English-based CTI feeds, multilingual scaling is feasible via
transformer-based multilingual encoders (e.g., mBERT, XLM-R) and domain-adapted cross-lingual entity
recognition pipelines. Future iterations will integrate multilingual intelligence streams to support global
cybersecurity curricula.

Future work will address these limitations by extending experiments to professional training envi-
ronments, incorporating multilingual CTI sources, and integrating cyber range simulations for hands-on
practice. In addition, large-scale deployment studies are planned to evaluate scalability and system resilience
under real-world workloads. The CTI ingestion layer may face latency under high-volume streaming
environments. We propose distributed queue-based ingestion, adaptive throttling, and model caching to
maintain responsiveness during peak load. Future work will include Kubernetes-based auto-scaling and
GPU-accelerated batch pre-processing.

The results of this study provide clear validation of the three research hypotheses. H1 is supported by
the threat-aware learning effectiveness analysis, as shown in Table 5, which reveals an average learning gain
of 22.5%, significantly higher than the 12.3% observed in the static curriculum baseline (Table 13). H2 is
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confirmed by the precision of adaptive personalisation, as demonstrated in Table 8, which shows an 84.8%
prediction accuracy across learning dimensions, and in Table 11, which shows a 31% faster competency
development rate, underscoring the role of adaptivity in accelerating skill acquisition. Finally, H3 is validated
through the ablation studies presented in Table 13, where TeachSecure-CTI consistently outperformed both
Adaptive-only and CTI-only baselines, achieving the highest performance with a 34% learning gain, 85.9%
accuracy, and a 0.872 synchronisation index. Collectively, these findings demonstrate that the integration of
real-time CTI with adaptive personalisation produces a synergistic effect that cannot be achieved by either
approach alone.

6 Conclusion
TeachSecure-CTI successfully integrates real-time CTI with AI-driven personalisation to address the

gap between static curricula and evolving cyber threats. The multi-layered architecture, combining CTI
ingestion, NLP extraction, reinforcement learning optimisation, and personalised module generation, was
validated through a 12-week study involving 150 students across three institutions. Results demonstrated 34%
improved learning gains, 22.5% increased threat-aware effectiveness, a competence transfer coefficient of
0.862, 85.9% MITRE ATT&CK recognition accuracy, a threat integration latency of 4.9 h, a synchronisation
index of 0.872, and 31% faster competency development compared to baselines. These findings confirm that
combining CTI with adaptive personalisation creates curricula that are both current and learner-specific.
Limitations include the 12-week experimental duration, which restricts insights into long-term retention,
a focus on academic rather than professional learners, and reliance on English-only CTI feeds. Future
work will extend the framework to professional training contexts, integrate multilingual CTI sources, and
incorporate cyber range simulations and LLM-based remediation. TeachSecure-CTI offers an empirically
validated, scalable solution for developing cybersecurity professionals who are equipped for modern threat
environments, thereby bridging the critical gap between dynamic threat intelligence and adaptive pedagogy.
Beyond academic settings, TeachSecure-CTI can be deployed in corporate SOC training, cybersecurity
apprenticeships, and government cyberdefense academies, enabling workforce upskilling with live threat
intelligence and personalised reinforcement-driven learning.
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