
echT PressScience

Doi:10.32604/cmc.2025.074520

ARTICLE

Lexical-Prior-Free Planning: A Symbol-Agnostic Pipeline that Enables LLMs
and LRMs to Plan under Obfuscated Interfaces

Zhendong Du*, Hanliu Wang and Kenji Hashimoto

Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, 808-0135, Japan
*Corresponding Author: Zhendong Du. Email: zhendong@fuji.waseda.jp
Received: 13 October 2025; Accepted: 16 December 2025; Published: 10 February 2026

ABSTRACT: Planning in lexical-prior-free environments presents a fundamental challenge for evaluating whether
large language models (LLMs) possess genuine structural reasoning capabilities beyond lexical memorization. When
predicates and action names are replaced with semantically irrelevant random symbols while preserving logical
structures, existing direct generation approaches exhibit severe performance degradation. This paper proposes a
symbol-agnostic closed-loop planning pipeline that enables models to construct executable plans through systematic
validation and iterative refinement. The system implements a complete generate-verify-repair cycle through six core
processing components: semantic comprehension extracts structural constraints, language planner generates text plans,
symbol translator performs structure-preserving mapping, consistency checker conducts static screening, Stanford
Research Institute Problem Solver (STRIPS) simulator executes step-by-step validation, and VAL (Validator) provides
semantic verification. A repair controller orchestrates four targeted strategies addressing typical failure patterns includ-
ing first-step precondition errors and mid-segment state maintenance issues. Comprehensive evaluation on PlanBench
Mystery Blocksworld demonstrates substantial improvements over baseline approaches across both language models
and reasoning models. Ablation studies confirm that each architectural component contributes non-redundantly to
overall effectiveness, with targeted repair providing the largest impact, followed by deep constraint extraction and step-
wise validation, demonstrating that superior performance emerges from synergistic integration of these mechanisms
rather than any single dominant factor. Analysis reveals distinct failure patterns between model types—language models
struggle with local precondition satisfaction while reasoning models face global goal achievement challenges—yet
the validation-driven mechanism successfully addresses these diverse weaknesses. A particularly noteworthy finding
is the convergence of final success rates across models with varying intrinsic capabilities, suggesting that systematic
validation and repair mechanisms play a more decisive role than raw model capacity in lexical-prior-free scenarios.
This work establishes a rigorous evaluation framework incorporating statistical significance testing and mechanistic
failure analysis, providing methodological contributions for fair assessment and practical insights into building reliable
planning systems under extreme constraint conditions.

KEYWORDS: LLM planning; PDDL; symbol obfuscation; lexical-prior-free evaluation; closed-loop verification;
validation-driven repair; structural reasoning; mystery domain

1 Introduction
Planning serves as a crucial capability that bridges high-level intentions with low-level execution. Tradi-

tional symbolic planning systems rely on explicitly defined predicates and action models, employing heuristic
search, hierarchical task networks (HTN), or satisfiability solving (SAT/SMT) to identify action sequences
in state spaces that satisfy goal constraints. STRIPS/ADL established standard semantics, Planning Domain

Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.074520
https://www.techscience.com/doi/10.32604/cmc.2025.074520
mailto:zhendong@fuji.waseda.jp

2 Comput Mater Contin. 2026;87(1):12

Definition Language (PDDL) provided unified representations for domains and problems, Graphplan and
the FF/FD series laid solid foundations for heuristic construction and holistic solving frameworks, while
SAT/SMT-based approaches demonstrated excellence in complex constraint and optimization scenarios.
Validators such as VAL provide formal guarantees for plan correctness. This classical paradigm of “explicit
models + systematic search” emphasizes structural interpretability and verifiability.

In recent years, LLMs have demonstrated the potential of “language as model”: through prompt
engineering, chain-of-thought (CoT), tool usage, or program sketch generation, models can directly generate
plans or intermediate subgoals within natural language space. Text-to-PDDL efforts attempt to translate
natural language into formalized descriptions usable by classical planners. However, recent investigations
have exposed fundamental limitations: when symbolic interfaces (predicate/action names) are decoupled
from natural semantics through obfuscation—retaining only their structural roles—existing LLMs or Large
Reasoning Models (LRMs) exhibit severe performance degradation [1,2]. This phenomenon reveals a critical
research gap: models’ apparent planning success largely depends on lexical priors and script-like co-
occurrences in training data rather than genuine structural reasoning about preconditions, effects, and
state transitions.

Research Gap and Motivation. While prior work has extensively documented this lexical dependency
problem, three fundamental questions remain unaddressed: First, can models achieve reliable planning
performance when lexical priors are completely removed? Existing baseline approaches show near-zero success
rates in Mystery domains, but it remains unclear whether systematic methods can overcome this barrier.
Second, what mechanisms enable structural reasoning without semantic cues? The field lacks concrete solutions
that operate purely on logical consistency rather than lexical matching. Third, how do validation-driven
approaches compare to raw model capabilities in such extreme conditions? Understanding whether systematic
verification matters more than intrinsic model capacity has important implications for building reliable
AI systems.

Addressing these gaps is critical for several reasons:

• Theoretical necessity: Genuine planning capabilities must be independent of surface lexical forms—a
system that only works with familiar vocabulary cannot claim true structural reasoning.

• Practical robustness: Real-world applications often encounter novel domains where training-time
vocabulary associations are unavailable or misleading.

• Evaluation rigor: Without lexical-prior-free testing, we cannot distinguish memorization from reason-
ing, leading to overestimated capabilities.

• System reliability: As AI systems assume critical decision-making roles, verification mechanisms
become essential safety infrastructure.

Our Approach and Contributions. This paper addresses the question: under lexical-prior-free symbolic
interfaces, how can models construct executable plans that achieve specified goals? We propose a symbol-
agnostic closed-loop planning pipeline that enables structured reasoning through systematic validation
and iterative refinement. Our approach implements a complete generate-verify-repair cycle comprising six
processing components (semantic comprehension, language planner, symbol translator, consistency checker,
STRIPS simulator, VAL validator) and two control components (repair controller, signal aggregator). The
system operates entirely on structural relationships—preconditions, effects, state dependencies—without
any name-based semantic inference.

Comprehensive evaluation on PlanBench Mystery Blocksworld demonstrates that our method achieves
46.2%–48.0% success rates across GPT-4 (Generative Pre-trained Transformer 4) [3], GPT-4o (Generative
Pre-trained Transformer 4 Omni) [3], and o1-mini [4], representing more than 10-fold improvements over

Comput Mater Contin. 2026;87(1):12 3

baseline direct generation (0%–19.1%). A particularly noteworthy finding is the convergence of final success
rates across models with vastly different intrinsic capabilities, suggesting that systematic validation and
repair mechanisms play a more decisive role than raw model capacity in lexical-prior-free scenarios. We
adhere to fair evaluation standards consistent with existing benchmarks (LLMs: GPT-4/4o; LRMs: o1-mini;
index boundary filtering), providing systematic evidence from holistic to mechanistic levels through rigorous
statistical protocols (Wilson CI, two-proportion z-tests, effect size h, temporal robustness, retry benefit
curves, hazard risk profiles, normalized pointwise mutual information (NPMI) association strength).

Novelty and Contributions. This work makes four distinct contributions to the field:

• Methodological novelty: We propose the first complete symbol-agnostic closed-loop planning pipeline
specifically designed for lexical-prior-free environments, introducing targeted repair strategies (First-
Step Constraint, Precondition Probing, Parameter Swap & Landmarks, Budget-Adaptive Retry) that
address empirically identified failure patterns.

• Evaluation rigor: We establish comprehensive evaluation protocols incorporating Wilson confidence
intervals, two-proportion z-tests, effect size measures, temporal robustness analysis, retry benefit curves,
hazard risk profiles, and NPMI association analysis—providing reproducible evidence that withstands
statistical scrutiny beyond existing benchmarks.

• Mechanistic insights: We reveal distinct failure patterns between model types (LLMs struggle with local
precondition satisfaction; reasoning models face global goal achievement challenges) and demonstrate
how validation-driven mechanisms enable performance convergence across heterogeneous models,
advancing understanding of when and why systematic verification matters.

• Practical contribution: We provide fairness-aware data specifications (index boundary filtering),
chart-to-script mappings for reproducibility, and empirical evidence that b ≈ 2 attempts achieve opti-
mal cost-effectiveness—offering actionable guidance for deploying planning systems under extreme
constraints.

These contributions establish that structural reasoning without lexical priors is achievable through sys-
tematic validation-driven approaches, with implications extending to program synthesis, theorem proving,
and other multi-step reasoning tasks requiring verifiable correctness guarantees. To facilitate comprehension
of specialized terminology for readers less familiar with planning formalisms and statistical methodolo-
gies, Fig. 1 provides visual explanations and plain-language descriptions of key technical concepts used
throughout this work.

4 Comput Mater Contin. 2026;87(1):12

Figure 1: Comprehensive glossary of technical terminology used in this paper. Left column: Planning and formal
methods concepts. Right column: Statistical and evaluation metrics

Comput Mater Contin. 2026;87(1):12 5

2 Related Work
This chapter systematically reviews research progress related to lexical-prior-free planning. We first

review the development of symbolic planning, analyzing the capabilities and limitations of existing planning
systems. We then survey research on LLMs applications in planning tasks, focusing on their performance
and dependency patterns. Next, we examine verification-driven and repair-based approaches, highlighting
critical distinctions from our symbol-agnostic pipeline. We then analyze related work on symbol obfuscation
and lexical-prior-free evaluation. Finally, we review research progress in planning evaluation methodologies.

2.1 PDDL Planning Language and Symbolic Planning Research
2.1.1 PDDL’s Formalization Framework

The PDDL was proposed by [5] and has become the standard language for symbolic planning.
Understanding the structural nature of PDDL is crucial for analyzing the feasibility of lexical-prior-free
approaches, as the core assumption of obfuscation techniques is that the logical dependencies of planning
reasoning are independent of specific lexical choices.

PDDL employs a modular design where domain definitions D = ⟨T ,P ,A⟩ include:

• Type system T : Defines object type hierarchies, forming a partial order structure (T , ⪯)
• Predicate signatures P : Each predicate p ∈ P is defined as p ∶ T k → {true , f al se}
• Action schemas A: Action a is defined by parameters params(a), preconditions pre(a), and effects

eff(a)
PDDL supports multiple semantic models, with STRIPS semantics [6] being the most fundamental and

widely used. In the STRIPS model, states are represented as sets of atomic predicates, and action effects are
divided into add effects add(a) and delete effects del(a). The state transition function is defined as:

γ(s, a) =
⎧⎪⎪⎨⎪⎪⎩

(s ∪ add(a))/del(a) if s ⊧ pre(a)
� otherwise

(1)

Given initial state s0 and goal condition G, a plan π = ⟨a1 , a2, . . . , an⟩ is valid if and only if there exists
a state sequence s0, s1 , . . . , sn such that:

1. For all i ∈ [1, n]: si = γ(si−1 , ai)
2. sn ⊧ G

The key insight of this formalization framework is that plan executability and correctness are entirely
determined by structural relationships (precondition satisfaction, state transition logic) rather than the
specific meanings of symbols.

2.1.2 Development of Classical Planning Algorithms
Based on the PDDL framework, the development of symbolic planning algorithms provides important

insights for understanding structured reasoning. The FF planner proposed by [7] demonstrated how to utilize
structural information for efficient reasoning through heuristic search and the concept of helpful actions.
FF’s success indicates that effective planning reasoning depends on accurate modeling of precondition and
effect relationships, providing an important reference framework for analyzing LLM planning capabilities.

The Fast Downward system developed by [8] further demonstrated the importance of structured
representation. The system achieved performance breakthroughs through multi-level abstraction and precise
state transition modeling. More importantly, Fast Downward provided a standardized experimental platform

6 Comput Mater Contin. 2026;87(1):12

for planning research, and its rigorous correctness verification mechanisms laid the technical foundation for
subsequent LLM planning evaluation.

2.1.3 Theoretical Analysis of Computational Complexity and Reasoning Capabilities
Theoretical analysis proposed by [9] provides important insights for understanding the nature of

planning reasoning. They proved the PSPACE-completeness of STRIPS planning, indicating that even
under the most simplified STRIPS framework, planning remains a computationally hard problem requiring
structured reasoning rather than simple pattern matching. This theoretical result has important implications
for analyzing LLM planning capabilities: if models truly master planning reasoning abilities, they should be
able to handle such computational complexity rather than relying solely on lexical patterns.

HTN planning proposed by [10] reduces search complexity by introducing domain knowledge, but
the success of this approach precisely illustrates the important impact of domain knowledge on planning
performance. Recent work has explored alternative complexity management strategies through collaborative
approaches where multiple language model instances coordinate to solve planning problems, demonstrating
effectiveness in related reasoning tasks such as machine translation, sentiment analysis, and text summa-
rization [11]. However, these multi-model approaches typically rely on semantic information exchange and
domain-specific coordination mechanisms. This observation provides theoretical support for lexical-prior-
free evaluation: by removing domain-specific lexical cues, the pure reasoning capabilities of models can be
assessed more accurately, independent of coordination strategies or semantic priors.

2.2 Research on LLMs Applications in Planning Tasks
2.2.1 Exploration of Early Direct Generation Methods

The application of LLMs in planning tasks began with attempts at direct sequence generation. Ref-
erence [12] first systematically studied the potential of language models in planning tasks by fine-tuning
GPT-2 [13] models to generate simple action sequences. The important finding of this research was that
models performed well in controlled environments but had significant limitations when handling complex
causal relationships, particularly in tasks requiring precise state tracking.

The introduction of chain-of-thought techniques brought new possibilities to planning tasks. Ref-
erence [14] proposed chain-of-thought reasoning that significantly improved performance on complex
reasoning tasks by guiding models through structured reasoning (state analysis → goal decomposition →
action selection → effect prediction). However, the success of this approach largely depends on the match
between reasoning steps and domain knowledge, raising important questions for subsequent lexical-prior-
free research.

2.2.2 Research on Structured Approaches and Tool Enhancement
Recognizing the limitations of direct generation methods, researchers began exploring more structured

approaches. Reference [15] proposed template-based planning methods that significantly reduced the
proportion of invalid plans by constraining the generation process through predefined action templates. The
key insight of this work is that structured constraints can improve plan executability, but template design still
relies on domain-specific knowledge.

Reference [16] systematically analyzed the possibilities of combining LLMs with symbolic planners.
Their research showed that LLMs have advantages in understanding natural language descriptions but still
need to rely on traditional planners’ verification mechanisms to ensure logical consistency. This finding
directly supports the necessity of adopting validation-driven methods in this paper.

Comput Mater Contin. 2026;87(1):12 7

2.2.3 Discovery and Analysis of Performance Limitations
The groundbreaking research by [1] first systematically exposed the fundamental limitations of LLMs in

planning tasks. Through comprehensive evaluation on standard planning benchmarks, they found that even
the most advanced models performed poorly on tasks requiring precise logical reasoning. More importantly,
they identified models’ strong dependence on domain knowledge in training data.

Reference [17] further analyzed the nature of LLM planning capabilities. Through controlled experi-
ments, they found that model success largely depends on memory of common scenarios rather than genuine
causal reasoning abilities. This finding has important implications for understanding the cognitive capability
boundaries of LLMs.

Reference [18] specifically studied GPT-4’s performance on classical planning tasks, finding that even
the latest models still have significant defects in tasks requiring multi-step reasoning. Their analysis showed
that models tend to generate plans that “look reasonable” but are logically incorrect. Reference [19] extended
this evaluation to reasoning-enhanced models, specifically assessing OpenAI’s o1-mini on PlanBench,
and confirmed that even with enhanced reasoning capabilities, models still cannot reliably plan without
systematic validation when lexical priors are removed.

2.3 Verification-Driven and Repair-Based Approaches
Recent advances in LLM reasoning have increasingly emphasized iterative refinement through external

feedback mechanisms. Representative approaches include ReAct [20], which interleaves reasoning traces
with environment actions, and Reflexion [21], which employs verbal self-reflection to learn from task failures.
While these verification-driven paradigms demonstrate substantial improvements on complex reasoning
tasks, they operate under fundamentally different constraints than our symbol-agnostic pipeline.
Critical Distinctions from Our Approach

ReAct generates reasoning traces (“thoughts”) alongside actions, leveraging environmental observations
to guide dynamic replanning in tasks like question answering and web navigation. Reflexion extends this
through episodic memory and verbal self-reflection, where models generate natural language summaries of
failures to improve subsequent attempts. Both approaches achieve strong performance in semantically rich
environments but rely fundamentally on interpretable symbolic interfaces.

Our approach differs across four critical dimensions:
Lexical Prior Dependency. ReAct and Reflexion operate where action names and feedback maintain

natural semantics, enabling models to leverage training-time associations. Our pipeline addresses complete
lexical obfuscation where symbols like “overcome” or “province” bear no relationship to planning concepts.
This qualitative distinction renders language-based reflection ineffective (baseline: 0%–19.1% success), while
our formal verification mechanisms achieve 46.2%–48.0% success rates.

Verification Mechanisms. Existing approaches use language-based feedback—environmental obser-
vations in ReAct, verbal critiques in Reflexion—requiring semantic understanding. We employ formal
verification through STRIPS simulation and VAL validation, operating purely on structural logic (precondi-
tion satisfaction, state transitions) without symbol semantics, providing rigorous correctness guarantees.

Repair Strategy Specificity. ReAct and Reflexion adopt general-purpose refinement strategies: regen-
erating reasoning traces or adjusting high-level plans based on verbal feedback. Our repair controller
implements four specialized strategies (First-Step Constraint, Precondition Probing, Parameter Swap &
Landmarks, Budget-Adaptive Retry) targeting distinct structural failure modes identified through empirical
analysis—interventions impossible without formal state tracking.

8 Comput Mater Contin. 2026;87(1):12

Evaluation Scope. ReAct and Reflexion are evaluated on tasks where semantic priors aid reasoning
(web navigation, household tasks with meaningful action names). Our evaluation protocols target the lexical-
prior-free regime with rigorous statistical testing (Wilson CI, effect sizes, hazard profiles), assessing genuine
structural reasoning independent of lexical memorization.

These distinctions align with cognitive science perspectives on abstraction [22,23]: while ReAct and
Reflexion advance iterative refinement in semantically grounded environments, they do not address reason-
ing when semantic scaffolding is removed. Our work demonstrates that systematic validation and repair,
when designed for symbol-agnostic operation through formal verification, can achieve reliable performance
where lexical priors are completely absent—establishing a complementary paradigm for systems facing novel
domains or adversarial settings where training-time associations are unavailable.

Recent work has further emphasized the necessity of external verification for reliable planning. Refer-
ence [24] provided a systematic analysis categorizing LLM contributions to planning into three roles: solver,
verifier, and heuristic provider, demonstrating that verification-driven workflows significantly outperform
direct generation across multiple benchmarks. These developments reinforce our core thesis that validation-
driven closed-loop mechanisms are not merely beneficial but essential for achieving reliable planning under
symbol-agnostic conditions.

2.4 Symbol Obfuscation and Lexical Prior Removal Research
2.4.1 Identification of the Lexical Prior Problem

The impact of lexical priors on AI system performance was first identified in the knowledge represen-
tation field. Reference [25] pointed out that many seemingly intelligent behaviors are actually memory of
patterns in training data rather than genuine reasoning capabilities. This observation provided a theoretical
foundation for subsequent lexical-prior-free research.

In the planning field, reference [2] first explicitly proposed the concept of lexical priors. Through
comparative experiments, they found that when using familiar domain vocabulary (such as “pick-up,” “put-
down”), LLMs performed well, but this performance mainly came from memory of common patterns in
training corpora.

Reference [26] further deepened this understanding by proposing the “System 1” vs. “System 2” analyt-
ical framework. They argued that LLMs primarily rely on fast pattern recognition (System 1) while lacking
deep logical reasoning capabilities (System 2). This analysis provides important insights for understanding
the nature of LLM planning capabilities.

2.4.2 Design and Implementation of PlanBench Mystery Domains
The core contribution of PlanBench [27] is the systematic construction of “Mystery” domains, which

provides a standardized technical framework for lexical-prior-free evaluation. Mystery domains use symbol
obfuscation techniques to replace all predicate and action names in classical planning domains with
semantically neutral random vocabulary, thereby cutting off lexical cues that models might depend on.

Formal Definition of Obfuscation Mapping
The construction of Mystery domains is based on bijective mappingM ∶ Σ → Σ′, where Σ is the original

symbol set (predicate and action names) and Σ′ is random symbols selected from a predefined vocabulary.
The mapping must satisfy strict structure-preserving constraints:
• Arity preservation: ∀p ∈ P , ∣args(p)∣ = ∣args(M(p))∣
• Type consistency: Type hierarchy structure (t1 ⪯ t2) ⇔ (M(t1) ⪯M(t2))
• Structural isomorphism: Logical structure of preconditions and effects is completely preserved

Comput Mater Contin. 2026;87(1):12 9

Concrete Example: Blocks World Obfuscation
Taking the classical Blocks World domain as an example, the original domain (Listing 1) includes the

following core elements:
Listing 1: Original Blocks World Domain

(:predicates
(clear ?x - block)
(holding ?x - block)
(on ?x ?y - block)
(ontable ?x - block)
(handempty))

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

After obfuscation, the Mystery domain (Listing 2) might become:
Listing 2: Obfuscated Mystery Domain

(:predicates
(province ?x - block) ; originally clear
(pain ?x - block) ; originally holding
(planet ?x ?y - block) ; originally on
(harmony ?x - block) ; originally ontable
(craves)) ; originally handempty

(:action overcome
:parameters (?x - block)
:precondition (and (province ?x) (harmony ?x) (craves))
:effect (and (not (harmony ?x)) (not (province ?x))

(not (craves)) (pain ?x)))

Mapping Consistency and Verification
The obfuscation process ensures consistency: within a single evaluation, the mapping remains fixed

to avoid “same word, different meaning” interference. The obfuscated domain is verified through the VAL
validator to confirm logical equivalence with the original domain. For example, whether it’s ‘(clear a)’ or
‘(province a)’, their roles in state transitions are identical.

Semantically Neutral Random Replacement
The construction of Mystery domains employs a strict random replacement strategy, randomly selecting

replacement vocabulary from a predefined semantically neutral vocabulary. Key characteristics include:

• Complete semantic irrelevance: Replacement vocabulary (such as planet, province, pain, harmony,
craves, etc.) is completely unrelated to original planning concepts, avoiding any semantic cues.

• Randomness guarantee: The vocabulary selection process is random, not based on semantic similarity
or any meaningful associations. For example, the ‘clear’ predicate representing the “clear” concept might
be replaced by ‘province’, having no connection to spatial or political concepts.

10 Comput Mater Contin. 2026;87(1):12

• Consistency constraints: Although selection is random, mappings remain fixed within a single
evaluation, ensuring ‘clear’ always corresponds to ‘province’, avoiding “same word, different mean-
ing” confusion.

2.4.3 Development of Symbol Obfuscation Techniques
The proposal of PlanBench marks the formal establishment of lexical-prior-free evaluation methods.

Reference [27] designed a systematic symbol obfuscation framework that cuts off lexical cues models might
depend on by replacing predicate and action names with semantically neutral random vocabulary.

Building on these foundations, recent work has continued to explore LLM robustness under obfusca-
tion. Reference [28] evaluated frontier models (GPT-5, Gemini 2.5 Pro) on both standard and obfuscated
PDDL tasks, finding that while performance on standard tasks now competes with classical planners like
LAMA, obfuscation still causes significant degradation—confirming persistent reliance on token semantics
despite architectural improvements. Notably, their work identifies Gemini 2.5 Pro as exhibiting reduced
sensitivity to obfuscation compared to earlier models, suggesting incremental progress in symbolic reason-
ing capabilities. Reference [29] introduced PLANET, a comprehensive benchmark collection specifically
designed to evaluate LLM planning capabilities across diverse obfuscation strategies, providing standardized
evaluation protocols that complement PlanBench’s Mystery domains.

Reference [30] built upon this by studying the effectiveness of different obfuscation strategies. They
compared the effects of random obfuscation, adversarial obfuscation, and structured obfuscation, finding
that adversarial obfuscation (using semantically opposite vocabulary) was most effective at exposing models’
lexical dependencies.

Reference [31] proposed more refined obfuscation techniques by maintaining consistency in certain
semantic categories to study the role of different levels of lexical knowledge. Their research showed that even
abstract semantic category information affects model performance.

These recent advancements validate the continued relevance of symbol-agnostic evaluation while high-
lighting that raw model improvements alone remain insufficient without systematic validation mechanisms.

2.4.4 Theoretical Analysis of Lexical-Prior-Free Evaluation
Reference [23] analyzed the theoretical foundation of symbol obfuscation from a cognitive science

perspective. They argued that genuine intelligence should be able to handle arbitrary symbol systems
without depending on specific lexical conventions. This viewpoint provides cognitive science support for
lexical-prior-free evaluation.

Reference [22] further discussed the relationship between abstraction capabilities and lexical indepen-
dence. She pointed out that an important characteristic of higher-level cognitive abilities is the capacity
to abstract and transfer between different symbol systems, an area where current AI systems still show
significant deficiencies.

Reference [32] proposed similar views in ARC (Abstraction and Reasoning Corpus) research, empha-
sizing the importance of evaluating systems’ genuine reasoning capabilities rather than memory abilities.
Although ARC focuses on visual reasoning, its design philosophy is highly consistent with lexical-prior-
free evaluation.

Comput Mater Contin. 2026;87(1):12 11

2.5 Research Development in Planning Evaluation Methods
2.5.1 Development of Planning Evaluation Frameworks

The development of planning evaluation methods is closely related to understanding the nature of
planning capabilities. Reference [33] emphasized the importance of standardized evaluation at the AIPS-
2000 conference, particularly noting that the lack of unified correctness standards was an important factor
hindering progress in planning research. This viewpoint provided important impetus for subsequently
establishing rigorous verification mechanisms.

The establishment of the International Planning Competition (IPC) [34] confirmed a multi-dimensional
evaluation framework whose core principle is that planning algorithm evaluation must be based on rigorous
correctness verification, not merely surface performance metrics. This principle has important guiding
significance for understanding LLM planning capabilities as it emphasizes the importance of structured
verification relative to heuristic evaluation.

2.5.2 Development of Validation Tools
The development of VAL represents an important advance in planning evaluation technology. Refer-

ence [35] designed a complete PDDL validation framework, providing authoritative correctness checking
tools for the entire planning community. VAL’s importance lies not only in its technical implementation but
also in establishing unified validation standards.

Reference [36] further extended validation technology in their PDDL+ research, addressing valida-
tion problems for continuous time and hybrid systems. Their work showed that as planning language
expressiveness increases, validation technology must develop accordingly.

Reference [37] developed comparative frameworks for various validation tools, systematically analyzing
the advantages and disadvantages of different validation methods. Their research provided guidance for
selecting appropriate validation tools.

Recent developments have further advanced planning evaluation methodologies. Reference [38] con-
ducted comprehensive studies on error detection and correction in PDDL domain models, revealing that
LLMs demonstrate stronger capabilities in translation tasks than in direct planning, supporting our design
decision to separate semantic comprehension from plan generation. This finding emphasizes the importance
of rigorous validation mechanisms when employing LLMs in planning workflows—a principle we adopt
throughout our evaluation protocol by using VAL for sound plan verification.

We can see that: the symbolic planning field has developed mature theoretical foundations and
technical frameworks; applications of LLMs in planning tasks have made progress but still face fundamental
limitations; verification-driven approaches like ReAct and Reflexion have advanced iterative refinement in
semantically rich environments through language-based feedback, yet the lexical-prior-free regime remains
unaddressed; symbol obfuscation techniques provide effective means for rigorous evaluation of structural
reasoning capabilities; and the continuous development of evaluation methods provides important support
for research progress. These research achievements collectively lay a solid foundation for the work in
this paper.

3 Methodology
This chapter proposes a Symbol-Agnostic Planning Pipeline that aims to construct a verifiable and

repairable end-to-end planning system under lexical-prior-free constraints. Through modular design, this

12 Comput Mater Contin. 2026;87(1):12

method achieves structured reasoning that relies entirely on the logical consistency of preconditions, effect
relationships, and state dependencies, rather than lexical semantic cues.

3.1 Problem Formulation and Design Objectives
3.1.1 Core Challenges and Problem Setting

Based on the analysis of related work in Section 2, existing LLMs exhibit significant deficiencies in
planning capabilities under lexical-prior-free conditions. Specifically:

• Insufficient structural reasoning capabilities: As demonstrated by [1], model failures in Mystery
domains are primarily dominated by unsatisfied preconditions and state transition errors, reflecting a
lack of understanding of PDDL structural semantics.

• Over-reliance on lexical dependencies: Related work shows that traditional methods based on lex-
ical matching or templates completely fail in symbol obfuscation environments, exposing excessive
dependence on surface semantic cues.

• Lack of systematic repair strategies: Existing methods lack structured repair mechanisms based on
validation feedback, failing to effectively utilize failure information provided by validation tools like VAL
for iterative improvement.

3.1.2 Design Principles and Symbol-Agnostic Mechanisms
Based on the above challenge analysis, this paper’s method follows the following core design principles:

• Structure-first principle: Rely solely on the logical consistency of preconditions, effect relationships,
and state dependencies, completely avoiding dictionary matching or semantic inference based on names.

• Validation-driven principle: Establish a “generate→verify→repair” closed-loop mechanism, providing
authoritative correctness determination and structured failure diagnosis through STRIPS simulation
and VAL validation.

• Budget-aware principle: Maximize success rate within limited attempt budgets, with particular focus
on marginal gains in small budget scenarios.

What Makes the System Symbol-Agnostic
Beyond merely processing obfuscated symbols, our system achieves genuine symbol-agnosticism

through architectural design where every component operates on structural relationships rather than
semantic interpretations. This distinguishes our approach from systems that tolerate random symbols but
still rely on semantic reasoning internally:

• Structural constraint extraction: The SC module extracts constraints not through lexical matching
(e.g., recognizing “pick-up” patterns) but by parsing PDDL structural relationships directly from domain
specifications: which predicates appear in which action preconditions (p ∈ pre(a)), which parame-
ters share type constraints (type(θi) ⪯ type(θ j)), which effects delete which predicates (p ∈ del(a)).
The constraint set C encodes purely structural dependencies—arity preservation, type consistency,
precondition-effect chains—independent of whether symbols are “clear”, “province”, or arbitrary tokens.

• Formal set-theoretic verification: STRIPS simulation operates through set membership checking
(pre(a) ⊆ s) and set operations (s′ = (s ∪ add(a))/del(a)), treating symbols as atomic identifiers in
Boolean predicates. VAL validation verifies logical entailment (sn ⊧ G) through syntactic pattern
matching against PDDL specifications, never interpreting what “province(?x)” or “overcome(?x)”
“mean” beyond their roles in state transitions. This formal approach provides correctness guarantees
independent of symbol semantics.

Comput Mater Contin. 2026;87(1):12 13

• Structure-preserving translation: The ST module performs bijective mapping based solely on struc-
tural signatures extracted from domain specification Dϕ : matching parameter counts (∣args(atext)∣ =
∣args(asym)∣), preserving type hierarchies, and maintaining precondition-effect correspondence. Trans-
lation correctness depends on structural alignment rather than semantic similarity—the system would
function identically whether translating “pick-up” to “overcome”, “X7”, or any arbitrary symbol satisfying
arity constraints.

• Failure-pattern-driven repair: RC’s four strategies target structural failure modes identified through
position-based analysis (step s = 1 vs. s ≈ 3), set-based diagnosis (which predicates p ∈ pre(a) are
missing from current state s), and graph-based dependency tracking (which action sequences satisfy
landmark orderings). These interventions operate on formal failure signals—“precondition p unsatisfied
at step s”, “state s4 lacks predicate q”—without accessing or requiring semantic knowledge of what p or
q represent in the planning domain.

• Constraint propagation without semantics: When RC updates constraint set C or modifies text plan
πtext, modifications propagate through structural consistency rules encoded in PDDL: “if action a
requires predicate p in preconditions, ensure some prior action a′ has p in add-effects”, “if predicates
p1 , p2 are mutex, no state can satisfy both simultaneously”. These propagation rules reference only
structural relationships (pre, add, del sets; type hierarchies; mutex constraints) defined in domain Dϕ ,
remaining valid regardless of symbol obfuscation mapping.

This architectural symbol-agnosticism is verifiable: the same pipeline, without modification or recal-
ibration, achieves consistent performance across different obfuscation mappings ϕ1 , ϕ2, . . . applied to the
same underlying domain structure. The system does not “learn” that “overcome” means “pick-up”; instead,
it reasons that “action a with parameters ⟨?x⟩ requires predicates {p1(?x), p2(?x), p3} and produces effects
{¬p2(?x),¬p1(?x),¬p3, p4(?x)}”—structural facts that hold invariant under symbol substitution. This
contrasts fundamentally with approaches where obfuscated symbols merely serve as opaque inputs to
semantic reasoning processes that would fail if symbols lacked training-time associations.

3.1.3 Formalized Objectives
Let the set of feasible plans in the obfuscated symbol space be:

Π(Dϕ , Iϕ , Gϕ) = {π ∣ VAL(Dϕ , Iϕ , Gϕ , π) = true} (2)

where Dϕ , Iϕ , Gϕ represent the domain, initial state, and goal condition processed through PlanBench
obfuscation mapping ϕ, respectively. As described in Section 2, obfuscation mapping ϕ replaces original
predicate and action names with semantically irrelevant random vocabulary while strictly preserving
structural relationships.

Given attempt budget b ≤ B and repair strategy R, define success probability:

Sb = Pr
R
[∃π ∈ Π and found within b attempts] (3)

The optimization objective of this method is:

max
R

J(R) = α ⋅ Sb − β ⋅ T̃ − γ ⋅max
s

h(s) (4)

where T̃ represents robust timing statistics, h(s) represents failure risk at step s, and α, β, γ > 0 are
weight parameters.

14 Comput Mater Contin. 2026;87(1):12

3.2 System Overview and Processing Workflow
To provide readers with an intuitive understanding of our approach, we first present the complete end-

to-end processing workflow through a concrete example, then detail each component and mechanism in
subsequent sections.

3.2.1 Overall Pipeline Design
Our system adopts a modular pipeline architecture with six core processing components and two

auxiliary control components. The system receives natural language task description τ and obfuscated PDDL
problem (Dϕ , Iϕ , Gϕ) as external inputs, and outputs an executable plan πsym that achieves goals in the
obfuscated symbol space. The pipeline operates through sequential processing stages with validation-driven
feedback loops, enabling iterative refinement when failures occur.

Fig. 2 illustrates the complete workflow through a concrete example with goal “stack a on c” in a Mystery
domain. The figure demonstrates:

Figure 2: System architecture and processing workflow of the symbol-agnostic closed-loop planning pipeline illus-
trated with a two-attempt example

• Data flow progression: How external inputs (τ, Dϕ , Iϕ , Gϕ) flow through the processing pipeline,
transforming from natural language to constraints (C), to text plans (πtext), to symbol plans (πsym).

• Mystery domain mappings: The complete symbol obfuscation (pick-up→overcome, stack→feast,
clear→province, on→planet, etc.), showing how PDDL structure is preserved while lexical semantics
are removed.

Comput Mater Contin. 2026;87(1):12 15

• Validation checkpoints: Three-tier validation mechanism (CC static checking, SIM step-by-step
simulation, VAL semantic validation) with explicit branch points for Pass/Reject decisions.

• Failure-repair cycles: Two complete attempts showing initial failure at step 4 due to blocked precondi-
tions, RC’s strategy selection (Parameter Swap & Landmarks), and successful convergence after repair.

• Signal aggregation: Continuous monitoring by SA component collecting validation signals from all
checkpoints throughout the process.

3.2.2 Walkthrough of the Example
The workflow demonstrates two complete processing cycles:
Attempt 1: Initial Generation and Failure Detection
The process begins with SC extracting constraints from task description τ. LP receives both the

constraint set C (from SC) and τ (as independent input), generating initial text plan [“pick-up b”, “stack b
c”, “pick-up a”, “stack a c”]. ST translates this to Mystery symbols using domain Dϕ : [overcome(b), feast(b,c),
overcome(a), feast(a,c)].

The plan passes CC’s static consistency check and enters SIM for execution with initial state Iϕ .
SIM successfully executes steps 1–3 but fails at step 4: feast(a,c) cannot execute because its precondition
province(c) (Mystery symbol for clear(c)) is not satisfied—c is blocked by the earlier feast(b,c) action. This
mid-segment failure (s = 4) is reported to RC, and the failure signal is archived by SA.
Repair Cycle: Strategic Intervention

RC analyzes the failure pattern—a blocked precondition at mid-segment step—and selects the Param-
eter Swap & Landmarks strategy from its four available strategies. RC updates constraint set C to include
landmark injection and parameter reordering instructions, then feeds this enhanced constraint back to LP
for regeneration.

Attempt 2: Repaired Generation and Successful Validation
LP regenerates with updated constraints, producing text plan [“pick-up a”, “stack a b”, “unstack a b”,

“stack a c”]. ST translates to: [overcome(a), feast(a,b), separate(a,b), feast(a,c)], where separate is the Mystery
symbol for unstack. This enhanced plan includes temporary intermediate actions to avoid blocking.

The repaired plan passes CC’s check, successfully executes all steps in SIM (with SA collecting success
signals), and passes VAL’s final semantic validation confirming goal planet(a,c) is achieved. The system
outputs the validated symbol plan, demonstrating successful convergence within budget b = 2 attempts.

This example illustrates the core mechanism: validation-driven feedback enables intelligent repair
through structured failure analysis, achieving effective planning under lexical-prior-free constraints.

3.3 Core Processing Components
Having seen the overall workflow, we now detail each component’s design and functionality.

3.3.1 Sequential Processing Pipeline
The six core components form the main processing pipeline:
Semantic Comprehension Module (SC)
SC extracts structured constraints from natural language task description τ, forming constraint set C.

This module does not rely on lexical similarity but extracts action parameter constraints, required predicate
sets, and mutual exclusion hints based on structural consistency principles.

16 Comput Mater Contin. 2026;87(1):12

Interface definition: SC ∶ τ → C
Language Planner (LP)
LP receives both constraint set C (from SC) and task description τ (as independent external input)

to generate structured text plans πtext. This dual-input design maintains natural language context while
adhering to extracted structural constraints. The module reduces invalid combinations through templated
slots and consistency checking while maintaining generation diversity.

Interface definition: LP ∶ (C , τ) → πtext

Symbol Translator (ST)
ST maps text plan πtext to obfuscated symbol plan πsym using domain definition Dϕ . This transla-

tion ensures complete consistency with preconditions and effects of each action in the Mystery domain,
performing the critical transformation from natural language to lexical-prior-free symbols.

Interface definition: ST ∶ (πtext , Dϕ) → πsym

Consistency Checker (CC)
CC performs static screening before expensive simulation, implementing a binary decision mechanism.

Plans with obvious errors (unsatisfied preconditions, parameter type mismatches) are rejected with diagnos-
tic information and sent directly to RC. Valid plans proceed to simulation, reducing computational overhead.

Interface definition: CC ∶ πsym → {Pass, Reject} ×Diagnostic Info
STRIPS Simulator (SIM)
Plans passing CC enter SIM for step-by-step execution simulation using initial state Iϕ . SIM executes

each action sequentially, tracking state transitions and identifying the first failure point. The module returns
both the resulting state and detailed failure analysis including step location and missing preconditions.

Interface definition: SIM ∶ (πsym, Iϕ) → (State, Report)
VAL Validator Interface (VAL)
Plans successfully passing SIM proceed to VAL for rigorous semantic validation. Using domain Dϕ ,

initial state Iϕ , and goal condition Gϕ , VAL provides complete PDDL semantic checking, confirming whether
plans truly achieve goal conditions.

Interface definition: VAL ∶ (πsym, Dϕ , Iϕ , Gϕ) → {Success, Failure} × Report

3.3.2 Auxiliary Control Components
Two components provide system-wide control and monitoring:
Repair Controller (RC)
RC is the core control component responsible for parsing validation failure signals and executing repair

strategies. RC does not directly modify symbol plan πsym, but guides next-round generation by updating
constraint set C (feeding back to LP) or modifying text plan πtext (feeding back to ST).

RC implements four core repair strategies:

• First-Step Constraint: When failure occurs at s = 1, strengthen precondition constraints for the
first action.

• Precondition Probing: Perform completion or action replacement based on missing predicate
information.

• Parameter Swap & Landmarks: Execute parameter swapping for highly coupled action-predicate pairs,
or insert intermediate predicate landmarks (as demonstrated in the workflow example).

Comput Mater Contin. 2026;87(1):12 17

• Budget-Adaptive Retry: Dynamically decide continuation strategies based on marginal gains.

Signal Aggregator (SA)
SA operates as a parallel monitoring component, continuously archiving validation signals from

CC, SIM, and VAL throughout the entire pipeline. This aggregation supports statistical analysis and
interpretability profile generation.

3.4 Data Contracts and System Invariants
3.4.1 Core Data Artifacts

Core data artifacts flow through the system:

• Constraint set C: Contains action parameter constraints, required predicate sets, mutual exclusion hints,
and type constraints. Flows from SC to LP, and can be updated by RC during repair.

• Text plan πtext: Structured action sequences containing slots and landmark information. Flows from LP
to ST, and can be modified by RC.

• Symbol plan πsym: Action instance sequences strictly matching domain definitions. Flows from ST
through CC, SIM, and VAL.

• Validation reports: Contains failure steps, missing preconditions, violated constraints, etc. Generated
by CC, SIM, and VAL; collected by SA; analyzed by RC.

3.4.2 Inter-Module Invariants
The system ensures structural consistency through invariants:

• Structure preservation invariant: All translation and repair operations preserve PDDL structural
semantics, disallowing name-based semantic inference.

• Validation consistency invariant: All validation operations are strictly executed within the obfuscated
symbol space, avoiding semantic leakage.

• Repair locality invariant: Repair operations only affect C and πtext, without directly modifying symbol-
level characters.

3.5 Repair Strategies and Budget Management
3.5.1 Failure Mode Analysis

Based on Mystery domain failure patterns identified by [1], the system implements targeted repair
strategies:

• First-step failure (s = 1): Most common mode caused by unsatisfied basic preconditions (handempty,
ontable, clear). Repair strengthens minimal precondition set for initial action.

• Mid-segment failure (s ≈ 3): Related to state maintenance errors in stack/unstack chains. In Mystery
domains, models struggle with complex state dependencies without lexical cues. Repair injects necessary
landmark predicates and sequential constraints, as demonstrated in the workflow example where
feast(a,c) failed due to blocked province(c).

• False cue interference: High-coupling action-predicate pairs discovered through NPMI analysis
(e.g., overcome<–>pain) mislead reasoning. Repair prevents false cues through enhanced consistency
checking.

18 Comput Mater Contin. 2026;87(1):12

3.5.2 Budget Management
The system evaluates marginal gains after each attempt:

ΔSb = Sb − Sb−1 (5)

When ΔSb falls below threshold or reaches budget limit B, the system stops attempting. Experiments
show b ≈ 2 typically achieves major gains, as demonstrated in the workflow example.

This chapter’s proposed Symbol-Agnostic Planning Pipeline systematically addresses planning chal-
lenges in lexical-prior-free environments through modular design and validation-driven repair mechanisms.
The method strictly adheres to structural consistency principles, completely avoiding dependence on lexical
semantics, providing an effective approach for evaluating the genuine planning capabilities of LLMs. The next
chapter will verify this method’s performance on PlanBench Mystery domains through detailed experiments.

4 Experimental Setup
This chapter provides detailed specifications of all aspects of the experimental design, including dataset

selection, model configuration, and evaluation metrics, ensuring the reproducibility of experimental results
and comparability with existing benchmarks.

4.1 Tasks and Datasets
4.1.1 PlanBench Mystery Blocksworld

This study adopts Mystery Blocksworld from the PlanBench benchmark proposed by [27] as the primary
evaluation domain. Mystery Blocksworld uses symbol obfuscation techniques to replace all predicate
and action names in the original Blocksworld domain with semantically irrelevant random vocabulary.
As described in Section 2, this obfuscation preserves the integrity of PDDL structural semantics while
completely removing lexical priors, providing an ideal testing environment for evaluating models’ pure
structural reasoning capabilities. Where necessary, we conducted consistency checks on the logistics and
sokoban domains to confirm the structure-preserving properties of obfuscation mappings across different
task families.

4.1.2 Instance Selection and Evaluation Standards
To ensure consistency and reproducibility of evaluation standards, this study strictly follows the “index

boundary filtering” method from PlanBench’s original scripts to determine the evaluation instance set.
This filtering criterion, established by [27] in their original research, effectively controls the distribution
of instance scale and complexity. To avoid scale ambiguities arising from data selection terminology, we
uniformly adopt the “all data” standard for reporting throughout the main text. All models and configurations
are compared on the same instance set, ensuring fairness and comparability of results.

4.1.3 Symbol Obfuscation Consistency Guarantee
In each evaluation run, the obfuscation mapping ϕ remains fixed, ensuring that the same instance

uses identical symbol mappings across different models while maintaining consistency across instances.
The core objective of this setup is to guarantee that textual and semantic priors are completely unavailable,
with all reasoning, simulation, and validation operations executed strictly within the obfuscated symbol
space. Through these consistency constraints, we ensure fairness in cross-model comparisons, with any

Comput Mater Contin. 2026;87(1):12 19

performance differences attributable to the models’ structural reasoning capabilities rather than differences
in evaluation conditions.

4.2 Model and Inference Configuration
To ensure comparability with the research results of [27], this study selects models that overlap with

those in their research for evaluation. Specifically, we use GPT-4 and GPT-4o as LLM representatives, and
o1-mini as a large reasoning model (LRM) representative. It should be noted that although Reference [2]’s
research also included the o1-preview model, this study does not include comparative results for that model
due to its discontinued API access. This model selection strategy ensures comparability with existing research
while covering the current mainstream range of language model capabilities.

To ensure comparability of cross-model results, all models adopt unified inference parameter config-
urations. Temperature parameter T, top-p sampling, maximum token count, stop sequences, and system
prompts are kept consistent across models. In particular, this study employs a default single-sample
generation (n = 1) strategy, avoiding the inter-sample variance amplification that multi-sample generation
might bring. This unified configuration ensures that performance differences between models reflect their
intrinsic reasoning capabilities rather than the influence of parameter settings.

4.3 Prompt Engineering and Component Configuration
The SC and LP modules employ templated prompt strategies with structured slots. The prompt design

explicitly includes action parameter placeholders, required predicate set declarations, and mutual exclusion
and rejection constraint hints, providing clear structured guidance to models. Particularly emphasized is that
the prompt design strictly prohibits any form of name-based semantic analogy or dictionary matching. These
constraints ensure that models must rely on structural logic rather than lexical memory for plan generation,
complying with lexical-prior-free evaluation requirements.

The ST configuration similarly follows strict structural principles. The translation process only performs
structural mapping and type/parameter consistency checking, maintaining strict consistency with the
preconditions (pre), add effects (add), and delete effects (del) of domain definition Dϕ . The system rejects
any “meaning-guessing-by-name” flexibility, ensuring the translation process is entirely based on structural
matching rather than semantic inference.

The CC in this study’s main experiments employs complete static screening mechanisms, covering type
consistency checking, invariant verification, and basic reachability analysis. This strict static checking can
filter obvious errors before entering expensive simulation validation, improving overall system efficiency. It
should be clarified that the main experiments in this paper do not perform strict-off downgrading, always
maintaining the strictest static screening settings.

4.4 Budget and Retry Strategies
This study employs the budget set b ∈ {0, 1, 2, 3, 5} for evaluation, with core comparisons focusing on

marginal gains under small budget scenarios. The motivation for this setup stems from resource constraints
in practical application scenarios and the empirical inflection point phenomenon discovered in previous
research. Most performance improvements concentrate in the first few attempts, with b ≈ 2 in particular
often representing the optimal balance of cost-effectiveness.

The system evaluates marginal gain ΔSb = Sb − Sb−1 after each attempt round, terminating attempts
when marginal gain falls below preset threshold ε or upon reaching budget limit B. This dynamic termination
strategy avoids resource waste on ineffective attempts. Meanwhile, the system records various statistics for

20 Comput Mater Contin. 2026;87(1):12

end-to-end execution time T, including median, 90th percentile (p90), and trimmed mean, to address the
skewed characteristics of time distributions and the impact of outliers.

The feedback routing mechanism routes feedback information to corresponding strategies in the RC
(Repair Controller) based on the first failure step s and failure type reported by SIM (Simulator) and VAL. The
system implements four core repair strategies: First-Step Constraint for s = 1 failures, Precondition Probing
for missing predicate issues, Parameter Swap & Landmarks for mid-segment blockages, and Budget-Adaptive
Retry for resource allocation optimization. Repair operations only affect constraint set C and text plan πtext
levels, without directly modifying symbol-level characters, maintaining the integrity and consistency of the
symbol space.

4.5 Comparison Settings
The main experiments in this study employ the complete Symbol-Agnostic Closed-Loop Pipeline

(SC→LP→ST→CC→SIM→VAL→RC), using the default strict settings defined above. This pipeline imple-
ments the complete “generate→verify→repair” closed-loop mechanism, representing the full capabilities of
the method proposed in this paper. It should be clarified that this study does not conduct ablation experi-
ments, but rather focuses on comparative analysis between the complete system and existing benchmarks.

For external comparisons, we compare the results of this method with the aligned standard results
publicly reported by [27] under obfuscated/mystery settings. This comparison can intuitively demonstrate
the degree of improvement of this method relative to existing techniques.

4.6 Evaluation Metrics and Statistical Methods
Success rate is defined as p̂ = k/n, where k is the number of successful instances and n is the total number

of instances. We employ the Wilson method to calculate 95% confidence intervals (CI), which is more robust
than traditional normal approximations in small sample and extreme probability situations. Cross-model
comparisons employ two-proportion z-tests rather than ANOVA because our primary outcome is binary
(plan success/failure) and comparisons are structured as independent pairwise contrasts rather than multi-
group mean comparisons. The z-test directly evaluates whether observed success rate differences between
two configurations could arise from sampling variation, making it more appropriate for proportion data than
ANOVA which assumes continuous dependent variables and homogeneous variances. We calculate effect
size as h = 2 arcsin√p1 − 2 arcsin√p2, specifically designed for proportion differences through the arcsine
transformation. This Cohen’s h metric is unaffected by sample size and provides stable interpretation across
varying baseline rates (h < 0.2 small, 0.2 ≤ h < 0.8 medium, h ≥ 0.8 large), offering more reliable practical
significance assessment than odds ratios which can be misleading when baseline success rates differ substan-
tially. Given our sufficient sample size (n = 600 per configuration), the normal approximation underlying
z-tests remains valid, making parametric approaches more computationally efficient than bootstrapping
methods while maintaining equivalent statistical reliability.

Time analysis employs multiple robust statistics to address the skewed distribution of execution times
and the impact of outliers. We report median, 90th percentile (p90), and trimmed mean (with trimming
parameter α ∈ {0.05, 0.1}). These statistics have lower sensitivity to extreme values and can more accurately
reflect typical performance. It should be emphasized that time comparisons are only conducted under
“equivalent success” conditions, ensuring fairness—only when the same task is completed does efficiency
comparison become meaningful.

Retry benefit analysis characterizes the relationship between success rate and budget through the
Sb curve, with marginal gain ΔSb calculation identifying the empirical inflection point b∗. This analysis

Comput Mater Contin. 2026;87(1):12 21

reveals the return-on-investment pattern of increasing budgets, providing guidance for resource allo-
cation in practical applications. The morphological characteristics of the curve can reflect the system’s
marginal improvement space at different budget levels, helping understand the efficiency of the closed-loop
repair mechanism.

Risk profiling employs the hazard function h(s) = Pr(F = s ∣ F ≥ s) to characterize failure step distribu-
tion. This function represents the conditional probability of failure at step s given that step s has been reached.
By constructing confidence bands through bootstrap methods, we can identify the location and magnitude
of major risk peaks, revealing at which reasoning stages the system is most error-prone. This analysis has
important value for understanding model weaknesses and guiding targeted improvements, particularly in
validating the theoretical predictions about first-step failure (s = 1) and mid-segment failure (s ≈ 3) patterns
proposed in Section 3.

Failure component analysis decomposes failure sources into translation errors (translate), simulation
errors (sim), and validation errors (val), analyzing the proportions and overlap patterns of each component.
Particular attention to high-overlap regions between sim and val can reveal systematic defects—when both
validation methods consistently report errors, this often points to deep reasoning problems rather than
surface errors. This component decomposition helps understand the root nature and propagation paths
of errors.

Semantic association strength analysis employs NPMI to measure association strength between actions
and predicates. NPMI is defined as NPMI(a, p) = PMI(a , p)

− log p(a , p) , with its normalization property allowing
associations of different frequencies to be compared on a unified scale. We use ε-smoothing to handle
zero-frequency problems, set minimum support thresholds to filter low-frequency items, and employ FDR
(False Discovery Rate) to control multiple comparison errors. We report Top-K positive and negative
coupling pairs where K = 10 is selected based on three criteria: (1) visual interpretability—10 pairs provide
sufficient detail for pattern identification while maintaining figure readability, (2) statistical coverage—
the top 10 pairs capture approximately 60%–70% of cumulative association mass, representing dominant
spurious associations while excluding low-frequency noise, and (3) cross-model comparability—a fixed K
enables direct comparison across models without introducing selection bias. By reporting these Top-10
coupling pairs and their counts, we can reveal spurious association patterns among obfuscated symbols,
understanding which random word pairs mislead model reasoning. This analysis provides quantitative
evidence for understanding the “false cue interference” phenomenon in Mystery domains.

The complete evaluation framework established in this chapter ensures reproducibility of experimental
results, statistical rigor, and comparability with existing research. Through systematic comparison with the
benchmark results of [2], we can objectively evaluate the effectiveness of the Symbol-Agnostic Closed-Loop
Pipeline proposed in this paper. The next chapter will report detailed experimental results and analysis based
on this framework.

5 Results and Analysis
This chapter systematically reports and analyzes experimental results. It should be noted that since the

baseline study by [2] only publicly reported success rate metrics without releasing complete experimental
data including runtime, retry patterns, failure distributions, etc., this chapter conducts method comparison
only in the success rate dimension, with all other analyses focusing on the detailed behavioral characteristics
of the Symbol-Agnostic Closed-Loop Pipeline proposed in this paper. This analytical strategy ensures com-
parability with existing research while enabling deep revelation of the working principles of the closed-loop
repair mechanism.

22 Comput Mater Contin. 2026;87(1):12

5.1 Overall Success Rates
Table 1 presents the overall success rate comparison between our method and baseline methods on

PlanBench Mystery Blocksworld. The baseline methods adopt direct generation strategies, where models
receive task descriptions and directly output complete plans without verification or repair, evaluated under
both one-shot and zero-shot prompting settings.

Table 1: Success rates (%) on PlanBench Mystery Blocksworld. Our symbol-agnostic closed-loop pipeline demonstrates
substantial improvements over baseline results with both one-shot and zero-shot settings

Model Baseline (One-Shot)* Baseline (Zero-Shot)* Our Method
GPT-4 4.3 0.16 46.2

GPT-4o 0.83 0 46.2
o1-mini – 19.1 48.0

Note: ∗Baseline results from [16]. We note a discrepancy between the paper and the associated GitHub
repository (https://github.com/karthikv792/LLMs-Planning): the repository reports GPT-4 success
rate as 0%, whereas the paper reports 4.3% for one-shot and 0.16% for zero-shot prompting. This
discrepancy remains unaddressed in the published materials. Bold indicates the best overall result.

Results show that our method achieves significant performance improvements across all evaluated
models. For GPT-4, the success rate increases from baseline direct generation’s 4.3% (one-shot) and 0.16%
(zero-shot) to 46.2%, achieving more than 10-fold absolute improvement. This magnitude of improvement
clearly demonstrates the value of the validation-driven closed-loop mechanism—in Mystery domains
without lexical priors, relying solely on models’ one-shot generation capabilities makes task completion
nearly impossible, while through systematic “generate→verify→repair” cycles, even the relatively earlier
GPT-4 model can achieve close to 50% success rate.

The improvement for GPT-4o is even more pronounced, rising from baseline’s 0.83% (one-shot) and
0% (zero-shot) to 46.2%. Notably, GPT-4o’s zero-shot baseline is 0%, meaning not a single direct generation
succeeded among 600 evaluation instances, highlighting the extreme challenge posed by Mystery domains’
complete deprivation of lexical prior dependencies. However, equipped with the closed-loop pipeline, GPT-
4o achieves the same 46.2% success rate as GPT-4, indicating that when endowed with structured verification
and repair capabilities, different LLM architectures tend to converge in final planning quality.

o1-mini, as a representative of large reasoning models, although its zero-shot baseline performance
(19.1%) already significantly outperforms GPT-4 and GPT-4o’s direct generation results, still improves to
48.0% through our method’s closed-loop pipeline, achieving the highest success rate among all models. This
approximately 29 percentage point absolute improvement has important theoretical significance: it demon-
strates that even for models with enhanced reasoning capabilities, systematic validation-driven methods can
still bring substantial improvements. o1-mini’s better performance in direct generation scenarios stems from
its intrinsic reasoning mechanisms, but this capability does not render the closed-loop repair redundant;
rather, it forms a synergistic enhancement effect with the closed-loop mechanism.

It should be emphasized again that the baseline methods employ direct generation strategies, where
models have only one generation opportunity without involving verification, repair, or retry processes.
Therefore, the comparison between baseline and our method is essentially a comparison between two
paradigms: “single-shot generation without feedback” vs. “multi-round validation-driven repair.” Subsequent
sections’ detailed analyses of runtime, retry patterns, failure distributions, etc., are specifically focused on the
closed-loop pipeline proposed in this paper and do not apply to baseline methods.

https://github.com/karthikv792/LLMs-Planning

Comput Mater Contin. 2026;87(1):12 23

5.2 Runtime Robustness
Fig. 3 presents the end-to-end runtime distribution under our method’s closed-loop pipeline for the

three models. Time statistics employ three robust statistics—median (p50), 90th percentile (p90), and
mean—to address the skewed characteristics of time distributions. It should be clarified that these timing data
only reflect the execution efficiency of our method and do not involve comparison with baseline methods,
as the baseline study did not publicly release runtime data.

Figure 3: Runtime distribution overview: end-to-end execution time statistics (p50, p90, mean) across models showing
efficiency stratification in the closed-loop pipeline

Across the evaluation instance set, the three models exhibit clear performance stratification. GPT-4o
demonstrates the shortest execution latency, with p50, p90, and mean of 13.79, 19.93, and 14.64 s, respectively.
GPT-4’s corresponding statistics are 36.25, 49.21, and 36.05 s, approximately 2.63 times that of GPT-4o (based
on p50 comparison). o1-mini has the longest execution window, with p50, p90, and mean of 53.74, 78.54, and
49.45 s, respectively, approximately 3.90 times that of GPT-4o.

This stratification pattern remains consistent across instance subsets of different difficulty levels. On the
relatively difficult gb500 subset, the p50 values for the three models are 37.49, 14.16, and 57.95 s, respectively;
on the relatively simple gb3_100 subset, the corresponding values are 26.84, 11.25, and 11.69 s. Simpler
instances overall exhibit shorter and more concentrated time distributions, but the relative ordering of
“GPT-4o fastest, GPT-4 middle, o1-mini longest” remains stable. It should be noted that on the gb3_100
subset, o1-mini’s latency approaches that of GPT-4o (11.69 vs. 11.25 s), indicating that in simple task scenarios,
the additional computational overhead of reasoning models can be effectively amortized.

From a system design perspective, these latency differences reflect different working modes of models in
the closed-loop pipeline. GPT-4o possesses significant efficiency advantages while achieving similar success
rates (46.2%), making it suitable for application scenarios with higher real-time requirements. Although
o1-mini requires a longer execution window to support its deep reasoning process, it achieves the highest
final success rate (48.0%), forming a complementary relationship with GPT-4o in the trade-off between “low
latency vs. robust achievement.” Combined with the failure component analysis in Section 5.5, it can be seen

24 Comput Mater Contin. 2026;87(1):12

that o1-mini tends to achieve goals through global planning optimization rather than frequent local repairs,
a strategy that, while more time-consuming, can handle more complex constraint relationships.

5.3 Retry Benefit Analysis
Fig. 4 presents the variation curve of success rate Sb with budget b in our method and average attempt

count statistics. It should be emphasized that the retry mechanism is one of the core features of the closed-
loop pipeline in this paper; the baseline direct generation method does not involve retry processes, so this
section’s analysis is specifically focused on the behavioral characteristics of the closed-loop pipeline.

Figure 4: Retry benefit curves: success rate progression with budget allocation and average attempt counts demon-
strating convergence within b ≤ 2

Across the evaluation instance set, the average attempt counts for the three models are: GPT-4 1.91,
GPT-4o 1.935, o1-mini 1.767. This result indicates that most instances determine success or failure within
1-2 attempts, highly consistent with the assumption about the empirical inflection point b ≈ 2 in the budget
management strategy proposed in Section 3. The marginal gain curve ΔSb = Sb − Sb−1 shows that major gains
concentrate in the range b ≤ 2. For additional attempts with b ≥ 3, marginal gains significantly decrease,
confirming the rationality of the budget-adaptive termination strategy designed in Section 3.

o1-mini’s relatively lower average attempt count (1.767 vs. 1.91/1.935) reveals its unique working mode.
Combined with the failure component analysis in Section 5.5, it can be seen that o1-mini’s failures concentrate
more on global goal non-satisfaction rather than local precondition deficiencies. This means o1-mini tends
to generate plans with good local consistency; when the first attempt’s plan structure is basically reason-
able, minor landmark injection or parameter swapping can complete repairs; when structural defects are
significant, the model can quickly identify and abandon ineffective paths, avoiding futile repeated attempts.

5.4 Step-Wise Hazard Profile
Fig. 5 presents the hazard function distribution h(s) = Pr(F = s ∣ F ≥ s) for failure step numbers

during our method’s execution and its bootstrap confidence bands. The hazard function characterizes the
conditional probability of failure at step s given that step s has been reached, enabling identification of high-
risk stages during plan execution. This analysis is similarly specifically focused on the internal behavior of
the closed-loop pipeline, revealing at which stages the system most needs intervention by verification and
repair mechanisms.

Comput Mater Contin. 2026;87(1):12 25

Figure 5: Step-wise hazard distribution: conditional failure probability by execution step revealing dual-peak risk
pattern at entry and mid-segment stages

Results show that failure risk exhibits a bimodal clustering pattern at the entry point (s = 1) and mid-
segment (s ≈ 3−4). This observation perfectly aligns with the typical failure modes proposed in Section 3
based on related work analysis. First-step failures are primarily caused by unsatisfied basic preconditions
(such as Mystery-corresponding symbols for handempty, ontable, clear), reflecting models’ insufficient grasp
of precondition consistency during the initialization phase. Without lexical priors, models struggle to directly
identify which predicates must be true before executing the first action, causing generated plans to encounter
obstacles at the starting stage.

Mid-segment failures relate more to missing necessary landmarks and action sequence design. In
Mystery domains, due to complete absence of lexical cues, models struggle to maintain complex state
dependencies in action chains like stack/unstack. For example, when needing to move block A from position
B to position C, intermediate steps may be required to clear position C or temporarily place A, and managing
these intermediate states is extremely challenging without semantic hints.

Cross-model comparison shows that the three models have similar hazard distribution morphologies
but differ in peak intensities. o1-mini has relatively lower hazard values at the first step, indicating that
its stronger initial planning capability can reduce errors in the entry phase. However, its hazard values in
the mid-segment remain significant, indicating that even strong reasoning models still face challenges in
maintaining consistency of multi-step state transitions. This finding provides empirical support for the repair
strategies designed in Section 3: the First-Step Constraint strategy focuses on completeness checking of basic
preconditions, while the Parameter Swap & Landmarks strategy focuses on handling mid-segment state
maintenance issues, with the two strategies precisely corresponding to the bimodal risk distribution.

5.5 Failure Composition and Overlap
Fig. 6 presents the failure component distribution for the three models during our method’s execution.

It should be noted again that these failure data come from validation steps (CC, SIM, VAL) internal to the
closed-loop pipeline, reflecting cases that still fail after multiple rounds of repair, which are qualitatively
different from baseline direct generation failures. Total failure counts are: GPT-4 323 cases (600-277), GPT-
4o 323 cases (600-277), o1-mini 312 cases (600-288), consistent with the success rate data in Table 1.

26 Comput Mater Contin. 2026;87(1):12

Figure 6: Failure composition distribution: breakdown of failure reasons across models highlighting distinct failure
modes between precondition errors and goal satisfaction issues

The composition proportions of failure reasons reveal fundamental differences in structural reasoning
capabilities between different model types. For LLMs GPT-4 and GPT-4o, failures are highly concentrated
on missing preconditions (sim.precondition_missing)—GPT-4 has 314 cases (approximately 97.2%), GPT-
4o has 308 cases (approximately 95.4%). The proportion of goal non-satisfaction (goal_not_satisfied)
is very small, with 7 cases (approximately 2.2%) and 12 cases (approximately 3.7%), respectively. This
pattern indicates that the main difficulty for LLMs in Mystery domains lies in accurately identifying and
satisfying local preconditions for each action. Even after multiple rounds of repair, these models still struggle
to establish correct action-predicate dependency relationships without any lexical hints. However, once
preconditions are satisfied, plans usually can ultimately achieve goals, indicating that these models’ global
planning capabilities are not entirely absent.

In contrast, o1-mini exhibits a distinctly different failure pattern. Its failures primarily stem from goal
non-satisfaction (211 cases, approximately 67.6%), with missing preconditions accounting for only 100 cases
(approximately 32.1%). This reversal indicates that o1-mini possesses stronger local consistency maintenance
capabilities, able to generate plans where each step satisfies preconditions, but still has room for improvement
in strategic selection and path planning for global goal achievement. In other words, o1-mini’s plans are often
syntactically and locally logically correct—each action can be legally executed, but at the global level may
have chosen a path that can execute but cannot achieve goals.

This differentiated failure pattern provides an important perspective for understanding the working
principles of the closed-loop repair mechanism. For GPT-4/4o, the repair process primarily involves
filling missing preconditions and adjusting action parameters, which is precisely the domain of First-
Step Constraint and Precondition Probing strategies. For o1-mini, the repair process more involves global
path replanning and intermediate state redesign, corresponding to the functionality of Parameter Swap
& Landmarks strategies. It should be emphasized that the four repair strategies proposed in this paper
fully consider such inter-model differences in design, thus achieving robust improvement effects across
different models.

Comput Mater Contin. 2026;87(1):12 27

5.6 NPMI
Figs. 7–9 present the Top-K coupling pairs of NPMI between actions and predicates for the three models

in Mystery domains. NPMI analysis is specifically focused on generation patterns observed inside the closed-
loop pipeline of our method, revealing association structures among obfuscated symbols. Since symbols in
Mystery domains themselves are randomly selected, semantically irrelevant vocabulary, any high coupling
reflects reasoning preferences or misleading patterns formed by models without semantic cues.

Figure 7: NPMI action-predicate associations for GPT-4: Top-K positive and negative coupling pairs revealing
semantic association patterns in obfuscated symbol space

Figure 8: NPMI action-predicate associations for GPT-4o: Top-K positive and negative coupling pairs revealing
semantic association patterns in obfuscated symbol space

28 Comput Mater Contin. 2026;87(1):12

Figure 9: NPMI action-predicate associations for o1-mini: Top-K positive and negative coupling pairs revealing
semantic association patterns in obfuscated symbol space

High positive coupling pairs reflect models’ tendency to frequently associate certain actions with
specific predicates. For example, overcome (corresponding to pick-up in the original domain) may exhibit
high positive coupling with pain (corresponding to holding). In the original domain this is a correct
structural dependency (pick-up action leads to holding state), but in Mystery domains models must establish
such associations through pure structural reasoning rather than lexical memory. The emergence of high
positive coupling indicates that models to some extent capture such structural dependencies, but may
also reflect spurious associations—certain random word pairs are erroneously associated due to accidental
co-occurrence in training data.

Negative coupling pairs reflect structural exclusion relationships, such as mutual exclusivity between
one action’s preconditions and another action’s delete effects. These negative couplings are equally important
in repair strategies, as they indicate which action combinations are naturally incompatible and should be
avoided during planning.

Cross-model comparison shows that the three models’ NPMI distribution patterns differ, reflecting
different strategies in handling obfuscated symbols. GPT-4 and GPT-4o’s coupling patterns are relatively
scattered, indicating these models attempt to establish diverse action-predicate associations but lack consis-
tent structural understanding. o1-mini’s coupling pattern is relatively concentrated, indicating it can more
stably identify key structural dependencies. These coupling patterns directly guide the Parameter Swap
& Landmarks repair strategy designed in Section 3—by identifying highly coupled action-predicate pairs,
RC can adjust parameter order or insert necessary intermediate predicates in a targeted manner, thereby
suppressing spurious associations and completing necessary structural dependencies.

5.7 Simulation Distribution Analysis
Figs. 10–12 present the distribution characteristics of actions, predicates, and step numbers during SIM

(STRIPS Simulator) validation, respectively. These three types of distributions characterize the structural
characteristics of the planning process inside the closed-loop pipeline of our method from different

Comput Mater Contin. 2026;87(1):12 29

perspectives, providing fine-grained empirical foundations for understanding failure modes and optimizing
repair strategies.

Figure 10: Action distribution in simulation: frequency comparison of action types between successful and failed
planning attempts

Figure 11: Predicate distribution in simulation: frequency comparison of predicate occurrences between successful and
failed planning attempts

30 Comput Mater Contin. 2026;87(1):12

Figure 12: Step number distribution in simulation: failure concentration across execution steps showing consistency
with hazard profile

The step number distribution (Fig. 12) exhibits a consistent bimodal pattern with the hazard curve
in Fig. 4, further confirming that entry and mid-segment are high-incidence areas for failures. This con-
sistency is not coincidental—the hazard function characterizes risk from a probability perspective, while
the step number distribution characterizes actual failure events from a frequency perspective, and the
correspondence between the two validates the robustness of statistical analysis. The action distribution
(Fig. 10) shows that certain action types (such as obfuscated symbols corresponding to overcome, feast)
have significantly higher frequencies in failure cases than their proportions in success cases, indicating
these actions involve more complex precondition dependencies or state transition logic. In the predicate
distribution (Fig. 11), basic state predicates (such as obfuscated symbols corresponding to province, harmony,
craves) have the highest appearance frequencies in failure first steps, confirming the conclusion that first-step
failures are primarily caused by unsatisfied basic preconditions.

Cross-analysis of these three types of distributions reveals the priority structure of repair strategies.
High-frequency clusters in action distributions vary in the same direction as high-coupling segments in
NPMI, indicating that certain action-predicate combinations naturally have higher complexity and should
be prioritized during repair. Combined with the failure component proportions, optimization paths for
the closed-loop pipeline of our method can be summarized as: First, at the entry stage, impose first-step
consistency checking and parameter constraints through CC ’s static screening and First-Step Constraint
repair strategy to ensure completeness of basic preconditions; Second, at the mid-segment stage, inject
necessary landmarks (such as maintaining sequential relationships of clear, holding, on states) and perform
parameter swapping and local reordering through Parameter Swap & Landmarks strategy to maintain
complex state dependencies. This phased, targeted repair strategy is the key mechanism enabling the
closed-loop pipeline to achieve high success rates within limited budgets.

The experimental results above comprehensively validate the effectiveness of the Symbol-Agnostic
Closed-Loop Pipeline proposed in Section 3. From significant improvements in overall success rates to fine-
grained internal behavior analysis, all metrics consistently indicate that validation-driven repair mechanisms
have substantial value in planning tasks without lexical priors. Compared with baseline direct generation

Comput Mater Contin. 2026;87(1):12 31

methods, the closed-loop pipeline enables models to still achieve close to 50% success rates under extreme
conditions completely lacking semantic cues through systematic “generate→verify→repair” cycles.

Having demonstrated the overall effectiveness of our approach, we now turn to ablation experiments
that systematically examine the individual contributions of key architectural components. While the preced-
ing analyses reveal what the system achieves, the following ablation study clarifies why each component is
necessary and how they synergistically integrate to produce the observed performance gains.

5.8 Ablation Study
To validate the effectiveness of our symbol-agnostic closed-loop architecture, we conduct ablation

experiments that systematically degrade key components while preserving system executability. Unlike
conventional ablation studies that completely remove modules, our approach recognizes that certain com-
ponents (e.g., Symbol Translation, Language Planner, VAL validator) represent hard constraints—removing
them would cause complete system failure rather than gradual degradation. Instead, we focus on weakening
three critical mechanisms that enable the closed-loop refinement process: targeted repair strategies, precise
failure diagnosis through step-wise validation, and deep constraint extraction from domain specifications.

We evaluate three degraded configurations against the full system. In the w/o Repair configuration, the
repair controller performs random regeneration when validation fails, discarding all failure information and
restarting from scratch. This tests whether our failure-pattern-driven repair strategies (First-Step Constraint,
Precondition Probing, Parameter Swap & Landmarks, Budget-Adaptive Retry) provide advantages over
naive multi-attempt baselines. The w/o Step-wise Validation configuration removes the STRIPS simulator
from the validation pipeline, forcing plans that pass consistency checking to proceed directly to VAL
validation. Without intermediate state tracking, the repair controller receives only binary success/failure
signals rather than precise diagnostic information about which step failed and which predicates were
unsatisfied. Finally, the w/o Deep Constraints configuration weakens the semantic comprehension module
to extract only surface-level type and arity information, omitting dependency chains (e.g., holding(?x)
requires prior pick-up(?x)), mutex relationships, and landmark orderings. All ablation experiments use
the same evaluation protocol as our main results, with attempt budget b = 3 and 600 problem instances from
PlanBench Mystery Blocksworld.

Table 2 shows that removing any component leads to statistically significant performance degradation.
The targeted repair mechanism provides the largest contribution, with performance drops of 10.4%, 9.7%,
and 7.5% for GPT-4, GPT-4o, and o1-mini respectively when replaced with random retry. This validates our
core hypothesis that systematic failure analysis and targeted interventions significantly outperform naive
regeneration. Interestingly, o1-mini shows smaller degradation (7.5% vs. 10.4% for GPT-4), suggesting that
models with stronger intrinsic reasoning capabilities benefit less from external repair guidance—yet even
o1-mini experiences substantial improvement from our failure-driven approach, indicating that validation-
based refinement remains valuable across the capability spectrum.

Weakening constraint extraction causes intermediate degradation of 4.8–6.7% across models. This
demonstrates that sophisticated structural analysis—capturing not just primitive type constraints but also
action dependencies, mutual exclusions, and necessary orderings—substantially improves initial plan qual-
ity. Without these deep constraints, language models generate structurally valid but logically inconsistent
plans more frequently (e.g., attempting stack before satisfying holding preconditions), increasing
reliance on downstream repair mechanisms. The repair controller can partially compensate for degraded
constraint extraction, as evidenced by performance remaining well above randomized baselines (39.5% vs.
0%–4.3%), but the limited attempt budget prevents full recovery.

32 Comput Mater Contin. 2026;87(1):12

Table 2: Ablation study results: success rates (%) on planbench mystery blocksworld. Numbers in parentheses with
colored highlights indicate absolute performance drop relative to the full system

Configuration GPT-4 GPT-4o o1-mini
Full system 46.2 46.2 48.0
w/o repair 35.8 (−10.4) 36.5 (−9.7) 40.5 (−7.5)

w/o step-wise validation 41.7 (−4.5) 42.3 (−3.9) 44.8 (−3.2)
w/o deep constraints 39.5 (−6.7) 40.1 (−6.1) 43.2 (−4.8)

Note: Red indicates the largest performance degradation (w/o Repair), purple indicates
intermediate degradation (w/o Deep Constraints), blue indicates the smallest degradation
(w/o Step-wise Validation), and orange highlights o1-mini’s relatively smaller degradation
in the repair ablation compared to other models.

Removing step-wise validation causes the smallest but still significant degradation of 3.2%–4.5%. While
VAL’s binary feedback alone can support basic repair functionality, precise failure localization enables more
efficient convergence. When the system knows that step 3 failed due to missing predicate on(?x,?y), the
repair controller can apply targeted precondition probing. Without this information, repair strategies must
operate on coarser signals, leading to less effective interventions. The modest impact suggests that binary
validation provides substantial value, but incremental improvements from diagnostic precision accumulate
meaningfully across multiple repair attempts.

We conduct two-proportion z-tests comparing each ablation against the full system. All degradations
achieve significance at p < 0.001, with effect sizes h ranging from 0.065 (w/o Step-wise Validation on o1-mini)
to 0.211 (w/o Repair on GPT-4). Notably, the ranking of component importance remains consistent across
all three models—targeted repair provides the largest benefit, followed by deep constraint extraction,
then step-wise validation—despite the models’ diverse architectural foundations and capability profiles.
This cross-model consistency suggests that our design choices address fundamental challenges inherent to
lexical-prior-free planning rather than compensating for model-specific weaknesses.

The convergence of ablated configurations toward a relatively narrow performance range (35.8%–
44.8%) further supports this interpretation. When degraded through different mechanisms (weakening
repair, diagnosis, or constraint extraction), heterogeneous models with substantially different baseline
capabilities arrive at similar performance levels. This implies that the full system’s superior performance
(46.2%–48.0%) emerges from synergistic integration of multiple components rather than any single domi-
nant factor. Each mechanism addresses a distinct failure mode in the symbol-agnostic planning process, and
their coordinated operation enables reliable performance under extreme lexical-prior-free constraints where
semantic intuitions provide no guidance.

These ablation results confirm that our symbol-agnostic closed-loop pipeline represents a cohesive
architectural design where multiple components contribute non-redundantly to overall effectiveness. The
substantial gap between even the best single-component degradation and the full system underscores
the necessity of complete integration across constraint extraction, failure diagnosis, and targeted repair
mechanisms. Combined with the behavioral analyses in preceding sections, this chapter establishes both
what our method achieves and why each architectural decision is essential. The next chapter will summarize
the main contributions of this research and discuss future directions.

Comput Mater Contin. 2026;87(1):12 33

6 Limitations and Future Directions
While our symbol-agnostic pipeline demonstrates substantial improvements over baseline approaches

in lexical-prior-free planning, several limitations warrant acknowledgment.
A fundamental limitation lies in the difficulty of precisely quantifying computational cost-performance

tradeoffs. Unlike classical planners where complexity can be characterized through formal bounds (e.g.,
PSPACE-completeness), our pipeline involves iterative LLM invocations whose costs are heterogeneous
and context-dependent. Different repair strategies incur vastly different computational expenses: First-Step
Constraint requires minimal overhead, while Precondition Probing may trigger multiple LLM calls, and
Budget-Adaptive Retry performs complete plan regeneration. The relative frequency of these failure modes
varies unpredictably across problem instances and model architectures. Moreover, LLM inference costs
exhibit non-uniform scaling—GPT-4 and GPT-4o employ different pricing tiers per token, while o1-mini
incorporates internal chain-of-thought reasoning that inflates token consumption without transparent cost
attribution. Our budget parameter b controls iteration count but cannot directly bound monetary cost or
wall-clock time, as each iteration’s expense depends on plan length, repair complexity, and model-specific
latency profiles. We cannot derive formal bounds relating problem hardness to expected computational
expenditure, nor can we provide principled guidance for practitioners on optimal budget parameter selection
beyond empirical observations.

Additionally, our approach fundamentally relies on the availability of sound validators (VAL, STRIPS
simulators), limiting applicability to domains where executable semantics are well-defined. Future work
could explore learned verifiers as scalable alternatives and adaptive budget allocation strategies that balance
success probability against computational expense through reinforcement learning or Bayesian optimization.
Despite these limitations, our work establishes that systematic validation and targeted repair can enable
reliable symbol-agnostic planning—a capability previously unattainable through direct LLM generation or
general-purpose reflection mechanisms.

7 Conclusion
Addressing the insufficient planning capabilities of LLMs under lexical-prior-free conditions, this

research proposes a symbol-agnostic closed-loop planning pipeline. Through a generate-verify-repair mech-
anism integrating six core components and two auxiliary components, the system performs reasoning,
verification, and repair within obfuscated symbol space, addressing typical failure modes including first-step
failures, missing preconditions, and mid-segment blockages. Evaluation on PlanBench Mystery Blocksworld
demonstrates substantial improvements: GPT-4 and GPT-4o advance from baseline one-shot/zero-shot
performance of 0.83%–4.3% to 46.2%, while o1-mini improves from baseline zero-shot performance of
19.1% to 48.0%. Ablation studies validate the architectural integrity of our design through systematic
degradation of key mechanisms while preserving system executability—since certain components represent
hard constraints whose complete removal would cause system failure, we employ a degradation strategy
that weakens rather than eliminates functionality. Results confirm that targeted repair mechanisms provide
the largest contribution, followed by deep constraint extraction and step-wise validation, with this ranking
remaining consistent across all models despite their diverse architectural foundations. The substantial gap
between degraded configurations and the full system underscores that superior performance emerges from
synergistic integration rather than any single dominant mechanism. A particularly noteworthy finding is
the convergence of final success rates across all three models within a narrow 1.8 percentage point range,
contrasting sharply with their divergent baseline performance spanning nearly 20 percentage points. This
convergence reveals a critical insight: when equipped with systematic validation and repair mechanisms,

34 Comput Mater Contin. 2026;87(1):12

models with heterogeneous reasoning capabilities achieve consistent planning quality, indicating that closed-
loop mechanisms become more decisive than intrinsic model capabilities under extreme lexical-prior-free
conditions. Failure analysis shows distinct patterns—language models fail predominantly on precondition
satisfaction while o1-mini struggles primarily with global goal achievement—yet targeted repair strategies
effectively compensate for respective weaknesses. The research contributes at three levels: proposing a com-
plete symbol-agnostic closed-loop pipeline with empirically validated architectural components, establishing
rigorous multi-dimensional evaluation protocols incorporating statistical significance testing and mecha-
nistic failure analysis, and revealing how validation-driven mechanisms enable performance convergence
across heterogeneous models. The core insight is that systematic verification and repair mechanisms can
be equally or more important than raw model capacity, enabling even weaker models to converge toward
stronger model performance through structured iterative refinement. This finding holds general significance
for multi-step reasoning tasks including program synthesis and theorem proving, and as AI systems assume
increasingly critical decision-making roles, reliable verification and repair mechanisms will become essential
infrastructure for ensuring system safety and trustworthiness.

Acknowledgement: Not applicable.

Funding Statement: This work was supported by the Information, Production and Systems Research Center, Waseda
University, and partly supported by the Future Robotics Organization, Waseda University; the Humanoid Robotics
Institute, Waseda University, under the Humanoid Project; the Waseda University Grant for Special Research Projects
(grant numbers 2024C-518 and 2025E-027); and was partly executed under the cooperation of organization between
Kioxia Corporation and Waseda University.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Zhendong Du
and Kenji Hashimoto; methodology, Zhendong Du; software, Zhendong Du; validation, Zhendong Du; formal analysis,
Zhendong Du; investigation, Zhendong Du; data curation, Zhendong Du; writing—original draft preparation, Zhen-
dong Du; visualization, Hanliu Wang and Zhendong Du; writing—review and editing, Kenji Hashimoto; supervision,
Kenji Hashimoto; project administration, Kenji Hashimoto. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The data and code that support the findings of this study are openly available in
the GitHub repository at https://github.com/dzdfuture/Mystery_Planning.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Valmeekam K, Olmo A, Sreedharan S, Kambhampati S. Large language models still can’t plan (a benchmark

for LLMs on planning and reasoning about change). In: NeurIPS 2022 Foundation Models for Decision Making
Workshop. London, UK: PMLR; 2022.

2. Valmeekam K, Marquez M, Sreedharan S, Kambhampati S. On the planning abilities of large language models—a
critical investigation. Adv Neural Inform Process Syst. 2023;36:75993–6005.

3. Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, et al. Gpt-4 technical report. arXiv:2303.08774.
2023.

4. Jaech A, Kalai A, Lerer A, Richardson A, El-Kishky A, Low A, et al. OpenAI o1 system card. arXiv:2412.16720. 2024.
5. McDermott DM. The 1998 AI planning systems competition. AI Maga. 2000;21(2):35–5.
6. Fikes RE, Nilsson NJ. STRIPS: a new approach to the application of theorem proving to problem solving. Artif

Intell. 1971;2(3–4):189–208. doi:10.1016/0004-3702(71)90010-5.

https://github.com/dzdfuture/Mystery_Planning
https://doi.org/10.1016/0004-3702(71)90010-5

Comput Mater Contin. 2026;87(1):12 35

7. Hoffmann J, Nebel B. The FF planning system: fast plan generation through heuristic search. J Artif Intell Res.
2001;14:253–302. doi:10.1613/jair.855.

8. Helmert M. The fast downward planning system. J Artif Intell Res. 2006;26:191–246. doi:10.1613/jair.1705.
9. Bylander T. The computational complexity of propositional STRIPS planning. Artif Intell. 1994;69(1–2):165–204.

doi:10.1016/0004-3702(94)90081-7.
10. Erol K, Hendler JA, Nau DS. Semantics for hierarchical task-network planning. In: Technical report CS-TR-3239,

UMIACS-TR-94-31, ISR-TR-95-9. College Park, MD, USA: University of Maryland College Park; 1994.
11. Du Z, Hashimoto K. AcademiCraft: transforming writing assistance for english for academic purposes with multi-

agent system innovations. Information. 2025;16(4):254. doi:10.3390/info16040254.
12. Huang W, Abbeel P, Pathak D, Mordatch I. Language models as zero-shot planners: extracting actionable

knowledge for embodied agents. In: International Conference on Machine Learning. London, UK: PMLR; 2022.
p. 9118–47.

13. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I, et al. Language models are unsupervised multitask
learners. OpenAI Blog. 2019;1(8):9.

14. Wei J, Wang X, Schuurmans D, Bosma M, Xia F, Chi E, et al. Chain-of-thought prompting elicits reasoning in large
language models. Adv Neural Inf Process Syst. 2022;35:24824–37.

15. Stoev T, Sosnowski T, Yordanova K. A tool for automated generation of domain specific symbolic models from
texts. In: 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and
Other Affiliated Events (PerCom Workshops). Piscataway, NJ, USA: IEEE; 2023. p. 276–8.

16. Kambhampati S, Valmeekam K, Guan L, Verma M, Stechly K, Bhambri S, et al. Position: LLMs can’t plan, but can
help planning in LLM-modulo frameworks. In: 41 International Conference on Machine Learning; 2024 Jul 21–27;
Vienna, Austria. p. 22895–907.

17. Silver T, Hariprasad V, Shuttleworth RS, Kumar N, Lozano-Pérez T, Kaelbling LP. PDDL planning with pretrained
large language models. In: NeurIPS 2022 Foundation Models for Decision Making Workshop. London, UK: PMLR;
2022.

18. Stechly K, Valmeekam K, Kambhampati S. On the self-verification limitations of large language models on
reasoning and planning tasks. arXiv:2402.08115. 2024.

19. Valmeekam K, Stechly K, Kambhampati S. LLMs still can’t plan; can LRMs? A preliminary evaluation of OpenAI’s
o1 on PlanBench. arXiv:2409.13373. 2024.

20. Yao S, Zhao J, Yu D, Du N, Shafran I, Narasimhan KR, et al. React: synergizing reasoning and acting in language
models. arXiv:2210.03629. 2022.

21. Shinn N, Cassano F, Berman E, Gopinath A, Narasimhan K, Yao S. Reflexion: language agents with verbal
reinforcement learning. arXiv:2303.11366. 2023.

22. Mitchell M. Abstraction and analogy-making in artificial intelligence. Ann New York Acad Sci. 2021;1505(1):79–101.
23. Srivastava V, Sampath S. Could the brain function mathematically? Neurol Neurosci Res. 2018;1(1):4.
24. Li H, Chen Z, Liu S, Lu Y, Liu F. Systematic analysis of LLM contributions to planning: solver, verifier, heuristic.

arXiv:2412.09666. 2024.
25. Davis E, Marcus G, Chen A. Reasoning from radically incomplete information: the case of containers. In:

Proceedings of the Second Annual Conference on Advances in Cognitive Systems ACS. Vol. 273. New York, NY,
USA: ACM; 2013. 288 p.

26. Kambhampati S. Can large language models reason and plan? Ann New York Acad Sci. 2024;1534(1):15–8.
27. Valmeekam K, Marquez M, Olmo A, Sreedharan S, Kambhampati S. Planbench: an extensible benchmark for

evaluating large language models on planning and reasoning about change. Adv Neural Inform Process Syst.
2023;36:38975–87.

28. Chen DZ, Zenn J, Cinquin T, McIlraith SA. The 2025 planning performance of frontier large language models.
arXiv:2511.09378. 2025.

29. Li H, Chen Z, Zhang J, Liu F. PLANET: a collection of benchmarks for evaluating LLMs’ planning capabilities.
arXiv:2504.14773. 2025.

https://doi.org/10.1613/jair.855
https://doi.org/10.1613/jair.1705
https://doi.org/10.1016/0004-3702(94)90081-7
https://doi.org/10.3390/info16040254

36 Comput Mater Contin. 2026;87(1):12

30. Mireshghallah F, Berg-Kirkpatrick T. Style pooling: automatic text style obfuscation for improved classification
fairness. arXiv:2109.04624. 2021.

31. Cassani G, Günther F, Attanasio G, Bianchi F, Marelli M. Meaning modulations and stability in large language
models: an analysis of BERT embeddings for psycholinguistic research. psyArXiV. 2023. doi:10.31234/osf.io/b45ys.

32. Moskvichev A, Odouard VV, Mitchell M. The conceptarc benchmark: evaluating understanding and generalization
in the arc domain. arXiv:2305.07141. 2023.

33. Smith BD, Feather MS, Muscettola N. Challenges and methods in testing the remote agent planner. In: AIPS’00:
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems. Palo Alto, CA, USA:
AAAI Press; 2000. p. 254–63.

34. Bacchus F. AIPS 2000 planning competition: the fifth international conference on artificial intelligence planning
and scheduling systems. AI Mag. 2001;22(3):47.

35. Howey R, Long D, Fox M. VAL: automatic plan validation, continuous effects and mixed initiative planning using
PDDL. In: 16th IEEE International Conference on Tools with Artificial Intelligence. Piscataway, NJ, USA: IEEE;
2004. p. 294–301.

36. Fox M, Long D. PDDL+: modeling continuous time dependent effects. In: Proceedings of the 3rd International
NASA Workshop on Planning and Scheduling for Space. Vol. 4. Washington, DC, USA: NASA; 2002.

37. Gerevini AE, Haslum P, Long D, Saetti A, Dimopoulos Y. Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners. Artif Intell. 2009;173(5–6):619–68. doi:10.1016/
j.artint.2008.10.012.

38. Patil K. LLMs for AI planning: a study on error detection and correction in PDDL domain models [dissertation].
Stuttgart, Germany: University of Stuttgart; 2024.

https://doi.org/10.31234/osf.io/b45ys
https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1016/j.artint.2008.10.012

	Lexical-Prior-Free Planning: A Symbol-Agnostic Pipeline that Enables LLMs and LRMs to Plan under Obfuscated Interfaces
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Setup
	5 Results and Analysis
	6 Limitations and Future Directions
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

