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ABSTRACT: The Intrusion Detection System (IDS) is a security mechanism developed to observe network traffic
and recognize suspicious or malicious activities. Clustering algorithms are often incorporated into IDS; however, con-
ventional clustering-based methods face notable drawbacks, including poor scalability in handling high-dimensional
datasets and a strong dependence of outcomes on initial conditions. To overcome the performance limitations of
existing methods, this study proposes a novel quantum-inspired clustering algorithm that relies on a similarity
coefficient-based quantum genetic algorithm (SC-QGA) and an improved quantum artificial bee colony algorithm
hybrid K-means (IQABC-K). First, the SC-QGA algorithm is constructed based on quantum computing and integrates
similarity coefficient theory to strengthen genetic diversity and feature extraction capabilities. For the subsequent
clustering phase, the process based on the IQABC-K algorithm is enhanced with the core improvement of adaptive
rotation gate and movement exploitation strategies to balance the exploration capabilities of global search and the
exploitation capabilities of local search. Simultaneously, the acceleration of convergence toward the global optimum
and a reduction in computational complexity are facilitated by means of the global optimum bootstrap strategy
and a linear population reduction strategy. Through experimental evaluation with multiple algorithms and diverse
performance metrics, the proposed algorithm confirms reliable accuracy on three datasets: KDD CUP99, NSL_KDD,
and UNSW_NB15, achieving accuracy of 98.57%, 98.81%, and 98.32%, respectively. These results affirm its potential as
an effective solution for practical clustering applications.

KEYWORDS: Intrusion detection; clustering; quantum artificial bee colony algorithm; K-means; quantum genetic
algorithm

1 Introduction
With the rapid development of information technology and the increasingly severe challenges con-

fronting network security, intrusion detection—a technology for active network security protection—has
received widespread attention within the field of computer science. Research in this area continues to evolve,
incorporating increasingly sophisticated techniques to enhance detection performance. A bidirectional
long short-term memory (Bi-LSTM)-based intrusion detection system (IDS) is introduced to improve
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detection accuracy [1]. Building on machine learning approaches, Kayode Saheed et al. [2] introduced
an IDS capable of effectively identifying complex cyber attacks. More recently, Wang et al. [3] proposed
a knowledge-distillation-based intrusion detection model tailored for IoT environments, addressing the
specific challenge of detecting cyber assaults in connected devices. These efforts collectively reflect the
ongoing development and refinement of intrusion detection technologies, demonstrating a clear trajectory
toward more specialized, accurate, and context-aware solutions.

In the field of intrusion detection research, clustering algorithms, as an important unsupervised learning
approach, have garnered significant attention from researchers in recent years. In light of increasingly sophis-
ticated and concealed cyberattacks, traditional signature-based detection methods often prove inadequate
in identifying unknown or variant attacks. By analyzing intrinsic patterns in network traffic and system
behaviors, clustering algorithms can automatically detect anomalous activities and potential threats without
relying on prior knowledge, thereby significantly enhancing the capability to identify zero-day attacks and
complex multi-stage intrusions. Furthermore, clustering methods demonstrate promising scalability and
robustness when handling high-dimensional and large-scale network data, providing crucial support for
building adaptive and intelligent intrusion detection systems. As a result, clustering algorithms have emerged
as a key research direction advancing the development of intrusion detection technologies. An artificial bee
colony and fuzzy clustering algorithms-based intrusion detection systems [4], as well as clustering centers
and closest neighbors-based intrusion detection systems [5]. A fuzzy aggregation approach for intrusion
detection, which combines a deep belief network with the altered density peak clustering algorithm, was
proposed by Yang et al. [6]. To address security challenges in industrial networks, an intrusion detection
framework that utilizes a multi-feature data clustering optimization model is presented in [7].

The procedure of clustering involves categorizing data objects into groups according to internal
similarities. The clustering technology is widely used in data analysis, object recognition, customer classifi-
cation, picture retrieval, and data mining. The K-means algorithm is the primary partition-based clustering
approach, which is appreciated due to its computational simplicity [8]. However, a significant disadvantage
of K-means is its susceptibility to the original centroid, a problem that Mahajan et al. [9] demonstrated to
be NP-hard. Framing the clustering problem as an issue in optimization that may have been tackled with an
appropriate optimization algorithm. The utilization of nature-inspired algorithms to address globally optimal
problems has become well-known among researchers.

Nature-inspired is a stochastic search method inspired by biological behavior [10]. In contrast to
traditional algorithms, its strong robustness and self-organization have attracted growing attention from
researchers. Researchers have proposed numerous nature-inspired algorithms, including the particle swarm
optimization algorithm (PSO) [11], the ant colony optimization algorithm (ACO) [12], the artificial bee
colony algorithm (ABC) [13], and genetic algorithms (GA) [14]. Such algorithms are regarded as effective
and commonly applied techniques for handling complex problems. Subsequently, various meaningful
improvements are introduced to augment the efficiency of nature-inspired algorithms [15,16]. Given the
numerous benefits of nature-inspired algorithms, some scholars have begun using these algorithms to
optimize the clustering technology and applied them to different fields [17,18].

To overcome the limitations of traditional nature-inspired algorithms—such as slow convergence and
vulnerability to local optima—recent research has increasingly turned to quantum computing principles
for inspiration. Built on the foundations of quantum mechanics, quantum computing allows parallel
computation, markedly strengthens computational capability, and has been applied in diverse domains
[19–21]. However, quantum-inspired algorithms may involve high computational costs, particularly when
applied to large-scale datasets. Thus, researchers should take this into account while addressing specific prob-
lems. Although current quantum computers are still constrained by hardware limitations, quantum-inspired
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algorithms simulate quantum behaviors on classical hardware to enhance search efficiency and solution
quality. Among these developments, quantum-inspired algorithm models have demonstrated promising
results in solving complex optimization problems [22–25]. While theoretical models and techniques for
quantum computation have advanced rapidly, quantum-inspired approaches generally depend on classical
emulation of quantum processes, which limits efficiency. The path toward universal and practical quan-
tum computing requires addressing numerous physical restrictions and technical hurdles, and at present,
quantum computers capable of effectively handling complex problems beyond classical systems remain out
of reach [26]. Thus, research in the realm of quantum computing needs to be expanded and investigated
constantly. The algorithm proposed in this paper is a foundation-laying and exploratory phase, which is
necessary for the subsequent development of quantum computers.

In recent years, several researchers have applied quantum-inspired algorithms to clustering problems,
including quantum-inspired ant lion optimization, genetic algorithms, and particle swarm optimization
[27–29]. Despite these advances, the application of quantum-inspired algorithms in clustering and intrusion
detection has not been fully explored, especially the combination with the quantum-classical frame.

In summary, this study presents a quantum-classical hybrid clustering algorithm that integrates an
improved quantum-inspired artificial bee colony algorithm hybrid with the K-means (IQABC-K) for cluster
analysis. Furthermore, it incorporates a similarity coefficient-based quantum genetic algorithm (SC-QGA)
to develop a novel quantum-based attack detection scheme for intrusion detection. In contrast to the K-
means, the IQABC-K hybrid scheme achieves better clustering results and accelerates convergence, enabling
the K-means to reach the global optimal solution. The novel attack detection quantum scheme can quickly
and accurately distinguish between different attack types. The following are the study’s principal works.

1. First, a similarity coefficient-based quantum genetic algorithm is proposed. The algorithm utilizes
similarity coefficient theory to construct a class separability approximation matrix, which is incorporated
into the quantum genetic algorithm to effectively direct the process of feature selection. The evolutionary
search is further enhanced by a quantum rotation gate with an adaptive rotation angle.

2. Second, an improved quantum-inspired artificial bee colony hybrid K-means algorithm is developed.
Two adaptive mechanisms are designed: (i) an adaptive quantum rotation gate with dynamically adjusted
rotation angles to accomplish a balanced trade-off between global exploration and local exploitation, thereby
improving optimization efficiency; and (ii) a linear population reduction strategy that decreases compu-
tational overhead while enhancing the quality of the search space. Furthermore, movement exploitation
strategies are introduced to prevent the algorithm from being trapped in local optima, thereby accelerating
convergence and improving accuracy. In addition, a global optimal bootstrap strategy is designed to search
for new nectar sources with superior fitness values during the scout bee phase.

3. Finally, we combined the SC-QGA algorithm and the IQABC-K algorithm to form a quantum-
inspired hybrid clustering algorithm applied to intrusion detection.

This is how the remainder of the paper is structured: Section 2 briefly outlines key concepts. Section 3
details an intrusion detection system composed of the SC-QGA algorithm and the IQABC-K algo-
rithm. Section 4 conducts an experiment to assess the proposed algorithm relative to other algorithms in
clustering and intrusion detection. Finally, Section 5 summarizes the whole study.
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2 Basic Principle

2.1 Similarity Coefficients
Definition 1: Let f(x) and g(x) be continuous one-dimensional positive functions. The similarity coefficient

Cr between f(x) and g(x) is defined as:

Cr = ∫ f (x) g (x) dx√
∫ f 2 (x) dx ⋅

√
∫ g2 (x) dx

(1)

here, Cr is used to quantify the correlation between f (x) and g(x). The integration is performed over the
domain where both f (x) and g(x) are defined and not simultaneously equal to zero.
Property 1: The values of the similarity coefficient Cr lie in the interval 0 ≤ Cr ≤ 1.

This property is derived from the Cauchy–Schwartz inequality, as demonstrated below:

0 ≤ ∫ f (x) g (x) dx ≤
√

∫ f 2 (x) dx ⋅
√

∫ g2 (x) dx (2)

0 ≤ ∫ f (x) g (x) dx√
∫ f 2 (x) dx ⋅

√
∫ g2 (x) dx

≤ 1 (3)

Property 2: If f(x) = kg(x), for some constant k > 0, then Cr = 1.
This indicates that the functions f (x) and g(x) are in perfectly correlated states, differing solely by a

scalar factor.
Property 3: If, for all x, Cr = 0, and either f(x) = 0 or g(x) = 0, then Cr = 0.

This implies that f (x) and g(x) have disjoint support and are therefore completely dissimilar.
The similarity coefficient criterion is theoretically related to classical feature selection methods that

evaluate class separability. Specifically, it measures both intra-class compactness and inter-class dispersion
through the ratio of similarity within the same class to that between different classes. The similarity coefficient
formulation shares conceptual similarity with the Fisher score, which maximizes the ratio of between-class
variance to within-class variance. By defining the similarity coefficient Cr, the class separability criterion
in the SC-QGA algorithm can be viewed as a non-linear extension of the Fisher criterion, replacing
second-order variance with pairwise similarity to capture more general distributions. Furthermore, from
an information-theoretic perspective, the similarity coefficient implicitly encodes the mutual dependency
between features and class labels. A high inter-class dissimilarity combined with low intra-class similarity
increases the information gain about class boundaries, which is conceptually equivalent to maximizing
mutual information. Therefore, the similarity coefficient criterion unifies geometric and information-based
perspectives: it generalizes the Fisher score in a kernel-like similarity space and aligns with the objective
of maximizing mutual information through similarity-driven feature relevance. This connection provides
a theoretical justification for adopting the similarity coefficient as a feature selection metric within the
SC-QGA algorithm.

2.2 Class Separability Criterion
The class separability criterion function J is formulated according to Eq. (4), which is derived from the

similarity coefficient.

J = 1 − ∫ f (x) g (x) dx√
∫ f 2 (x) dx ⋅

√
∫ g2 (x) dx

= 1 − Cr (4)
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This criterion, constructed based on probability distributions, must satisfy the following three condi-
tions [30]: (i) the criterion function must be greater than zero; (ii) J reaches its maximum value when the
distribution functions of the two classes do not overlap; and (iii) J equals zero when the distribution functions
of the two classes are identical.

According to Property 1 of the similarity coefficient, it follows that J > 0. In the case where the probability
density f (x) and g(x) of the two classes do not overlap, Property 3 implies that Cr = 0, and therefore J = 1.
Conversely, if f (x) = g(x), it follows from Property 2 that Cr = 1, and hence J = 0. Therefore, the criterion
function J meets the three necessary conditions for class separability and provides a reliable means of
evaluating class distinction.

If the distribution function is Gaussian, the similarity coefficient is defined as:

Cr = exp
⎛
⎜
⎝
−
(μi − μ j)

2

2(σ 2
i + σ 2

j )

⎞
⎟
⎠

(5)

where, u and σ 2 denote the mean and variance of the sample, respectively. i and j denote the corresponding
class labels.

2.3 Artificial Bee Colony Algorithm
Inspired by the foraging behaviors of honeybees, the ABC algorithm is a nature-inspired optimization

technique introduced by Karaboga for addressing complex optimization problems [31]. The algorithm
involves nectar sources and three bee roles—employed, onlooker, and scout. Each stage of the activities of
the bee involves various mechanisms, each with particular features and roles during the course of the search.
The following is a description of the primary steps of the algorithm.

Initialization stage. This involves initializing the bee population and the location of the nectar sources.
Assume that the initial population size is N, the dimension is D, the largest iteration number is Iter, and the
largest amount of consecutive searching is L. The original nectar source locations are as follows:

s j
i = s j

min + v ⋅ (s j
max − s j

min) (6)

where, i ∈{1, 2, ..., N}, j ∈{1, 2, ..., D}, the minimum and maximum values of the solution in the jth dimension
are denoted by s j

min and s j
max , respectively, and v represents a random number within the interval [0, 1].

Employed bee stage. Employed bees are responsible for investigating the surrounding area of nectar
sources and gathering information regarding their position and quality. During this stage, every employed
bee seeks out a novel solution adjacent to its current location. The update equation for the location of the
employed bee is as follows:

s j
i = s j

i + ω j
i ⋅ (s j

i − s j
l) (7)

where, l ∈{1, 2, ..., N}, l ≠ j, and s j
i represents the nectar source location. ω j

i is defined as a random value
ranging from −1 to 1. The fitness of the new nectar source is evaluated, and by applying greedy selection, only
the better solutions are retained.
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Onlooker bee stage. After evaluating each employed bee’s fitness, onlooker bees choose one to explore
further. Typically, a feasible solution may be identified by using the roulette strategy, as indicated below:

pi =
f iti

N
∑
i=1

f iti

(8)

where, fiti signifies the fitness of the nectar source or employed bee. The possibility pi of choosing the ith
nectar source is determined by its fitness; higher fitness corresponds to a greater probability of selection. A
novel solution is then discovered, and its fitness is computed using Eq. (7). Nectar sources with improved
fitness are reservations. A nectar source corresponds to a variable Count, initially set to zero. If a nectar source
stays unaltered for the corresponding employed or onlooker bees’ exploration stage throughout the iteration
process, its Count value is increased by one.

Scout bee stage. In this phase, the scout bee examines the candidate solutions and filters out those that
are infeasible. A nectar source is regarded as stagnant when its solution remains unchanged for L consecutive
evaluations. When stagnation occurs, the scout bee employs Eq. (6) to generate a new, more randomized
solution and resets the associated Count variable to zero.

2.4 K-Means Algorithm
The K-means algorithm, which maximizes similarity between samples within clusters and differences

across clusters, splits the data into k clusters [32]. In the beginning, cluster centers (or centroids) are formed
by randomly selecting k samples. Based on distance, each object is subsequently assigned to the cluster with
the closest centroid. Assuming a dataset D = {x1, x2, ..., xn}, where xi = {xi1 , xi2, . . . , xi Dim}, the n Dim-
dimensional data points are now clustered. The main steps are described in the following.

Input: dataset D, cluster amount k, largest iteration number of algorithm Maxcycle.
Output: final locations of k centroids, classification of each data point.
Step 1: choose k samples randomly from D to serve as the original centroids.
Step 2: all the sample data will be grouped into the cluster that has the greatest similarity pursuant to

the similarity (similarity is measured by Euclidean distance), where the greatest similarity corresponds to
the least Euclidean distance.

Step 3: calculate the average value of all samples inside every cluster to update every centroid.
Step 4: compare the updated centroid with the previous ones. If the objective function converges or

Maxcycle iterations are reached, output the clustering results; otherwise, turn to step 2.
The centroids are indicated by the subsequent equation:

C j =
1

n j

n j

∑
i=1

xi (9)

where, j = {1, 2, ..., k}, and the number of samples data points in the jth cluster is denoted by n j.

3 Proposed Methodology
Fig. 1 shows the network attack process and the corresponding defense mechanism of an Intrusion

Detection System (IDS). An IDS is a crucial security mechanism designed to detect anomalous traffic pat-
terns in computer networks. With the rising frequency and sophistication of cyberattacks, the development
of robust IDS solutions has become critical. These systems continuously monitor network activity and
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implement proactive measures such as traffic control, access prevention, and suspicious account blocking
to ensure data confidentiality. As depicted in Fig. 1, a layered defense strategy integrating firewalls and an
IDS is deployed against unauthorized access attempts from the Internet. While firewalls filter traffic to
block external threats, the IDS detects malicious behavior, restricts inter-network access, and helps contain
attack propagation.

Figure 1: The proposed method is applied to intrusion detection systems

Within this architecture, this study proposes a novel method based on quantum-inspired clustering
algorithms. The core of our approach lies in the synergistic integration of two specialized algorithms: a
Similarity Coefficient-based Quantum Genetic Algorithm (SC-QGA) for feature selection and an Improved
Quantum Artificial Bee Colony hybrid K-means (IQABC-K) algorithm for attack detection, the latter being
specifically designed for clustering tasks. The operational workflow of the proposed IDS framework, also
reflected in Fig. 1, comprises two main stages: (1) Data preparation stage: the SC-QGA algorithm is employed
to perform high-quality feature selection in the initial phase, which is critical for enhancing data quality and
reducing computational complexity; (2) Intrusion detection stage: in this phase, the IQABC-K algorithm
is utilized to execute the actual intrusion detection via clustering. Detailed formulations of the SC-QGA
and IQABC-K algorithms are provided in Sections 3.1 and 3.2, respectively. By seamlessly integrating these
two components, the proposed framework establishes an innovative and effective solution for identifying
network intrusions.

It should be noted that the proposed algorithm adopts a quantum-inspired rather than a genuine
quantum algorithm implementation. In this approach, the notions of qubits, superposition, and rotation
gates are mathematically simulated on classical computers to improve search diversity and convergence,
without involving physical qubits, entanglement operations. In contrast, quantum-computing-based mech-
anisms execute optimization on real quantum hardware through unitary transformations that exploit
quantum coherence and interference. Therefore, the SC-QGA and IQABC-K algorithms belong to the
class of quantum-inspired, which emulate quantum principles through classical probabilistic modeling
rather than physical quantum computation. However, this quantum-inspired classical simulation provides a
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theoretical foundation for its future implementation on actual quantum computers, thus holding significant
reference value.

3.1 Feature Selection Using a Similarity Coefficient-Based Quantum Genetic Algorithm
In intrusion detection tasks involving network datasets, feature samples often exhibit fluctuations

around their expected values due to factors such as network noise, data collection errors, and anomalous
traffic patterns. The probability distribution of each feature, estimated via statistical analysis, can be reason-
ably approximated by a Gaussian distribution parameterized by the sample mean and variance. Based on the
class separability criterion function, the corresponding feature selection algorithm is defined as follows.

3.1.1 Constructing a Class Separability Simplicity Matrix for Data
The core of the proposed feature selection model is the quantification of each feature’s discriminative

power. This process is formalized through the construction and analysis of class separability matrices, which
consists of the following steps.

Step1: Construct the class separability matrix.
For each network traffic feature in the KDD CUP99 dataset, whose samples approximately follow a

Gaussian distribution, the class separability matrix M = {M1 , M2, . . . , ML} is computed to quantify the
separability between different classes.

Mb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m11 m12 . . . m1n
m21 m22 . . . m2n
⋮ ⋮ ⋱ ⋮
mn1 mn2 . . . mnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where, b = {1, 2, ..., L}, L is the total number of features, and n denotes the number of classes. mij represents
the similarity between classes i and j with respect to feature F, the matrix satisfies mii = 1 and the symmetry
condition mij = mji.

The specific steps include: (i) For each feature Fl = {1, 2, ..., L}, group the samples by class and compute
the mean u and variance σ 2 for each class-specific group. (ii) The Gaussian-based similarity coefficient
(Eq. (5)) and the class separability criterion function are utilized to construct the matrix M.

Step2: Generate the class separability simplicity matrix.
A threshold g is defined to evaluate the class separability of each feature. The matrix M is then binarized

according to this threshold. Specifically, if mij < g, it indicates that classes i and j are not distinguishable using
feature Fl, and mij is set to 1; otherwise, it is set to 0. Based on this rule, the class separability approximation
matrix S = {S1 , S2, ..., SL} is generated, which provides an efficient measure of the discriminative power of
each feature.

Step3: Iterate over all features to generate the set of matrices.
Steps 1 and 2 are applied to all features in the network dataset to obtain the class separability matrix

Ml and the corresponding approximation matrix Sl for each feature (l = 1, 2, ..., L). This process leads to
a combinatorial optimization problem, aimed at selecting an optimal features subset that maximizes class
discriminability while minimizing feature dimensionality.



Comput Mater Contin. 2026;87(1):48 9

3.1.2 Quantum Genetic Algorithm for Feature Subset Optimization
The combinatorial problem defined in Section 3.1.1 is solved using the quantum genetic algorithm

(QGA), which efficiently explores the high-dimensional feature solution space. The detailed procedure is
as follows:

1. Initialize the population P = {p1 , p2, ..., pn} with a predefined size n, and set the maximum iteration
Itermax. Each individual pi represents a candidate solution, encoded as a quantum chromosome as follows:

pi = [ α1 , α2, . . . , αm
β1 , β2, . . . , βm

] (11)

where, m denotes the number of quantum bits, and αi and βi represent the probability amplitudes of the ith
qubit being in the ‘0’ and ‘1’ states, respectively. All qubits are initialized with the same amplitude, placing
each in an equal superposition state.

2. Based on the probability amplitudes associated with every individual in population P, generate an
observed state set Q = {q1 , q2, ..., qn} by measuring the quantum superposition states. Each observed state
qt = {qt1 , qt2, ..., qtm} (t = 1, 2, ..., n) corresponds to a binary string of length m obtained via probabilistic
collapse of the qubits.

3. The evaluation of individual fitness is performed to assess the quality of the feature subset. Let d denote
the dimensionality of the eigenvector representing an individual, and let qt be the observed state of the tth
individual. Denote sbij as the element in the ith row and jth column of the class separability approximation
matrix Sb, where i, j = 1, 2, ..., n and b = 1, 2, ..., L. Based on these definitions, the fitness function can be
denoted as follows:

f = d +∑i< j sbi j (12)

sbi j = (q1
t
s1

i j)& (q2
t
s2

i j) ⋅ ⋅ ⋅& (qm
t

sm
i j) (13)

where & denotes the logical “AND” operation. It can be observed that lower values of the function f
correspond to higher-quality feature subsets.

4. Update the global optimal solution. The best solution encountered so far is preserved to maintain
elite individuals throughout the evolutionary process.

5. Population evolutionary operation, updating the probability amplitude through the quantum rotating
gate makes all the individuals in the population get updated. The rotation angle is dynamically adjusted based
on the difference between the current solution and the elite solution, as shown in Eq. (14). Specifically, the
angle is derived from the discrepancy between the present solution and the elite solution. When the current
and elite solutions differ in a given feature selection state, the fitness difference between them is calculated.
A larger fitness gap indicates a greater deviation from the optimal solution in that feature dimension, and a
correspondingly larger rotation angle is applied to accelerate the adjustment of the quantum bit amplitudes
toward the elite solution, thereby improving the convergence rate of the algorithm. Conversely, if the current
solution matches the elite solution in a particular feature selection state, the rotation angle is set to zero and
no adjustment is made.

Δθ = z ⋅ sign (pel i te − pcurr) ⋅ (1 + f iti − f itbest

v
) (14)

here, z denotes the base rotation coefficient, which controls the baseline magnitude of the rotation angle
to prevent overly drastic state changes in a single iteration. The function sign() determines the direction of
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rotation. pelite represents the elite individual, and pcurr denotes the current individual. fiti and fitbest are the
fitness values of the current and elite individuals, respectively. The parameter v is a scaling factor introduced
to prevent excessively large fitness differences from causing abnormal rotation angles.

6. The iterative process is continued by returning to Step 3 until the specified iteration limit is met.

3.2 A Hybrid Algorithm for Improved Quantum-Inspired Artificial Bee Colony with K-Means
The method is primarily designed to generate high-quality initial centroids through the proposed

improved quantum-inspired artificial bee colony (IQABC) algorithm. This method addresses the sensi-
tivity of the standard K-means algorithm to initial centroid selection and enhances the overall clustering
performance. The K-means is subsequently applied to complete the data clustering process.

The IQABC-K algorithm in this paper introduces four primary strategies: (1) Linear population
reduction strategy; (2) Dynamic adaptive rotation angle update strategy during the employed bee phase; (3)
movement exploitation strategies during the onlooker bee phase; (4) Dynamic global optimal bootstrapping
strategy during the scout bee phase. The overall workflow of IQABC-K is illustrated in Fig. 2, and its
core procedural steps are detailed below. The pseudo-code summarizing the IQABC phase is provided in
Algorithm 1.

Figure 2: Flow chart of IQABC-K

Algorithm 1: Pseudo-code of IQABC
Input: Dataset D, Number of clusters k, iteration t = 1, maximum iteration Tmax, Population size n,

employed bee size P1, onlooker bee size P2, scout bee size P3, and source update limit size L.
Output: Final cluster centers C_final.

(Continued)
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Algorithm 1 (continued)
1: Initialize population P = {p_1, ..., p_n} by quantum encoding.
2: Evaluate fitness f (p_i) for all p_i ∈ P. Record elite.
3: while t < Tmax do
4: for i = 1:P1 do
5: Compute rotation angle σ by Eq. (28).
6: Apply quantum rotation gate to p_i to generate candidate p_i’.
7: Decode p_i’ and evaluate fitness f (p_i’).
8: if f (p_i’) > f (p_i) then
9: p_i = p_i’;
10: L_i = 0;
11: else
12: L_i = L_i + 1;
13: end if
14: if f (p_i) > f (elite) then elite = p_i.
15: end for
16: for j = 1:P2 do
17: Choose onlooker bees by Eq. (8).
18: Generate candidate q by applying chosen movement strategy Eqs. (30) or (34) to p_i.
19: Decode q and evaluate f (q).
20: if f (q) > f (p_i) then
21: p_i = q;
22: L_i = 0;
23: else
24: L_i = L_i + 1;
25: if f (p_i) > f (elite) then elite = p_i
26: end for
27: for u = 1:P3 do
28: if L_i > L
29: Replace p_i by Eqs. (38) or (39);
30: L_i = 0;
31: Evaluate f (p_i) and update elite.
32: end if
33: end for
34: The best nectar sources found so far are recorded as the elite.
35: The population size decreased linearly by Eqs. (21) and (22).
36: t = t + 1.
37: end while
38: Decode elite and best nectar sources to obtain final cluster centers.
39: Return C_final.

3.2.1 Initialization with Quantum Representation: Linear Reduction
The algorithm begins by initializing a population of quantum-encoded bees. In this quantum-inspired

framework, each food source (a potential solution) is represented by a quantum bee, defined by its probability
amplitudes. The quantity of nectar sources typically equals the number of employed bees, and there is a
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maximum number L of consecutive searches for each nectar source. A predetermined quantity of bees is
produced at random, with each bee represented by the quantum bits. Within Hilbert space, a qubit exists as
a superposition of ‘0’ and ‘1’ states, and its properties are described as follows:

∣φ⟩ = α∣0⟩ + β∣1⟩ (15)

where, α and β are complex numbers. The probability amplitudes ∣α∣2 and ∣β∣2 represent the ‘0’ and ‘1’
states, respectively, with the constraint ∣α∣2 + ∣β∣2 = 1. By setting α = cos(θ), β = sin(θ), the equation can be
reformulated in matrix notation, denoted as:

∣φ⟩ = [ α
β ] = [ cos (θ)

sin (θ) ] (16)

where, θ ∈ (0, 2π).
In the IQABC-K algorithm, each quantum bee is expressed by Eq. (17).

Pi = [φ1 , φ2, . . . , φl ] = [ cos (θi1) , cos (θi2) , . . . , cos (θim)
sin (θi1) , sin (θi2) , . . . , sin (θim)

] (17)

where, i ∈{1, 2, ..., n}, with n denoting the number of bees and m the attribute dimension.
Let P denote the population matrix of n bees, each associated with two positions in the search area,

representing potential solutions as follows:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1
P2
⋮

Pn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1x
P1y
P2x
P2y
⋮

Pnx
Pny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos (θ11) cos (θ12) ⋅ ⋅ ⋅ cos (θ1m)
sin (θ11) sin (θ12) ⋅ ⋅ ⋅ sin (θ1m)
cos (θ21) cos (θ22) ⋅ ⋅ ⋅ cos (θ2m)
sin (θ21) sin (θ22) ⋅ ⋅ ⋅ sin (θ2m)

⋮ ⋮ ⋱ ⋮
cos (θn1) cos (θn2) ⋅ ⋅ ⋅ cos (θnm)
sin (θn1) sin (θn2) ⋅ ⋅ ⋅ sin (θnm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Here, before fitness evaluation, the solutions must be transformed from quantum space to the
solution space.

To mitigate computational overhead—especially in high-dimensional data—the IQABC-K algorithm
employs a linear population reduction strategy. Based on fitness values, the quality of quantum bees in
population space can be characterized. In order to raise the probability of discovering superior locations and
achieve an expedient rate of convergence, consideration is given to elevating the population space’s quality,
and the remaining population that exhibits low quality will be disregarded. The IQABC-K algorithm employs
an appropriate technique to accomplish this, which is to arrange the matrix population P in ascending order
depending on fitness values. The following equation serves as a depiction of this procedure.

P′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1
P2
⋮

Pn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1x
P1y
P2x
P2y
⋮

Pnx
Pny

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos (θ11) cos (θ12) ⋅ ⋅ ⋅ cos (θ1m)
sin (θ11) sin (θ12) ⋅ ⋅ ⋅ sin (θ1m)
cos (θ21) cos (θ22) ⋅ ⋅ ⋅ cos (θ2m)
sin (θ21) sin (θ22) ⋅ ⋅ ⋅ sin (θ2m)

⋮ ⋮ ⋱ ⋮
cos (θn1) cos (θn2) ⋅ ⋅ ⋅ cos (θnm)
sin (θn1) sin (θn2) ⋅ ⋅ ⋅ sin (θnm)

Fitness1
Fitness2
Fitness3
Fitness4

⋮
Fitness2n−1
Fitness2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)
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Fitness1 ≤ Fitness2 ≤ ⋅ ⋅ ⋅ ≤ Fitness2n (20)

Following the calculation of the ranking matrices P′, in order to elevate the quality of the population
space and prioritize high-quality positions, IQABC-K employs a linear population reduction method. The
population size decreases linearly with iterations, as illustrated by Eqs. (21) and (22).

f (t) = t − 1
1 − Tmax

⋅ (n − nc) + n (21)

nc =
n
4
+ Tmax − t (22)

where, t is the current iteration, and Tmax is the maximum number of iterations. Therefore, the population
size is n for the first iteration (t = 1) and nc for the ultimate iteration (t =Tmax). In the matrix P′, the population
size will decrease from n to f (t). As shown below:

P′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P1
P2
⋮

Pf (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1x
P1y
P2x
P2y
⋮

Pf (t)x
Pf (t)y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos (θ11) cos (θ12) ⋅ ⋅ ⋅ cos (θ1m)
sin (θ11) sin (θ12) ⋅ ⋅ ⋅ sin (θ1m)
cos (θ21) cos (θ22) ⋅ ⋅ ⋅ cos (θ2m)
sin (θ21) sin (θ22) ⋅ ⋅ ⋅ sin (θ2m)

⋮ ⋮ ⋱ ⋮
cos (θ f (t)1) cos (θ f (t)2) ⋅ ⋅ ⋅ cos (θ f (t)m)
sin (θ f (t)1) sin (θ f (t)2) ⋅ ⋅ ⋅ sin (θ f (t)m)

Fitness1
Fitness2
Fitness3
Fitness4

⋮
Fitness2 f (t)−1
Fitness2 f (t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

The linear population reduction strategy defined by Eqs. (21)–(23) gradually decreases the number of
individuals from n to nc as iterations progress, ensuring a smooth transition from exploration to exploitation.
Formally, the population size function f (t) is monotonically decreasing with respect to the iteration index
t, as d f (t)

d t = − n−nc
Tmax−1 < 0. This monotonic contraction ensures that the population reduction process satisfies

the convergence condition f (Tmax) = nc and prevents oscillatory behavior in the population update.
From an optimization perspective, this linear decay creates a deterministic annealing effect in the

search space: at early iterations, a larger population ( f (t) ≈ n) allows for diverse exploration of candidate
solutions; as t increases, f (t) decreases linearly, concentrating computational effort on high-fitness regions
identified by previous iterations. Let Dt denote the diversity of the population at iteration t; empirical and
theoretical studies of population-based algorithms show that diversity typically satisfies Dt+1 = (1 − λt)Dt ,
where λt represents the reduction rate of search variance. In the proposed strategy λt ∝ 1

f (t) , implying that
as f (t) decreases, the contraction of search variance accelerates, ensuring convergence within a finite number
of iterations.

3.2.2 Employed Bee Phase: Adaptive Exploration
Each employed bee is associated with a single food source, making their numbers identical, and searches

for a new candidate solution near its current position using a quantum rotation gate. The quantum rotation
gate is expressed as follows:

U (Δθ) = [ cos (Δθ) − sin (Δθ)
sin (Δθ) cos (Δθ) ] (24)
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The renewal of a qubit using a quantum rotation gate is expressed by Eq. (25).

∣φ′⟩ = U (Δθ) ⋅ ∣φ⟩ = [ cos (θ + Δθ)
sin (θ + Δθ) ] (25)

The rotation angle is adjusted adaptively according to Eq. (26).

Δθ = S (αi , βi) ⋅ σ (26)

where, the sign function S (⋅) indicates the direction of the angle.σdenotes the rotation angle’s magnitude,
and its value is given in Section 3.2.1 of the article. In the traditional QABC algorithm, it typically ranges
between 0.01π and 0.05π.

S (αi , βi) = sign (αi × βi) (27)

Through analysis and investigation of the conventional quantum rotation gate alteration strategies, it
is observed that the rotation angle typically falls within the range of 0.01π to 0.05π. However, a significant
limitation of this conventional approach is its use of a fixed rotation angle, which often results in low solution
precision and slow convergence. To overcome these drawbacks, this paper introduces two dynamic adaptive
strategies for updating rotation angle. Below is the first type.

• Iteration-Dependent Rotation Angle Update

A dynamic adaptive angle update strategy is proposed in which the rotation angle is adjusted adaptively
throughout different phases of the iteration process. In the early stages, a large rotation angle aids in
maximizing the speed of global convergence and accelerating the approach to the global optimal solution.
During the middle stages, a moderate rotation angle balances exploration and exploitation. In the later stages
of the search, a reduced rotation angle benefits the local search capability and final precision. The following
equation displays the particular form.

σ = 0.04π [1 − t
r ⋅ Tmax

] (28)

The adaptive rotation angle σ can be analyzed as a monotonically decreasing function with respect to
the iteration index t. Since σ = 0.04π [1 − t

r⋅Tmax
], for a constant r > 1, the derivative d σ

d t = − 0.04π
r⋅Tmax

is negative,
ensuring that the rotation angle decreases linearly with the progress of iterations. This property guarantees a
gradual transition from exploration to exploitation. During the early stage (t = 0), σ is close to its maximum
value, encouraging broad search coverage in the solution space. As t → Tmax , σ → 0,which restricts the
rotation step and allows the algorithm to refine its convergence around the current global optimum. It is
observed from simulation experiments that the best outcomes occur when the value of r lies between 1.4
and 2.

After employed bees explore new candidate solutions near their current positions via quantum rotation
gates, the quality of each new solution is evaluated using a predefined objective function (see Section 3.2.5
for its mathematical equation). If a newly generated solution is superior to the current one, the employed
bee updates its location accordingly.
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3.2.3 Onlooker Bee Phase: Exploratory Development
Based on information shared by employed bees, each onlooker bee selects an employed bee using

a roulette wheel selection mechanism driven by fitness-based probabilities. Upon selecting a source, an
onlooker bee employs one of two movement exploitation strategies to generate a new candidate solution.

To enhance global exploration capabilities, the IQABC-K algorithm incorporates not only the centroid
vector positions from each iteration but also introduces an additional search realm designated as the average
centroid vector C, as shown below:

C = C1 + C2 + . . . + Ci

i
(29)

In IQABC-K, a group of vectors Ω = {C , Pbesst} constitutes a high-quality search area. Based on this
area, the algorithm introduces two movement exploitation tendency methods for efficient utilization of the
search region.

• The first movement exploitation tendency

The first tendency concentrates on utilizing the search area created between each quantum bee position
Pi, the global optimal position Pbest, and the average centroid C, as shown in the following Eq. (30):

P(t+1)
i = r1P(t)

best +
γ1(t)

∣γ1(t) ∣ + ∣γ2(t) ∣
∣P(t)

i − r2P(t)
best ∣ +

γ2(t)

∣γ1(t) ∣ + ∣γ2(t) ∣
∣P(t)

i − r3C(t)∣ (30)

where, the values r1, r2, and r3 are uniformly distributed in [0, 1]. In IQABC-K, r1 represents how the present
position affects the next one. The search area is widened surrounding C and Pbest using r2 and r3. Two
variables referred to as “wander regulate”—γ1(t) and γ2(t)—are aimed at creating a novel high-quality search
area. γ1(t) and γ2(t) are constructed to decrease with the iteration number rising in order to narrow these
search areas and maximize accuracy and convergence speed. Two symmetric functions fγ1(t) and fγ2(t) with
values in the interval [−1, 1] are consequently proposed, as shown below:

fγ1(t) = sin [0.1 ⋅ (1 − t
Tmax

) ⋅ Tmax] (1 − t
Tmax

)

fγ2(t) = − sin [0.1 ⋅ (1 − t
Tmax

) ⋅ Tmax] (1 − t
Tmax

)
(31)

Based on fγ1(t) and fγ2(t) , the u1(t) and u2(t) are calculated by Eqs. (32) and (33).

γ1(t) = (v1 fγ1(t) + v2 fγ2(t)) (32)

γ2(t) = (v3 fγ1(t) + v4 fγ2(t)) (33)

where, the random numbers v1, v2, v3, and v4 are between 0 and 1. Depending on the randomness of these
parameters and the two symmetric functions fγ1(t) and fγ2(t) , the values of γ1(t) and γ2(t) be negative or
positive in any iteration.

• The second movement exploitation tendency

The second strategy utilizes the search region between the average centroid C and the global optimal
Pbest forming a more concentrated search space. Consequently, a new search area is formed by disregarding
the positions of individual quantum bees Pi, as indicated below:

P(t+1)
i = r4C(t) + r5 (P(t)

best − r6C(t)) (34)
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where, r4, r5 and r6 are random numbers with values in the range [0, 1]. The search area of this tendency
will clearly be smaller compared to the first tendency. This strategy promotes faster convergence and higher
accuracy by focusing on the promising region between C and Pbest, rather than emphasizing escape from
local optima.

3.2.4 Scout Bee Phase: Dynamic Bootstrapping for Local Escape
If a food source shows no improvement after L trials, it is considered trapped in a local optimum and

abandoned. The associated employed bees are consequently converted into scout bees, which then generates
a new random solution via Eq. (35). However, purely random solutions often exhibit low fitness and are
quickly eliminated during selection. To leverage useful information from previous iterations, a global optimal
bootstrapping strategy is introduced. During the algorithm’s iteration, the Pbest in each iteration with valuable
information is recorded. This information can guide the generation of new solutions with effective quality.
Therefore, a globally optimal bootstrap strategy is introduced in this stage. The specific method for the
improved scout bee is expounded as below.

1) According to the bee matrix, a solution is produced through random generation by Eq. (35).

Pi = Pmin + τ (Pmax − Pmin) (35)

where, τ denotes a random number drawn from the interval [0, 1], Pmin and Pmax denote the smallest and
largest values in the quantum bee matrix, respectively.

2) Optimize the random solution using the second type of dynamic adaptive angle quantum rotation
gate, as shown in Eq. (36).

P′i = U (Δθ) ⋅ Pi (36)

• Fitness-Based Rotation Angle Update

The second dynamic adaptive rotation angle strategy adjusts based on the relationship between the
current fitness value and the global optimal fitness value. This approach allows the algorithm to attain the
optimal solution more swiftly without becoming trapped in local optima. The particular form as shown
follows:

σ = θmin +
f itmax − f iti

f itmax
(θmax − θmin) (37)

where, f itmax is the population optimal fitness value, f iti is the current bee individual fitness value, and θmax
and θmin are the largest and smallest angles in the angle matrix, respectively. As can be seen from Eq. (37), the
rotation amplitude σ decreases as f iti approaches f itmax . This ensures that individuals closer to the global
optimum experience smaller rotational perturbations, facilitating fine-tuning around the best solution, while
less-fit individuals undergo larger rotations to explore new regions.

Analytically, the update rule defines a bounded, monotonically decreasing mapping of σ with respect
to ∣ f itmax − f iti ∣. Taking the derivative d σ

d f i t i
= − θmax−θmin

f i tmax
< 0 indicates that as fitness improves, the rotation

angle decreases slightly within the upper bound θmax , which stabilizes the search trajectory near the global
best. This bounded, continuous relationship guarantees that σ ∈ [θmin , θmax] for all iterations, thus ensuring
numerical stability of the rotation operator.

3) Two scenarios arise by the outcomes combining the solution P′i , which has been adjusted by the
quantum rotation gate, with the globally optimal solution Pbest. In the first scenarios, if the fitness of the
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solution from the first operation is inferior to that of Pbest , the adjusted global best solution is incorporated
into the new candidate. As shown in Eq. (38).

P′′i = P′i + (1 − τ) (P′i − Pbest) (38)

where, Pbest is the global optimal solution.
In the second scenarios, if the fitness of the randomly generated solution exceeds that of Pbest, the

adjusted global best solution is subtracted from the new candidate according to Eq. (39).

P′′i = P′i − (1 − τ) (P′i − Pbest) (39)

The purpose of these two cases is to prevent the new solution from deviating excessively from the global
optimum, which could adversely affect the convergence speed of the algorithm. Ultimately, the abandoned
food source is ultimately replaced by the newly generated one. After the aforementioned steps, scout bees
may produce solutions with improved fitness, enhancing the algorithm’s ability to escape the local optimum.

3.2.5 K-Means Clustering Phase
The K-means algorithm is initialized using the high-quality centroids obtained from the IQABC

algorithm process. Subsequently, the K-means is executed to partition the data points into clusters, thereby
refining the clustering results and achieving the final segmentation. The IQABC-K algorithm is proposed
in this study for addressing clustering analysis problems by identifying optimal centroid positions. Given a
dataset D = {x1, x2, ..., xn} intended to be partitioned into k clusters, each with m attributes of dimension,
a solution is required to be constructed as a one-dimensional vector of size k × m. In the IQABC-K
algorithm, each individual in the population corresponds to a candidate set of k centroids, denoted by
P = {p1, p2, ..., pm}.

Several objective functions are commonly used in clustering, such as the sum of intra-cluster distances
(SICD) [33], the sum of squares of errors (SSE) [34], and the sum of distances between cluster centroids
(SDCC) [35]. Among these, SSE is widely adopted in K-means-based algorithms due to its effectiveness in
measuring clustering quality through the total squared Euclidean distance between each data point and its
assigned cluster centroid. Consequently, SSE is employed as the objective function in this paper, specified
as Eqs. (40) and (41).

J =
k
∑
j=1

∑
xi∈G j

d (xi , C j)
2 (40)

d (x , C j) =
1
223

m
∑
i=1

(xi − C ji)
2 (41)

where, d(xi, Cj) points out the Euclidean distance within data xi to the centroids Cj to which it belongs. Gj
denotes the jth cluster.

4 Experimental Results and Discussion
This section is used for experimentation and analysis. First, the clustering performance of the sug-

gested IQABC-K algorithm is multi-dimensionally validated through comparative experiments on the UCI
benchmark dataset. Subsequently, the effectiveness of intrusion detection systems built using IQABC-K and
SC-QGA is evaluated using the KDD Cup99, NSL_KDD, and UNSW_NB15 datasets.
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4.1 Experimental Preparation
All simulations were performed in MATLAB R2023a, running on a machine equipped with an Intel

Core i5-8300 processor (2.3 GHz) and 8 GB memory.
For clustering performance, comparative analysis is carried out between IQABC-K, K-means, and three

nature-inspired optimization algorithms, including ABC, PSO, and QABC. The parameter variants for the
different approaches are provided in Table 1. The experimental datasets are obtained from the UCI Machine
Learning Repository, and six distinct sample types with different dimensions are selected, as listed in Table 2,
which summarizes the dimensions, cluster sizes, sample sizes, and data sources of the six benchmark datasets.
To assess the intrusion detection system, we validated it across four metrics—accuracy, false positive rate,
false negative rate, and F-measure—using three network datasets. Here’s an explanation of the role of the
dataset:(1) UCI datasets were used to assess clustering robustness on diverse data types; (2) network datasets
(KDD CUP99, NSL_KDD, and UNSW_NB15) were employed for intrusion detection. An identical setting
is applied to all algorithms for the maximum iteration count and population size.

Table 1: Parameter settings applied in the comparative algorithms

Algorithms Parameter values
K-means Dim, k

ABC L = 5
PSO w = 0.7298, C1 = 1.5, C2 = 1.5

QABC L = 5, angle of rotation θ = 0.01π

Table 2: Characteristics of the six datasets used for clustering

No. Datasets Attributes Clusters Sample
size References

1 Iris 4 3 150 UCI
2 Wine 13 3 178 UCI
3 Glass 9 6 214 UCI

4 Breaster
Cancer 9 2 683 UCI

5 Haberman’s
Survival 3 2 306 UCI

6 Seeds 7 3 210 UCI

4.2 Evaluation of the IQABC-K Clustering Algorithm
This section primarily conducts experiments and analyses on the IQABC-K algorithm and other

comparative algorithms from three aspects: SSE, accuracy, and convergence. Additionally, it demonstrates
statistically significant differences between IQABC-K and other algorithms through statistical tests.

4.2.1 Comparison the SSE Indicators of Algorithms
The SSE quantifies clustering quality by summing the squared distances from data points to their

assigned centroids, aiming to minimize this value. Data should be as close together as feasible within
an identical cluster; thus a smaller SSE value indicates better clustering quality. The SSE is described
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using Eq. (40). Table 3 presents the comparative SSE analysis of the proposed IQABC-K algorithm against
the K-means and several existing nature-inspired algorithms across six datasets. The results are analyzed
statistically based on the simulations of 10 runs. With only the value of Std, which is offered as two decimal
places using scientific notation, other data in the table are displayed to four decimal places. In the table, “Best”
denotes the best fitness value, “Worst” means the worst fitness value, “Mean” expresses the average fitness
value, and “Std.” represents the standard deviation.

Table 3: The SSE performance of different algorithms evaluated on six datasets

Datasets Indicators K-means ABC PSO QABC IQABC-K

Iris

Best 80.8064 80.9721 79.8253 79.8736 79.3619
Worst 142.7535 112.0513 117.8563 85.9304 81.3198
Mean 90.7990 85.8393 86.2280 82.3110 80.1805
Std. 1.7669E+01 8.9415E+00 1.0787E+01 1.8333E+00 6.2786E−01

Cancer

Best 19,353.2988 19,361.1958 19,394.5086 19,323.8359 19,323.1738
Worst 19,482.7473 24,149.8788 24,071.731 19,563.8764 19,323.1738
Mean 19,412.4809 19,916.8938 19,945.2619 19,393.6145 19,323.1738
Std. 3.8050E+01 1.4154E+03 1.3768E+03 6.8910E+01 2.5457E−05

Seeds

Best 588.782 588.782 587.3186 587.3186 587.3186
Worst 596.2656 607.4067 625.2592 596.2656 588.782
Mean 592.1857 593.4603 593.9557 591.4959 587.4649
Std. 2.5683E+00 5.8301E+00 1.1596E+01 2.9505E+00 4.3902E−01

Wine

Best 2,376,869.3595 2,373,197.2777 2,371,249.4466 2,371,249.4466 2,370,689.6868
Worst 2,491,687.2237 2,396,911.1749 2,388,233.8898 2,398,157.8576 2,374,098.575
Mean 2,420,556.9113 2,383,814.9965 2,380,217.6216 2,386,557.6077 2,371,627.0435
Std. 4.0629E+04 7.3877E+03 5.4225E+03 1.0319E+04 1.1391E+03

Survival

Best 33,647.9415 33,561.5077 33,561.5077 33,560.1092 33,555.6376
Worst 34,544.3758 33,593.2948 33,590.3439 33,584.2249 33,555.6376
Mean 33,742.6848 33,571.0438 33,564.3913 33,567.3439 33,555.6376
Std. 2.6734E+02 1.2755E+01 9.1192E+00 1.1051E+01 8.6654E−06

Glass

Best 417.3659 496.2926 467.7123 460.6221 409.36
Worst 494.9933 580.9284 584.645 551.1914 438.9231
Mean 454.1306 532.0926 518.6717 500.3498 420.7902
Std. 2.6794E+01 2.3377E+01 3.6323E+01 2.7222E+01 8.5163E+00

For the Iris dataset, the values of PSO and QABC actually lie close to IQABC-K on the Best values.
However, Fig. 3 reveals that IQABC-K converges more quickly.

For the cancer dataset, Table 3 indicates that IQABC-K achieves strong performance across Best, Worst,
and Mean metrics, although the Best result of QABC is nearly comparable. For the standard value, IQABC-K
exceeds all competing algorithms by no less than six orders of magnitude. The above shows that IQABC-K
has good stability.

For the Wine dataset, the Best values of PSO and QABC are not significantly different from IQABC-K,
but IQABC-K is apparently better than PSO and QABC in terms of Mean values. It can be mentioned that
ABC and PSO achieve the same order of magnitude as IQABC-K with regard to Std.
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Figure 3: The convergence curves for algorithms across 6 datasets. (a) Iris. (b) Cancer. (c) Seeds. (d) Wine. (e) Survival.
(f) Glass

For the Survival dataset, the Best values of ABC, PSO, and QABC are close to IQABC-K. Notably,
the Worst value obtained by IQABC-K surpasses the Best values achieved by the comparison algorithms.
IQABC-K surpasses the other algorithms by no less than six orders of magnitude in terms of standard-
ized values.

For the Glass dataset, the Best performance achieved by IQABC-K is almost on par with K-means.
Still, the gap between the other three algorithms is significant, which indicates that IQABC-K has certain
optimization-seeking abilities. Still, its Std value is only one order of magnitude higher than that of the
other algorithms.

4.2.2 Convergence Analysis of Algorithms
Fig. 3 displays the convergence curves for all algorithms on six datasets, based on the optimal fitness val-

ues recorded from ten runs of 100 iterations. Notably, as indicated in Fig. 3a, IQABC-K attains near-optimal
fitness within 17 generations, demonstrating a significantly faster convergence rate than the alternative three
algorithms. The IQABC-K convergence curve for the Cancer dataset is offered in Fig. 3b. In larger-scale
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datasets, the ABC algorithm has lower SSE values and converges faster than the IQABC-K algorithm in the
initial 6 generations. This indicates that the classical algorithm outperforms IQABC-K in the early iterations
of the large-scale dataset, which may be due to the computationally demanding nature of the quantum-
inspired algorithm on the large-scale dataset. In the later stages, IQABC-K ultimately converges faster than
all other algorithms, and the difference between the SSE values of IQABC-K and those of QABC and PSO is
quite significant at 18 generations. For the Seeds dataset, as shown in Fig. 3c, the convergence of IQABC-K is
achieved faster compared to other algorithms and almost reaches the optimal value in the 18th generation.
For the remaining three datasets, depicted in Fig. 3d–f, IQABC-K also shows advantages with regard to fast
convergence and high accuracy.

Next, the convergence properties of the algorithm will be theoretically analyzed in terms of both the
definition of pointwise convergence and the asymptotic convergence rate. Table 4 displays the SSE values
from generation 1 to generation 30 for the dataset, which was chosen as Cancer. They are not displayed again
since the SSE values from generations 31 through 100 are 25,872.3198.

Table 4: SSE values for generations 1 through 30 of the IQABC-K algorithm on the Cancer dataset

Generation SSE Generation SSE Generation SSE
1 62,348.5967 11 25,872.3198 21 19,323.1738
2 42,920.5107 12 25,872.3198 22 19,323.1738
3 36,494.4575 13 25,872.3198 23 19,323.1738
4 33,161.2855 14 25,872.3198 24 19,323.1738
5 33,161.2855 15 25,872.3198 25 19,323.1738
6 33,161.2855 16 25,872.3198 26 19,323.1738
7 32,198.7923 17 19,464.0232 27 19,323.1738
8 31,086.7052 18 19,344.4451 28 19,323.1738
9 29,953.1182 19 19,323.7503 29 19,323.1738
10 29,953.1182 20 19,323.1738 30 19,323.1738

• Pointwise convergence

Verify that the output sequence {xt} (sequence of SSE values) of the proposed algorithm converges to
a limit value x∗.

l im
t→∞

xt = x∗ (42)

The SSE for each generation t denotes the value of the objective function of the proposed algorithm in
generation t. It needs to be demonstrated that the sequence {xt} converges to some fixed value x∗ as t →∞.
The steps are as follows:

(1) Data observations and define the convergence point. The SSE remains constant at 19,323.1738 from
generation 21 to 100. Thus, it may be guessed that the limit value for point convergence is x∗ = 19,323.1738.

(2) Mathematical formulation of pointwise convergence. Prove that ∀ε > 0, ∃N ∈ N,such that when
t ≥ N , ∥xt − x∗∥ < ε. In other words, when the number of iterations t is sufficiently large, the error between
the objective function value and the limit value x∗ for all subsequent xt is less than any given positive number.

(3) For any given ε > 0, N = 21; when t ≥ 20, as seen in Table 4, xt = 19,323.1738, at this moment there is:
∥xt − x∗∥ = 0 < ε. Thus, for any ε > 0, it is always possible to find a positive integer N, such that ∥xt − x∗∥ < ε
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is satisfied for t > N. By definition, the sequence of objective function values {xt} converges to a fixed value
x∗ = 19, 323.1738 for t →∞.

• Asymptotic convergence rate

The asymptotic convergence rate describes the rate at which the error sequence {et} of an iterative
algorithm converges to 0 and quantifies the convergence performance of the algorithm by analyzing the
shrinkage of the error ek over the course of the iterations. The error ek is defined as:

ek = ∥xt − x∗∥ (43)

where, xt denoted the solution at the tth iteration, and x* represented the limit or objective solution value.
Asymptotic convergence rates can be categorized into linear, superlinear, and sublinear convergence as

shown in Eqs. (44)–(46), respectively.

et+1 = W ⋅ et , W ∈ (0, 1) (44)

l imt→∞
et+1

et
= 0 (45)

0 < l imt→∞
et+1

et
< 1 (46)

According to the definition of asymptotic convergence rate, it is necessary to analyze the rate at which
xt converges to the limit value x∗. The specific steps are as follows:

(1) Calculate the error ek for the first 20 generations according to Eq. (43), followed by the error ratio γt
using Eq. (47). The results are shown in Table 5.

γt =
et+1

et
(47)

Table 5: Error to error ratio for SSE values from generation 1 to 20 on the Cancer dataset

Generation et γt Generation et γt

1 43,025.4229 0.5485 11 6549.146 1
2 23,597.3369 0.7275 12 6549.146 1
3 17,171.2837 0.8058 13 6549.146 1
4 13,838.1117 1 14 6549.146 1
5 13,838.1117 1 15 6549.146 1
6 13,838.1117 0.9304 16 6549.146 0.0215
7 12,875.6185 0.9136 17 140.8494 0.151
8 11,763.5314 0.9036 18 21.2713 0.027
9 10,629.9444 1 19 0.5765 0
10 10,629.9444 0.6161 20 0 0

(2) Determining convergence rate. There is linear convergence if the error sequence satisfies Eq. (44),
meaning that the error diminishes by a fixed ratio. The existence of a stable W can be inspected by calculating
the ratio γt . According to the computations, initially γt is small (about 0.55), but it eventually goes to 1 as t
rises. This implies that the rate of convergence may be sublinear, rather than linear. If γt satisfies Eq. (45), the
convergence is superlinear. The first fifteen generations of data show that γt is not superlinearly convergent,
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since it progressively converges to 1 rather than to 0. If γt satisfies Eq. (46), the convergence is sublinear.
γt in this problem progressively rises from 0.55 to 1. The change in SSE subsequently steadily slows down
or even stagnates (for example, starting with generation 4). Consequently, it can be verified that the initial
γt meets the sublinear convergence property, while after the 20th generation, ek converges completely to 0,
satisfying superlinear convergence properties. This indicates that the sequence converges to a fixed value in
its final stage.

Therefore, the convergence of the sequence of SSE values {xt} can be characterized as a superlinear
convergence to a fixed point x∗ = 19,323.1738 from the perspective of asymptotic convergence rate. The
superlinear convergence also indicates the faster convergence rate of the IQABC-K algorithm in large-scale,
high-dimensional data.

4.2.3 Comparison Clustering Accuracy of Algorithms
Clustering Accuracy (AC) serves as a metric for evaluating the alignment between obtained labels and

the dataset’s authentic labels. Here, AC is utilized to determine the efficacy of IQABC-K, considering both the
differences from true labels and the performance relative to other algorithms. The equation for calculating
AC as defined follows:

AC = ∑n
i=1 δ (si , map (ri))

n
(48)

where, si and ri denote the ground-truth and predicted labels of the data point xi, n indicates the total sample
size, and the map defines the optimal relabeling to support accurate statistical evaluation.

The Kuhn-Munkres or Hungarian algorithm [36] solves the label allocation issue in polynomial time
and achieves general optimal reassignment. The indicator function is represented by δ, which is specified
in Eq. (49).

δ (x , y) = { 1, x = y
0, otherwise (49)

The AC values for all six datasets are summarized in Table 6. The IQABC-K algorithm consistently
achieves the highest AC, indicating its superior clustering accuracy. In contrast, the Max, Min, and Mean
results of the remaining four algorithms show variability across different datasets.

Table 6: AC performance of different algorithms evaluated on six datasets

Datasets Indicators K-means ABC PSO QABC IQABC-K

Iris
Max 0.9200 0.9200 0.9467 0.9400 0.9600
Min 0.5800 0.7667 0.7600 0.8733 0.9267

Mean 0.8540 0.8687 0.8873 0.9080 0.9420

Cancer
Max 0.9488 0.9488 0.9444 0.9605 0.9605
Min 0.9239 0.8214 0.8302 0.9224 0.9605

Mean 0.9375 0.9242 0.9202 0.9495 0.9605

Seeds
Max 0.8905 0.8905 0.8952 0.8952 0.8952
Min 0.8667 0.8524 0.8381 0.8667 0.8905

Mean 0.8815 0.8754 0.8838 0.8781 0.8943

(Continued)
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Table 6 (continued)

Datasets Indicators K-means ABC PSO QABC IQABC-K

Wine
Max 0.8539 0.8708 0.8820 0.8820 0.8876
Min 0.6573 0.7303 0.7865 0.7191 0.8596

Mean 0.7332 0.8124 0.8354 0.7955 0.8809

Survival
Max 0.7778 0.8105 0.8105 0.8105 0.8137
Min 0.7190 0.8007 0.8039 0.8072 0.8137

Mean 0.7709 0.8076 0.8098 0.8095 0.8137

Glass
Max 0.7243 0.5514 0.6542 0.6776 0.7617
Min 0.5888 0.5140 0.5140 0.5280 0.7103

Mean 0.6706 0.5334 0.5407 0.5808 0.7407

For the Iris dataset, the Max AC value of IQABC-K is 0.96, which is 4% higher than K-means. Despite
both QABC and IQABC-K achieving a Max AC value of 0.9605 for the Cancer dataset, IQABC-K fares
superior to QABC in terms of Mean and Min values, which indicates more stability in the clustering results.
For the Seeds dataset, IQABC-K has the same Max AC as PSO and QABC, ABC has the worst Mean AC
value, while PSO gets the lowest Min AC value. For the Wine dataset, IQABC-K outperforms the other
four algorithms across the spectrum of Max, Min, and Mean values, which implies greater stability and
works better on high-dimensional datasets, with less sensitivity to sample dimensions. The Max AC value
of IQABC-K on the Glass dataset is almost 4% in excess of K-means. Beyond that, the Min and Mean AC
values exceed those obtained by the other algorithms.

4.2.4 Statistical Tests
This section conducts a statistical experiment to perform hypothesis testing on the SSE metrics of five

algorithms across six datasets. Specifically, the ANOVA test and the Wilcoxon rank-sum test are employed
to statistically evaluate whether the IQABC-K demonstrates superior adaptability.

First, perform an ANOVA test, which is applied to assess the statistical variance between the presented
algorithm and the different algorithms that are utilized for comparison. Hypothesis testing consists of
two hypotheses: the null hypothesis (H0: μIQ ABC = μK−means = μABC = μPSO = μIABC) and the alternative
hypothesis (H1: Means are not all equal). The Survival dataset is chosen here, and Table 7 displays the
outcomes of its ANOVA test. In the table, SS denotes the sum of squares, DF expresses the degrees of freedom,
and MS indicates the mean square. While the test outcomes support the alternative hypothesis H1, further
testing is necessary to ascertain which algorithm performs best.

Table 7: ANOVA test results for assessing the performance of IQABC-K relative to other algorithms

SS DF MS F (DFn, DFd) p-value
Between
groups 254,995.891 4 63,748.973 3.991 0.007

Within
groups 718,790.010 45 15,973.111 – –

Total 973,785.901 49 – – –
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Further, the Wilcoxon rank-sum test is a non-parametric statistical test introduced in this paper with
the aim of precisely validating the experimental results and verifying the statistical significance of how it
impacts IQABC-K. Hypothesis testing is composed of two hypotheses: the null hypothesis (H0: μIQ ABC =
μK−means , μIQ ABC = μABC , μIQ ABC = μPSO , μIQ ABC = μQ ABC) and the alternative hypothesis (H1: Means are
not all equal). The other four algorithms are contrasted with IQABC-K using the Wilcoxon rank-sum test,
and the resulting p-values are listed in Table 8. Values below 0.05 indicate the null hypothesis is invalid,
highlighting significant differences among the algorithms. That the p-values in Table 8 are all below 0.05
demonstrates the statistical significance and the superiority of the IQABC-K algorithm. Therefore, the
alternative hypothesis H1 is accepted. Cohen’s d values, listed in Table 8, quantify the effect size: values
under 0.2 denote a negligible difference, values in [0.2, 0.5) a small effect, [0.5, 0.8) a medium effect, and
values exceeding 0.8 represent a large effect. For the six sample datasets, the magnitude of differences is large
for Wine, Survival, and Glass. On the Iris and Seeds datasets, the magnitude of differences is large for all
algorithms except PSO, for which the magnitude of differences is moderate.

Table 8: Wilcoxon rank-sum test results comparing the p-values of IQABC-K with those of different algorithms

Datasets Norm K-means ABC PSO QABC

Iris p 0.005 0.005 0.011 0.013
Cohen’s d 0.806 0.847 0.751 1.486

Cancer p 0.005 0.005 0.005 0.005
Cohen’s d 3.149 0.563 0.606 1.371

Seeds p 0.005 0.005 0.005 0.007
Cohen’s d 2.33 1.342 0.733 1.733

Wine p 0.005 0.005 0.005 0.005
Cohen’s d 1.651 2.188 2.08 1.929

Survival p 0.005 0.005 0.005 0.005
Cohen’s d 0.939 1.419 1.358 1.421

Glass p 0.005 0.005 0.005 0.005
Cohen’s d 1.591 6.002 3.520 3.742

4.2.5 Visual Evaluation of the IQABC-K Clustering
After the aforementioned experiments, the IQABC-K algorithm is characterized by fast convergence,

strong stability, and high accuracy, as demonstrated in Fig. 3, Tables 3 and 6. To offer a more vivid situation
of the algorithm’s clustering capability, the clustering process will be shown graphically in this section.

The clustering process for IQABC-K will be visualized using the Iris dataset, which comprises four
attributes and three distinct clusters. Here, three of the attributes are taken, and the x, y, and z axes are used
to correspond to the three attributes, respectively. Data points in different clusters are labeled in green, dark
blue, and yellow. Fig. 4 displays the IQABC-K clustering on the Iris dataset for iterations of 0, 5, 10, and 20. The
original distribution from the Iris dataset is shown in Fig. 4a. When it comes to the fifth iteration, referring
to Fig. 4b, there is a situation where the data points in one class are misallocated to another class during
the classification process, such as the part of yellow being misclassified. Additionally, it has confusion in
categorizing data between dark blue and green data. As the iterations carry on, the clustering outcomes after
10 iterations are displayed in Fig. 4c. While the dark blue is successfully classified, some data is still wrongly
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assigned for the yellow and green colors. Fig. 4d presents the clustering outcomes at the 20th iteration,
clearly showing that the three categories are correctly classified. The clustering process of IQABC-K on the
Iris dataset is depicted vividly by the four graphs from Fig. 4. The efficacy and fast classification speed are
demonstrated by the 20th generation’s accurate categorizing effectiveness.

Figure 4: The clustering process of IQABC-K on the Iris dataset at iterations 0, 5, 10, and 20. (a) 0 iteration.
(b) 5 iteration. (c) 10 iteration. (d) 20 iteration

Next, the outcomes of IQABC-K compared with other algorithms on the Iris dataset, Cancer dataset,
and Seeds dataset are provided. The QABC clustering results with the 10th and 20th iterations on the Iris
dataset are displayed in Fig. 5. Fig. 5a shows that there is data confusion in the category clusters and that not
any one cluster is precisely classified. Although one category is successfully delineated in Fig. 5b, a significant
degree of data confusion remains between the dark blue and green data, with significantly more green data
than dark blue data. It is obvious from comparing Fig. 4c,d that IQABC-K resolves the clustering problem
more accurately and efficiently than QABC.

Figure 5: 10- and 20-iteration clustering outcomes for QABC on the Iris dataset. (a) Iteration = 10. (b) Iteration = 20
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The data in Table 3 articulates that QABC is only surpassed by IQABC-K with regard to Best and
Mean values on the Cancer dataset. Table 6 also illustrates that when it comes to the Max and Mean
values, the QABC algorithm outperforms all other algorithms—with the exception of IQABC-K. To further
emphasize the disparities in performance between IQABC-K and QABC, the clustering outcomes from the
20th iteration are chosen as a contrast. Fig. 6a,b displays the classification outcomes of QABC and IQABC-K
for the Cancer dataset from attribute 1 to attribute 3 on the 20th generation. It displays that the yellow and
dark blue data appear to be confusing in Fig. 6a. Comparing Fig. 6b to a, considerable advances have been
made in the categorization of yellow and dark blue, suggesting that IQABC-K performs better.

Figure 6: Clustering outcomes of IQABC-K and different algorithms on distinct datasets at iteration 20. (a) QABC for
Cancer dataset. (b) IQABC-K for Cancer dataset. (c) PSO for Seeds dataset. (d) IQABC-K for Seeds dataset

Table 6 illustrates that on the Seeds dataset, PSO is following only IQABC-K with respect to Max and
Mean values. Therefore, PSO has been chosen for further performance comparison with IQABC-K. For the
first two attribute values on the Seeds dataset, the 20th generation clustering results of PSO and IQABC-K are
visible in Fig. 6c,d, respectively. Fig. 6c shows that data confusion appears evident and that dark blue, yellow,
and green in PSO are mistakenly classified. From Fig. 6d, it is observed that dark blue and yellow have been
classified correctly. Even though some data confusion still exists for green and yellow, IQABC-K delivers
more dominant classification results, as evidenced by its better classification effect in contrast to PSO.

4.3 Evaluation of the Intrusion Detection System
In this experimental section, the effectiveness of the novel attack detection method formed by combin-

ing the proposed SC-QGA and IQABC-K algorithms in the context of intrusion detection. Here, this hybrid
approach is referred to as SC-QGA-IQABC-K for brevity.

4.3.1 Experimental Data Selection and Processing
This paper uses three datasets to validate the SC-QGA-IQABC-K algorithm, briefly described below.
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The KDD Cup 1999 (KDD99) dataset, derived from the 1999 KDD Cup competition, serves as a widely
adopted benchmark for network intrusion detection. It is divided into training and testing subsets, with each
record representing a network connection characterized by 41 features and labeled as normal or attack. The
training dataset includes one normal recognition category and 22 attack categories. The categories of attacks
are presented in Table 9.

Table 9: Categories of attacks on the KDD Cup99 dataset

Category Classification type
Normal Normal

DOS Neptune, Back, smurf, land,teardrop, pod
Prob Satan, Ipsweep, Nmap, Portsweep
U2R Buffer-Overflow, Loadmodule, Rootkit, Perl

R2L Guess-passwd, Ftp-write, Imap, Phf, Multihop,
Warezmaster, Warezclient, Spy

The NSL_KDD dataset is a revised version of the KDD99 dataset, similarly divided into training and
test sets. Each record comprises 41 attributes, with the first 40 describing the network traffic characteristics
and the final attribute specifying whether the instance corresponds to normal or attack behavior. The dataset
contains four distinct attack types: DoS, Prob, U2R, and R2L. Detailed classifications are provided in Table 10.

Table 10: Categories of attacks on the NSL_KDD dataset

Category Classification type
Normal Normal

DOS Apache2, Back, Land, Neptune, Pod, Processtable,
Smurf, Teardrop, Udpstorm, Worm

Prob Ipsweep, Mscan, Nmap, Portsweep, Satan, Saint

U2R Buffer_Overflow, Loadmodule, Perl, Ps, Rootkit,
Sqlattack, Xterm

R2L
Ftp_write, Guess_passwd, Httptunnel, Imap, Multihop,

Named, Phf, Sendmail, Snmpgetattack, Spy,
Snmpguess, Warezclient, Warezmaster, Xlock, Xsnoop

The UNSW_NB15 dataset, established in 2015, is partitioned into training and testing subsets. It
comprises 49 attributes and one label indicating whether a given record belongs to the normal or attack
category. The attack category is further divided into nine specific types, as detailed in Table 11.

Table 11: Categories of attacks on the UNSW_NB15 dataset

Category Normal Fuzzers Analysis Backdoors DoS Exploits Generic Reconnaissance Shellcode Worms

Number 56,000 2000 1746 12,264 33,393 18,184 40,000 10,491 1133 130
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Prior to utilizing the datasets, preprocessing is typically required to guarantee data quality and suit-
ability for subsequent evaluation. The following outlines the key preprocessing steps commonly applied to
the datasets.

1. Numerical transformation processing. As the network datasets include a subset of features in symbolic
format, to ensure that intrusion detection models can process the data, all features are converted into numeric
values, as these models require inputs in vector form.

2. Numerical standardization. Let Mean j and MAD j denote the mean value and mean absolute
deviation of attribute j, respectively, and x′i j is the normalized value of xi j, calculated using the following
equations.

x
′

i j =
xi j − Mean j

MAD j
(50)

Mean j =

n
∑
i=1

xi j

n
(51)

MAD j =

m
∑
i=1

∣xi j − Mean j∣

n
(52)

3. Numerical Normalization. Numerical normalization scales each value in the dataset to the [0, 1]
interval. The normalized value x′6i j is computed as follows:

x
′′

i j =
x
′

i j − xmin

xmax − xmin
(53)

where, xmin = min{x′i j}, xmax = max{x′i j}.
4. Feature selection. Each record in the dataset comprises multiple features; however, not all are

essential for constructing an effective intrusion detection system. To maximize efficiency and minimize the
unnecessary use of computational resources, it is crucial to select the most relevant features. The quantum
genetic algorithm combined with similarity coefficients used in this paper to achieve feature selection is
described in Section 3.1.

4.3.2 Performance of SC-QGA-IQABC-K
This study utilizes accuracy (AC), false positive rate (FPR), false negative rate (FNR), and F-measure

(F1) as the core evaluation metrics to assess the performance of the SC-QGA-IQABC-K and comparative
algorithms. The mathematical definitions of these metrics are defined as shown in the equations below.

AC = TP + TN
TP + TN + FN + FP

(54)

FPR = FP
FP + TN

(55)

FNR = FN
FN + TP

(56)

F1 =
2 ∗ precision ∗ recal l

precision + recal l
(57)
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where, precision = TP
TP+FP , recal l = TP

TP+F N , TP: the model correctly predicts the number of samples to be
attacked, TN: the model correctly predicts a normal sample size, FP: the model incorrectly predicted the
number of samples to be attacked, FN: the model incorrectly predicted a normal sample size.

Table 12 presents the performance of K-means, ABC, PSO, QABC, and SC-QGA-IQABC-K in intrusion
detection experiments. On the KDD CUP99 dataset, although the false positive rate of the K-means is lower
than that of the ABC, PSO, and QABC algorithms, it remains 0.0437 higher than the FPR of 0.0055 achieved
by the proposed SC-QGA-IQABC-K algorithm. Regarding the false negative rate, the SC-QGA-IQABC-K
algorithm exhibits less than a 1% difference compared to QABC, but it attains the highest F-measure of 0.9912,
significantly outperforming the other four algorithms. For the NSL_KDD dataset, the SC-QGA-IQABC-K
algorithm outperformed QABC by nearly a factor of 10 in false positive rate, while the K-means algorithm
showed little difference from SC-QGA-IQABC-K in false negative rate. For the UNSW_NB15 dataset, the
SC-QGA-IQABC-K algorithm significantly outperformed the other four algorithms in both false positive
rate and false negative rate. Its F-measure reached 0.9867, exceeding the K-means algorithm by over 2%.

Table 12: Experimental results of different algorithms in intrusion detection

Datasets Indicators K-means ABC PSO QABC SC-QGA-
IQABC-K

KDD CUP99
FPR 0.0492 0.1425 0.1636 0.0620 0.0055
FNR 0.0745 0.1991 0.2543 0.0100 0.0039

F1 0.9475 0.9542 0.8995 0.8615 0.9912

NSL_KDD
FPR 0.0613 0.3938 0.4965 0.0427 0.0042
FNR 0.0094 0.3421 0.4437 0.2371 0.0034

F1 0.9686 0.9314 0.9208 0.9346 0.9925

UNSW_NB15
FPR 0.0198 0.1665 0.5216 0.0735 0.0096
FNR 0.0125 0.2263 0.4624 0.0482 0.0049

F1 0.9647 0.8907 0.9053 0.9539 0.9867

Tables 13 and 14 present detailed accuracy comparison results for the KDD CUP99 and NLS_KDD
datasets, classified by attack category (DoS, Probe, R2L, U2R). It can be observed that the SC-QGA-IQABC-K
algorithm achieves superior accuracy (exceeding 97% across all categories) compared to all baseline methods,
with particularly notable advantages in detecting DoS and Probe attacks, where it achieves over 98% accuracy.

Table 13: Attack category accuracy results on the KDD Cup99 Dataset

Algorithm Dos Probe R2L U2R
K-means 0.9232 0.9286 0.9227 0.9338

ABC 0.8062 0.8175 0.8261 0.8254
PSO 0.8055 0.8124 0.8296 0.8230

QABC 0.9241 0.9304 0.9207 0.9364
SC-QGA-
IQABC-K 0.9802 0.9836 0.9712 0.9707
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Table 14: Attack category accuracy results on the NSL_KDD Dataset

Algorithm Dos Probe R2L U2R
K-means 0.9409 0.9434 0.9467 0.9511

ABC 0.8027 0.8174 0.8285 0.8138
PSO 0.8006 0.8136 0.8242 0.8165

QABC 0.9204 0.9236 0.9149 0.9294
SC-QGA-
IQABC-K 0.9817 0.9802 0.9792 0.9764

Figs. 7–9 illustrate the accuracy comparisons between the SC-QGA-IQABC-K algorithm and other
methods over 50 iterations on the NLS_KDD, UNSW_NB15, and KDD CUP99 datasets. It can be observed
that the SC-QGA-IQABC-K algorithm exhibits faster growth in the early stages. To facilitate understanding
of the comparative results, Table 15 lists the minimum, maximum, and average values for each method
across the three datasets. For the KDD CUP99 dataset, K-means yields the lowest minimum value of 0.7558.
However, its maximum and average accuracies are superior to those of the ABC and PSO algorithms and
differ from QABC by approximately 1%. In contrast, the SC-QGA-IQABC-K algorithm achieves the best
performance across all three areas, including a maximum accuracy of 0.9857. On the NSL_KDD dataset,
PSO achieved a minimum accuracy of 0.7365, while SC-QGA-IQABC-K attained a maximum accuracy of
0.9881, outperforming other algorithms by at least 9% in average accuracy. For the UNSW_NB15 dataset, the
K-means algorithm achieved a maximum accuracy of 0.9324, second only to the 0.9832 obtained by the SC-
QGA-IQABC-K algorithm. However, it was significantly lower than SC-QGA-IQABC-K in terms of both
minimum and average values. Overall, the experimental results demonstrate that the SC-QGA-IQABC-K is
a suitable and effective method for intrusion detection tasks.

Figure 7: Comparison of Accuracy between SC-QGA-IQABC-K algorithm and different algorithms on KDD CUP99
dataset
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Figure 8: Comparison of Accuracy between SC-QGA-IQABC-K algorithm and different algorithms on NSL_KDD
dataset

Figure 9: Comparison of Accuracy between SC-QGA-IQABC-K algorithm and different algorithms on UNSW_NB15
dataset

4.3.3 Complexity Analysis
The overall computational complexity of the proposed framework can be analyzed by considering its two

major components: the SC-QGA and the IQABC-K. For SC-QGA, each generation evaluates the fitness of N
quantum chromosomes across D feature dimensions, leading to a per-iteration cost of O (N × D). Assuming
T1 generations, the total complexity of SC-QGA is O (T1 × N × D). For IQABC-K, each iteration updates N
food sources and computes distances for K clusters over D features, resulting in O (N × K × D) per iteration.
With T2 iterations, the total complexity becomes O (T2 × N × K × D). Therefore, the overall complexity of
the integrated SC-QGA–IQABC-K framework is approximately O (T1 × N × D + T2 × N × K × D).
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Table 15: The accuracy values of different algorithms

Datasets Indicators K-
means ABC PSO QABC SC-QGA-

IQABC-K

KDD CUP99
Min 0.7558 0.7671 0.7624 0.8009 0.8976
Max 0.9343 0.8112 0.8064 0.9380 0.9857

Mean 0.8102 0.7863 0.7799 0.8219 0.9398

NSL_KDD
Min 0.8021 0.7617 0.7365 0.8087 0.9094
Max 0.9502 0.8099 0.8046 0.9313 0.9881

Mean 0.8409 0.7904 0.7812 0.8505 0.9495

UNSW_NB15
Min 0.7786 0.7568 0.7406 0.7849 0.9016
Max 0.9324 0.7882 0.7769 0.9203 0.9832

Mean 0.8263 0.7712 0.7589 0.8278 0.9475

Compared with classical K-means (O (Tk−means × K × D)), ABC, PSO, and QABC
(O (T × N × K × D)), the proposed algorithm has the same asymptotic order, as the quantum-inspired
mechanism and adaptive strategies introduce only linear overhead O (N × D). However, by reducing
dimensionality before clustering (D′ ≪ D) and enhancing convergence through adaptive exploration, the
proposed method achieves higher efficiency in practice, offering faster convergence and improved clustering
quality without significantly increasing computational cost.

5 Conclusions
This paper proposes a quantum-inspired clustering method designed for clustering analysis and

intrusion detection. The proposed method comprises two core components: the SC-QGA algorithm for
feature selection and the IQABC-K algorithm for attack detection and clustering. The SC-QGA algorithm
leverages similarity coefficient theory to construct a class separability approximation matrix, which is
seamlessly integrated into the quantum genetic algorithm to guide feature selection. Optimization is
performed through a specially designed adaptive quantum rotation gate, ensuring efficient convergence. The
IQABC-K algorithm utilizes quantum encoding to enhance population diversity and improve global
exploration. Quantum rotation gates and dynamic adaptive angle updating strategies based on fitness and
iteration guide the search toward optimal solutions. Two movement exploitation strategies based on global
optimization and symmetric functions strengthen local exploitation, while dynamic adjustments in the scout
bee phase further refine solution quality. A linear population reduction strategy improves population quality
and reduces computational cost. To evaluate performance, IQABC-K is compared with other nature-inspired
algorithms. Results show that IQABC-K achieves faster convergence, higher accuracy, and greater stability,
outperforming other algorithms with a standard deviation at least one order lower and achieving a nearly
35% higher minimum AC value on the Iris dataset. Hypothesis-testing statistical analysis also validates the
notable advantage of the presented algorithm. Finally, the SC-QGA and IQABC-K algorithms are integrated
to form a new attack detection approach, which is applied to experiments using the KDD Cup99, NSL_KDD,
and UNSW_NB15 datasets. The experimental results demonstrate that the proposed algorithm outperforms
the K-means algorithm by around 3% in both the F1 indicator and maximum detection accuracy, indicating
its effectiveness in accurately distinguishing between intrusion and normal data. In summary, the proposed
quantum-inspired clustering algorithm performs well in clustering analysis and intrusion detection systems.
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It should be noted that the proposed algorithm is a quantum-inspired algorithm rather than a genuine
quantum algorithm executed on quantum hardware. In this approach, qubits, superposition, and rotation
gates are mathematically simulated on classical computers to improve search diversity and convergence,
without involving physical qubit manipulation or quantum entanglement. Real quantum algorithms, in
contrast, operate on physical qubits through unitary transformations that exploit quantum coherence and
interference. Notably, the qubit representations and rotation operators introduced in this work can be directly
translated into parameterized quantum circuits on platforms such as Qiskit or PennyLane, establishing a
viable pathway toward hybrid quantum–classical implementations. Furthermore, the feature selection and
representation strategies developed here provide a conceptual foundation for designing efficient quantum
feature maps—specialized quantum circuits that non-linearly embed classical data into high-dimensional
quantum Hilbert spaces. Such embeddings may reveal complex patterns that are difficult to identify using
classical methods. As quantum hardware continues to advance in scale and fidelity, replacing the classical
simulation components with quantum processing units will become increasingly feasible. Thus, this study
not only delivers an effective classical algorithm but also outlines a transition strategy toward quantum-
enhanced intrusion detection systems. Future research will explore this integration to utilize genuine
quantum parallelism on near-term quantum devices.
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