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ABSTRACT: The personalized fine-tuning of large language models (LLMs) on edge devices is severely constrained by
limited computation resources. Although split federated learning alleviates on-device burdens, its effectiveness dimin-
ishes in few-shot reasoning scenarios due to the low data efficiency of conventional supervised fine-tuning, which leads
to excessive communication overhead. To address this, we propose Language-Empowered Split Fine-Tuning (LESFT),
a framework that integrates split architectures with a contrastive-inspired fine-tuning paradigm. LESFT simultaneously
learns from multiple logically equivalent but linguistically diverse reasoning chains, providing richer supervisory signals
and improving data efficiency. This process-oriented training allows more effective reasoning adaptation with fewer
samples. Extensive experiments demonstrate that LESFT consistently outperforms strong baselines such as SplitLoRA
in task accuracy. LESFT consistently outperforms strong baselines on GSM8K, CommonsenseQA, and AQUA_RAT,
with the largest gains observed on Qwen2.5-3B. These results indicate that LESFT can effectively adapt large language
models for reasoning tasks under the computational and communication constraints of edge environments.

KEYWORDS: Large language models; edge computing; efficient fine-tuning; few-shot fine-tuning; split federated
learning

1 Introduction

Recent breakthroughs in large language models (LLMs) are converging with the rapid advancement of
edge computing. This convergence gives rise to a critical challenge: how to achieve personalized deployment
and efficient fine-tuning of models on edge devices. These devices are severely constrained by computational
power, storage, and energy consumption [1-3]. Compared to traditional cloud-based inference, edge-side
applications can significantly reduce communication overhead and service latency caused by remote calls,
while demonstrating unique advantages in user privacy protection and continuously available intelligent ser-
vices [4-6]. Edge large models are especially valuable in complex reasoning scenarios, including autonomous
driving, industrial inspection, and medical diagnosis [7-10]. However, existing models often scale to billions
or even trillions of parameters (e.g., GPT-3 [11], LLaMA [12]), far exceeding the computational and storage
capacities of edge devices. This gap between model scale and available resources makes the effective migration
and adaptation of large model inference capabilities to the edge a long-standing critical challenge for both
academia and industry.
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To address this challenge, researchers have explored multiple technical directions. Among them, Split
Learning and its federated extension, Split Federated Learning (SFL), have been widely recognized as repre-
sentative paradigms for overcoming the bottlenecks of edge deployment [13,14]. More recently, approaches
that combine the idea of model splitting with parameter-efficient fine-tuning (PEFT) have emerged. For
example, SplitLoRA has been proposed to enable lightweight adaptation within split architectures [15].
These methods split the model into front and back segments. The edge device processes the front part,
while the server handles the remaining layers. This design reduces the client-side computation and memory
burden, making split architectures highly suitable for edge intelligence. However, in few-shot and complex
reasoning tasks, the effectiveness of split architectures is limited because they still rely on conventional
supervised fine-tuning (SFT). Prior studies have shown that SFT and instruction tuning often exhibit low data
efficiency in acquiring complex logical induction and reasoning capabilities, typically depending on large-
scale annotations or human feedback data [16-18]. In split or federated settings, such low sample efficiency
implies the need for more training samples and more frequent communication rounds to accomplish fine-
tuning, thereby directly increasing the overall communication cost and undermining the advantages of
split architectures for edge deployment. Consequently, the root cause of this limitation does not lie in the
architecture itself, but rather in its incompatibility with the supervised fine-tuning paradigm under few-shot
reasoning scenarios. Therefore, achieving efficient few-shot fine-tuning in edge environments remains a core
open problem that requires novel methodological advances.

By effectively coordinating efficient split federated architectures with an advanced learning paradigm,
LESFT provides a practical solution for personalized fine-tuning of LLMs on edge devices under dual
constraints of limited resources and scarce data. The proposed framework not only inherits the advantages
of split federated architectures in alleviating computational burdens but also introduces paradigm-level
innovations that significantly enhance overall resource efficiency by improving data utilization in complex
and few-shot reasoning scenarios.

The main contributions of this work can be summarized as follows:

« Problem Identification. We systematically analyze existing SFL frameworks and point out a previously
overlooked limitation: their reliance on standard supervised fine-tuning leads to poor data efficiency in
few-shot reasoning tasks. This limitation inherently increases communication overhead and restricts the
applicability of SFL in resource-constrained edge environments.

« Framework Design. We propose LESFT, a new split federated fine-tuning framework that integrates a
dual-path contrastive learning paradigm with the split architecture. LESFT leverages logically consistent
but linguistically diverse reasoning chains to guide the model toward learning generalizable reason-
ing patterns, rather than memorizing specific linguistic forms, thus significantly improving few-shot
learning effectiveness.

« Comprehensive Empirical Validation. We conduct a thorough empirical study across multiple rea-
soning domains rather than relying solely on mathematical reasoning tasks. LESFT is evaluated on
three representative benchmarks: GSM8K [19] for arithmetic reasoning, CommonsenseQA [20] for
commonsense multiple-choice reasoning, and AQUA_RAT [21] for algebraic word-problem reasoning.
Experiments on multiple LLM scales consistently show that LESFT achieves substantial improvements
over advanced baselines such as SplitLoRA. Notably, on the Qwen2.5-3B model [22], LESFT reaches
76.04% accuracy on GSM8K and yields consistent gains on CommonsenseQA and AQUA-RAT, demon-
strating strong generalization across heterogeneous reasoning tasks in edge deployment scenarios.
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2 Related Work
2.1 Parameter-Efficient Fine-Tuning of Large Language Models

PEFT has emerged as a mainstream paradigm for adapting pre-trained LLMs to new tasks with minimal
cost, preserving their strong generalization capabilities [23,24]. The core idea is to freeze the vast majority of
the LLM’s parameters and update only a small, manageable subset.

Prominent PEFT techniques achieve this in various ways. For instance, Adapter Tuning inserts small,
trainable modules between existing Transformer layers [25,26], while Prefix-Tuning prepends trainable
vectors to the input to steer the model’s attention [27]. Other methods, like BitFit, fine-tune an extremely
small fraction of existing parameters, such as the bias terms alone, yet achieve competitive performance [28].
Among the most widely adopted methods is Low-Rank Adaptation (LoRA) [29], which utilizes a low-rank
approximation for weight updates to ensure high parameter efficiency.

While these methods effectively reduce the number of trainable parameters, they fail to resolve
the critical memory bottleneck during on-device training. This is because backpropagation still requires
loading the entire model and storing intermediate activations, resulting in a memory footprint as high as
70% of full fine-tuning [30,31]. This memory requirement is prohibitive for most edge devices, revealing
a critical gap: parameter efficiency does not equate to training efficiency. This fundamental limitation
motivates architectural-level solutions. Therefore, our proposed LESFT framework leverages model splitting
to overcome the memory barrier that traditional PEFT cannot, enabling efficient learning at the edge.

2.2 Federated and Split Learning for LLMs

To fine-tune LLMs on distributed edge data while preserving privacy, research has centered on two main
approaches: Federated Learning (FL) and Split Learning (SL).

FL is a key paradigm for edge Al [32-34], but applying it to LLMs faces prohibitive communication and
computation costs. A solution is Federated PEFT [35], where clients train and aggregate only lightweight
modules. For example, FedLoRA requires exchanging only the LoRA adapters [36]. While this reduces
communication, it fails to solve the local training bottleneck, as clients must still load the entire LLM. In
contrast, SL directly tackles the local resource issue by partitioning the model. This property makes SL
an attractive option for deploying LLMs on resource-constrained devices [37]. A natural extension is to
combine SL with PEFT in methods like SplitLoRA, which mitigates the local bottleneck while keeping
communication low.

The evolution from FL to SplitLoRA has progressively solved system-level bottlenecks related to com-
munication, memory, and computation. However, these methods share a deeper limitation: their universal
reliance on the conventional SFT paradigm. SFT is notoriously inefficient for complex reasoning tasks,
often requiring extensive training samples and communication rounds for convergence. With system-level
hurdles now largely addressed, this paradigm-level inefficiency emerges as the next critical barrier. Our work,
the LESFT framework, is motivated by the need to overcome this very challenge by introducing a more
data-efficient learning paradigm for LLMs at the edge.

2.3 Token-Level Fine-Tuning

Conventional response-level fine-tuning, or outcome-supervised learning, provides only sparse feed-
back from the final output, creating severe credit assignment challenges in complex reasoning tasks [38]. The
model often fails to identify which reasoning steps are correct, and may even reach the right answer through
flawed reasoning, a weakness reinforced by outcome-level supervision. In contrast, process supervision offers
feedback to intermediate steps, yielding more reliable reasoning capabilities [39].



4 Comput Mater Contin. 2026;87(1):66

Building on this idea, token-level fine-tuning further refines supervision granularity by directly opti-
mizing generated tokens. This enables more precise and stable learning and has been widely applied in SFT.
However, studies show that even in high-quality datasets, many tokens are redundant or detrimental [40],
diluting gradients and hindering performance. To address this, selective token optimization strategies
estimate token contributions or use perplexity-based weighting to mask or down-weight non-informative
tokens, thereby improving the signal-to-noise ratio and robustness [40,41].

Token-level techniques have also been extended to preference alignment. While Direct Preference Opti-
mization (DPO) simplifies training, it ignores token-level variation in preference signals [42,43]. Token-Level
DPO (TDPO) addresses this by modeling alignment as a token-wise Markov Decision Process, improving
credit assignment and better matching the autoregressive nature of LLMs [44]. Further, Reinforced Token
Optimization (RTO) integrates DPO with PPO, using dense token-level rewards from preference data to
enhance policy learning and performance [45]. These advances highlight the effectiveness of token-level
methods in improving accuracy and consistency for complex reasoning tasks.

Complementary to weighting and alignment approaches, Natural Language Fine-Tuning (NLFT) [41]
strengthens reasoning by contrastively training on correct and incorrect reasoning chains. In this work, we
adopt and extend this paradigm for few-shot reasoning in edge environments, simplifying the process to
rely only on correct reasoning chains. This positive-sample strategy allows more efficient modeling of high-
quality reasoning paths under limited data, improving both robustness and adaptability of LLMs.

3 The Proposed LESFT Framework

To address the computational and data constraints of fine-tuning LLMs on edge devices, we propose
the LESFT framework. By integrating model structure splitting with PEFT methods, the framework reduces
the computational burden on the edge side while enhancing training efficiency in few-shot scenarios. This
section will detail the overall architecture, key designs, and training algorithm of LESFT.

3.1 LLM Split Framework

As shown in Fig. 1, LESFT splits a traditional LLM architecture into three parts: an embedding
layer, Transformer blocks, and a language modeling head. During inference, the input text is converted
into a sequence of token IDs by the client-side tokenizer, and the embedding layer maps these IDs to
continuous representations. The intermediate Transformer layers are deployed on the server to perform
feature transformation, and finally, the language modeling head outputs a sequence of tokens in an
auto-regressive manner.

To alleviate the memory bottleneck on edge devices, LESFT deploys the majority of its parameters in
the cloud. The client retains only the embedding layer and some lightweight components. Specifically, after
the input text is tokenized and embedded locally, it is sent to the server as a high-dimensional tensor. The
server then performs the forward pass to output tokens. Since the server does not have a tokenizer, it cannot
access the raw data. This mechanism structurally prevents raw data from leaving the local device, thereby
ensuring user privacy while achieving computational offloading.

To further reduce the training overhead on the client, our framework introduces the LoRA technique.
We partition the overall parameters into pre-trained base parameters, 0, and lightweight, trainable adapta-
tion parameters, Af. LoRA assumes that the parameter update AW during fine-tuning has a low intrinsic
rank and can be decomposed into the product of two low-rank matrices, U and V. Therefore, only these low-
rank parameters need to be updated during training, significantly reducing the memory and computational
resources required by the client.
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Figure 1: Schematic of the LLM split architecture

3.2 Problem Formulation

In this section, we define the problem and introduce the LESFT framework, which will be detailed

in Section 3.3. The aim is to describe the system model of LESFT, laying a theoretical foundation for
the subsequent sections. As illustrated in Fig. 2, we construct a typical scenario where edge users with
limited computational resources fine-tune a model for complex reasoning tasks. This system comprises three
core components:

Client Server: In this framework, a client is abstracted as an edge node with independent computing
capabilities. We denote the set of all participating clients as N = {1,2, ..., N}, where N is the total num-
ber of clients. For any client i € V, its local private dataset is denoted as D; = {(x; k, ¥i x> Xi k> j/,-,k)}‘kp:’i',
where |D;] is the total number of samples. In this context, x; ; denotes the user’s prompt input, while
¥i.x represents the corresponding desired output from the model, which contains the Chain-of-Thought
(CoT) reasoning [46]. X,  is a reference input formed by combining the user’s prompt with the ground-
truth answer; its purpose is to provide a constraining signal in contrastive learning, thereby helping
the model generate the target reasoning y; . Meanwhile, 7, ; is identical to y; . We assume that each
edge node can independently perform local model forward propagation and backward propagation
operations. The local model weights on each client are denoted as W, within which only a set of trainable
LoRA adapter parameters is designated as the trainable part. This parameter set is denoted as ©; =
{(Ui(") , Vi(") )} M , where M, is the number of trainable LoRA adapters on the client side, and Ui(") and

Vi(") are the low-rank decomposition matrices of the n-th LoRA adapter on the edge device i.

Central Server: The central server is typically a more powerful computing node responsible for
managing and updating the parameters of the server-side sub-model. We represent the base model
weights on the server as W;, and its trainable part consists of a set of LoORA adapters, denoted as
@ = {(UM, V(MM Here, M, is the number of adapters on the server side, and U("™) and V(")
correspond to the low-rank decomposition matrices of the m-th adapter. By adjusting @, the central
server can efficiently adapt to different tasks without altering the underlying pre-trained model W;.
Aggregation Server: During the training process, an aggregation entity is required to coordinate
updates from all clients. This aggregation server periodically collects and aggregates the set of adapter
parameters ©; uploaded by each client, enabling the sharing and transfer of global knowledge while
preserving data privacy. For security considerations, the aggregation server and the central server are
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often maintained by different organizations to prevent the leakage of raw user data resulting from
potential malicious attacks.
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Figure 2: The training workflow of LESFT

We represent the overall model parameters as W = [ W,; W, ], which consists of the server-side param-
eters W, and the client-side parameters W,.. The training objective is to learn the optimal client adapter
parameters {®; } ¥ and server-side adapter parameters ® by minimizing the weighted average of local losses
across all clients. This optimization process can be formulated as:

D,
o, Z D) (10,9 ®

where D = N, D; is the union of all local datasets. The term £;(-) represents the loss for client i on its local
data D;, computed by the model configured with the base parameters W and the adapters ®; and ®. The
weighted aggregation provides a unified global objective that integrates updates from multiple clients.

3.3 Training Workflow of LESFT

This section details the overall workflow of the proposed LESFT framework. LESFT’s core innovation,
which sets it apart from existing methods, is a fine-grained, token-level fine-tuning mechanism. We integrate
this mechanism into a hierarchical split collaborative fine-tuning architecture. This approach not only
enhances the model’s expressive power but also effectively reduces resource overhead. Simultaneously,
LESFT incorporates the PEFT technique, LoRA, to further enhance the adaptability and efficiency of the
training process.
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During the training initialization phase, the central server first processes the base weights of the large
model to be fine-tuned and partitions them into a server-side sub-model and a client-side sub-model to
accommodate the distributed computational resources. Subsequently, LESFT performs distributed fine-
tuning over I consecutive local training rounds. In each round, the clients update only their local adapter
parameters, while the server updates its assigned model parameters. After completing I iterations, the
aggregation server integrates the sets of LORA adapter parameters, ®;, uploaded by each client to obtain the
global adapter parameters, ®, and distributes them to all clients to serve as the initialization for subsequent
training. This process is repeated until the global model converges or the maximum number of training
rounds, R, is reached.

Overall, the training process of LESFT consists of two main phase: (i) the split natural language fine-
tuning stage, which is executed in every training round; and (ii) the client adapter aggregation stage, which
is triggered every I rounds. Fig. 2 illustrates the overall workflow of LESFT, where the training round index
isreR={1,2,...,R}.

Phase 1. Split Natural Language Fine-Tuning Phase: The split natural language fine-tuning phase

involves client-side and server-side fine-tuning performed by the participating clients and the central server
in each training round. This phase consists of the following seven steps.

1. Client-Side forward Propagation: In this step, all participating clients i € N perform forward
propagation on their local sub- models in parallel. Speciﬁcally, each client i randomly samples a mini-batch

of size B, denoted as B(r) {(xl o yl ] , xl(r]), )753)) j-1 from its local dataset D;. This batch contains two sets

of input data: the base input X; (r) {x )}B , and a reference input for contrastive learning, X; ") - {x (r) f -
The client sub-model consists of fixed pre-trained weights W, and trainable LoRA adapters G)( -

{(U(” ") V(” r))} | specific to client i in round r. After feeding both sets of inputs, X () and X; () to the
client sub- model, act1vat1ons are generated at the cut layer. The computation is as follows.

50 = (e 01", x) o
500 = g(we 0!, ) 8

here, ¢(W|®, X) and ¢( W|®, X) represent the mapping from the joint processing of the base input X and
the reference input X to the predicted values at the cut layer, given the model parameters W and the set of
trainable LoRA adapters ©. Finally, these activations, Si(r) and S l.(r), are transmitted to the central server for
subsequent computations.

2. Upload of Intermediate Activations and Supervision Signals: After the client completes its local
forward propagation, each client i uploads its two generated sets of activations, Si(r) and §i(r), along with
the corresponding mini-batch labels Yi(r) and Yi(r), to the central server via a communication link. The
server uses these collected activations as input for its server-side sub-model to proceed with the subsequent
training steps.

3. Central Server Forward Computation: Upon receiving the activations and labels from all par-
ticipating clients, the central server feeds these activations into its server-side model to perform the
server-side forward pass. The concatenated activation matrices, S (") and S, are represented as: S (" =
[Sl(r); Sgr); .. .;SI(\;)] and S = [S~1(r); S~§r); .. -;Sz(\;)l- Subsequently, the server inputs these two aggregated
activation matrices into its server-side sub-model. The server sub-model consists of fixed pre-trained weights
W, and trainable LoRA adapters @) = {(U(™"), v(mDW2WM: for round r. Using the server-side mapping
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function y(-), the final predictions are calculated:

v = 1,,(Ws(r)m)(r—l)’S(r))’ (4)
vy = (WD §0), (5)

where Y(") and Y(") are the model’s reasoning results corresponding to the client base inputs and reference
inputs, respectively.

4. Token-Level Loss Computation: After the server-side model computes the reasoning results, the
model base predictions Y(") and reference predictions Y and the ground-truth labels Y(") and Y(") are
used to calculate an improved token-level loss function, £("). This loss function assigns different weights
to each token to guide the model in learning reasoning logic. Its specific formulation will be detailed
in Section 3.4.

5. Central Server Gradient Computation and Parameter Update: After computing the token-level loss
L), the central server performs backward propagation to calculate the gradients for the server-side LORA
adapter parameters. Specifically, for the m-th server-side LoRA adapter, the gradients for its decomposition
matrices U and V(") are denoted as ng:r) and Gg,r’"s’r) , respectively. These parameters are then updated
using a gradient descent algorithm:

umn <oty Gy, )
v < yme —y G, 7)

where y; is the learning rate on the server side. This update process ensures that the server-side adapters can
effectively learn from the aggregated information from all clients.

6. Backward Transmission of Gradients to Clients: After the server completes its backward propaga-
tion and updates its LoRA adapter parameters, it computes the gradients of the loss function £(") with respect
to the input activations S and §("), which are V ¢ £ and v S0 L") Subsequently, the server partitions
these gradients according to their client origin and transmits them to the corresponding participating clients.
Specifically, each client i receives its corresponding gradient components V LM and v NG L") which will
serve as the input for the continued backward propagation on the client’s local model.

7. Client-Side Local Parameter Update: In this step, each client, based on the received activation
gradients, continues the backward propagation process on its local sub-model to update the client-side LoRA
adapter parameters. For a client 7, the decomposition matrices Ui(") and Vi(") of its n-th LoRA adapter are
updated via gradient descent:

) oy ®
Vi(”»”) - V'i(”)’_l) —Ye- Gg/'j;r)’ (9)

where Ggf;.r) and Gg,n);.r) are the gradients computed in the current training round r for the matrices Ui(n) and

Vi(n) of the n-th LoRA adapter of client 7, and y, is the local learning rate for the client. This process allows
clients to optimize their local adapter parameters under the guidance of the global loss signal, achieving a
more collaborative and efficient distributed fine-tuning.

Phase 2. Periodic Global Adapter Fusion Cycle: The client adapter aggregation phase is primarily exe-
cuted by the aggregation server. Its core objective is to integrate and fuse the local LoRA adapter parameters
uploaded by each client to achieve global knowledge sharing and model performance improvement. This
phase is executed once every I training rounds and consists of the following three steps:
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8. Upload of Local Adapter Parameters: In this step, all participating clients i € A/ upload their current
client-side LoRA adapter parameter sets, ®(r) {(U(" ") V(" ") )}Me , to the aggregation server via wireless
or wired links. This process only transmits the adapter parameters and does not involve any raw data, thereby
ensuring that user privacy is protected.

9. Weighted Federated Aggregation: Upon receiving the adapter parameters from all clients, the
aggregation server performs a weighted average of their LoORA parameters based on the size of each client’s
local dataset to generate a globally unified client LoRA adapter, ® = {(ﬁ(”’,V(”))}Qg Specifically, the
decomposition matrices of the n-th LoRA adapter are aggregated as follows:

7™ D (e
, (10)
Z IDI
_(”) | (n r)
) (11)
E IDI

This weighted aggregation strategy accounts for the differences in data distribution among clients, which
helps to improve the generalization ability and convergence stability of the global model.

10. Distribution of Global Adapter Parameters: After the aggregation is complete, the aggregation
server distributes the global adapter parameters ® back to each participating client. Upon receiving ®, each
client uses it as the initial parameters for its local adapters in the next training phase. This step ensures that
all clients proceed with fine-tuning from a consistent global starting point in subsequent training, thereby
promoting the overall consistency and efficiency of the federated training.

The overall training process of LESFT is summarized in Algorithm 1.

Algorithm 1: LESFT: Language-empowered split fine-tuning framework

Require: Mini-batch size B, update interval I, learning rates y., y;, total rounds R, LoRA ranks M, M,
datasets {D; } ¥, initial weights W,, W,
Ensure: Server adapter ®*, client adapters {®7 }V,

1: Initialize ®; ~ rand, Vi; ® ~ rand
2: forr=1toRdo
3: for each client i € A/ do
4: Sample Bl(r) = {(xij,yij,k,-j,j/,-j)}le
5: Si=¢(Wc~| @,’,)gi); Si:(/)(WC |®,’,Xi)
6: Send (S;,S;, Y;, Y;) to server
7 end for
8: Aggregate: S = [Si;...;Sn], S=[S;...;8x]
9 V=y(W|®S8); TY=yW |03
10: L = TokenLoss (Y,Y,Y,Y)
11: O P-y, Vol
12: Send Vs, L, Vs L to clients
13: for each client i € A/ do
14: @,’ <—®,‘—ch®,.[,
15: end for

(Continued)
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Algorithm 1 (continued)

16: if r mod I = 0 then

17: Each client uploads ©;
18: 6 = Zf\il %@,

19: Broadcast ©; set ®; « @
20: end if

21: end for

22: return ®*, {@F }N,

Through the algorithmic process outlined above, the LESFT framework effectively coordinates the
computational resources of edge devices and cloud servers while preserving data privacy, providing a
systematic solution for the efficient fine-tuning of LLMs in edge environments. The framework not only
reduces the computational burden on the edge side but also significantly enhances training efficiency in
few-shot scenarios through its natural language fine-tuning mechanism.

3.4 Token Loss Calculation

Traditional SFT optimizes by minimizing the cross-entropy loss between predictions and ground-truth
labels. It treats all tokens in a reasoning chain equally, which can easily lead the model to rely on pattern
memorization while neglecting logical deduction. Natural Language Fine-Tuning (NLFT) builds upon this
by introducing dynamic weighting and language feedback. On one hand, it identifies salient tokens from
positive and negative samples’ reasoning chains to enhance the model’s sensitivity to reasoning. On the other
hand, it uses natural language feedback to locate critical steps and penalize erroneous ones, shifting the
optimization objective from simple answer fitting to capability-guided learning.

NLFT assumes that answers generated by a large model can be categorized as either correct or incorrect,
and it identifies salient tokens by comparing different prompts. However, in practical edge fine-tuning, model
outputs are often partially correct and difficult to classify as entirely wrong. In a translation task, for example,
multiple results may be semantically correct but differ in fluency and style, making it hard to determine a
clear winner. Furthermore, NLFT’s approach, which involves constructing positive and two distinct negative
reasoning paths, effectively triples the processing load per sample and significantly increasing computational
power requirements and latency.

To address this, we propose an improved scheme that constructs only two paths: a base input and
a reference input. This design reduces redundant computation. The base input provides minimal context,
while the reference input serves as a quality comparator to guide the model’s learning. This introduces soft
prior knowledge and forms a directional constraint on the original task, maintaining the effectiveness of
contrastive learning while significantly reducing latency and computational overhead.

For a mini-batch of samples Bi(r) = {(xi(’rj), y,()rj), J?i(’rj), )7,(?) le drawn by client i in round 7, the server
receives activations S l(rj) and S l(r]) from the client and generates two sets of predictions:
o (1) _ () -1) (1)
7 = y(w [0, s0)), (12)
(1) _ () -1) &(r)
" = w(Ws By ) . (13)
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Let the target output sequence be y ={ yl i 1, e yl( J) T, _}. For a token at any position ¢, we define the

conditional probabilities under the two paths

1 r—
Pl(;)t (y1]t|xl]’y1(]<t; C>®('r )) W(r)’q)( 1))) (14)
-1
B, P50 0.1 W0l i, 00 0

When analyzing the reasoning chain generated by the model, we first identify Salient Tokens based

on the conditional probability of the reference path, 131.(’2 . Specifically, if the probability pi(,;'?t of a token

)’1( ])t exceeds a predefined threshold p*¥, it is classified into the salient token set, o

i josal Next, using these
salient tokens as cluster centers, we apply cosine similarity-based semantic clustering to group semantically

related tokens, which are then labeled as Sub-salient Tokens and placed in the set Y™ Finally, tokens

i,j,subsal®

not assigned to either category are regarded as Irrelevant Tokens and are collected in the set Yl( ])1 rrel”

For these three categories of tokens, we define a scaling weight S( Vi, t) based on the reference path
probability:

(r) sal \ V!
N R M ¢ y®
1_psal yz]t 1]sal’
) oy
r _ i,j,t r r
S(yi,j,t) - psal ’ yf ])t Yi(,j,)subsal’ (16)
" \”
P
it (r) (r)
psal > Vi SJ>t Yi,j,irrel’

where y1, y,, y3 are tunable hyperparameters, typically set with y, < y3 so that sub-salient tokens receive
higher weights than irrelevant tokens. For salient tokens, the formulation includes an additive constant 1,
which ensures that their scaling value is always greater than 1, thereby amplifying their influence in the
gradient computation during loss optimization.

After obtaining the scaling weight for each token, we use a weighted cross-entropy on the predicted
probabilities Pl(;) , of the model’s reasoning chain as the final loss:

n_ 1 () ("
Ei,j = |y(r)| Z S(}Vz]t) 1Ong]t (17)

This weighted design preserves the emphasis on logically critical tokens from NLFT while using only
two input paths, thereby significantly reducing the additional computational and communication overhead
in edge scenarios.

The loss calculation process of LESFT is summarized in Algorithm 2.
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Algorithm 2: Token-level loss calculation

Require: Base predictions ¥(") = {yz(r]t lie[L,N],jell, |Bi(r)|], t € [1, T;,;]}, reference predictions Y =

{ y,(r])t}, true labels Y(") = {y ,(r]):}, threshold p*¥!, exponents y1, 1, 3
Ensure: Loss £

I £L<0, Tiotal < 0
2: for each client i, sample j, token t do
3 P < 9iis P<yiir
4 Tto~tal < Tiotal +1
5 if P > p*d! then
P — psal N
6: S<1+ P
1- psal
7: elseif y; ;; € Sub-salient cluster then
p\”
8: S « (psal)
9: else -
P
10: S « ( sal)
p
11: end if
12: L~ L-S8- log(P)
13: end for
. (r)
4 L Ly
15: return £

This section has detailed the overall architecture, training process, and core token-level loss calculation
mechanism of the LESFT framework. By introducing natural language fine-tuning into a split federated fine-
tuning architecture, the framework provides a systematic solution for the efficient fine-tuning of large models
in edge environments. To validate the practical performance and effectiveness of our proposed framework,
the next chapter will present a series of comprehensive comparative experiments and analyses conducted on
public benchmark datasets.

4 Experiment

4.1 Datasets and Data Preparation

To evaluate the generalizability and performance of the proposed framework, this study utilizes three
distinct reasoning benchmarks. To simulate data-constrained edge scenarios and test few-shot learning
efficiency, we uniformly and randomly sampled 800 instances from the official training set of each dataset.

GSMSK dataset. This dataset contains high quality elementary school level math word problems. The
official training split comprises 7473 instances and the official test split comprises 1319 instances.

CommonsenseQA dataset. This dataset is designed for commonsense question answering and consists
of multiple choice questions. The official training split comprises 9741 instances and the official test split
comprises 1140 instances.

AQUA_RAT dataset. This dataset targets algebraic question answering with rationale annotations and
consists of programmatic and textual solutions. The official training split comprises 97467 instances and the
official test split comprises 254 instances.
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Considering that the base models used in our experiments, such as Qwen2.5-3B, do not possess robust
mathematical reasoning capabilities before fine-tuning, it is not feasible to have them directly generate
the reasoning chains required for training. Therefore, we adopt a data distillation strategy, using a more
powerful teacher model to generate high-quality fine-tuning data. Specifically, we utilize the Llama-3-8B-
Instruct model, which achieves an accuracy of 77% on GSM8K, 79% on CommonsenseQA, and 81% on
AQUA_RAT, to ensure the reliability of the generated supervision signals. For each dataset, we randomly
select 800 samples correctly answered by the teacher model to construct the fine-tuning subset. The selected
responses, combined with Chain-of-Thought prompting, provide detailed reasoning chains that serve as the
ideal user outputs the student model needs to learn. Concurrently, the original solution steps from each
dataset are used as the reference input to provide the constraint signal, thereby satisfying the dual-path input
requirement of the LESFT framework.

4.2 Baseline Algorithms

To comprehensively evaluate our framework, we compare it against four representative fine-tuning
methods, spanning centralized to distributed paradigms.

Centralized Supervised Fine-Tuning (Centralized SFT). This baseline reflects the upper-bound
performance in a non-privacy-preserving setting, where a central server directly fine-tunes the LLM with
LoRA on the entire training set, comprising 800 GSM8K samples in our study.

Federated Averaging (FedAvg). The canonical algorithm in federated learning, adapted here for LoRA-
based fine-tuning. In each round, clients train local adapters on their data and upload updates to the server,
which aggregates them via weighted averaging. Raw data remain local, ensuring privacy.

Split Learning (SL). A vertical partitioning strategy in which clients hold the front layers and the server
holds the remaining ones. Clients send intermediate activations to the server, which completes the forward
pass, computes the loss, and returns gradients. No aggregation across clients is performed, making SL suitable
for evaluating performance without horizontal knowledge sharing.

SplitLoRA. An advanced variant combining split learning with federated aggregation. Adapter param-
eters are decomposed into shared and private parts: shared layers are collaboratively trained across clients,
while private layers are updated locally to preserve personalization. This design balances knowledge sharing
and data heterogeneity.

SplitFrozen [47]. This method is a split learning framework where the initial model layers deployed
on client devices are frozen. Clients execute only a forward pass and transmit the resulting activations to a
central server. The server holds the remaining layers and manages all training updates, applying parameter-
efficient fine-tuning via LoRA exclusively to its portion of the model. This configuration avoids client-side
backward propagation and can be combined with pipeline parallelism to reduce device idle time.

4.3 Experimental Setups

We conducted experiments on three models from the Qwen2.5 series with different parameter scales:
Qwen2.5-0.5B, Qwen2.5-1.5B, and Qwen2.5-3B. These cover lightweight to medium-size configurations and
enable validation under different resource constraints. All experiments used the original pre-trained versions
to avoid potential bias introduced by instruction tuning.

A vertical splitting strategy was adopted to simulate edge devices with limited resources. The client was
assigned the tokenizer, the embedding layer, and the first quarter of the Transformer layers, while the server
processed the remaining layers and the language model head. This allocation reduced the computational
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burden on the client and enhanced data privacy. The same splitting strategy was applied to all baselines to
ensure fairness in comparison.

All experiments were performed on a unified high-performance computing platform equipped with an
NVIDIA RTX 4090 GPU, PyTorch 2.3.0, and CUDA 12.1. To guarantee consistency, we used AdamW as the
optimizer with a learning rate of 5e—5. The batch size per client was set to 1 with gradient accumulation of 4,
resulting in an effective batch size of 4. Local training was conducted for 10 epochs on a dataset of 800 samples.
Four clients were simulated, and evaluation was performed using identical prompts and validation protocols.

The LoRA configuration was kept uniform across all experiments. The rank was set to 8, lora_alpha to
16, and the dropout rate to 0.2. LoRA was applied to the gate_proj, down_proj, and up_proj linear layers. The
salient token threshold was fixed at 0.95, with hyperparameters y; = 5, y, = 0.3, and y; = 0.6.

4.3.1 Comparative Analysis of Accuracy and System Overhead

The empirical results are summarized in Table 1. These results demonstrate that the proposed LESFT
framework consistently outperforms all baseline methods. This holds true across all three reasoning
benchmarks and model scales. This outcome validates the generalizability of our approach. On the Qwen2.5-
3B model, LESFT achieves 76.04% accuracy on GSM8K, 78.13% on CommonsenseQA, and 71.26% on
AQUA_RAT. These results represent significant relative improvements over the strongest baselines. For
example, on GSM8K, LESFT shows a 34.4% relative gain over SplitFrozen, which scored 56.56%. LESFT also
achieves a 36.1% relative gain over FedAvg, which scored 55.88%.

Table 1: Comparison of accuracy on GSM8K, COMMONSENSEQA, and AQUA_RAT datasets across different fine-
tuning methods and model scales. The best result for each model scale is marked in bold

Centralized . Split LESFT

Dataset Model Base SFT SL SplitLoRA frozen FedAvg (Ours)
Qwen2.5-0.5B 18.57 17.44 15.85 21.91 29.26 23.12 40.94

GSMS8K Qwen2.5-1.5B 17.36 42.76 43.21 44.73 47.54 46.10 61.49
Qwen2.5-3B 18.27 50.87 54.28 55.65 56.56 55.88 76.04

Qwen2.5-0.5B 23.59 41.44 32.76 40.21 36.53 44.06 54.46

CommonsenseQA Qwen2.5-1.5B 24.24 73.38 62.82 60.20 67.24 62.82 75.27
Qwen2.5-3B 45.21 76.41 66.99 71.99 74.88 71.33 78.13

Qwen2.5-0.5B 22.44 2795 21.65 26.77 2717 23.62 38.19

AQUA_RAT Qwen2.5-1.5B 33.46 37.01 37.01 40.16 39.37 38.58 53.15
Qwen2.5-3B 43.31 37.40 44.88 42.50 52.36 41.73 71.26

The unfine-tuned Base models perform poorly on all tasks. This highlights the necessity of fine-tuning.
However, conventional Centralized SFT and SL show inconsistent results. They even cause performance
degradation on the 0.5B model for GSM8K. This suggests that standard SFT struggles with catastrophic
forgetting in low-resource, low-capacity settings.

The adoption of more advanced methods yields more stable and consistent gains. These methods include
FedAvg, SplitLoRA, and SplitFrozen. SplitFrozen, in particular, shows strong performance on GSM8K,
reaching 56.56% on the 3B model. This demonstrates the effectiveness of its client-side frozen approach.
Nevertheless, these methods still show limited absolute performance. This indicates that architectural
optimizations alone are insufficient to solve the core data-efficiency problem in few-shot reasoning.

LESFT’s superior performance stems from its unique learning mechanism. Baselines rely solely on
architectural optimization. In contrast, LESFT introduces a token-level weighting strategy. This mechanism
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is powered by a dual-path contrastive signal. It guides the model to focus on critical logical tokens rather
than optimizing all tokens equally. This semantic-level supervision effectively mitigates gradient noise in
few-shot scenarios. This process enables the model to stably activate and calibrate its pre-trained reasoning
capabilities using limited data.

Furthermore, the experimental results reveal the excellent scalability of LESFT. As the model scale
increases from 0.5B to 3B, the performance gap between LESFT and all baseline methods tends to
widen. This trend is visible across all three datasets. This indicates that on larger models, LESFT can
more fully leverage the advantages of its token selection and weighting mechanism. It thereby more
efficiently utilizes the parameter capacity and pre-trained knowledge of large models to achieve significant
performance enhancements.

Table 2 quantifies the system overhead. The reported metrics represent the average latency and total
communication volume per epoch. The N/A values for Centralized SFT and FedAvg confirm their infea-
sibility for client-side training. All split-based methods operate within a manageable GPU footprint. Our
LESFT framework, however, incurs notably higher client latency and communication volume compared to
other baselines like SplitFrozen. This increased cost is an inherent consequence of our dual-path mechanism.
This mechanism is essential for generating the contrastive signal. This design represents a deliberate trade-
off. We exchange a moderate, acceptable system overhead for the significant task accuracy improvements
demonstrated in Table 1.

Table 2: Quantitative comparison of computational and communication overhead. We report average GPU memory
footprint (MB), total communication volume (MB), and average training latency (s) for both client and server across
all frameworks. N/A denotes metrics that are Not Applicable for a given framework

Avg. GPU memory (MB)  Total comm. (MB) Avg. latency (s)

Framework
Client Server Client Server Client Server

Centralized SFT N/A 3576 N/A N/A N/A 72.16
SL 906 2718 2151 2151 10.02 30.07
SplitLoRA 985 2954 2354 2354 7.28 21.85
SplitFrozen 709 2836 1076 1076 4.49 13.47
FedAvg N/A 3643 N/A 202 N/A 19.73
LESFT (Ours) 1054 3161 3027 3027 10.74 32.21

4.3.2 Analysis of the Impact of Varying the Model Split Point

To investigate the robustness of our framework, we conducted an ablation study to evaluate the
sensitivity of model performance to the network split point, which is a key hyperparameter. In a distributed
learning setting, the choice of the split point directly impacts the client’s computational load and the final
performance; therefore, verifying the model’s stability with respect to this choice is of significant importance.
We established four different split ratios, deploying the first 1/2, 1/3, 1/4, and 1/5 of the network layers on
the client, and recorded the accuracy changes of our method, as well as SL and SplitLoRA, at these different
split points.

The experimental results are shown in Fig. 3. Our method exhibits high stability across all tested
model scales and split configurations. Its performance curve is considerably flatter compared to the baseline
methods, and its accuracy consistently surpasses that of SL, SplitLoRA, and SplitFrozen. Specifically, on
the largest Qwen2.5-3B model, the results shown in Fig. 3¢ indicate that as the split point is adjusted from



16 Comput Mater Contin. 2026;87(1):66

1/2 to 1/5, our method’s accuracy remains stable within the range of 75.59% to 76.65%, showing minimal
fluctuation. In contrast, the baseline methods demonstrate greater sensitivity to the choice of the split point.
The performance of SL and SplitLoRA shows significant fluctuations as the split point changes; for example,
on the Qwen2.5-1.5B model, the accuracy of the SL method fluctuates by more than 10%. SplitFrozen shows
relatively better stability than SL and SplitLoRA, but its accuracy remains consistently lower than ours across
all split configurations. This indicates that while SplitFrozen partially alleviates the sensitivity issue, it does
not match the overall robustness and performance of our framework.

60 —e— SL 80 —e— SL 90 —e— SL
SplitLoRA SplitLoRA SplitLoRA
— —+— SplitFrozen — —+— SplitFrozen — —+— SplitFrozen
550 —o— Ours 570 —e— Ours &\0/80 —e— Ours
340 * 360 ° T . g t——t .
30— 3 50 30
0\. ’ by
g —, &0 T 2
20 40 —— 60 , R
o . —* ./'_ “\\.
10 30 50
1/2 1/3 1/4 1/5 1/2 1/3 1/4 1/5 1/2 1/3 1/4 1/5
Cut Layer Cut Layer Cut Layer
(a) Results on Qwen2.5-0.5B (b) Results on Qwen2.5-1.5B (c) Results on Qwen2.5-3B

Figure 3: Impact of different model split layers on the accuracy of fine-tuning methods on the GSM8K dataset

The results of this ablation study demonstrate that our proposed framework possesses good robustness,
as its performance is not sensitive to the choice of the network split point. This offers significant convenience
for its fine-tuning application in real-world scenarios.

4.3.3 Analysis of the Impact of Varying the Number of Samples

To evaluate the data efficiency of our framework under few-shot conditions, we conducted an experi-
ment where we systematically varied the number of samples used for fine-tuning. In this experimental setup,
we simulated a distributed fine-tuning environment with 4 clients and adjusted the size of each client’s local
dataset to 10, 20, 30, 40, and 50 samples, respectively. For comparison, the Centralized SFT baseline was
trained on the corresponding aggregated sample sets, ranging from 40 to 200 total samples.

The experimental results are shown in Fig. 4. As can be seen, the performance of our proposed method
is consistently higher than that of all baseline methods across all tested model scales and sample size
configurations. This advantage is particularly pronounced in scenarios where data is extremely limited. For
instance, on the Qwen2.5-3B model with only 10 samples per client, our method achieves 71.19% accuracy,
while SplitLoRA and FedAvg reach 63.61% and 64.90%, respectively. SplitFrozen, despite its improved
stability, achieves 63.88%, and Centralized SFT trained on 40 samples yields only 56.10%. As the number of
samples increases, the performance of all methods shows an upward trend, but the gap between our method
and the baselines remains clear. This indicates that our framework achieves higher data utilization efficiency.
This advantage stems from the natural language fine-tuning paradigm, which uses high-level instructions
to guide the model in leveraging pre-trained knowledge for task understanding, reducing reliance on large-
scale labeled data. These results demonstrate that the proposed framework is well-suited for edge scenarios
with constrained data resources.
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Figure 4: Impact of different numbers of training samples on the accuracy of fine-tuning methods on the GSM8K
dataset

4.3.4 Analysis of the Impact of Varying the Number of Clients

To evaluate the scalability and robustness of our framework under different distributed configurations,
we conducted an experiment by varying the number of clients from 1 to 5 while keeping the total training data
constant. This simulates realistic federated learning scenarios where data becomes increasingly decentralized.

The results in Fig. 5 show that our method consistently outperforms all baselines across model scales
and client counts. On the Qwen2.5-3B model, our accuracy remains above 71% across all settings, reaching
up to 76.36% with 5 clients. In contrast, methods such as SplitLoRA and SL exhibit noticeable performance

drops as the number of clients increases. SplitFrozen shows better stability but still trails behind our method
in overall accuracy.
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Figure 5: Impact of different numbers of clients on the accuracy of fine-tuning methods on the GSM8K dataset

This robustness can be attributed to our framework’s dual-path supervision and periodic adapter
aggregation. By learning from both base and reference reasoning chains, the model captures core reasoning
patterns and reduces reliance on any single client’s data distribution. The aggregation mechanism further
enables mutual learning among clients, enhancing generalization in decentralized environments.

4.3.5 Ablation Study

An ablation study was first conducted to validate the architectural components of LESFT. Three
configurations were compared, as shown in Fig. 6. The Ours configuration is the complete LESFT SFL
framework. The SL Framework applies the paradigm within a pure Split Learning architecture without
aggregation. The FL Framework uses a conventional, non-split Federated Learning architecture. The results
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show the full SFL framework consistently outperforms both architectural variants across all model scales.
The performance gap over the FL Framework highlights the benefit of the split-based design. The gap over
the SL Framework confirms the critical importance of federated aggregation. These results validate that the
synergy of combining split learning and federation is a key factor in LESFT’s effectiveness.

100
Ours SL Framework FL Framework
80 1 76.04%
66.11%
s 61.49% o 61.03%)
2 604 59.36%
3 51.55%
o
=1 40.94%
38.74%

8 40 A
< 30.48%
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Qwen2.5-0.5B Qwen2.5-1.5B Qwen2.5-3B

Figure 6: Ablation study on the architectural framework. LESFT (SFL) consistently outperforms both SL framework
and FL framework variants across different model scales

The analysis next isolates the contribution of the core dual-path mechanism. As shown in Fig. 7, the
full LESFT model Ours is compared against two single-path variants. These are Base Input Only, which
uses only the standard input, and Reference Input Only, which uses only the high-quality reference input
for training. The results on the Qwen2.5-3B model are particularly illustrative. The Base Input Only variant
achieves 60.16% accuracy. Using the high-quality Reference Input Only improves this to 68.46%. Crucially,
the full dual-path model Ours significantly outperforms both, achieving 76.04%. This finding is critical. It
demonstrates that the performance gain does not come from merely using a higher-quality input. Instead,
the contrastive signal generated by the interaction between the two logically-equivalent paths is essential.
This signal guides the model to learn generalizable reasoning patterns and achieve superior data efficiency.
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Figure 7: Ablation study on the dual-path mechanism. LESFT consistently outperforms both single-path variants using
only the base input or the reference input across different model scales

The analysis next examines the effect of the token-weighting mechanism. As shown in Table 3, the
proposed adaptive weighting strategy Ours consistently achieves the highest accuracy across all model
scales. In contrast, assigning uniform values such as 0 leads to a clear performance drop. For Qwen2.5-
0.5B, accuracy decreases from 40.94% to 32.07%. For Qwen2.5-1.5B, accuracy falls from 61.49% to 45.64%.
For Qwen2.5-3B, accuracy declines from 76.04% to 51.86%. These results indicate that removing token-level
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differentiation severely limits reasoning adaptation. The sensitivity analysis further shows that moderate
weighting values between 0.25 and 0.75 yield more stable results than extreme values equal to or greater
than 1.5. However, none of these settings surpass the adaptive mechanism. This confirms that the proposed
token-weighting design is essential for maximizing data efficiency and reasoning accuracy in LESFT.

Table 3: Ablation study on the token-weighting mechanism and hyperparameter sensitivity. We compare LESFT against
a variant with no weighting (0) and other weighting hyperparameter values on the GSM8K dataset. The best result is
marked in bold

Model Ours 0 0.25 0.5 0.75 1 1.5 2

Qwen2.5-0.5B 40.94  32.07 36.16 35.63 35.63 34.95 35.10 34.80
Qwen2.5-1.5B 61.49 45.64 54.97 55.04 55.04 54.97 55.68 54.44
Qwen2.5-3B 76.04 51.86 68.39 68.61 6710 67.93 67.78 68.01

5 Discussion

LESFT emphasizes the token as the fundamental unit of large language models and leverages the dual-
path mechanism to highlight differences between base and reference reasoning chains. By contrasting these
two paths, the framework guides the model to identify and learn the most informative tokens, thereby
improving credit assignment and enabling generalizable reasoning patterns under few-shot conditions. This
fine-grained supervision directly addresses the data inefficiency of conventional approaches and explains the
consistent gains observed across diverse tasks and model scales.

In addition, the split federated design adapts naturally to edge environments. The model is partitioned
so that computation and storage burdens are minimized on clients, while privacy is preserved by keeping raw
data local. Periodic aggregation of lightweight adapters allows edge models to exchange knowledge without
exposing sensitive information. This mechanism enables each client to benefit from the progress of others,
achieving collective improvement across heterogeneous and potentially non-IID data distributions.

The proposed framework is particularly well-suited for reasoning-intensive tasks, where intermediate
steps and token-level supervision are critical. Examples include mathematical problem solving, common-
sense reasoning, and multi-step question answering. In these domains, the dual-path contrast provides
richer signals than outcome-only supervision, allowing the model to capture logical dependencies more
effectively. Beyond reasoning tasks, LESFT can also adapt to structured prediction problems such as code
generation or symbolic manipulation, where token-level granularity plays a decisive role. Its reliance on
modular adapters and federated aggregation further ensures applicability across diverse model scales and
heterogeneous client data, making it a general solution for edge deployment in both reasoning-centric and
structured learning scenarios.

6 Conclusion

This paper addresses the incompatibility between efficient SFL architectures and data-inefficient SFT, a
key challenge that creates prohibitive communication bottlenecks for LLMs on edge devices. We introduce
the LESFT framework, a novel paradigm designed to co-optimize computation, communication, and data
efficiency. The core of LESFT is a contrastive-inspired fine-tuning method that uses logically consistent yet
diversely expressed reasoning chains to provide a robust supervision signal. This design compels the model
to shift from memorization toward generalizable reasoning, which significantly improves data efficiency and
directly translates to reduced communication overhead.
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Our extensive experiments across three diverse reasoning benchmarks, GSM8K, CommonsenseQA,
and AQUA_RAT, validate that LESFT substantially outperforms all state-of-the-art baselines, including
SplitLoRA and SplitFrozen. The framework’s superiority stems from its ability to focus on critical logical
tokens, allowing it to stably activate and calibrate pre-trained reasoning capabilities with limited data. Our
ablation studies further demonstrate the framework’s robustness, showing its performance is stable against
variations in network split points and data distribution, highlighting its practical applicability in diverse
edge environments.

Future work can extend LESFT in several directions. Enhancing its robustness to non-IID data is
critical for complex federated scenarios. Furthermore, developing adaptive split-point mechanisms and
integrating lightweight privacy-preserving techniques could enable more intelligent and secure deployments.
Combining LESFT with retrieval-augmented generation also offers a path to overcome static knowledge
limitations in specialized domains. In conclusion, this work not only provides a validated framework for
efficient edge fine-tuning but also demonstrates a promising direction for overcoming resource constraints
through the co-design of learning paradigms and system architectures.
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