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ABSTRACT: The emergence of large language models (LLMs) has brought about revolutionary social value. However,
concerns have arisen regarding the generation of deceptive content by LLMs and their potential for misuse. Conse-
quently, a crucial research question arises: How can we differentiate between AI-generated and human-authored text?
Existing detectors face some challenges, such as operating as black boxes, relying on supervised training, and being
vulnerable to manipulation and misinformation. To tackle these challenges, we propose an innovative unsupervised
white-box detection method that utilizes a “dual-driven verification mechanism” to achieve high-performance detec-
tion, even in the presence of obfuscated attacks in the text content. To be more specific, we initially employ the Spacelnfi
strategy to enhance the difficulty of detecting the text content. Subsequently, we randomly select vulnerable spots from
the text and perturb them using another pre-trained language model (e.g., T5). Finally, we apply a dual-driven defense
mechanism (D3M) that validates text content with perturbations, whether generated by a model or authored by a
human, based on the dimensions of Information Transmission Quality and Information Transmission Density. Through
experimental validation, our proposed novel method demonstrates state-of-the-art (SOTA) performance when exposed
to equivalent levels of perturbation intensity across multiple benchmarks, thereby showcasing the effectiveness of
our strategies.
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1 Introduction

The rapid advancement of large language models (LLMs) has enabled machines to generate excep-
tionally fluent and accurate text with unprecedented capability, thereby blurring the distinction between
human and machine authorship. The widespread deployment of models such as GPT-3 [1], ChatGPT [2],
and DeepSeek [3] has demonstrated significant value across various domains including healthcare and law.
However, this technological leap necessitates careful consideration of its broader societal implications [4,5].
The misuse of Large Language Models (LLMs), as well as uses that go beyond their original intentions [6],
has raised significant concerns. These issues encompass facilitating academic plagiarism, disseminating AI-
generated disinformation, and creating phishing emails. These challenges highlight the urgent need for
robust and accurate techniques to detect AI-generated text, which is crucial for harnessing the benefits of
natural language generation while mitigating associated risks [7-11].
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Existing detection methodologies can be primarily categorized into supervised approaches, adver-
sarial training, and unsupervised methods [12,13]. Although supervised methods and adversarial training
have shown promise, they often face limitations such as poor domain adaptability, training instability,
and substantial computational requirements [14,15]. In contrast, unsupervised methods, particularly those
leveraging statistical features, offer advantages including training-free operation and strong generalization
capability [16-18], though their performance heavily depends on the completeness of feature extraction [19].

Concurrently, the emergence of sophisticated evasion techniques has fostered an evolving adversarial
landscape. Research on evasion model algorithms has revealed multiple strategies to interfere with detection
capabilities, including text editing through external model rewriting, paraphrasing, or insertion of special
characters to create semantically equivalent but formally distinct text variants [20]. Additional studies have
explored prompt optimization strategies to guide LLMs in evading detection. This establishes a mutually
reinforcing relationship: as detection models continuously refine their mining of distinctive features, evasion
models develop increasingly sophisticated disruptive elements, driving iterative advancements in both
domains [21].

Our statistical observations indicate that when evasion models interfere with text using rewriting and
other attack methods, machine-generated and human-written texts exhibit discernible differences in their
responses to identical perturbations [22]. Although previous research has theoretically demonstrated that
information changes induced by external perturbations can provide valuable evidence for judgment [23],
existing approaches primarily rely on single features (such as non-negative curvature), and their performance
tends to deteriorate under complex interference like rewriting or sophisticated character manipulation.
Further analysis reveals that human-written texts demonstrate significantly greater lexical richness, including
a diverse vocabulary of actions, states, and emotions, even when compared to the most advanced Al-
generated texts. Crucially, when subjected to perturbations like rewriting, human-written texts exhibit
substantial variations in lexical complexity. Machine-generated texts, however, due to their inherently lower
baseline complexity, consequently display only minimal changes. This observation raises a fundamental
research question: can the differential sensitivity of lexical diversity to perturbations serve as a valuable
discriminative feature?

The information-theoretic perspective has gained increasing attention in recent detection research.
Drawing from Shannons communication theory framework, researchers have explored various quantifi-
cation methods for information transmission characteristics. Bianchini [24] explores the historical and
theoretical connections between information theory and artificial intelligence, tracing their shared notion
of “intelligence” and arguing that this conceptual link, despite its imperfections, has spurred significant
advancements in AI. And Adams et al. [25] proposed methods for generating high-quality summaries using
large models based on information quantity measurement concepts. Inspired by these findings, we investigate
the feasibility of designing a systematic quantitative framework to capture the multidimensional variation
patterns of textual data under perturbation. To this end, we draw upon information transmission theory
to introduce two novel concepts: Information Transmission Quality (ITQ) and Information Transmission
Density (ITD). ITQ aims to quantify the generation quality of text sequences by measuring the deviation
in probability distributions before and after perturbations to assess information fidelity, while ITD directly
measures the richness of entity information in the textual structure by calculating the density of semantic
units such as named entities and key terms, thereby reflecting the information-carrying capacity of the
content. Logically, the changes in ITQ under perturbation can be explained as follows: tokens in machine-
generated texts represent globally or locally optimal solutions selected by greedy optimization algorithms.
In contrast, human-written texts are generated randomly based on human thought patterns, aligning more
closely with individual cognitive habits and not necessarily corresponding to optimal solutions. Therefore,
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when perturbations such as rewriting occur, machine-generated texts are more likely to degrade into
suboptimal content, leading to a decrease in log probability values. Conversely, the log probability values
of human-written texts may fluctuate. Similarly, for ITD, machine-generated texts tend to adopt objective
and less specific stances, using fewer words that include explicit entities such as specific names, locations,
and times. Even under perturbation, machine models continue to employ generic expressions. In contrast,
human-generated content often includes subjective descriptions and provides clear information, especially
in news-related contexts. Thus, perturbations cause the information density of machine-generated texts to
decline, while the information density of human-generated texts experiences random fluctuations, both
increasing and decreasing.

In the context of this task, we treat external perturbations as special “pulse” signals, the perturbed
text content as information carriers, and the resulting changes in text information quality and density as
signal transmission discrepancies. By observing these discrepancy metrics, we can distinguish the source
of the text. From another perspective, leveraging the information bias generated by model interference
essentially utilizes the energy of the interference rather than defending against it. To explain further, it
mitigates the adverse effects of interference while enhancing the model’s robustness. To validate our statistical
conjecture, we propose a verification procedure. First, we employ an Evade strategy model to interfere
with both human-generated and machine-generated short texts. Second, drawing on the idea of retrieval
augmentation, we select “vulnerable” sentences from the perturbed short texts and extract the features of
information transmission bias from these retrieved sentences, ultimately achieving the distinction of short
text sources.

In summary, we propose a novel unsupervised interference-resistant text content detection strategy—
the Dual-driven Defense Mechanism (D3M)—with core innovations manifested in the following aspects:

1. We employ reverse thinking to proactively utilize the information bias generated by evasion model
interference, rather than merely resisting it. This approach represents a paradigm shift in defense
strategy, transforming adversarial challenges into discriminative features.

2. Inspired by information transmission theory, we propose a strategy based on “dual-driven defense”
metrics to deeply explore the discrepancies in ITQ and ITD caused by perturbations. The algorithm
effectively performs identification in zero-shot scenarios and provides interpretable identification basis.

3. Through establishing a comprehensive scientific experimental analysis scheme covering space infil-
tration interference, retrieval-augmented vulnerable text capture, and dual-driven defense strategy
identification, the results demonstrate that our method possesses excellent performance including
strong interference resistance and high identification accuracy.

Therefore, the proposed method can serve as an effective auxiliary means for distinguishing between
Al-generated content and human-written content, exhibiting significant practical value.

2 Related Work
2.1 Deep Learning Detection Methods

Existing deep learning detection methodologies for Al-generated text have evolved through several
distinct paradigms, each with characteristic strengths and limitations. Supervised detection methods employ
a spectrum of approaches from basic binary classifiers to sophisticated deep learning architectures [26],
training end-to-end models to capture discriminative patterns for classification. Notable implementations
include the multi-generator, multi-domain framework for black-box detection proposed by Wang et al. [13]
and the joint prompt and evidence inference network for multilingual fact checking developed by Li
et al. [14]. And Abbas et al. [27] explored detecting Al-generated tweets by analyzing author writing style
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using graph convolutional networks. To address the need for high-speed scene text detection on resource-
constrained devices, Liu et al. [28] introduced YOLOVS5ST, a lightweight detector that significantly improves
inference speed with only a marginal accuracy loss. However, these supervised approaches typically exhibit
limited cross-domain adaptability due to inconsistent parameter fitting across diverse sample distributions.
Adversarial training methodologies address generalization challenges through generator-discriminator
frameworks [29], where the adversarial dynamics between text generation and origin discrimination drive
performance improvements. Teja et al. [30] proposed a framework that quantifies the discrepancy between
original and normalized text to improve robustness against semantic adversarial attacks. The RADAR frame-
work by Hu et al. [15] exemplifies this approach through adversarial learning for robust detection. Despite
enhanced generalization capabilities, these methods remain susceptible to training instability and mode
collapse issues. In contrast, unsupervised techniques have gained prominence by enabling direct judgment
based on intrinsic sample characteristics without requiring pre-training. These encompass feature-based
recognition analyzing lexical and syntactic patterns [16], watermarking techniques embedding imperceptible
markers for subsequent verification [17]. This progression from supervised to unsupervised paradigms
reflects the field’s ongoing pursuit of adaptable, efficient, and theoretically-grounded detection mechanisms.

2.2 Statistical Derivative Feature Methods

Statistical derivative feature methods represent a significant advancement in unsupervised detection
by leveraging deeper textual characteristics such as semantic patterns, stylistic features, and perturbation
responses for discrimination, as comprehensively surveyed by Crothers et al. [18] across various threat
models and detection approaches. Within this domain, substantial progress has been achieved through
several innovative methodologies: Mitrovic et al. [31] pioneered the use of SHAP metrics for short text
source distinction, revealing models’ superior capability in identifying directly generated ChatGPT responses
compared to detecting machine-modified human text. West et al. [32] introduced a statistical normalization
method based on the Student’s t-distribution to address the heavy-tailed distributions in adversarial texts.
Mitchell et al. [23] introduced DetectGPT utilizing probability curvature from perturbations for source
identification, which was subsequently optimized by Bao et al. [33] through FAST-DetectGPT to maintain
comparable accuracy with enhanced efficiency; the research direction was further extended by Su et al. [34]
with DetectLLM incorporating optimized log rank information, while Zeng et al. [35] proposed DALD, a
novel framework that aligns the distribution of surrogate models with unknown target LLMs to address the
challenge of detecting black-box LLM-generated text without access to model logits.

2.3 Evasion Techniques and Countermeasures

Concurrently, substantial research efforts have been directed toward evasion model algorithms designed
to interfere with detection capabilities [36]. These approaches primarily involve text manipulation through
external model rewriting, paraphrasing, or insertion of special characters to create semantically equivalent
but formally distinct text variants. Some studies have also explored prompt optimization strategies to guide
LLMs in evading detection [21]. This has established a mutually reinforcing adversarial relationship between
detection and evasion models: detection models continuously refine their feature mining capabilities, while
evasion models develop increasingly sophisticated disruptive elements, driving iterative advancements in
both domains [22]. Krishna et al. [37] proposed the DIPPER paraphrase model to evade Al-text detectors
and a corresponding retrieval-based defense to secure detection against such attacks.

Table 1 provides a systematic comparison of major technical approaches for Al-generated text detection,
encompassing the evolution from traditional supervised learning to recent statistical derivative feature
methods, clearly illustrating the characteristics and limitations of each category.
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Table 1: Comparison of Al-generated text detection techniques

Technique . . e Representative
Key characteristics Limitations
category works
Poor cross-domain
Supervised Require labeled training data; e .
. . adaptability; Training [13,14]
methods End-to-end classification
data dependency
, Generator-discriminator . .
Adversarial Training instability;
. framework; Enhanced . [15,29]
training . Mode collapse issues
generalization
Feature engineerin
Unsupervised Training-free operation; Strong 5 . 5
. o complexity; [16,18]
statistical generalization I
Performance variability
Single feature
. Perturbation-based analysis; dependency;
Statistical .
L Probability curvature features; Performance [23,34,35]
derivative features L .
Log-rank optimization degradation under

complex attacks
Zero-shot detection; Proactive  Limited to textual data;
Our D3M method evasion utilization; Dual-driven Computational This work
metrics; Interpretable results overhead

3 Main Methods

The problem of detecting machine-generated text in zero-shot scenarios can be described as follows:
Given a text or candidate paragraphs X, which is a sample to be detected from datasets generated by humans
or source models. Next, the text paragraphs are paraphrased using attack strategies by a perturbation model
to generate new text passages. Then, an unsupervised-trained scoring model evaluates and scores the text to
be detected, acting as the detector for the detection task, based on dual-driven criteria. Finally, the model
provides more intuitive explanations to assist in determining the final class label, indicating whether the
target text is machine-generated or human-authored. The framework diagram of the algorithm around the
data flow is shown in the Fig. 1.
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Figure 1: Schematic diagram of the D3M (Dual-Driven Defense Mechanism) framework data flow. This figure
(Continued)
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Figure 1: (continued) illustrates the complete text processing pipeline from a data flow perspective: raw text input
first undergoes space infiltration preprocessing to generate perturbed text; then passes through an entropy-based weak
point identification module to screen key text segments; subsequently utilizes a mask-filling model to generate multiple
rounds of perturbations on selected segments; and finally computes perturbation discrepancies through the dual-driven
metric calculation module for both Information Transmission Quality (ITQ) and Information Transmission Density
(ITD), which are fused to produce the final detection score. Arrow directions indicate the sequential data flow between
modules

3.1 Space Infiltration Text-Attack

To evaluate the model’s robustness against interference, we implemented a multi-round attack strategy
that involves infiltrating random space characters to disrupt the text. In this approach, multiple space
characters are randomly inserted before commas in selected text paragraphs, creating complex expression
patterns that can effectively evade detection. The core principle of this strategy is to disrupt the coherence
of the original text by introducing space characters, which alters the semantic and formatting patterns
between machine-generated and human-authored texts. This modification reduces discrepancies in logical
coherence, semantic consistency, and overall confusion entropy. Space Infiltration is applied as a uniform
pre-processing step to all texts before detection. Its primary purpose is to proactively introduce interference,
thereby increasing the inter-class confusion between human-written and machine-generated texts in the
dataset and enabling a more effective evaluation of model robustness under adversarial conditions. By
leveraging this obfuscation mechanism, the altered text can often evade detection by models reliant on basic
statistical features and classifiers. In a specific case, a text paragraph pending to detect T' = sy, 55, ..., s, Which
is composed of multiple sentences. Then, randomly selecting multiple commas within the paragraph, we
add space characters before these commas to generate a new text paragraph YN"M fi= S15 825 ees Sty ooy Sy, the
infiltration strategy is as in Eq. (1),

Tinfi = Spaceinsi(T, h), Q)

where a new sentence unit §; contains h space characters, and _ represents the space character.

3.2 Problem Identification

Intuition suggests that identifying weak points or sentences in a paragraph is vital for evaluating the
quality of textual paragraphs. Weak points frequently expose the coherence, logical consistency, and informa-
tion load balance of a textual paragraph, all of which serve as indicators of its quality. Therefore, when faced
with text paragraphs that pose challenges in confusion detection, and with the aim of efficiently and accu-
rately distinguishing between human-authored and machine-generated documents, this approach proposes
a strategy for identifying weak sentences in text paragraphs based on the aforementioned human cognitive
thinking. Subsequently, it analyzes the features of weak sentences to achieve text type discrimination.

From the perspective of information theory, the entropy value of a sentence represents its information
content, uncertainty, and predictability. It serves as an important metric for assessing sentence complexity
and comprehension difficulty. Specifically, a lower entropy value indicates that the sentence maybe overly
simple, repetitive, or lacking in diversity. Additionally, the entropy values of sentences in a text paragraph can
be efficiently calculated using pre-trained language models (PTLMs). Thus, we choose to employ sentence
entropy as a metric for identifying weak points in text paragraphs.

The strategy for identifying weak points involves utilizing a PTLM to calculate the entropy values of
individual sentences in the text paragraph T. Next, the sentences are sorted in ascending order based on
their entropy values. If the number of sentences is greater than three, the three sentences with the lowest
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entropy values are selected as candidate weak sentences. Otherwise, all the sentences are chosen as candidate
sentences. The results of indentifying weak points is shown as in Eq. (2),

N

(T s, Ty ek, L T} = ArgTop Y Hentroy (Thsi) » ()
i=1

where T, .« represents the paragraph composed of the latest filtered weak sentences x;, and iwe“k represents

the element with the largest entropy value in the sequence {51,5,_,....,5;_,...,S, }.

3.3 Dual-Driven Defense Mechanism

Assuming that the weak point sample x~gy originates from a generative model Mg, we utilize a
perturbation model Mp to introduce perturbations into weak points sample x, producing %. The perturbation
function, denoted as g(- | x), provides a distribution over %, which represents slightly modified versions of
the original text while preserving its semantic similarity. The evaluation of the sample can be analyzed with
a scoring model Mg, which is not same with the generative model M. Next, we provide a mathematical
description of ITQ and ITD. Specifically ITQ is determined by the function calculated as Qg(x), which
primarily evaluate the perplexity of a given text sequence. ITD is obtained through the function D, (x), which
primarily calculate the frequency of occurrence of keywords and meaningful entities across the entire tokens.
When the perturbations are produced, the perturbation discrepancy scores between x and x is generated,
denoted as d;;q as in Fq. (3), and denoted as d;4 as in Eq. (4), respectively.

dit‘l (x’ Qo> q) = Q9(x) - IEic~q(-|x) QG(';C) (3)
dita (%, De, q) 2 De(x) = Esvg() De (). (4)

where, the mean value f1;¢4(X), fiza (%) is computed as in Eq. (5),

1
Eseq(x) Qe (X) = X > Qo (%:)
) ' (5)
Eieg(fx)De (%) = T > De (%)

For the above given sample x = {token,, token, ---, token, }, the function Qg(x) is calculated by
directly invoking the API or library provided by the perplexity of the original text, as specified in Eq. (6),
which computes the perplexity of the text based on the conditional token probabilities from the model that
generated the candidate text. This formulation captures the intrinsic characteristics of the text’s generation
mechanism. And the resulting perplexity value reflects the alignment between the text and its presumed
generative model’s probability distribution, thereby providing a computable basis for subsequent ITQ
analysis and source discrimination.

The function D, employs the Spacy library to count the number of keywords, entities and stop words,
subsequently computes the entity density as a ratio, as illustrated in Eq. (7). The keyword counting process
employs a comprehensive set of linguistic elements processed through SpaCy (v3.6.1). Specifically, our
implementation utilizes the standard English stop word list, all named entities recognized by SpaCy’s named
entity recognition module (including persons, organizations, locations, and other standard categories),
and domain-specific high-frequency terms extracted from each dataset’s training corpus. For each dataset
(XSum, SQuAD, WritingPrompts), we derived the top 100 most frequent nouns and verbs from the respective
training corpus, excluding stop words and named entities. This multi-faceted approach ensures that ITD
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captures both general linguistic characteristics and domain-specific lexical patterns, providing a robust
measure of information concentration.

N
Qp(x) = exp(—% > log Py(token;|token.;)). (6)
i=0
N
Z ]Ikeyword(tOkeni) + ]Ientity(tOkeni)
_i=0
DC(x) - L(X) . (7)

where, the Ixeyyora and Ie,yity is the indicator function that takes the value 1 if the variable x meets the
requirements and 0 otherwise. L is the counting function, which counts the length value of the variable.

Due to the disparity in the scale and range between dj;, and d;;4, we propose normalizing the
perturbation discrepancy using the standard deviation, as in Eqs. (8) and (9) correspondingly, which
provides a marginally better feature signal for subsequent detection.

. 1 . .
Uith = ﬁzﬁ(@e (xi)_f‘itq)z' ®)
&iztd = ﬁ Z (D (%;) - ﬁitd)z . 9)

where, k denotes the number of perturbations, while ;4 and fi;,4 correspond to the means of perturbation
discrepancy, respectively.

Subsequently, the normalized results are generated as in Fq. (10),
dig  dita
Titg> Titd = , —.
NN
itq itd

Ultimately, the two metrics are combined through weighted summation to derive the final measure-
ment, as in Eq. (11),

(10)

@ =axTig+ (1-a) X Tig, (11)
where a € (0,1) is the weigh parameter, which determines the ratio of two measurement scores.

3.4 Algorithm

In this section, we present the proposed algorithm in detail, which is designed to address the specific
challenges outlined in the problem formulation. The algorithm is structured into four key phases: (1) Space
Infiltration, applied uniformly as a pre-processing step to all input texts to increase dataset complexity
and evaluate robustness; (2) Weak Points Identification, which retrieves vulnerable sentences based on
entropy ranking; (3) Perturbation Generation, where selected weak points are perturbed using a mask-filling
model; and (4) Dual-Driven Metric Calculation, where detection scores are derived from discrepancies
in Information Transmission Quality (ITQ) and Information Transmission Density (ITD). Algorithm 1
provides a structured overview of the end-to-end workflow, including a concrete example that traces a short
text snippet through each processing stage—from space insertion and weak point selection to perturbation
and final metric computation. Algorithm 1 serves as a visual guide, allowing readers to quickly grasp the
sequence of actions and the logic behind each decision point.
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Algorithm 1: Dual-driven detection

1: Input: passage text T = s, 52, . . . , S, number of space characters #,number of weak points j, generative
model Mg, perturbation model Mp, score model Mg, perturbation function g, and number of perturbations
ks

2: Text Attack: infi <« Spacelnfiltration (T, h) Infiltrate h spaces into T

3: Weak Point Identification: {T"lwe“k, TZW eak T“]We"k} Identificate j weak points from T"in Fie

4: Dual-driven mechanism:

5. xi~q(-|x),ie[l.k],xi € Tyear

6: Derive fi;zq and fi;¢q based on Eq. (5)

7: Derive d;tq and d;;q based on Eqs. (3) and (4)

8: Derive &l.th and 6i2td based on Egs. (8) and (9)

9: Compute 7;z4 and 7;4 based on Eq. (10)

10: Combine metrics:
1I: @ =axTiy+ (1-a) x Ty Distinguish the text T Label (human-authored or machine-generated)

4 Datasets and Experiments
4.1 Experimental Data Preparation

Our research encompasses three datasets: XSum, SQuAD, and Reddit WritingPrompts, which cover
diverse everyday domains and provide invaluable insights into the applications of language modeling. The
XSum dataset is essential for detecting fabricated news through news articles, the SQuAD dataset represents
machine-generated academic essays with Wikipedia paragraphs, and the Reddit WritingPrompts dataset
offers a collection of prompted stories, facilitating exploration of the detection of machine-generated creative
writing submissions. To ensure the reliability of our findings, we meticulously conduct each experiment using
carefully selected samples ranging from 150 to 500 examples, as specified in the text. In each experiment,
we use the first 30 tokens of the real text (or only the question tokens for the PubMedQA experiments) as
prompts to generate the machine-generated text. Performance assessment is based on the area under the
receiver operating characteristic curve (AUROC), a metric that indicates the probability of the classifier
correctly ranking a randomly-selected positive (machine-generated) example higher than a randomly-
selected negative (human-written) example. It is important to note that all experiments include an equal
number of positive and negative examples, ensuring a balanced evaluation framework. By adopting this
comprehensive methodology and employing these sophisticated datasets, our research aims to advance the
frontiers of knowledge in the field of natural language processing.

Each experiment evaluates a varying number of examples, ranging from 150 to 500. The machine-
generated content in these experiments is produced using the GPT-2 model without fine-tuning, with
prompts derived from the first 30 tokens of the real text. The text attack chain is defined by two key
parameters: the space infiltration number, which is set to 10, and the weak points number, which is set to
3. The core hyperparameters of the perturbation chain include the mask-filling model, the length of the
masked spans, and the perturbation rate for the mask-filling model. For most experiments, the T5-3B model
is used, except for larger-scale GPT-NeoX experiments, where the T5-11B model is employed. The mask rate
is fixed at 15%, and a limited sweep over masked span lengths, particularly 2 tokens, is conducted for the
perturbation chain.
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4.2 Comparisons and Baselines

We compare our method with various existing zero-shot methods for detecting machine-generated text
that also leverage the predicted token-wise conditional distributions of the source model for detection. These
methods correspond to statistical tests based on token log probabilities, token ranks, predictive entropy, or
probability curvature.

The Log method utilizes the average token-wise log probability of the source model to determine
if a candidate passage is machine-generated. Passages with a high average log probability are likely to be
generated by the model [22].

The Rank and Log-Rank method uses the average observed rank or log-rank of the tokens in the
candidate passage according to the model’s conditional distributions. Passages with a smaller average
(log-)rank are likely machine-generated [38].

The Entropy-based method is inspired by the hypothesis that model-generated texts will be more ’in-
distribution’ for the model, leading to more over-confident (thus lower entropy) predictive distributions. We
find empirically that predictive entropy is often positively correlated with passage fake-ness [39].

DetectGPT utilizes the observation that ChatGPT texts tend to lie in areas where the log probability
function has negative curvature to conduct zero-shot detection [23].

Although our main focus is on zero-shot detectors, which do not require retraining for new domains or
source models. As a result, we carried out two sets of experiments to evaluate the zero-shot and supervised
detection performance of DetectGPT on models with different parameters, and compared them with
existing methods.

Considering the inherent differences in the internal logic and external characteristics of samples gen-
erated by different models, the machine-generated samples originate from models with varying parameter
sizes, ranging from 1.5B to 20B. These models include GPT-2, OPT-2.7, Neo-2.7, GPT-], and NeoX.

4.3 Experimental Infrastructure

The algorithm was conducted using NVIDIA GeForce RTX 3090 GPUs (24 GB memory) with CUDA
11.4, Intel Core i9-11900K processors, and 64 GB system memory. All experiments were implemented in
Python 3.8.10 using PyTorch 2.0.1 and Transformers 4.30.2. The average runtime per complete experiment
was approximately 2.5 h.

5 Results and Discussion

From a statistical perspective, it is essential to first investigate the characteristics of the data samples.
To this end, we conduct a statistical analysis of the three-dimensional feature space (including Information
Transmission Density, information transmission quality, and information likelihood estimation) for the
samples before and after perturbation across three distinct datasets. The experiment involves randomly
selecting three sets of sample features from 200 perturbation instances, and the results are presented
in Fig. 2. Empirical analysis of the statistical results reveals that the distribution of sample feature values
before and after perturbation exhibits significant differences, particularly in the WritingPrompts dataset.
However, empirical statistics indicate that a majority of the samples still exhibit overlapping regions in
feature values, meaning that the feature values of machine-generated samples post-perturbation are nearly
identical to those of human-generated samples. The feature distributions in Fig. 2 reveal a substantial overlap
in individual feature values between human and machine-generated samples. This makes direct distinction
based on any single metric challenging; however, our dual-driven mechanism successfully overcomes this by
disentangling the distributions through a combination of normalized metrics. This synergistic combination
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of Information Transmission Quality and Information Transmission Density, after proper normalization
and weighting, effectively separates the two classes, as conclusively demonstrated by the strong performance
results in Table 2.
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Figure 2: The statistical distribution results of the randomized data are presented, where the horizontal axis comprises
three-dimensional feature metrics (Information Transmission Density, Information Transmission Quality, and infor-
mation likelihood estimation), and the vertical axis consists of three datasets (SQuad, WritingPrompts, XSum). Each
legend within the figure illustrates the distribution of feature values for machine-generated samples (sampled data) and
human-authored samples (original data) following perturbation

Table 2: AUROC performance comparison under different strategies (Mean + 95% Confidence Interval). The exper-
iment evaluates the performance of six types of algorithms across three datasets, with the evaluation model for each
algorithm sequentially switching to five GPT models of varying parameter scales

LLMs method gpt-neo (1.3B) gpt2 (1.5B) gpt2-xl (1.5B) gpt-opt (2.7B) gpt-j (6B)
XSum
Entropy_ 0.5893 + 0.012 0591 + 0.011 0.601 % 0.010 0.534 + 0.015 0.635 + 0.009
threshold
Likelihood_ 0.7892 + 0.008 0.855 + 0.006 0.795 + 0.007 0.764 + 0.009 0.688 + 0.010
threshold

(Continued)
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Table 2 (continued)

LLMs method gpt-neo (1.3B) gpt2 (1.5B) gpt2-xl (1.5B) gpt-opt (2.7B) gpt-j (6B)
Rank_ 0.7869 + 0.007 0.823 + 0.006 0.767 + 0.008 0.814 + 0.007 0.750 + 0.009
threshold
Log_rank_ 0.8515 + 0.006 0.916 = 0.004 0.844 + 0.006 0.807 + 0.008 0.755 + 0.008
threshold
DetectGPT 0.9553 £ 0.004  0.9684 + 0.003  0.9546 + 0.004  0.8964 + 0.007 0.926 + 0.005
D3M (ours) 09792+ 0.002  0.9907 +0.001  0.9835+0.002  0.9366 +0.005  0.9456 + 0.004
WritingPrompts
Entropy_ 0.413 + 0.016 0.339 + 0.018 0.4129 + 0.015 0.414 + 0.016 0.469 + 0.014
threshold
Likelihood 0.872 + 0.005 0.892 + 0.004 0.8771 + 0.005 0.859 + 0.006 0.690 + 0.010
threshold
Rank_
0.873 + 0.005 0.867 + 0.005 0.8895 + 0.004 0.859 + 0.006 0.824 + 0.007
threshold
Log_rank_ 0.820 + 0.006 0.841 + 0.005 0.8281 + 0.006 0.817 + 0.006 0.863 + 0.005
threshold
DetectGPT 0.8989 + 0.004  0.8798 + 0.005  0.8081  0.007 0.814 % 0.007 0.869 + 0.005
D3M (ours) 09309 + 0.003  0.8891 +0.005  0.8362+0.006  0.8726 + 0.005  0.8929 4 0.004
SQuAD
Entropy_ 0.5878 + 0.012 0.536 + 0.014 0.593 + 0.012 0562 = 0.013 0.704 + 0.010
threshold
Likelihood 0.8009 + 0.007  0.909 + 0.004 0.841 = 0.006 0.850 = 0.006 0.707 + 0.009
threshold
Rank_
0.8456 + 0.006 0.901 + 0.004 0.833 + 0.006 0.843 + 0.006 0.808 + 0.007
threshold
Log_rank_ 0.8918 + 0.005 0.960 + 0.003 0.897 = 0.004 0.883 = 0.005 0.810 + 0.007
threshold
DetectGPT 0.9346 + 0.004 09703 +0.002 09169 + 0.004  0.9802 + 0.002 0.848 + 0.006
D3M (ours) 0.9696 + 0.002  0.9916 + 0.001 09427 £ 0.004  0.9934+0.001  0.9277 + 0.004

We emphatically compare the performance of typical large language models under different strategies
on various datasets under the same experimental conditions. The overall experimental results are presented
in Table 2. The performance of our proposed D3M model slightly surpasses that of the detectGPT model
and significantly outperforms other benchmark models, highlighting the value of the dual-drive strategy
designed within the D3M model. Furthermore, a horizontal comparative analysis of the D3M model’s ability
to identify large models with varying parameter scales reveals that the model exhibits higher recognition
accuracy for large models with smaller parameter scales. This experimental outcome aligns with foundational
theoretical expectations, which posit that the larger the parameter scale of a model, the more closely its
generated content resembles human-authored text in style. A vertical comparison of the D3M model’s
performance across different datasets shows that it performs best on the XSum dataset, followed by the SQuad
dataset, with the WritingPrompts dataset yielding the least favorable results. By examining the characteristics
of the different datasets, it is evident that the XSum dataset features the longest average paragraph length
among its sample texts, while the WritingPrompts dataset has the shortest. This result is consistent with the
phenomenon that variations in ITD and ITQ are more readily captured in longer texts, further underscoring
the value of the dual-drive information transmission strategy proposed by the model.
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To evaluate the statistical significance of the performance improvements, we conducted paired t-tests.
The results demonstrate that our proposed D3M method achieves statistically significant improvements (p <
0.01) over all baseline methods across all large language models (LLMs) on the XSum and SQuAD datasets.
On the WritingPrompts dataset, D3M also yielded statistically significant improvements (p < 0.01) in all
cases except for the gpt2 model, where the improvement was still significant at the p < 0.05 level. The mean
values and 95% confidence intervals reported in Table 2, calculated from 30 independent runs, along with
their narrow ranges, further substantiate the robustness of our method’s performance.

The robustness of an algorithm against interference is of significant importance to its stability. Generally,
introducing noise (such as spaces, line breaks, or punctuation) into both machine-generated and human-
generated text content can lead to model misjudgments, where human-authored content is mistakenly
identified as machine-generated. Therefore, we also designed an evaluation experiment for the interference
strategy Space_infi, which involves increasing the intensity of interference by adding spaces within text
sentences. We discretely set four levels of interference intensity (ranging from 5 to 20 spaces) to test
the performance variations of different algorithmic models. The experimental results, as shown in Fig. 3,
indicate that both our proposed D3M algorithm and the detectGPT algorithm exhibit strong resistance to
interference. Their performance does not experience a sharp decline as the intensity of interference increases.
In contrast, the performance of the likelihood and entropy algorithms declines significantly. Additionally, it
is observed that the quality of the dataset has a considerable impact on the test results. The performance of all
algorithms on the XSum dataset is superior to that on the WritingPrompts and SQuad datasets, which aligns
with intuitive expectations. However, the D3M model maintains stable identification performance even on
datasets of lower quality.
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Figure 3: Performance results of models under different interference strategy intensities. The performance results are
displayed using stacked bar charts, which include three groups of bars representing the performance of six types of
algorithms across three datasets. Each algorithm is evaluated using the GPT-2 model as the generative evaluation model
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To investigate the impact of key parameters on model performance, this section discusses a series of
open questions concerning the number of perturbations, the text masking ratio, and the evaluation model.
This analysis aims to dissect the algorithm’s behavior from multiple perspectives.

5.1 Can an Increase in the Number of Perturbations Enhance the Overall Performance of the Algorithmn?

The number of perturbations is a critical factor determining model performance. Theoretically, increas-
ing the number of perturbations can improve the model’s recognition performance, as a higher number
of perturbations leads to more pronounced variations in ITD, ITQ, and information likelihood estimation.
However, perturbations also introduce errors and, more importantly, increase computational complexity,
which results in slower model inference speeds. Therefore, it is necessary to experimentally determine an
appropriate number of perturbations to balance model inference performance and computational efficiency.
The experimental results, as shown in Fig. 4, involve performance tests of the model under varying numbers
of perturbations across three datasets, with the number of perturbations discretely increased from 1 to 200.
The performance results indicate that the model’s inference performance significantly improves when the
number of perturbations ranges from 1 to 100. However, when the number of perturbations exceeds 100, the
model’s inference performance shows no significant improvement and even declines on the SQuad dataset.
Consequently, the optimal hyperparameter for the number of perturbations is set to 100, which enhances the
model’s inference accuracy while reducing computational complexity.
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Figure 4: Model performance under various perturbations in three diverse datasets. The stacked bar chart consists of
three groups of bars, each representing the results of six perturbation tests (1, 5, 10, 20, 100, and 200 perturbations). A
line graph is overlaid to illustrate the numerical changes and trends in algorithm performance under different numbers
of perturbations

5.2 How Does the Proportion of Text Masking Affect the Model’s Performance in the Perturbation Strategy?

In the algorithmic process, a portion of words or phrases in the text is first randomly sampled and
masked, followed by the generation of the masked content using the T53B masking model to complete the
text perturbation. A critical aspect of this process is the proportion of text content that is masked, i.e., the ratio
of original text words/phrases replaced with special mask identifiers. This proportion is indirectly controlled
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by the pct (place ceil token) metric. Experiments were conducted by discretely setting pct values from 0.1 to
0.9, and then observing the model’s performance across three types of datasets. As shown in the experimental
results in Fig. 5, when the pct value is controlled between 0.2 and 0.3, the model’s accuracy on all three
datasets remains high and stable. Therefore, the model’s pct hyperparameter is set to 0.3 to ensure good
performance across various datasets.

XSum —e— WritingPrompts —#— SQuad

r 0.995

- 0.990

- 0.985

- 0.980

AUROC

- 0.975

F 0.970

0.0 1.0

pct

Figure 5: The performance of the model under different masking proportion strategies across three datasets is tested.
The experimental results are displayed in a stacked line graph, which includes three sets of curve results, each
representing the performance metrics corresponding to different pct values on different datasets

5.3 How Does Using Likelihood Estimates from an Evaluation Model that Differs from the Source Model
Affect the Detection Performance?

In the overall design, although our experiments primarily target the “white-box” environment for
machine-generated text detection, in practical applications, the model used to evaluate text content may
differ from the model that generated the text. The evaluation model is designed to determine whether
the text is machine-generated or human-authored. However, given the diverse mechanisms and stylistic
variations among different large language models, a critical question arises: Does the inconsistency between
the evaluation model and the generative model affect the evaluation results? To address this question, we
designed an extended experimental test under the following scenario: we aimed to investigate the effect of
using a model different from the text-generating model to score candidate passages (as well as perturbed
texts). In other words, our goal was to distinguish between human-generated text and text generated by
Model A, but without access to Model A for calculating probability parameters. Instead, we used probability
parameters calculated by an alternative Model B. Furthermore, we systematically varied the parameter
scale of the evaluation model from small to large and conducted a series of comparative experiments. The
experimental results are shown in Fig. 6. In this figure, the diagonal values indicate that the source model and
the evaluation model are consistent, while the horizontal axis represents the source model, and the vertical
axis corresponds to the evaluation model (scoring model). Analysis of the results reveals that the algorithm
performs best when the scoring model is consistent with the source model, indicating that the algorithm is
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most suitable in a white-box setting. Therefore, the algorithm remains inherently a white-box model, and
the original conclusion remains unchanged.

Range Value
— 0.9910
gpt-j(6B) {  0.801 0.653 0.877 0.925 0.946
- 0.9234
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Figure 6: Analysis results of the consistency correlation between the generation model and the evaluation model. The
experimental results are represented by a correlation coefficient matrix, where one dimension is the text generation
model (Source Model), and the other dimension is the text evaluation model (Score Model). Each small square

represents the algorithm performance result of a pair of models, with different color depths indicating different
numerical values

More interestingly, in cases of model inconsistency, the algorithm performs better when the source
model has a larger parameter scale and the scoring model has a smaller parameter scale. This suggests
that the algorithm can achieve good performance even with a smaller scoring model. In other words,
relatively smaller scoring models can effectively evaluate text generated by much larger source models.
This phenomenon has been consistently observed across multiple dataset and model combinations. This
finding has significant practical implications for real-world applications, as it enables the development
of more efficient detection systems with only a slight reduction in detection accuracy, particularly in
resource-constrained environments where computational efficiency is critical.

6 Conclusions

This study proposes a novel unsupervised text content detection method based on a dual-driven defense
mechanism (D3M). Its core contribution lies in establishing two key metrics derived from information
transmission theory: ITQ and ITD. These metrics quantify textual perturbation characteristics, thereby
enabling reliable discrimination between human-authored and machine-generated content. Furthermore,
a comprehensive series of exploratory tests has been conducted to evaluate the extent of influence exerted
by key parameters, including specifically the number of perturbations, text masking rate, and selection of
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discriminative models. Comprehensive experimental results demonstrate that our method achieves out-
standing performance across multiple benchmarks, particularly in scenarios involving Spacelnfi interference
strategies, exhibiting exceptional detection accuracy, robust resistance against adversarial interference, and
strong generalization capability.

Methodologically, this research advances statistical-based detection techniques through its innovative
dual-driven verification mechanism and unsupervised learning architecture. The proposed approach not
only reduces dependency on annotated data but also provides interpretable detection metrics, effectively
addressing limitations of conventional methods in feature selection and generalization. These contributions
offer valuable insights for future research in Al-generated content identification and establish a practical
foundation for real-world applications requiring trustworthy text source verification.

Looking ahead, this study has several limitations that warrant further investigation. First, the detection
scope needs to be expanded to include a wider variety of large-scale models, particularly those with massive
parameters and commercially available closed-source models, which may employ different training method-
ologies and exhibit enhanced camouflage and anti-interference capabilities. Second, the current algorithm
is limited to textual content; future work should explore multimodal content detection encompassing text,
images, audio, and video. Third, additional interference types such as short-text injection, special character
insertion, and sentence position swapping should be incorporated to further validate the model’s robustness.
Fourth, it is essential to examine the algorithm’s complexity, particularly in terms of time and space efficiency,
as optimization in these aspects is critical for future deployment in practical online business environments.

In summary, given the rapidly advancing capabilities of large language models, accurately identifying
machine-generated content to prevent potential security risks arising from undetected AI-disguised human
output remains a profoundly important and continuously evolving scientific challenge. This necessitates
sustained scholarly attention and iterative research development.
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