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ABSTRACT: The increasing popularity of quantum computing has resulted in a considerable rise in demand for
cloud quantum computing usage in recent years. Nevertheless, the rapid surge in demand for cloud-based quantum
computing resources has led to a scarcity. In order to meet the needs of an increasing number of researchers, it is
imperative to facilitate efficient and flexible access to computing resources in a cloud environment. In this paper,
we propose a novel quantum computing paradigm, Virtual QPU (VQPU), which addresses this issue and enhances
quantum cloud throughput with guaranteed circuit fidelity. The proposal introduces three innovative concepts: (1) The
integration of virtualization technology into the field of quantum computing to enhance quantum cloud throughput.
(2) The introduction of an asynchronous execution of circuits methodology to improve quantum computing flexibility.
(3) The development of a virtual QPU allocation scheme for quantum tasks in a cloud environment to improve circuit
fidelity. The concepts have been validated through the utilization of a self-built simulated quantum cloud platform.
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1 Introduction

In recent years, the field of quantum computing has witnessed a period of unparalleled advancement. It
promises to resolve intractable computational problems that exceed the capabilities of contemporary classical
computers, thereby promising to revolutionize numerous scientific disciplines. The potential of this approach
has been demonstrated in a number of areas, including financial modelling [1,2], database searches [3],
molecule simulation [4,5], and machine learning [6-8]. It is anticipated that in the coming years, quantum
computers will have thousands of qubits. However, the fidelity of the devices may still present a limitation
to the ability to perform large computations involving many qubits. Quantum computing has experienced
extraordinary strides in recent years, yet the current developmental phase of quantum devices has not moved
beyond the scope of the noisy intermediate-scale quantum (NISQ) era [9]. These NISQ computers are
characterized by a number of noises and errors, including measurement errors, quantum gate operation
errors, and most, problematic of all, short decoherence times. Consequently, the outputs produced by these
contemporary quantum devices are unreliable when processing deep circuits with numerous gates.

Moreover, quantum computers require the deployment of highly intricate control circuitry, cutting-edge
microwave technologies, cryogenic refrigeration units that can sustain temperatures down to the milli-kelvin
range, and robust shielding mechanisms to fend off environmental noise interference [10]. The exorbitant
costs linked to the essential hardware, coupled with the stringent ambient requirements, pose significant
barriers for ordinary users to access on-site quantum computing resources. Nevertheless, the emergence of
quantum cloud service providers has enabled remote access to quantum computing infrastructure, and this
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integration is poised to drastically lower the entry barriers to leveraging quantum computing resources. This
facilitates the investigation of quantum algorithms by researchers and developers, obviating the necessity of
quantum hardware [11-13].

With ongoing growth in the demand for direct access to quantum hardware resources, the volume of
users subscribing to quantum computing cloud services is forecast to expand exponentially over the course
of the next ten years. However, the prevailing quantum cloud providers utilize a time-based resource-sharing
model to regulate access to their backends. This approach invariably results in a substantial number of jobs
awaiting processing on quantum devices, and users being required to wait for extended periods in queues.
To tackle this problem, numerous researchers have advocated for the deployment of multi-programming
on NISQ computers, aiming to boost the utilization efficiency of robust qubits within a single quantum
device [14-18]. What merits particular attention is that although this approach can effectively elevate the
throughput of an individual quantum backend, its inherent flexibility remains inadequate. This is due to
the fact that the Multi-programming approach necessitates that the user specify the desired backend for
execution. Moreover, it does not take into account the resources available within the broader quantum
computing resource pool. Furthermore, it does not consider the resources available within the entire
quantum computing resource pool. Statistically, at any given moment, there could be as many as 10 to 1000
quantum tasks queued up on different quantum computers, exhibiting a high degree of randomness [19]. This
ultimately results in an unsatisfactory user experience and hinders the advancement of quantum algorithms
and applications to a certain extent.

In order to address this challenge, a new quantum computing implementation paradigm for supercon-
ducting quantum computers is proposed. This paradigm, termed the Virtual QPU architecture, is based on
the virtualization of classical computers. The virtualization of classical computers is a technique that enables
the logical partitioning or combination of computational resources (e.g., servers, storage, and networks)
so that multiple operating systems and applications can run simultaneously. The technique facilitates the
virtualization of physical devices or resources, thereby enabling multiple virtual instances to share the same
set of physical resources, thus enhancing resource utilization and flexibility. This concept aligns perfectly
with the current trajectory of quantum cloud development. The virtual QPU architecture proposed in
this paper unifies the quantum resources of the cloud service provider and allocates appropriate quantum
resources when the circuit performs compilation, automatically creating virtual QPUs and providing them
to the corresponding tasks. A salient feature of this approach is its asynchronous execution of virtual QPUs,
a feature that is distinct from the parallel execution of circuits. This asynchronous execution has been
demonstrated to enhance the flexibility of the quantum cloud, thereby increasing its throughput in complex
task environments.

The subsequent sections of this paper are laid out in the following manner. Initially, Section 2 provides a
contextual foundation for the research. Subsequently, Section 3 describes the architecture of VQPU. Section 4
primarily encompasses the experimental and evaluation facets of the proposed approach. Finally, Section 5
summarizes the results of the study.

2 Background

In this section, we introduce some fundamental concepts related to quantum computers and quantum
computing [19-23]. Additionally, we present existing schemes for enhancing the throughput of quantum
clouds [14-18], thereby demonstrating the necessity of a virtual QPU architecture.



Comput Mater Contin. 2026;87(1):40 3

2.1 Quantum Computer

A quantum computer is defined as a computer that employs the principles of quantum mechanics for
the storage and processing of information. Conversely, quantum computers utilize quantum bits (qubits) as
the fundamental unit of information, a paradigm shift from conventional computers that employ classical
bits. The distinctive quantum properties of qubits, including superposition and entanglement states, enable
quantum computers to achieve computational speeds that are significantly faster than those of conven-
tional computers in certain instances. The most prevalent categories are ion traps [24], superconducting
quantum [25], and photonic quantum [26]. The development of quantum computers has the potential to
yield significant technological advances and may offer solutions to problems that are currently intractable to
conventional computers. However, contemporary NISQ computers are confronted with substantial reliability
challenges. It is acknowledged that physical qubits are fragile and susceptible to interference. Consequently,
quantum programs running on a quantum computer may be subject to the following types of errors: The
following errors have been identified: (1) Coherence errors caused by coherence time; (2) Operational errors
due to error-prone quantum gates; (3) Readout errors due to measurement operations.

2.2 Quantum Computing Basics

Quantum computing entails the precise manipulation of multiple qubits via a sequential set of quantum
logic gates. A qubit is analogous to a “bit” in classical computing. However, a qubit is capable of remaining in
not only the classical states, but also a superposition of these two states. This distinguishes it from a classical
bit. The superposition is denoted as |®) = a|0) + b|1), where a and b are complex numbers such that a* + b* =
1. It has been demonstrated that |a|? corresponds to the probability of measuring the qubit as |0}, whilst |b|?
corresponds to the probability of measuring the qubit as |1). The ability to create a “superposition” of basis
states allows for the use of an n-qubit system to represent a linear combination of 2" basis states. This can
be denoted as |®) = Y2 a,|x), where |x) represents a basis state, a, is the complex probability amplitude
associated with state |x) and it is necessary for ¥'2_¢! |at|” = 1 to be satisfied.

A quantum program is defined as a sequence of quantum gates that operate on a number of qubits. The
quantum gate is employed to convert one quantum state to another; specifically, |®,) = U |®,), where U is
a unitary matrix. In fact, any quantum gate that acts on three or more quantum bits can be decomposed
into a combination of single-qubit and two-qubit gates [22,23]. In order to obtain the results of the quantum
circuits execution, a qubit readout operation, or measurement, is employed. The measurement process
changes the state, and the qubit’s superposition of |0) and |1) collapses to the specific state, consistent with
the measurement result.

3 Related Work

To the best of our knowledge, no research extends the virtualization techniques of classical computing
to the field of quantum computing to address the challenges that exist in existing quantum clouds. That
said, a number of extant research efforts conduct in-depth examinations of these challenges. In this
section, we provide a comprehensive overview of the pertinent scholarly work that addresses each of these
challenges individually.

Challenge 1: The quantum cloud provider employs a time-based resource sharing model to regulate
access to its QPUs. In general, there are two principal methods of accessing the selected QPU. The customer
may either reserve an exclusive time slot on a QPU or utilize a shared job queue for a public QPU. The sole
distinction lies in the duration for which a QPU is exclusively allocated to a customer. In the first case, the
QPU is made available to the customer exclusively for the entire duration of the reserved time slot; in the
second case, only for the execution time of the single quantum circuit [27]. In either case, each executed
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quantum task blocks the entire QPU, which makes the quantum cloud much less flexible and results in a
large number of unused qubits during the execution of smaller quantum circuits, significantly reducing the
throughput of the quantum cloud.

The Multi-programming mechanism was initially proposed by Das et al. [14] through the development
of the Fair and Reliable Partitioning (FRP) approach, which coined the term “Multi-programming quantum
computing” and demonstrated that this scheme can lead to an increase in the throughput and utilization
of QPUs through their approach. Subsequently, Liu and Dou [18] enhanced this mechanism by introducing
QuCloud, which combines a new qubit mapping method with a compiled task scheduler for multi-
programming quantum computers in the cloud. In their seminal paper, Wu et al. [28] proposed a noise-aware
quantum job scheduler (NAQJS) based on circuit width, number of measurement shots, and submission
time of quantum jobs, to reduce execution latency. In addition, we may consider the work of Mineh and
Montanaro [29], who have devised a circuit parallel operation scheme that has been optimized for utilization
in the field of machine learning. In parallel, Park et al. [30] put forward a quantum multi-programming
algorithm tailored for the Grover search algorithm.

While multi-programming methodologies hold the potential to boost the throughput of quantum cloud
platforms to a certain extent, their practical applicability remains subject to notable constraints. The selection
of parallel circuits is a more complex process, as they must have the same number of trials and satisfy the
qubit constraints (including the qubit fidelity limit and the number of qubits limit) when mapping. Secondly,
the access to quantum resources in existing schemes is based on time-based resource sharing. This may result
in the inability of users to execute quantum circuits in parallel when they are submitted at different times.
This is attributable to the possibility that the circuit submitted at an earlier point in time may have utilized
the entirety of the QPU, irrespective of whether or not it employs all the qubits on the QPU.

Challenge 2: Currently, users are required to manually select specific physical resources when submitting
a quantum task. Given the difficulty users face in determining the task queuing status across individual
quantum backends, a marked disparity in wait times emerges when users submit their tasks to distinct
quantum backends at the same time. Although the method of specific physical resources allows researchers
a high degree of flexibility, in the majority of cases, researchers do not consider the execution process
of the tasks they submit; instead, they focus solely on the outcome produced by the quantum computer.
Furthermore, users select their physical resources due to the significant discrepancies in the quantum circuits
they design and the qubit properties required for the circuits to operate. It is therefore imperative that users
consider the various limitations of different quantum computing devices, as this is critical to the realization
of the task. This undoubtedly adds an unnecessary burden to the user. Additionally, the fact that the customer
directly chooses the physical resources works against the cloud provider, as they have limited control over
the use and utilization of QPUs. This may hinder the cloud provider’s ability to optimize resource utilization.

The current state of the art in quantum resource selection remains in the exploratory phase, with a
number of promising avenues for further research having been identified by the scientific community. Ravi
etal. [19] has put forward a sophisticated, enhanced adaptive task scheduling approach tailored for quantum
cloud environments. The Quantum Resource Estimator, a tool introduced by Suchara et al. [31], can select
a QPU by evaluating key factors including the count of physical qubits, algorithm execution time, and
the likelihood of a quantum algorithm operating successfully on a given QPU. Moreover, Salm et al. [32]
have created an automated framework that accurately converts quantum circuits into a variety of distinct
programming languages. Wang et al. [33] proposed the Qoncord automated job scheduling framework for
solving quantum circuit scheduling problems based on VQA. While these studies signify substantial progress
in the realm of automated hardware selection and offer a measure of respite from the quantum cloud queuing
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problem, they are nevertheless allocated on the basis of actual physical QPUs. This does not result in any
enhancement of single computer throughput.

In order to overcome the aforementioned challenges, we propose a virtual QPU architecture that draws
on the virtualization scheme in classical computing. This scheme manages all backend quantum resources
in a unified manner and allocates them on demand according to the circuit attributes, thus creating virtual
QPUs. Secondly, this architecture decouples the qubits and allows asynchronous execution of user-submitted
circuits, thereby improving the flexibility of the quantum cloud. In conclusion, the proposed architecture is
capable of rationally automating the virtual QPU creation and recycling process through the implementation
of the proposed algorithm, thereby achieving the optimal quantum cloud throughput.

4 Proposed Solution

The architecture of the virtual QPU proposed in this paper is shown in Fig. I, which contains the
overall architecture containing four parts, namely, Quantum Resource Manager, Quantum Resource Mapper,
Quantum Resource Allocator, and Quantum Mapping Optimizer. The Quantum Resource Manager provides
the interface for quantum resource access, and all quantum computing devices in the backend of the quantum
cloud need to access the Quantum Resource Manager. Subsequently, the Quantum Resource Mapper
virtualizes all quantum computing resources, accessing the Quantum Resource Manager and connecting
them to the quantum resource pool. When a quantum task is submitted to a quantum cloud service provider’s
cloud, the task will be placed in the user submission queue, where it will await processing in the order of
submission. In accordance with the first-in-first-out principle, the task with the longest waiting time will be
transmitted to the Quantum Resource Allocator, which distributes resources in accordance with the resource
usage within the resource pool and generates a virtual QPU. Subsequently, the user task and the virtual QPU
will be submitted to the Quantum Mapping Optimizer for circuit compilation, and the compiled circuit will
be transmitted to each quantum computer for execution. Upon completion of the execution, the result will be
returned to the user, and the virtual QPU resources will be recovered and returned to the resource pool. The
following section provides a comprehensive account of the function and implementation of each module.

Information about

virtual resources and
circuits

Information about
pending task

Quantum Resource Quantum Mapping

O B

Allocator Optimizer

User Submission Queue

virtual resources and

compiled circuits

Information about
resource pool

\ Information about

Information about
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Quantum Resource Quantum Resource
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quantum resources
Quantum Quantum Quantum
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Figure 1: Virtual QPU framework
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4.1 Quantum Resource Manager

A number of quantum cloud service providers are currently in operation, including IBM, Google,
Microsoft, and Honeywell. However, the quantum device interfaces of the same type of quantum computer
show significant discrepancies when provided by different quantum cloud service providers. To address the
fundamental issue of device unification, we develop the Quantum Resource Manager.

The Quantum Resource Manager provides downward access to different quantum computing resources,
encapsulating them in a unified way. It also provides upward calling interfaces to meet the requirements
of Quantum Resource Mapper. When accessing a quantum computing resource, the Quantum Resource
Manager proactively requests the resource attributes, which include the quantum resource type, the quantum
resource availability state, the gate groups supported by the quantum resource, the QPU topology, the
number of qubits, the qubits availability, and the qubits attributes. Qubit attributes include single-qubit gate
fidelity, two-qubit gate fidelity, measurement fidelity, and T1 and T2 relaxation times.

It is important to acknowledge that NISQ computers are vulnerable to external influences, such as
temperature fluctuations and magnetic field interference, which could potentially introduce distortions
and errors in the qubits. It is therefore essential to implement a periodic calibration process to ensure the
reliability and accuracy of quantum computers. This process allows for the correction and adjustment of
the qubits’ state, thereby guaranteeing the precision of the resulting calculations. When quantum resources
are accessible to the Quantum Resource Manager, the manager sends requests to each quantum resource at
regular intervals. This ensures the availability and accuracy of the current quantum computing resources.

Once the pertinent attributes of the backend quantum resources have been obtained, the Quantum
Resource Manager will encapsulate them. Subsequently, all quantum computers will be encapsulated into
a unified form, and the requisite interfaces will be provided for utilization by the upper layers. The unified
interface encapsulation has the potential to streamline the development process for developers, enhance
cross-platform compatibility, and facilitate maintenance. Over time, it could contribute to the establishment
of industry standards and interoperability, stimulate the advancement and implementation of quantum com-
puting technology, facilitate integration and sharing of quantum computing resources from diverse vendors
and organizations, and accelerate the development and growth of the quantum computing ecosystem.

4.2 Quantum Resource Mapper

The principal objective of the Quantum Resource Mapper is to virtualize the underlying quantum
resources. At this juncture, the quantum cloud remains the principal avenue for accessing quantum
computers. The quantum cloud offers a range of backend resources with varying attributes, necessitating a
meticulous selection process on the part of the user to identify the optimal resources for their intended task.
Nevertheless, at present, users are unable to readily ascertain the attributes of quantum resources and their
respective queuing information, which consequently imposes an additional burden on users when utilizing
them. In order to address this issue, we propose the Quantum Resource Mapper. The Quantum Resource
Mapper virtualizes all available computing resources accessed via the Quantum Resource Manager, creating
a unified resource pool. Each resource retains its original topology and qubit attributes, enabling unified
management and intuitive display of all quantum resources. This addresses the shortcomings of the existing
quantum cloud. As a consequence of the unification of interfaces across all quantum resources, it is now
straightforward to obtain a range of information pertaining to the underlying quantum resources.

Specifically, at the topology level, all available quantum computing and qubit resources are integrated, as
shown in Fig. 2a. Four quantum backends, labelled A, B, C, and D, are connected to the Quantum Resource
Manager. Backends A and B are quantum computers, respectively, containing a 5-qubit QPU and a 6-qubit
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QPU, and both function normally. Backend C is a quantum computer containing 8-8-qubit QPU, which is
currently unavailable for various reasons, including device maintenance and calibration. Quantum computer
D contains a 7-qubit QPU, but some of its qubits are unusable. The integration situation is illustrated
in Fig. 2b. Quantum computing resources that are operational are incorporated directly into the resource
pool. Conversely, those that are not available are also excluded. In the case of quantum computing resources
with some unavailable qubits, a threshold is applied. If the number of available qubits exceeds half of the
total number of qubits in the QPU, the available qubits are included in the resource pool. Conversely, if the
number of available qubits is less than half of the total number of qubits in the QPU, the QPU is excluded
from the resource pool. The configuration in question offers three advantages.

0000 000

QPU A QPU B
8:%:8:8
QPU C QPU D Resource Pool
(a) QPU Resources (b) QPU Resource Pool

Figure 2: QPU mapping

1. Improved resource utilization: if a quantum computer has a substantial number of unavailable qubits,
its effective computing power will be significantly constrained. By excluding them from the resource pool, it
is possible to ensure that only those quantum computers with a high number of effective qubits are used for
computational tasks, thus improving resource utilization.

2. Optimizing task scheduling: Insufficient usable qubits can lead to inefficiency or failure in performing
certain specific tasks. The process of task scheduling can be simplified by excluding these quantum com-
puters, thus ensuring that tasks are assigned to the most suitable quantum computers for execution and
improving overall task execution efficiency.

3. Enhancing the reliability of task execution: Unavailable qubits may usually be caused by hardware
failures, ambient noise, calibration errors, and so on. The positional relationship between these unavailable
qubits and other elements in the topology will have a significant impact on the compilation effect, which
in turn will affect the execution of the quantum algorithm and the accuracy of the results. The exclusion
of quantum computers with more than half of their available qubits unavailable reduces the incidence of
compilation failures and errors due to hardware problems, thereby enhancing the reliability of task execution.

The Quantum Resource Mapper integrates the quantum devices of quantum cloud service providers into
a unified pool of resources, thereby creating an architectural framework that optimizes resource allocation
and scheduling on a global scale. This ensures that each quantum task is allocated the requisite resources and
that the overall utilization of resources is maximized. Furthermore, this architectural approach enhances the
compatibility and scalability of the quantum cloud as a whole, while simplifying the process for users, who
can easily submit tasks, view results, and analyze data without having to delve into the underlying details of
the quantum computer.
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4.3 Quantum Resource Allocator

The Quantum Resource Allocator decides how to use the quantum resources in the pool for each
circuit. The current quantum resource allocation schemes are essentially based on the user’s experience when
selecting the backend. However, it is important to recognize that the chosen quantum backend may not
necessarily represent the optimal solution. The first issue is the queuing problem, whereby users are unable
to directly access the backend quantum resource queuing situation. This results in significant discrepancies
in the demand for each quantum chip and the queuing time for different quantum resources. IBM, for
instance, has a median queuing time of 60 min for its quantum cloud, which is relatively lengthy [30].
Furthermore, the discrepancy in demand between different quantum chips can reach 100 times, resulting in a
significant proportion of computing resources being underutilized. Secondly, there is the issue of optimizing
the selection of qubits. The existing quantum cloud does not perform global quantum resource management.
Consequently, the existing resource allocation is based on the specified backend, which is not an optimal
solution for the whole quantum cloud resource.

To solve these problems, the Quantum Resource Manager’s resource pool is employed to optimize
the global resource allocation in accordance with the quantum cloud resources. First, the resource pool
topology and qubit attributes of the entire quantum cloud are obtained from the Quantum Resource Mapper.
Thereafter, the improved community detection algorithm is employed to create the hierarchical forest,
wherein each tree represents a backend quantum resource, the leaf nodes on each tree represent specific
physical qubits, and the internal nodes represent the set of nodes, i.e., the community, that is discovered
each time. Subsequently, the initial allocation of available areas is determined based on the aforementioned
hierarchical tree creation process.

The community detection algorithm is a method for identifying densely connected subgroups within
a network or graph. Its objective is to partition the nodes in a network into subsets, such that nodes within
the same subset exhibit a high connection density and a low connection density between different subsets.
This partitioning can facilitate an understanding of the network’s structure and function, the identification
of potential key nodes, and the discovery of potential community structures.

A number of community discovery algorithms have been developed, but there is still scope for improve-
ment in terms of efficiency. Therefore, this paper, proposes a new scheme for constructing hierarchical forests
based on the FN greedy community detection algorithm. This algorithm is a greedy clustering algorithm that
clusters the modularity degree Q. The bottom-up approach is primarily employed, whereby the modularity
gain (AQ) is calculated after the qubit nodes are connected to the edges. The two communities that have
experienced the greatest modularity gain are selected for merging at each iteration, and the symmetric matrix
e is updated accordingly. The time complexity of this process is O(m + n), which requires at most n —1
iterations. Consequently, the overall time complexity of the algorithm is O((m + n)n). In the context of a
sparse graph, the time complexity is characterized as O(n?). The process of merging can be represented by
a tree diagram, and the largest value of Q is then selected as the final community division.

It is important to note that, at the commencement of the algorithm, the qubit nodes are initialized. Each
node, or qubit, is regarded as an autonomous community, comprising all the leaf nodes in the hierarchical
forest. For each node, the modularity is calculated both with and without the node being moved to a
neighbouring community, Q (Q = ¥; e;; — a%, in which e;; is the fraction of within-group edges in group
i, and a; is the fraction of all edges associated with vertices in group i). The node that has undergone the
most significant increase in modularity is identified using the gain function. This node is then moved to
a neighbouring community for merging, to maximize the modularity. The gain function can be expressed
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mathematically as follows:
R= Qmerged - Qorigin + Kwiwaws €]

An elevated value signifies a more appropriate partition. The origin denotes the modularity of the
newly formed partition after the merging of the two communities and the original partition, respectively. K
denotes the weight factor, w; signifies the two-qubit gate fidelity, w, represents the mean of the commonly
utilized single-qubit gate fidelity, and w3 denotes the average reliability of readout operation. In the case of a
weight of zero, the algorithm reduces to the original FN algorithm, which is community discovery based on
quantum resource topology alone. As the weight value increases, the community discovery process becomes
increasingly dependent on the attributes of qubits. Consequently, qubits exhibiting superior attributes are
more likely to be incorporated into the same community.

The computation of modularity gains and merging between communities must be performed repeatedly,
with iterations until no further modularity gains can be identified. The process will yield n hierarchical
trees. It is important to note that each internal node, or community, in the hierarchical tree is connected in
the quantum resource topology. This is in accordance with the connectivity of the qubits required for the
operation of the quantum circuit.

Following the acquisition of the hierarchical forest, the necessary quantum resource can be ascertained
by means of the qubit number of the circuit and the order in which the forest was created. As demonstrated
in Fig. 3, Fig. 3a, the quantum resources contained within the quantum backend are illustrated, while Fig. 3b
depicts the created hierarchical forest. In the present case, the circuit under consideration necessitates the
allocation of resources, comprising three qubits. The identification of the requisite quantum resource layer
is conducted sequentially, in accordance with the creation order. It is concluded that the optimal quantum
resources are 1, 2, and 5 qubits in quantum resource A. This method facilitates the reasonable allocation of
all available resources within the quantum cloud.

Wy =992% w,=995% W, =99.6% Wy =99.8%
Wy =973% w;=99.0% w;=979% w;=967%

{12,345} {6,789}

{1,2,34,5} {6,7,8,9}

QPU A =

Wy =99.6% w,=994% w,=99.6% w,=995%
Wy =97.0% w,=988% w,=98.6% w,=973%
W, = 98.0% o w, = 97.19% 1 = 98.2%

QPUB
(a) QPU Resources (b) Hierarchical Forest

Figure 3: Hierarchical forest establishment

4.4 Quantum Mapping Optimizer

After the pre-allocation of qubit regions for the present circuit by the Quantum Resource Allocator, the
sub-topology constituted by these qubits and the associated qubit attributes is transmitted to the Quantum
Mapping Optimizer. The latter then completes the mapping of the circuit on the sub-topology. The objective
of this study is to construct a circuit comprising multiple qubit gates between physically connected qubits. In
this paper, the SABRE heuristic scheme is utilized. A partitioned fidelity scoring metric has been constructed,
taking single-qubit gate fidelity, two-qubit gate fidelity, and measurement fidelity as the key characteristics
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of qubit operations in the quantum backend. The metric is demonstrated in Eq. (2):

SCORE = W;D + W,S + WsM (2)

D denotes the two-qubit gate fidelity, S represents the single-qubit gate fidelity, M stands for the
measurement fidelity, and W is the weight factor—with the total of the three equaling 1. The presented
heuristic mapping algorithm employs the count of two-qubit gates as a primary feature for scheduling tasks.
Circuits with more two-qubit gates are prioritized for allocation to the highest-fidelity physical qubit pairs.
This approach leverages pre-calibrated backend properties and known circuit characteristics, effectively
balancing scheduling efficiency with user-defined fairness.

Whilst the optimization of circuits is not the primary objective of this paper, the Quantum Mapping
Optimizer is an essential component of the computational framework that is proposed. In contradistinction
to prior optimizations that were compiled, the present requirement is to perform optimization with quantum
resources that are allocated by the Quantum Resource Allocator.

Once the circuit mapping has been completed, the quantum resources occupied by the mapped
circuits are used as the resources required for the creation of the virtual QPU. This is then sent to the
backend to complete the execution of the circuit after creation. Concurrently, the Quantum Resource
Mapper is informed of the occupied resources, and the mapper sets the occupied qubits to the occupied
state. Furthermore, a physical buffer scheme is employed with the objective of enhancing the fidelity. It is
observed that crosstalk is significantly more pronounced between neighboring qubits than between qubits
with multi-hop spacing. Consequently, the n-hop qubits situated in the vicinity of the occupied qubit that
has been returned to the mapper are simultaneously placed in the occupied state. While this results in a
slight reduction in throughput, it also enhances fidelity. Upon completion of the circuit execution by the
quantum backend and the subsequent return of the result, the Quantum Resource Mapper releases the
occupied quantum resources to the resource pool, thereby enabling their utilization for the next circuit
resource allocation.

5 Evaluation

This section presents an evaluation of the proposed virtualization strategy, based on throughput,
fidelity, task duration time, and under different loads. Throughput and fidelity are evaluated using a
simulated quantum cloud environment constructed by IBM, which represents a snapshot of the actual
machine. Additionally, the system load is modelled by an internal queuing model that interacts with the
aforementioned virtual QPU strategy.

5.1 Methodology
5.1.1 Metrics

In order to provide a comprehensive assessment of the effectiveness of the proposed framework, three
distinct evaluation metrics are adopted, each of which targets a key performance dimension. Firstly, the Trial
Reduction Factor (TRF) [34] is a metric that quantifies the ratio between the number of trials required for
standalone quantum circuit execution and those needed for concurrent execution. Specifically, this metric is
utilized to gauge the throughput of individual quantum backends, while the average TRF across all backends
facilitates the evaluation of the overall quantum cloud throughput. Secondly, the Probability of a Successtul
Trial (PST) [35] is defined as the proportion of trials that yield expected results relative to the total number
of trials. This metric is employed to assess the fidelity of quantum backends within the quantum cloud
environment. Thirdly, the User Waiting Time Improvement Percentage (TIP) is a dedicated metric designed
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to determine the reduction ratio of the optimised or accelerated time compared to the baseline time. In
this formula, T y¢imize denotes the optimised time and T, represents the baseline time. The calculation
formula is as follows:

TOptimize

TIP = (1 ) x 100% 3)

Base

5.1.2 Dataset

The dataset has been meticulously curated from existing works (RevLib [36], QASM-Bench [37],
Quiper [37]), encompassing quantum algorithms across optimization, simulation, and general quantum
computing—with varied qubit counts and gate depths. A total of 1000 diverse circuits model user inputs
for paradigm assessment, and 50 are selected for fidelity evaluation. These benchmarks, which have a broad
application, feature a wide distribution of qubits: 130 circuits (1-5 qubits), 180 circuits (6-10 qubits), 180
circuits (11-15 qubits), 180 circuits (16-20 qubits), 180 circuits (21-25 qubits), 100 circuits (26-30 qubits), 50
circuits (>30 qubits). The average number of qubits required is 16.23.

5.1.3 Evaluation Comparisons

The VQPU’s overall performance metrics is evaluated through comparative analysis with two baseline
schemes, each designed with distinct core objectives. The initial approach is a “Load-Balancing” strategy, in
which tasks are allocated exclusively to suitable quantum backends with main target of optimizing the level
of fidelity of user-submitted quantum circuit designs. It is important to note that this scheme lacks sufficient
consideration for quantum cloud throughput and overlooks the parallelization techniques required during
backend selection and task mapping processes. Conversely, the second baseline employs parallel execution
techniques with a core focus on minimizing user waiting time. This is pursued without regard for other
critical performance metrics, such as circuit fidelity. This methodology is formally designated as the “Multi-
Programming” approach.

5.1.4 Quantum Cloud Simulation Infrastructure

In order to validate the proposed quantum resource virtualisation strategy, a simulated quantum cloud
environment was constructed for the purpose of simulating the provision of quantum computing cloud
services. Specifically, the IBM Qiskit [38] Simulator and the IBM Quantum Backend Device Model were
utilised to simulate quantum computing resources, with 10 backends selected: “Vigo” (5 qubits), “Guadalupe”
(16 qubits), “Tokyo” (20 qubits), “Boeblingen” (20 qubits), “Toronto” (27 qubits), “Montreal” (27 qubits),
“Cambridge” (28 qubits), “Rochester” (53 qubits), “Manhattan” (65 qubits), and “Washington” (127 qubits).
Further information about these backends can be found on the IBM Quantum Systems website [13]. It is
important to note that, in the physical system, the circuit runtime is primarily determined by the number of
times the circuit is executed. In order to ensure an accurate replication of the aforementioned scenario, the
circuit was modelled in the scheduling experiments based on its actual runtime. This is imperative for the
successful completion of experiments investigating the waiting time and qubit time occupancy of the QPU.

5.1.5 Experimental Hyperparameter Setting

In this section, we introduce hyperparameter tuning. First, the weighting factor K is defined as the initial
parameter, governing the relative significance of topology and qubit characteristics in quantum resource
allocation, and is set to 0.8 herein. Within the mapping optimization algorithm, the parameter W is assigned
distinct values for W;, W, and W, —specifically 0.4, 0.3, and 0.3, respectively—to guarantee rational physical
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qubit mapping. The physical isolation hop count, denoted as n, is fixed at 1, as this setting yields optimal
performance while minimizing qubit wastage. Additionally, qubits with a fidelity score below 0.95 are
excluded from the experimental setup.

5.2 Experimental Results
5.2.1 Throughput Evaluation

The majority of extant quantum backends in quantum cloud environments are experiencing overloaded
queuing circuits. Consequently, the efficacy of the proposed architectural design is initially verified under
conditions of high load. In order to validate the proposed framework, 1000 quantum circuits are arbitrarily
inputted, and a total of 50 independent experiments are carried out. Fig. 4 illustrates the mean scheduling
of each backend. It has been observed that the number of tasks executed by different backends varies. It
is evident that the number of qubits in the backend directly correlates with the number of quantum tasks
assigned for execution. The lowest number of tasks executed on the “Vigo” system can be attributed to the
fact that it has a limited number of qubits, with an average of 16.23 qubits per dataset. The “Washington”
backend is responsible for the management of the highest volume of tasks, a consequence of its 127 qubits
capacity which facilitates the support of most circuits within the dataset.
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Figure 4: Distribution of quantum circuits in each backend

Fig. 5 presents the average TRF of the 10 quantum backends post-scheduling via the proposed frame-
work, derived from 50 experimental trials. Notably, the framework demonstrates the capability to more than
double the throughput of the quantum cloud.

The variation trend of the TRF is consistent with that of the number of running tasks, with both
metrics increasing as the qubit count of the backend grows. It is noteworthy that the “Vigo” and “Guadalupe”
backends exhibit qubit counts that are below the average qubit number of circuits in the experimental dataset.
This limitation restricts their capacity to execute circuits concurrently, resulting in a TRF of approximately
1. In contrast, backends with a higher qubit count (e.g., “Washington”) demonstrate a TRF enhancement of
over fivefold. This is due to the fact that an increased number of qubits enables a greater number of quantum
circuits to be run in parallel, thereby boosting overall throughput. Furthermore, minor discrepancies in
TREF are observed between backends with the same qubit count, specifically “Toronto” and “Montreal.” This
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phenomenon can be attributed to the fact that TRF is influenced both by task queue order and by the

backend’s qubit topology and individual qubit quality.
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Figure 5: Throughput for each quantum backend and quantum cloud

5.2.2 Task Implementation Evaluation

In order to verify the continuity of task implementation, we plot the task execution time of one of the
experiments as a Gantt chart. The results of the experiment are presented in Figs. 6 and 7. Fig. 6 illustrates
the Gantt chart of the overall task execution of the quantum cloud platform, whereas Fig. 7 depicts the Gantt

chart of the task execution assigned to each backend.
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Figure 6: Gantt chart of the execution time
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Figure 7: Gantt chart of circuit execution time of each backend

As illustrated in Fig. 6, throughout the execution of one thousand quantum tasks, there is no interrup-
tion in the overall process, with all tasks queued for execution in an orderly manner. During the queuing
process, the current task will filter out the appropriate qubits from the available set and, if no suitable qubits
are identified, the task will await the completion of the executing quantum task, which will then release the
required qubit resources. And as can be seen in Fig. 7, the majority of quantum backend tasks demonstrate
satisfactory continuity of execution. Nevertheless, there are occasions when the “Vigo” and “Guadalupe”
processes are subject to disruption. This is attributed to the limited qubit resources available to them. When
a substantial number of tasks with extensive qubit requirements are queued, they are unable to generate
virtual QPUs in the backends. As a result, they are only capable of remaining idle and awaiting the entry of
executable circuits into the queue.

In order to verify the quantum resource occupancy when the virtual QPU is created, a count is made
of the number of times each quantum backend is occupied during the execution of one thousand quantum
tasks. The resulting data is presented in Fig. 8, which shows the top ten qubits occupied by each backend.
It can be seen that, except for “Vigo” and “Guadalupe”, which have a number of qubits much less than the
average value, there is not a significant difference in the number of times the rest of the quantum backends
are occupied in the top ten positions. This also serves to demonstrate that the VQPU scheme is capable of
distributing disparate tasks to varying quantum resources in a manner that is more balanced and equitable,
exhibiting the desired load-balancing capability. Furthermore, the occupancy of qubits on different quantum
backends varies, which is attributable to the topology and quality of the qubits on the quantum chip.

5.2.3 Comparative Analysis with Baselines

To verity the effectiveness of the presented paradigm, a comparative analysis is conducted against
two distinct scheduling schemes under different load conditions. As illustrated in Fig. 9, the TIP of the
VQPU scheme and the Multi-programming scheme are compared to the baseline Load-Balancing scheme
for 1000 quantum tasks under different loads. It is evident that under high loads, both schemes demonstrate
a significant improvement; however, the VQPU scheme exhibits a greater enhancement. This is attributable
to the asynchronous execution of VQPU, a feature that obviates the necessity for the user to wait for the com-
pletion of the preceding task when there are idle qubits on the quantum computing device. Under medium
load, both optimization schemes also improve, but it can be seen that the VQPU scheme improves more
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significantly compared to the Multi-programming scheme, which is because the asynchronous execution
of VQPU is more effective under medium load. As the load diminishes, the parallel execution capability
of Multi-programming and VQPU also declines, thereby facilitating an escalating number of tasks to be
executed individually.
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Figure 9: Time improvement percentage for different optimization frameworks

It is imperative to emphasize that, despite the improvement of the TIP in the Multi-programming
scheme, the characteristic of sharing the quantum backend temporally results in an increase in user waiting
time. As illustrated in Fig. 10, which presents the Gantt charts of ten specific task executions, our proposed
scheme Fig. 10a is capable of compilation and execution as soon as there are resources in the resource pool to
satisfy the execution of the currently waiting circuit. In contrast, the Multi-programming scheme, Fig. 10b,
necessitates a wait for the completion of the previous circuit, which evidently increases the user’s waiting
time. The difference is shown in yellow in Fig. 10c.

For the fidelity evaluation, we further compare our proposed VQPU using 2 disparate baseline schedul-
ing schemes across different load conditions. To enhance the efficiency of the simulations, we have selected
50 circuits from the initial 1000 for the fidelity experiments.
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Fig. 11a illustrates the average fidelity of each scheme after a sequence of circuits is executed on the
simulated quantum cloud system under high-load circumstances. As can be observed, the load-balanced
scheme demonstrates superior performance under high load conditions, attributable to its reduced inter-
qubit crosstalk in comparison to the remaining two schemes with concurrent execution. In contrast, the
Multi-programming scheme exhibits slightly reduced fidelity compared to the proposed scheme, primarily
due to the discrepancy in the number of gates across different circuits when executing multiple circuits
in parallel. In the case of Multi-programming parallel execution, the circuit with the smaller number of
gates must await the completion of the circuit with the greater number of gates, which results in increased
interference to the circuit with the fewer gates and a subsequent reduction in fidelity.
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Figure 11: Comparison of task fidelity for different frameworks

The results of the fidelity experiments conducted under medium load are presented in Fig. 11b. In
general, the discrepancy in fidelity between the three schemes is diminished, which is attributable to the
reduction in the number of circuits executing in parallel and the concomitant increase in the probability of
executing them individually under medium load. This results in a decrease in inter-qubit crosstalk. As the
load is further reduced, both parallel execution schemes gradually degrade to separate execution, resulting
in a fidelity that is identical to that illustrated in Fig. 1lc. Notwithstanding the reduction in fidelity of the
VQPU scheme in comparison to a single execution under high loads, the advantages in terms of enhanced
execution efficiency and quantum cloud throughput are considerable.
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5.2.4 Load Influence

To explore the influence of the proposed VQPU scheme on the quantum cloud throughput under
varying loads, we have conducted a series of analytical experiments. Specifically, we conducted simulations
in which users submitted tasks by inputting 1000 quantum tasks into the user waiting queue at varying
frequencies. Fig. 12 illustrates the evolution of the quantum cloud and its time-dependent response functions
(TRFs) for each backend with varying input time intervals under different loads. Overall, the TRF of the
quantum cloud demonstrates a diminution with an increase in the input time interval. The “Washington”
backend displays the most pronounced decline in slope, which can be attributed to its larger qubit count.
As a result, the reduction in parallel policy implementation is more pronounced as the interval increases.
Conversely, Vigos throughput remains constant, as its smaller number of qubits precludes the possibility of
parallel execution of multiple circuits.
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Figure 12: Throughput vs. user input intervals

Furthermore, an investigation was conducted to ascertain the relationship between load and the number
of tasks executed by the quantum backend. The experimental results are presented in Fig. 13, which illustrates
that the trend of the number of tasks exhibits significant variation among different quantum backends. In
particular, the number of tasks performed by certain quantum backends is observed to decrease as the load
decreases. This is exemplified by the “Washington” quantum backend, which includes some qubits of inferior
quality. These are selected for use with the intention of increasing the system throughput when the load is
high. However, as the load decreases, the probability of these qubits being selected decreases significantly,
resulting in a corresponding decrease in the number of tasks. Conversely, if the qubits are of high quality,
such as “Tokyo’, their probability of selection rises as the load declines.

At high loads, the system is unable to accommodate additional tasks. Nevertheless, at low loads, an
increase in the time interval between tasks, as specified by the user, allows for the execution of a greater
number of tasks.
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5.2.5 Superparameter Influence

In order to verify the effect of K value and circuit fidelity, the K value was set to different values between
0 and 1, and then fidelity experiments were conducted for 100 circuits under low load. The rationale behind
choosing a low load is to have sufficient qubits for selection in order to reflect the difference in different K
values. The results are displayed in Fig. 14. It is evident that the circuits exhibit optimal fidelity when K is set
to 0.7/0.8. When k = 0, qubit selection considers only topology, while bit properties gradually dominate as
K increases.
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Furthermore, supplementary experiments were performed to validate the impact of physical bufters
on fidelity. These tests involved parallel-implemented circuits configured with varying numbers of physical
isolation hops, and their results were contrasted with those of circuits executed in a standalone manner. The
outcomes of these experiments are presented in Fig. 15. In the absence of physical buffers (i.e., n = 0), the
fidelity is at its lowest. However, when n is 1 or 2, a substantial enhancement in fidelity is observed, with no
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substantial discrepancy observed when compared to execution alone. Consequently, it is typically configured
to 1 during the scheduling process, to optimize system throughput without compromising fidelity.
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Figure 15: Physical buffer size n and fidelity

6 Conclusion

The present paper puts forward a fresh quantum computing paradigm, Virtual QPU (VQPU), for
quantum cloud environments. The objective is twofold: firstly, to facilitate the efficient management of
quantum resources and secondly, to enhance the user experience. VQPU automates the entire process,
thereby allowing users to submit quantum tasks without having to consider the availability and load of
the backend hardware. The proposed framework is predicated on the user’s input to create a virtual QPU
that is tailored to the specific task in use. The compilation of circuits is then completed and submitted for
execution on the aforementioned virtual QPU. Moreover, the architecture in question decouples qubits, thus
allowing for the asynchronous execution of user-submitted circuits. This, in turn, enhances the flexibility
of the quantum cloud. The VQPU oversees a unified backend, thereby alleviating the burden on users
and improving the performance of the quantum cloud. The effectiveness of VQPU in managing quantum
tasks and backend resources is validated through experimentation, thereby providing a foundation for more
complex quantum cloud scheduling efforts. In the future, optimizations will be carried out for the VQPU,
specifically including the following: firstly, upgrading the scheduling algorithm, such as introducing Al to
predict load to achieve dynamic resource allocation; secondly, improving the mapping algorithm to enhance
qubit utilization and reduce gate error rates; simultaneously, strengthening the security protection system
to ensure user data security; in addition, perfecting the fair scheduling mechanism and designing a multi-
user task priority allocation strategy. It is anticipated that these optimizations will enhance the performance,
security, and reliability of the VQPU in the quantum cloud environment.

Acknowledgement: Not applicable.
Funding Statement: The authors received no specific funding for this study.

Author Contributions: The authors confirm their contributions to the paper as follows: study conception and design:
Danyang Zheng, Zheng Shan, Jinchen Xv, Xin Zhou; data collection: Danyang Zheng; analysis and interpretation of
results: Danyang Zheng, Xin Zhou; manuscript drafting: Danyang Zheng. All authors reviewed the results and approved
the final version of the manuscript.



20

Comput Mater Contin. 2026;87(1):40

Availability of Data and Materials: The data that support the findings of this study are available from the corresponding
author, Danyang Zheng, upon reasonable request.

Ethics Approval: Not applicable. This study did not involve human or animal subjects, and thus, no ethical approval
was required. The study protocol adhered to the guidelines established by the journal.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Herman D, Googin C, Liu X, Sun Y, Galda A, Safro I, et al. Quantum computing for finance. Nat Rev Phys.
2023;5(8):450-65. d0i:10.1038/s42254-023-00603-1.

2. OruasR, Mugel S, Lizaso E. Quantum computing for finance: overview and prospects. Rev Phys. 2019;4(3-4):100028.
doi:10.1016/j.revip.2019.100028.

3. Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth
Annual ACM Symposium on Theory of Computing—STOC’ 96; 1996 May 22-24; Philadelphia, PA, USA. p. 212-9.
doi:10.1145/237814.237866.

4. Gong C, Dong Z, Gani A, Qi H. Quantum k-means algorithm based on trusted server in quantum cloud
computing. Quantum Inf Process. 2021;20(4):130. doi:10.1007/s11128-021-03071-7.

5. Magann AB, Grace MD, Rabitz HA, Sarovar M. Digital quantum simulation of molecular dynamics and control.
Phys Rev Res. 2021;3(2):023165. doi:10.1103/physrevresearch.3.023165.

6. Fadli S, Rawal BS, Mentges A. Hybrid quantum machine learning using quantum integrated cloud architecture
(QICA). In: 2023 International Conference on Computing, Networking and Communications (ICNC); 2023 Feb
20-22; Honolulu, HI, USA. p. 419-25. d0i:10.1109/ICNC57223.2023.10074394.

7. Berganza Gémez R, O’Meara C, Cortiana G, Mendl CB, Bernabé-Moreno J. Towards AutoQML: a cloud-based
automated circuit architecture search framework. In: 2022 IEEE 19th International Conference on Software
Architecture Companion (ICSA-C); 2022 Mar 12-15; Honolulu, HI, USA. p. 129-36. doi:10.1109/ICSA-C54293.
2022.00033.

8. Hibat-Allah M, Mauri M, Carrasquilla J, Perdomo-Ortiz A. A framework for demonstrating practical quantum
advantage: comparing quantum against classical generative models. Commun Phys. 2024;7(1):68. doi:10.1038/
§42005-024-01552-6.

9. Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79. doi:10.22331/q-2018-08-06-79.

10. El Euch H, Zidan MAA, Abdelaty AMA, AbdelAty MMA, Khalil A. Quantum random access memory system.
United States patent US 11,651,266. 2023.

11.  Hsu J. Intels 49qubit chip shoots for quantum supremacy. Ces. 2018 [cited 2025 Oct 1]. Available from: https://
spectrum.ieee.org/intels-49qubit- chip-aims- for- quantum- supremacy.

12. Google. Quantum computing playground [Internet]. [cited 2025 Oct 1]. Available from: https://www.
quantumplayground.net/.

13.  IBM. Ibm quantum systems [Internet]. [cited 2025 Oct 1]. Available from: https://quantum.cloud.ibm.com/.

14. Das P, Tannu SS, Nair PJ, Qureshi M. A case for multi-programming quantum computers. In: Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture; 2019 Oct 12-16; Columbus, OH, USA.
p- 291-303. doi:10.1145/3352460.3358287.

15. Niu S, Todri-Sanial A. Enabling multi-programming mechanism for quantum computing in the NISQ era.
Quantum. 2023;7:925. doi:10.22331/q-2023-02-16-925.

16. DouX, Liu L. A new qubits mapping mechanism for multi-programming quantum computing. In: Proceedings of
the ACM International Conference on Parallel Architectures and Compilation Techniques; 2020 Oct 3-7; Virtual.
p- 349-50. doi:10.1145/3410463.3414659.

17. Resch S, Gutierrez A, Huh JS, Bharadwaj S, Eckert Y, Loh G, et al. Accelerating varia-tional quantum algorithms

using circuit concurrency. arXiv:2109.01714. 2021.


https://doi.org/10.1038/s42254-023-00603-1
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/s11128-021-03071-7
https://doi.org/10.1103/physrevresearch.3.023165
https://doi.org/10.1109/ICNC57223.2023.10074394
https://doi.org/10.1109/ICSA-C54293.2022.00033
https://doi.org/10.1109/ICSA-C54293.2022.00033
https://doi.org/10.1038/s42005-024-01552-6
https://doi.org/10.1038/s42005-024-01552-6
https://doi.org/10.22331/q-2018-08-06-79
https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://spectrum.ieee.org/intels-49qubit-chip-aims-for-quantum-supremacy
https://www.quantumplayground.net/
https://www.quantumplayground.net/
https://quantum.cloud.ibm.com/
https://doi.org/10.1145/3352460.3358287
https://doi.org/10.22331/q-2023-02-16-925
https://doi.org/10.1145/3410463.3414659

Comput Mater Contin. 2026;87(1):40 21

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Liu L, Dou X. QuCloud: a new qubit mapping mechanism for multi-programming quantum computing in cloud
environment. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA);
2021 Feb 27-Mar 3; Seoul, Republic of Korea. p. 167-78. doi:10.1109/HPCA51647.2021.00024.

Ravi GS, Smith KN, Murali P, Chong FT. Adaptive job and resource management for the growing quantum cloud.
In: IEEE International Conference on Quantum Computing and Engineering (QCE); 2021 Oct 17-22; Broomfield,
CO, USA. p. 301-12. doi:10.1109/qce52317.2021.00047.

Van Meter R, Horsman D. A blueprint for building a quantum computer. Commun ACM. 2013;56(10):84-93.
doi:10.1145/2494568.

Chong FT, Franklin D, Martonosi M. Programming languages and compiler design for realistic quantum hardware.
Nature. 2017;549(7671):180-7. d0i:10.1038/nature23459.

Fu X, Rol MA, Bultink CC, van Someren J, Khammassi N, Ashraf I, et al. An experimental microarchitecture for
a superconducting quantum processor. In: Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture; 2017 Oct 14-18; Boston, MA, USA. p. 813-25. d0i:10.1145/3123939.3123952.

Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, et al. Elementary gates for quantum
computation. Phys Rev A. 1995;52(5):3457-67. doi:10.1103/physreva.52.3457.

Debnath S, Linke NM, Figgatt C, Landsman KA, Wright K, Monroe C. Demonstration of a small programmable
quantum computer with atomic qubits. Nature. 2016;536(7614):63-6. d0i:10.1038/naturel8648.

Koch J, Yu TM, Gambetta J, Houck AA, Schuster DI, Majer J, et al. Charge-insensitive qubit design derived from
the Cooper pair box. Phys Rev A. 2007;76(4):042319. doi:10.1103/physreva.76.042319.

Zhong HS, Wang H, Deng YH, Chen MC, Peng LC, Luo YH, et al. Quantum computational advantage using
photons. Science. 2020;370(6523):1460-3. doi:10.1126/science.abe8770.

Bechtold M. Bringing the concepts of virtualization to gate-based quantum computing [master’s thesis]. Stuttgart,
Germany: University of Stuttgart; 2021.

Wu W, Wang Y, Yan G, Zhao Y, Zhang B, Yan J. On reducing the execution latency of superconducting quantum
processors via quantum job scheduling. In: Proceedings of the 43rd IEEE/ACM International Conference on
Computer-Aided Design. New York, NY, USA: Newark Liberty International Airport Marriott; 2024. p. 1-9. doi:10.
1145/3676536.3676678.

Mineh L, Montanaro A. Accelerating the variational quantum eigensolver using parallelism. Quantum Sci Technol.
2023;8(3):035012. doi:10.1088/2058-9565/acd0d2.

Park G, Zhang K, Yu K, Korepin V. Quantum multi-programming for grover’s search. Quantum Inf Process.
2023;22(1):54. doi:10.1007/s11128-022-03793- 2.

Suchara M, Kubiatowicz ], Faruque A, Chong FT, Lai CY, Paz G. QuRE: the quantum resource estimator toolbox.
In: 2013 IEEE 3lst International Conference on Computer Design (ICCD); 2013 Oct 6-9; Asheville, NC, USA. p.
419-26. doi:10.1109/ICCD.2013.6657074.

Salm M, Barzen ], Leymann F, Weder B. Prioritization of compiled quantum circuits for different quantum
computers. In: 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);
2022 Mar 15-18; Honolulu, HI, USA. p. 1258-65. d0i:10.1109/SANER53432.2022.00150.

Wang M, Das P, Nair PJ. Qoncord: a multi-device job scheduling framework for variational quantum algorithms.
In: 2024 57th IEEE/ACM International Symposium on Microarchitecture (MICRO); 2024 Nov 2-6; Austin, TX,
USA. p. 735-49. d0i:10.1109/MICRO61859.2024.00060.

Tannu SS, Qureshi MK. Not all qubits are created equal: a case for variability-aware policies for NISQ-era
quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems; 2019 Apr 13-17; Providence, RI, USA. p. 987-99. doi:10.1145/
3297858.3304007.

Last T, Samkharadze N, Eendebak P, Versluis R, Xue X, Sammak A, et al. Quantum Inspire: qutech’s platform for
co-development and collaboration in quantum computing. In: Novel Patterning Technologies for Semiconductors,
MEMS/NEMS and MOEMS 2020; 2020 Feb 23-27; San Jose, CA, USA. doi:10.1117/12.2551853.


https://doi.org/10.1109/HPCA51647.2021.00024
https://doi.org/10.1109/qce52317.2021.00047
https://doi.org/10.1145/2494568
https://doi.org/10.1038/nature23459
https://doi.org/10.1145/3123939.3123952
https://doi.org/10.1103/physreva.52.3457
https://doi.org/10.1038/nature18648
https://doi.org/10.1103/physreva.76.042319
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1145/3676536.3676678
https://doi.org/10.1145/3676536.3676678
https://doi.org/10.1088/2058-9565/acd0d2
https://doi.org/10.1007/s11128-022-03793-2
https://doi.org/10.1109/ICCD.2013.6657074
https://doi.org/10.1109/SANER53432.2022.00150
https://doi.org/10.1109/MICRO61859.2024.00060
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1117/12.2551853

22

36.

37.

38.

Comput Mater Contin. 2026;87(1):40

Green AS, Lumsdaine PL, Ross NJ, Selinger P, Valiron B. Quipper: a scalable quantum programming language.
In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation;
2013 Jun 16-19; Seattle, WA, USA. p. 333-42. d0i:10.1145/2491956.2462177.

Cross AW, Bishop LS, Smolin JA, Gambetta JM. Open quantum assembly language. arXiv:1707.03429. 2017.
JavadiAbhari A, Treinish M, Krsulich K, Wood CJ, Lishman J, Gacon J, et al. Quantum computing with Qiskit.
arXiv:2405.08810. 2024.


https://doi.org/10.1145/2491956.2462177

	Virtual QPU: A Novel Implementation of Quantum Computing
	1 Introduction
	2 Background
	3 Related Work
	4 Proposed Solution
	5 Evaluation
	6 Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


