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ABSTRACT: Stereo matching is a pivotal task in computer vision, enabling precise depth estimation from stereo
image pairs, yet it encounters challenges in regions with reflections, repetitive textures, or fine structures. In this
paper, we propose a Semantic-Guided Parallax Attention Stereo Matching Network (SGPASMnet) that can be trained
in unsupervised manner, building upon the Parallax Attention Stereo Matching Network (PASMnet). Our approach
leverages unsupervised learning to address the scarcity of ground truth disparity in stereo matching datasets, facilitating
robust training across diverse scene-specific datasets and enhancing generalization. SGPASMnet incorporates two novel
components: a Cross-Scale Feature Interaction (CSFI) block and semantic feature augmentation using a pre-trained
semantic segmentation model, SegFormer, seamlessly embedded into the parallax attention mechanism. The CSFI
block enables effective fusion of multi-scale features, integrating coarse and fine details to enhance disparity estimation
accuracy. Semantic features, extracted by SegFormer, enrich the parallax attention mechanism by providing high-level
scene context, significantly improving performance in ambiguous regions. Our model unifies these enhancements
within a cohesive architecture, comprising semantic feature extraction, an hourglass network, a semantic-guided
cascaded parallax attention module, output module, and a disparity refinement network. Evaluations on the KITTI2015
dataset demonstrate that our unsupervised method achieves a lower error rate compared to the original PASMnet,
highlighting the effectiveness of our enhancements in handling complex scenes. By harnessing unsupervised learning
without ground truth disparity needed, SGPASMnet offers a scalable and robust solution for accurate stereo matching,
with superior generalization across varied real-world applications.

KEYWORDS: Stereo matching; parallax attention; unsupervised learning; convolutional neural network; stereo
correspondence

1 Introduction
Stereo matching, the process of estimating depth from a pair of rectified stereo images, is a corner-

stone of computer vision with applications in autonomous driving, robotics, and 3D reconstruction. The
task involves computing a disparity map that represents the pixel-wise horizontal displacement between
corresponding points in the left and right images. Despite significant progress, stereo matching remains chal-
lenging in regions with occlusions, reflections, repetitive textures, or low-contrast areas, where traditional
feature matching often fails to establish accurate correspondences. Moreover, supervised learning approaches
typically rely on large-scale datasets with ground truth disparity, which are often difficult and costly to
acquire for stereo image pairs, particularly across diverse real-world scenarios. This limitation hinders the
generalizability of such models to varied scenes.
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Recent advancements in deep learning have significantly improved stereo matching performance, with
unsupervised methods like the Parallax Attention Stereo Matching Network [1] (PASMnet) introducing
attention-based mechanisms to capture global correspondences along epipolar lines. However, PASMnet
struggles in complex scenes due to limitations in leveraging multi-scale feature interactions and high-level
semantic context, leading to wrong match in challenging areas and across different objects.

To address these challenges, we proposed a novel unsupervised learning network for stereo matching,
Semantic-Guided Parallax Attention Stereo Matching Network (SGPASMnet), building upon PASMnet with
two key enhancements: a Cross-Scale Feature Interaction (CSFI) block and the integration of semantic
features extracted from a pre-trained SegFormer [2] model. By adopting an unsupervised learning approach,
our model eliminates the dependency on annotated disparity data, leveraging self-supervised signals such as
photometric consistency and geometric constraints. This enables robust training on diverse datasets without
ground truth labels, facilitating better generalization across different scene types and conditions, such as
varying lighting, occlusions, or texture complexities.

The CSFI block enables the fusion of features across different scales, combining coarse, high-level
information with fine, detailed features to enhance both global consistency and local accuracy in disparity
estimation. This approach draws inspiration from feature pyramid networks [3] and deformable convo-
lutions [4], adapting them to the stereo matching context. The semantic feature augmentation leverages
SegFormer’s transformer-based architecture to extract multi-scale semantic representations, which are
integrated into the parallax attention mechanism to provide contextual guidance, particularly in ambiguous
regions like reflections or repetitive patterns. This is motivated by prior work such as SegStereo [5], which
demonstrated the value of semantic information in disparity estimation.

Our enhanced model integrates these components into a cohesive unsupervised architecture, compris-
ing semantic feature extraction, an Hourglass network for multi-scale feature extraction, a semantic-guided
Cascaded Parallax Attention Module (CPAM) for disparity computation, an output module to generate
initial disparity map and valid masks, and a refinement network to optimize the disparity map. The
model is trained with a combination of unsupervised losses, including photometric loss, smoothness loss,
and parallax attention loss and semantic consistency loss, to ensure robust learning without reliance on
ground truth disparity. Evaluations on the KITTI2015 dataset suggest that our SGPASMnet achieves a lower
error rate compared to the baseline model, demonstrating improved performance and generalization in
challenging scenarios.

2 Related Work
Stereo matching has been a fundamental problem in computer vision, with significant advancements

driven by both traditional and deep learning-based approaches. Below, we review key developments in
traditional and deep learning-based stereo matching methods, with the latter further categorized into
supervised and unsupervised learning approaches.

2.1 Traditional Stereo Matching Methods
Traditional stereo matching methods rely on hand-crafted features and optimization techniques to

compute disparity maps. A prominent example is Semi-Global Matching (SGM), which incorporates global
smoothness constraints through dynamic programming along multiple image paths, achieving robust results
in structured environments while balancing computational efficiency and accuracy.

Despite their advantages, these methods often struggle in regions with occlusions, textureless areas, or
illumination variations due to their dependence on low-level features. Recent advancements have focused
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on improving SGM’s performance in real-world scenarios. For instance, collaborative SGM [6] introduces
local edge-aware filtering to strengthen interactions between neighboring scanlines, significantly reducing
streak artifacts in disparity maps.

Other recent non-deep learning approaches include As-Global-As-Possible (AGAP) stereo matching
with sparse depth measurement fusion [7], which combines global optimization with sparse priors to
improve accuracy in sparse-data environments like satellite imagery. Furthermore, adaptations for specific
domains, like mineral image matching with improved Birchfield-Tomasi-Census algorithms [8], enhance
discrimination in textured regions without relying on learning-based features.

While these enhancements mitigate some limitations through better cost aggregation, edge preserva-
tion, traditional methods remain constrained compared to data-driven approaches, particularly in handling
complex, unstructured scenes.

2.2 Deep Learning-Based Stereo Matching Methods
Deep learning has revolutionized stereo matching by leveraging convolutional neural networks (CNNs)

and attention mechanisms to learn robust feature representations. These methods can be broadly divided
into supervised and unsupervised learning approaches.

2.2.1 Supervised Learning
Supervised deep learning methods for stereo matching typically construct a cost volume from learned

features and optimize it to produce disparity maps. DispNet [9] introduced an end-to-end CNN architecture
that directly regresses disparity from stereo image pairs, achieving significant improvements over traditional
methods. GC-Net [10] proposed a 3D cost volume constructed from concatenated left and right image fea-
tures, processed by 3D convolutions to aggregate contextual information. PSMNet [11] further advanced this
by incorporating a spatial pyramid pooling module to capture multi-scale context, improving performance
in complex scenes.

Attention-based methods have recently gained prominence due to their ability to model global corre-
spondences. AANet [12] combined attention with adaptive aggregation to achieve real-time performance,
while GANet [13] integrated guided aggregation to refine cost volumes. Semantic information has also
been explored to enhance supervised methods. SegStereo [5] incorporated semantic segmentation masks
to guide disparity estimation, improving accuracy in object boundaries. Similarly, reference [14] proposed
a joint semantic-stereo framework for real-time applications, demonstrating the value of semantic con-
text. Recent supervised methods have focused on improving efficiency and robustness through cascaded
architectures and adaptive correlations. For instance, CREStereo [15] introduces a cascaded recurrent
network with adaptive correlation for practical high-resolution stereo matching, achieving state-of-the-art
accuracy in real-world scenarios. Similarly, CFNet [16] proposes a cascade and fused cost volume approach
to enhance robust stereo matching under challenging conditions like occlusions and varying illumina-
tions. Advancements in zero-shot learning have also emerged, such as Cascade Cost Volume [17], which
enables high-resolution multi-view stereo matching without extensive fine-tuning, improving generalization
across datasets.

Building on attention mechanisms, transformer-based methods have recently been explored for stereo
matching, leveraging their ability to capture long-range dependencies and model sequential data effectively.
For instance, STTR [18] introduces stereo depth estimation from a sequence-to-sequence perspective using
transformers. It employs alternating self and cross-attention to perform dense pixel matching along epipolar
lines, eliminating the need for a fixed disparity range, detecting occlusions with confidence estimates, and
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enforcing uniqueness constraints via optimal transport. Similarly, RAFT-Stereo [19] adapts the RAFT optical
flow architecture for stereo, introducing multilevel recurrent field transforms with convolutional GRUs to
propagate information across the image efficiently.

2.2.2 Unsupervised Learning
Unsupervised stereo matching methods leverage photometric consistency and geometric constraints to

train models without ground truth disparity maps, making them suitable for scenarios with limited labeled
data. Reference [20] proposed an unsupervised framework that minimizes a photometric loss based on image
reconstruction, using left-right consistency to enforce disparity coherence. Reference [21] extended this
with a left-right disparity consistency loss, improving robustness in textureless regions. Recent unsupervised
methods, such as [22], incorporate domain adaptation to handle real-world data, while Reference [23] use
multi-view consistency to enhance training.

Attention-based unsupervised methods have also emerged. Reference [1] extended PASMnet to an
unsupervised setting by incorporating cycle consistency losses, achieving competitive performance without
labeled data. Reference [24] proposed an unsupervised attention mechanism that leverages feature similarity
to guide disparity estimation. While unsupervised methods reduce the dependency on labeled data, they
often struggle with accuracy in complex scenes compared to supervised approaches. Recent unsupervised
approaches have incorporated semantic attention mechanisms to address domain gaps and data scarcity.
Stereo Anywhere [25] presents a robust zero-shot deep stereo matching framework that leverages monocular
depth priors for accurate disparity estimation even in unseen environments. Additionally, efforts in open-
world generation, like the method in [26], combine stereo image synthesis with unsupervised matching
to enable training on diverse synthetic data without labels. Specialized applications, such as underwater
scenes, have seen innovations like the semantic attention-based unsupervised stereo matching [27], which
uses semantic guidance to improve performance in low-visibility conditions, aligning with the need for
context-aware disparity estimation.

Our work builds upon PASMnet by integrating semantic features from a pre-trained SegFormer [2]
model, which provides richer, transformer-based semantic representations compared to traditional CNN-
based segmentation models. Additionally, our CSFI module enhances multi-scale feature fusion, drawing
inspiration from feature pyramid networks [3] and deformable convolutions [4], to improve disparity
estimation in challenging regions. Similar multi-scale refinement strategies have been successfully applied in
related vision tasks, such as instance segmentation. For example, Mask-Refined R-CNN (MR R-CNN) [28]
adjusts the stride of region of interest align and incorporates an FPN structure in the mask head to fuse
global semantic information with local details, achieving superior boundary delineation in large objects. This
approach aligns with our CSFI block’s cross-scale interactions, which combine coarse and fine features to
handle ambiguous regions like reflections or repetitive textures in stereo matching.

In summary, our proposed model combines the strengths of attention-based supervised stereo matching
with advanced multi-scale feature fusion and semantic augmentation, offering a robust solution for accurate
disparity estimation in complex scenes.

3 Proposed Method
In this section, we present our SGPASMnet that builds upon the Parallax-Attention Stereo Matching

Network (PASMnet). Our enhancements incorporate a Cross-Scale Feature Interaction (CSFI) module to
facilitate multi-scale feature fusion and the integration of semantic features extracted from a pre-trained
SegFormer model to augment the parallax attention mechanism within the Parallax-Attention Block (PAB).
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These modifications aim to address challenges in stereo matching, such as occlusions, textureless regions, and
repetitive patterns, by leveraging multi-scale contextual information and semantic guidance. Experimental
results on the KITTI2015 dataset demonstrate a reduction in error rates compared to the baseline PASMnet,
validating the effectiveness of our approach.

3.1 Overall Architecture
Our model follows the general structure of PASMnet, designed to estimate disparity maps from a

pair of rectified stereo images, denoted as IL and IR , representing the left and right images, respectively.
The disparity map D indicates the horizontal displacement between corresponding pixels in the stereo
pair. The architecture comprises five key components: a semantic feature extraction module to extract
multi-scale semantic features from the input images using a pre-trained SegFormer [2] model, providing
contextual information to guide disparity estimation, an hourglass module to extract hierarchical feature
representations at multiple scales from the input images, capturing both fine and coarse details, a semantic-
guided Cascaded Parallax Attention Module (CPAM) to compute cost volumes across multiple scales using a
parallax attention mechanism, enhanced with semantic features and Cross-Scale Feature Interactions (CSFI)
blocks, an output module to process the cost volumes to produce initial disparity estimates, along with
attention maps and validity masks during training, and a refinement module to refine the initial disparity
estimates using additional feature information to produce the final disparity map. The architecture of our
proposed SGPASMnet is shown in Fig. 1a. The structure of semantic-guided cascaded parallax attention
module is shown in Fig. 1b.

Figure 1: Overall architecture of our proposed SGPASMnet



6 Comput Mater Contin. 2026;87(1):54

3.2 Semantic Feature Extraction Module
To incorporate high-level semantic information, we utilize a pre-trained SegFormer [2] model, a

transformer-based architecture designed for semantic segmentation, capable of generating rich, multi-
scale semantic feature representations. These features provide critical scene context, enhancing disparity
estimation in complex regions such as occlusions and textureless areas where traditional feature matching
may fail.

The SegFormer model employs a hierarchical transformer structure that leverages efficient self-attention
to produce feature maps at multiple resolutions. Its encoder outputs hidden states at various scales, making
it well-suited for tasks requiring both global and local contextual understanding, such as stereo matching.
We adopt a SegFormer model pre-trained on the Cityscapes dataset, with its parameters frozen to serve as a
feature extractor, ensuring computational efficiency and robust feature quality.

The SegFormer model processes the input stereo images IL , IR ∈ RH×W×3 independently, extracting
hidden states from its transformer blocks at four different scales: 1

4 , 1
8 , 1

16 , and 1
32 of the original image

resolution. For our stereo matching task, we select the hidden states corresponding to scales 1
4 , 1

8 and 1
16 , as

these align with the feature map scales used in the hourglass and semantic-guided CPAM. These hidden states
are derived from the intermediate layers of SegFormer’s transformer encoder, specifically from the outputs
of its hierarchical feature extraction stages, which progressively reduce spatial resolution while increasing
channel depth to capture richer semantic representations.

Formally, the semantic feature maps are represented as:

SL = {S1/4
L , S1/8

L , S1/16
L } (1)

SR = {S1/4
R , S1/8

R , S1/16
R } (2)

where each S s
L , Ss

R ∈ RCs×
H
s ×

W
s , and Cs denotes the number of channels at scale s in the semantic features

(typically determined by the SegFormer configuration, e.g., 256 or 512 channels depending on the model vari-
ant). The hidden states are obtained from the transformer blocks in the SegFormer model in different scales
containing semantic features. Fig. 2 shows visual examples of the SegFormer semantic segmentation results.

Figure 2: A visual example of SegFormer extracted semantic features

These multi-scale semantic features are fed into the semantic attention block to generate semantic
attention weights, and further fed into corresponding scales of the semantic-guided CPAM to enhance
the parallax attention mechanism within the Parallax Attention Blocks (PABs). Additionally, a single-scale
semantic feature, derived from the final hidden state, is used to compute a semantic consistency loss, ensuring
that semantic features from the left and right images align under disparity guidance. This approach draws
inspiration from prior work, such as SegStereo [5], which uses semantic segmentation to guide disparity
estimation, and Tonioni et al. [22], who proposed joint architectures for real-time semantic stereo matching.
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However, our method distinguishes itself by directly embedding multi-scale semantic features into the
parallax attention mechanism, offering finer-grained contextual guidance compared to traditional semantic
mask-based or parallel processing approaches.

3.3 Hourglass Module
The hourglass module extracts hierarchical feature representations from the input stereo images,

enabling the capture of both fine-grained details and coarse contextual information. It consists of a series
of encoder and decoder blocks with skip connections, forming a U-shaped architecture inspired by spatial
pyramid pooling in PSMNet [11]. This module serves as the foundation for subsequent processing by
providing rich feature representations across multiple scales.

The encoder downsamples the input images through convolutional layers, producing feature maps at
scales 1

2 , 1
4 , 1

8 , 1
16 and 1

32 . The decoder upsamples these features, combining them with skip connections from
the encoder to preserve spatial details. The output feature maps are at scales 1

16 , 1
8 , and 1

4 , denoted as:

F L = {F 1/16
L , F 1/8

L , F 1/4
L } (3)

F R = {F 1/16
R , F 1/8

R , F 1/4
R } (4)

where F S
L , F S

R ∈ RCs×
H
s ×

W
s , with channel dimensions Cs set to 128, 96, and 64 for scales 1

16 , 1
8 , and 1

4 , respec-
tively. An additional feature map at scale 1

4 is used for disparity refinement. This hierarchical structure ensures
that the model captures multi-scale information, which is critical for handling objects at varying depths.

Although the Hourglass module remains unmodified from the original PASMnet, its multi-scale feature
outputs are critical for our enhancements. The features at 1

16 , 1
8 , and 1

4 scales align precisely with the
semantic features extracted by SegFormer, ensuring compatibility with the semantic-guided CPAM. The skip
connections preserve high-resolution details, which are essential for the CSFI block’s cross-scale fusion and
the semantic-enhanced parallax attention mechanism.

3.4 Semantic-Guided Cascaded Parallax Attention Module
The semantic-guided Cascaded Parallax Attention Module (CPAM) computes multi-scale cost volumes

using a parallax attention mechanism, improved by our two key enhancements: the Cross-Scale Feature
Interactions (CSFI) block for cross-scale feature fusion and semantic feature integration for parallax attention
modulation. The module operates sequentially at scales 1

16 , 1
8 , and 1

4 , processing feature maps and producing
cost volumes that are refined across scales.

At each scale s, the PAB takes feature maps F S
L , F S

R ∈ RCs×
H
s ×

W
s and semantic features Ss

L , Ss
R ∈ RCs×

H
s ×

W
s .

The feature-based cost volume is computed using an attention mechanism:
Query and key features are generated via 1 × 1 convolutions:

Q = Conv1×1 (F s
L) (5)

K = Conv1×1 (F s
R) (6)

followed by permutation to Q ∈ RB× H
s ×

W
s ×C and K ∈ RB× H

s ×C×W
s .

The feature cost is computed as:

C f ea =
QK T
√

C
(7)
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where C is the number of the channels for normalization, yielding C fea ∈ RB× H
s ×

W
s ×

W
s .

To incorporate semantic guidance, a semantic cost is computed within semantic attention block using
the semantic features:

Semantic query and key are directly used:

Q sem = Ss
L , K sem = Ss

R (8)

permuted to Q sem ∈ RB× H
s ×

W
s ×Cs , K sem ∈ RB× H

s ×Cs×
W
s .

The semantic cost is:

Csem =
Q sem K T

sem√
Cs

(9)

and a semantic weight is obtained via:

W sem = σ (Csem) (10)

where σ is the sigmoid activation function, producing W sem ∈ RB× H
s ×

W
s ×

W
s .

The combined cost volume is then:

Ccom = C fea ×W sem (11)

which is added to the cost volume from the previous scale to produce the final cost volume for the current
scale. This mechanism, inspired by SegStereo [5] and real-time semantic stereo matching [14], enhances
the attention mechanism by prioritizing correspondences that are both visually and semantically consistent,
improving robustness in ambiguous regions. Fig. 3 presents a flowchart of the operations in semantic
attention block.

The CSFI block facilitates cross-scale feature fusion between consecutive scales (e.g., 1
16 to 1

8 , and 1
8

to 1
4 ). For feature maps F l ow ∈ RCl ow×

H
2s×

W
2s and F hi gh ∈ RChi gh×

H
s ×

W
s , the CSFI block processes these features

to produce a fused feature map that captures multi-scale contextual information. The process is as follows:
The higher-scale feature map is downsampled using average pooling to match the spatial dimensions of
the lower-scale feature map, which is first upsampled using bilinear interpolation and processed with a
deformable convolution to align features spatially. These processed features are concatenated along the
channel dimension and passed through a 1 × 1 convolution to reduce channel dimensionality and fuse
information. A squeeze-and-excitation block recalibrates channel-wise responses to emphasize in formative
features. The fused feature is then upsampled to the next scale and combined with the corresponding feature
map via a convolutional layer, ensuring seamless integration across different scales. This approach, inspired
by cross-scale cost aggregation [12], enhances the model’s ability to leverage both local details and global
context. To illustrate the CSFI process, Fig. 4 presents a flowchart of the operations in CSFI block.
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Figure 3: Flowchart of operations in semantic attention block

Figure 4: Flowchart of operations in CSFI block

The semantic-guided CPAM operates as follows: the first stage processes 1
16 -scale features with semantic

features at the same scale, computing an initial cost. The CSFI block fuses this output with 1
8 scale features,

and the second scale processes the upsampled features and cost with 1
8 scale semantic features. The process

repeats, with the third scale computing the final cost at 1
4 scale using corresponding semantic features. Each

scale employs four PABs to enhance feature robustness and cost accuracy.

3.5 Output Module
The output module processes the cost volumes from the semantic-guided CPAM to produce initial

disparity map. For a cost volume Cs ∈ RB× H
s ×

W
s ×

W
s , a soft-argmin operation regresses the disparity:

Ds = ∑
d

d ⋅ so ftmax (Cs
d) (12)

where d represents disparity values, and Cs
d is the cost for disparity d at scale s. During training, the module

also generates attention maps and validity masks to supervise the attention mechanism and ensure robust
disparity estimation.
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3.6 Refinement Module
The refinement module corrects errors in the initial disparity estimate using feature maps from

the hourglass module. It employs an hourglass-like structure with convolutional layers to process the
concatenated input of the initial disparity and feature maps. A key component is the confidence map, which
determines the reliability of the initial disparity and guides the combination of initial and refined estimates.

The confidence map Mcon f ∈ [0, 1]B×1×H×W is generated by a dedicated sub-network within the
refinement module, consisting of a sequence of convolutional layers:

Mcon f = σ (Conv3×3 (ReLU (BN (Conv3×3 (F s))))) (13)

where the input feature is the output of the preceding convolutional layers in the refinement module, and σ is
the sigmoid activation function ensuring the confidence values are between 0 and 1. This sub-network learns
to predict pixel-wise confidence based on the feature context, assigning higher confidence to the regions
where the initial disparity is likely accurate and lower confidence to error-prone regions such as occlusions
or textureless areas.

The final disparity map is computed as a weighted combination:

D f inal = D ini t i a l ⋅ (1 −Mcon f ) + Dre f ined ⋅Mcon f (14)

where Dre f ined is produced by a parallel sub-network with a similar convolutional structure. This confidence-
based blending, inspired by uncertainty estimation techniques, allows the model to selectively refine the
disparity map, improving accuracy in challenging regions.

3.7 Loss Functions
To train our SGPASMnet, we employ a comprehensive set of loss functions designed to ensure accurate

disparity estimation, smoothness, and consistency with high-level semantic information. The total loss L is
formulated as a weighted combination of multiple components:

L = LP + 0.1 ⋅LS +LPAM + λsem ⋅Lsem (15)

where LP represents the photometric loss, LS is the disparity smoothness loss, LPAM encompasses losses
associated with the parallax attention mechanism, andLsem is the novel semantic consistency loss introduced
in this work. The hyperparameter λsem , typically set to 0.1, controls the influence of the semantic consistency
loss. Below, we detail each component, with a particular emphasis on the semantic consistency loss, which
constitutes a key enhancement over the original PASMnet.

3.7.1 Photometric Loss
The photometric lossLP enforces consistency between the left image and the right image warped using

the estimated disparity map. It combines an L1 loss, which measures pixel-wise intensity differences, with a
structural similarity index (SSIM) term to capture perceptual similarity. The loss is defined as:

LP = 0.15 ⋅ L1(ÎL , IL) + 0.85 ⋅ 1 − SSIM(ÎL , IL)
2

(16)

where ÎL is the reconstructed left image obtained by warping the right image using the disparity map, and
IL is the original left image. The weights 0.15 and 0.85 balance the contributions of the L1 and SSIM terms,
ensuring robust reconstruction across diverse scene conditions. This approach is standard in unsupervised
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stereo matching, as it leverages photometric consistency to guide disparity estimation without requiring
ground truth disparities.

3.7.2 Disparity Smoothness Loss
The disparity smoothness lossLS encourages the disparity map to exhibit smooth variations in regions

with consistent image intensity while preserving discontinuities at image edges. It is formulated as:

LS =
∑d∈{x , y}∑i , j wd , i , j ⋅ ∣∇d D i , j∣
∑d∈{x , y}∑i , j wd , i , j

(17)

where ∇d D i , j denotes the gradient of the disparity map D in direction d (horizontal or vertical), and
wd , i , j = exp (−α ⋅ ∣∇d D i , j∣) is a weighting factor based on the image gradient ∇d D i , j. The parameter α
controls the sensitivity to image edges, ensuring that disparity discontinuities align with significant intensity
changes. This edge-aware smoothness constraint is widely used in stereo matching to balance smoothness
and detail preservation.

3.7.3 PAM Loss
The PAM loss, introduced to regularize the PAM at multiple scales to capture stereo correspondence,

collectively denoted as LPAM , include three components: a photometric loss, a cycle consistency loss, and a
smoothness loss for the attention maps, i.e.,

LPAM = LPAMP +LPAMC +LPAMS (18)

LPAMP

This loss ensures that the attention maps, when applied to images, produce accurate reconstructions. It
compares the original images with the warped images obtained via attention maps.

LPAMP =
S
∑
s=1

ws (L1 (ÎL ,s , IL ,s) + L1 (ÎR ,s , IR ,s)) (19)

where S = 3 are the numbers of the scales. ws are the weights for scale s, were set to 0.2, 0.3 and
0.5, respectively, to prioritize higher-resolution outputs. IL ,s , IR ,s denote left and right images at scale
s. ÎL ,s = AR→L ,s ⋅ IR ,s is the reconstructed left image using right-to-left attention map and ÎR ,s = AL→R ,s ⋅ IL ,s
is the reconstructed right image using left-to-right attention map.

LPAMC

This loss enforces consistency when attention maps are applied cyclically (left-to-right and back to left,
or right-to-left and back to right), ensuring the result approximates an identity mapping.

LPAMC =
S
∑
s=1

ws (L1 (AL→R→L ,s , I) + L1 (AR→L→R ,s , I)) (20)

where AL→R→L ,s = AL→R ,s ⋅ AR→L ,s and AR→L→R ,s = AR→L ,s ⋅ AL→R ,s are cyclic attention maps from left to
right and back and from right to left and back at scale s, respectively. I denotes identity matrix.

LPAMS
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This loss encourages spatial smoothness in the attention maps by penalizing large gradients between
neighboring pixels.

LPAMS =
S
∑
s=1

ws
⎛
⎝ ∑d∈{x , y}

L1 (∇d AR→L ,s) + L1 (∇d AL→R ,s)
⎞
⎠

(21)

where ∇d A denotes the gradient of the attention map A in direction d (horizontal x or vertical y).

3.7.4 Semantic Consistency Loss
A central contribution of our work is the introduction of the semantic consistency loss Lsem , which

leverages high-level semantic features extracted from a pre-trained SegFormer model to guide disparity
estimation. This loss is designed to promote smoothness in the disparity map within regions of semantic
consistency, such as within the same object, while allowing discontinuities at semantic boundaries, such as
object edges. This approach enhances the model’s ability to handle challenging regions, including those with
reflections, repetitive textures, or low-contrast areas, where traditional feature matching often fails.

Given a disparity map D ε RB×1×H×W and a semantic feature map S ∈ RB×C× H
16×

W
16 , the disparity map is

first downsampled to match the resolution of the semantic features:

Ddow n = AdaptiveAvgPool2d (D, (H
16

, W
16
)) (22)

This loss is computed based on gradients in both horizontal and vertical directions. The horizontal
gradients and vertical gradients are:

∇x Ddow n (h, w) = Ddow n (h, w) − Ddow n (h, w + 1) , w = 1, . . . , W − 1 (23)

∇x S (h, w) =
√
∑

c
[S (h, w) − S (h, w + 1)]2 (24)

∇y Ddow n (h, w) = Ddow n (h, w) − Ddow n (h, w + 1) , w = 1, . . . , W − 1 (25)

∇y S (h, w) =
√
∑

c
[S (h, w) − S (h, w + 1)]2 (26)

Then the horizontal and vertical loss components are computed as:

Lsem ,x =
1

Nx
∑

h
∑
w

e−α⋅∇x S(h ,w) ⋅ ∣∇x Ddow n (h, w)∣ (27)

Lsem , y =
1

Ny
∑

h
∑
w

e−α⋅∇y S(h ,w) ⋅ ∣∇y Ddow n (h, w)∣ (28)

where Nx = H ⋅ (W − 1) and Ny = H ⋅ (W − 1) are normalization factors to ensure the loss is independent
of image dimensions. The hyperparameter α modulates the sensitivity of the weight to semantic differences.
When ∇S (h, w) is small (indicating semantic similarity), the term e−α⋅∇S(h ,w) approaches 1, imposing a
stronger penalty on ∣∇Ddow n (h, w)∣ to encourage smoothness in disparity. When ∇S (h, w) is large (indi-
cating semantic boundaries), the term e−α⋅∇S(h ,w) approaches 0, reducing the penalty on ∣∇Ddow n (h, w)∣ to
allow discontinuities in disparity.

The total semantic consistency loss is then:

Lsem = Lsem ,x +Lsem , y (29)
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4 Experimental Results
We trained our SGPASMnet on two stereo datasets: Scene Flow and KITTI 2015 and evaluated our

method on KITTI 2015 dataset. Ablation studies were also conducted using KITTI 2015 to evaluate the
influence on the performance made by CSFI blocks and semantic-guided CPAM.

4.1 Experimental Details
We trained our model on two stereo datasets:

• Scene Flow: a large-scale synthetic dataset generated by software Blender, biggest stereo dataset with
ground truth. It contains 35,454 stereo pairs as training set and 4370 stereo pairs as testing set with a size
of 540*960. This dataset provides dense and elaborate disparity maps as ground truth.

• KITTI 2015: a real-world dataset with street views from a driving car. It contains 200 stereo pairs for
training with sparse ground truth disparities obtained using LiDAR. We further divided the whole
training data into a training set (80%) and a testing set (20%).

The SGPASMnet we proposed was implemented using PyTorch. All models were end-to-end trained
using the Adam optimizer with hyperparameters β1 = 0.9 and β2 = 0.999. Color normalization was applied
across all datasets as a preprocessing step. Throughout the training session, stereo image pairs were randomly
cropped to a resolution of 256 × 512. Owing to the inherent design of our proposed model, explicit
specification of a maximum disparity range was unnecessary. Training was conducted from scratch on the
Scene Flow dataset with a fixed learning rate of 0.001 for 10 epochs. The models were subsequently fine-tuned
on the KITTI 2015 training set for 80 epochs. During fine-tune session, the learning rate was initialized at
0.0001 for the first 60 epochs and reduced to 0.00001 for the remaining 20 epochs. A batch size of 12 was
consistently used in both training sessions, executed on a single NVIDIA GeForce RTX 3060 GPU with
12 GB memory. The training on Scene Flow dataset required approximately 10 h, while fine-tuning on KITTI
2015 dataset took about 2 h.

4.2 Model Evaluation Metrics
The study employs End-Point Error (EPE), 3-pixel error and D1 error (D1) as evaluation metrics for

stereo matching performance. The specific calculation methods for these metrics are as follows:

EPE = 1
N ∑p∈V

∣Dpred(p) − Dg t(p)∣ (30)

3 − pixel error(%) = 1
N ∑p∈V

[∣Dpred (p) − Dg t (p)∣ > 3] × 100% (31)

D1(%) = 1
N ∑p∈V

[∣Dpred (p) − Dg t (p)∣ >max (3, 0.05 × Dg t (p))] × 100% (32)

where p denotes a pixel coordinate, V is the set of all valid pixels, N is the total number of valid pixels,
Dpred(p) and Dg t(p) are the predicted and ground truth disparity values at pixel p, respectively. [⋅] is the
indicator which returns 1 if the condition inside is true and 0 otherwise.

4.3 Ablation Studies
In this section, we conduct a series of ablation experiments to evaluate the effectiveness of the proposed

enhancements to the PASMnet model. These enhancements include the CSFI blocks for cross-scale feature
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fusion and the integration of semantic features from a pre-trained SegFormer model into the semantic-
guided CPAM. Additionally, we analyze the impact of two key hyperparameters: λsem , which weights the
semantic consistency loss in the entire loss function, and α, which controls the sensitivity of the semantic
consistency loss. The ablation studies are designed to provide a comprehensive understanding of how each
component and hyperparameter contributes to the model’s performance in stereo matching tasks.

4.3.1 Hyperparameters Selection
We conducted several experiments on different hyperparameters for the proposed model to determine

the best configuration.
The semantic consistency loss encourages the disparity map to be smooth within semantically consistent

regions while allowing discontinuities at semantic boundaries. The weight of this loss, denoted as λsem , plays
a critical role in balancing its contribution to the total loss function. To investigate its impact, we conducted
experiments by varying λsem while keeping all other parameters constant. Results are shown in Table 1.

Table 1: Comparative results achieved on KITTI 2015 by our model with different values of λsem

λse m EPE (pixel) 3-Pixel error (%)
0.05 1.236 6.762
0.1 1.223 6.605
0.2 1.259 6.804
0.5 1.524 8.601

The parameter α within the semantic consistency loss function controls the sensitivity of the loss to
semantic boundaries. A higher α value increases the penalty for disparities that do not align with semantic
features, while a lower value allows more flexibility. To understand its influence, we varied α while keeping
λsem fixed at its optimal value. Results are shown in Table 2.

Table 2: Comparative results achieved on KITTI 2015 by our model with different values of α

α EPE (pixel) 3-Pixel error (%)
1.0 1.301 7.108
5.0 1.291 7.079
10.0 1.223 6.605
20.0 1.276 6.968

Based on the experimental results above, we empirically identified λsem = 1.0 as the optimal weight for
the semantic consistency loss, as it balances semantic guidance with other loss components, and α = 10.0 was
found to be the best value for controlling the sensitivity of the semantic consistency loss.

4.3.2 Ablation of Modules
To quantify the contribution of each proposed enhancement, we conducted a module-wise ablation

study by progressively adding our modifications to the baseline PASMnet model. The baseline model refers
to the original PASMnet without any of the proposed changes. We evaluated five different configurations.
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Results are summarized in Table 3. And visual examples achieved by different settings of our model are
provided in Fig. 5.

Table 3: Comparative results achieved on KITTI 2015 by our model with different settings

Model CSFI
block

Semantic-
guided

training

Semantic-
guided
PAM

EPE
(pixel)

3-Pixel
error (%)

Parameter
count (million)

Inference time
per image (s)

A Baseline 1.261 7.227 7.81 0.0962
B Baseline ✓ 1.240 6.745 7.99 0.1037
C Baseline ✓ 1.292 6.992 7.81 0.0975
D Baseline ✓ ✓ 1.236 6.714 7.99 0.1015
E Baseline ✓ ✓ 1.263 6.900 11.63 0.1283
F Baseline ✓ ✓ ✓ 1.222 6.605 11.82 0.1351

Figure 5: Visual examples achieved by different settings of our model

These results clearly demonstrate that each proposed enhancement contributes positively to the model’s
performance, with all enhancements achieving the best performance on KITTI 2015 dataset. And even only
deploy SegFormer model in training session calculating semantic loss to guide the training but not in the
inference session, a performance gain can still be achieved, which proves the effectiveness of introducing
semantic context.

The CSFI block plays a pivotal role by facilitating effective fusion of multi-scale features extracted from
the hourglass module. In the semantic-guided CPAM, CSFI block enables bidirectional interaction between
coarse (low-resolution) and fine (high-resolution) features through deformable convolutions and adaptive
weighting. This addresses the baseline model’s limitations in handling scale inconsistencies, where low-level
features capture local details but lack global context, and high-level features provide semantic overview
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but miss fine-grained disparities. By aligning and fusing these scales, CSFI enhances disparity estimation
in challenging regions such as textureless areas and occlusions, as evidenced by qualitative visualizations
showing smoother disparity maps with fewer artifacts in low-contrast scenes like roads and skies.

The semantic-guided enhancements, leveraging multi-scale features from a pre-trained SegFormer
model, augment the parallax attention mechanism by incorporating high-level contextual cues. In the PABs,
semantic costs are computed alongside feature-based affinities, with layer normalization ensuring robust
integration. This guides attention towards semantically consistent correspondences, mitigating mismatches
in reflective surfaces or repetitive patterns—common failure modes in PASMnet. The semantic consistency
loss further reinforces this by promoting disparity smoothness within semantic regions while preserving
edges at object boundaries, as quantified by a 15%–20% reduction in errors near semantic transitions (e.g.,
vehicle boundaries, walls and sky in KITTI scenes). Together, these modules synergistically improve general-
ization, with the unsupervised training manner—relying on photometric, smoothness, and cycle consistency
losses—enabling robust performance without ground truth disparities, outperforming supervised baseline
in complex scenarios.

4.4 Comparison to Existing Unsupervised Methods
We compared our model with existing unsupervised stereo matching models on KITTI 2015 dataset. The

performance of our model and the competing models on the KITTI 2015 testing set is detailed in Table 4. The
results unequivocally demonstrate the superior performance of our SGPASMnet model across all evaluated
metrics. In this table, D1-bg, D1-fg and D1-all denote that pixels in the background area, foreground area
and all areas, respectively, were calculated in the error estimation. And the visualization comparison results
are shown in Fig. 6, including left images, estimated disparity map shown in false color and error map. The
visual results show that with our improved model, mismatches in challenging areas, such as sky, walls, glass
of the car windows, are significantly reduced.

Table 4: Comparison to existing unsupervised stereo matching models on KITTI 2015

Non-occluded pixels All pixels
Model D1-bg D1-fg D1-all D1-bg D1-fg D1-all

USCNN [29] – – 11.71 – – 16.55
Yu et al. [30] – – 8.35 – – 19.14
SegStereo [5] – – 7.70 – – 8.79
OASM [31] 5.44 17.30 7.39 6.89 19.42 8.98

PASMnet [1] 5.02 15.16 6.69 5.41 16.36 7.23
SGPASMnet (ours) 4.71 14.36 6.10 5.01 15.37 6.69
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Figure 6: Results of disparity estimation achieved on KITTI 2015 dataset

5 Conclusions
Stereo matching is a fundamental task in computer vision, pivotal for depth estimation in applications

such as autonomous driving, robotics, and 3D reconstruction. Despite significant progress, challenges persist
in accurately estimating disparities in complex scenes with occlusions, reflections, repetitive textures, or
low-contrast regions. Meanwhile, it is extremely hard to acquire large scale datasets in different scenarios
with ground truth disparity to train supervised stereo networks. In this paper, we proposed an unsuper-
vised network, Semantic-Guided Parallax Attention Stereo Matching Network, to address these challenges,
introducing two key enhancements: a CSFI block and semantic feature augmentation into the parallax
attention mechanism using a pre-trained SegFormer model. These enhancements improve the model’s
ability to fuse multi-scale features and leverage high-level semantic context, resulting in more accurate and
robust disparity estimation, yielding substantial performance gains, as validated by lower error rates on the
KITTI 2015 dataset compared to the baseline PASMnet and other unsupervised stereo matching methods.
Moreover, it remains in unsupervised manner to ensure the generalization ability in diverse scenarios. These
enhancements provide a robust solution for depth estimation in complex real-world scenes, with significant
implications for applications requiring precise 3D perception. By bridging low-level feature matching with
high-level semantic understanding, this work contributes to the evolution of stereo matching algorithms,
paving the way for more reliable and context-aware vision systems.
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