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ABSTRACT: Tra�c sign detection is a critical component of driving systems. Single-stage network-based tra�c sign

detection algorithms, renowned for their fast detection speeds and high accuracy, have become the dominant approach

in current practices. However, in complex and dynamic tra�c scenes, particularly with smaller tra�c sign objects,

challenges such as missed and false detections can lead to reduced overall detection accuracy. To address this issue, this

paper proposes a detection algorithm that integrates edge and shape information. Recognizing that tra�c signs have

speci�c shapes and distinct edge contours, this paper introduces an edge feature extraction branch within the backbone

network, enabling adaptive fusion with features of the same hierarchical level. Additionally, a shape prior convolution

module is designed to replaces the �rst two convolutional modules of the backbone network, aimed at enhancing the

model’s perception ability for speci�c shape objects and reducing its sensitivity to background noise. �e algorithm

was evaluated on the CCTSDB and TT100k datasets, and compared to YOLOv8s, the mAP50 values increased by 3.0%

and 10.4%, respectively, demonstrating the e�ectiveness of the proposed method in improving the accuracy of tra�c

sign detection.
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1 Introduction

�e rapid advancement of autonomous driving technology is transforming the transportation sector

and enhancing both road safety and tra�c e�ciency. As we progress towards the widespread adoption of

autonomous driving, the accurate recognition and response to tra�c signs become in-creasingly important.

Tra�c signs serve as the foundation of road safety regulations, providing vi-tal guidance for navigation, speed

control, and hazard warnings, thereby ensuring safe and orderly tra�c �ow. However, tra�c sign detection

presents signi�cant challenges. In real-world tra�c scenarios, factors such as adverse weather conditions,

poor lighting, and and long-distance imaging can result in blurred edges of tra�c signs, causing inaccuracies

in detection models and leading to missed detections and false positives.

To address the issues of missed detections caused by low contrast, blurred edges, and occlusions of

tra�c signs, this paper introduces an edge feature extraction branch into the model. �is branch focuses

on capturing blurred edges and adaptively fuses with the corresponding level features of the backbone

network.�e two branches interact, further enhancing the model’s capability to represent edge information.

Meanwhile, to tackle the problem of false positives caused by background elements resembling tra�c sign

shapes in complex road environments, this paper designs a convolutional module with shape priors. �is

module enhances the model’s ability to perceive speci�c tra�c sign shapes, enabling it to focus more on
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features that match the prior shapes, thereby reducing background noise interference and signi�cantly

decreasing the false positive rate. �e contributions of this paper are summarized as follows:

i. Based on YOLOv8, this paper designs and adds an edge branch to the backbone network. �rough

the adaptive fusion module, the two branches interact, enhancing the model’s ability to perceive

edge information.

ii. �is paper designs a convolutional module with shape priors, which enhances the model’s ability to

recognize speci�c shapes of tra�c signs, reduces interference from complex backgrounds, and thus

improves the model’s ability to perceive tra�c signs.

iii. �is paper adds a P2-level small object detection head to YOLOv8, enhancing the model’s ability to

detect small objects. Experiments on the CCTSDB and TT100K datasets con�rm that the proposed

method achieves improvements in mean Average Precision (mAP50) of 3.0% and 10.4%, respectively,

over YOLOv8.

2 RelatedWork

�is section primarily introduces the existing related research work on tra�c sign detection, edge

information guidance, and shape feature perception.

2.1 Tra�c Sign Detection

Tra�c-sign detection is a prominent research topic in autonomous driving; as deep learning has

matured, numerous algorithms have been proposed for classifying and detecting road tra�c signs. �e

mainstream tra�c sign detection algorithms are one-stage detection algorithms. Examples include SSD [1]

and the YOLO family, with YOLO widely used and continually improved for its detection e�ciency.

Recent work has converged on multi-scale representation and attention mechanism. Manzari et al. [2]

introduce a hybrid pyramid transformerwith attribute convolution to fuse global–local features across scales,

improving robustness to sign-size variation. Li et al. [3] propose an illumination-invariant hierarchical

feature enhancement network and plugg it into existing object detectors. Gao et al. [4] propose adaptive–

spatial attention that weights informative regions during multi-scale fusion, strengthening small-object

representation. Reference [5] couples GIoU loss with a re�ned PANet-style neck on YOLOv4 to optimize

multi-scale fusion and box regression. Yao et al. [6] modify the YOLOv4 FPN and add a receptive-�eld

module to the backbone to expand context and extrac-tion capacity. Yu et al. [7] exploit inter-frame

dependencies via a VGG–YOLOv3 architecture that links adjacent frames for sequence-aware detection.

Feature strengthening with auto-augmentation and tightly-coupled extractors further improves small-sign

robustness. Wang et al. [8] add a YOLOv5 feature-enhancement module and an auto-learned augmentation

policy to increase robustness. Wang et al. [9] further design a tightly coupled feature structure and a new

extractor to improve sensitivity to small signs. Zhang et al. [10] introduce C3Ghost to cut computation

for real-time inference while preserving accuracy. Wei et al. [11] propose a fusion module plus a corner-

expansion encoder to sharpen corner cues and improve localization. Liang et al. [12] augment sparse R-CNN

with coordinate attention on ResNeSt and add adaptive and test-time enhancement to raise accuracy and

robustness. Zhang et al. [13] integrate exposure–tone–brightness enhancement with an encoder/aggregator

producingmulti-receptive-�eld features and fusingmulti-resolutionmaps. Zhang et al. [14] replace standard

blocks with structurally re-parameterized modules and add pyramid weighting to narrow cross-scale

semantic gaps. Attention and neck designs evolve toward cross-stage attention, sub-pixel channel integration

with inter-layer interaction, and multi-scale attention with spatial aggregation. Shi et al. [15] employ cross-

stage attention and a neck that more fully merges detailed and semantic information. Zhao et al. [16] use

sub-pixel convolution to fold channel information into spatial resolution and proposeMIFNet to strengthen
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inter-layer interaction. Zhang et al. [17] present a multi-scale attention module and a spatial aggregator

that injects low-level spatial cues into high-level features. Xie et al. [18] develop GRF-SPPF and the SPAnet

architecture with dual shortcuts and an extra small-object head to en-hance path aggregation. Zhang

et al. [19] combine channel–spatial attention with RFB-based fusion to diversify receptive �elds at low cost.

Luo et al. [20] integrate Ghostmodules with e�cientmulti-scale attention in YOLOv8 to accelerate inference

while retaining accuracy. Khan et al. [21] propose a uni�ed two-stage framework that turns each FPN level

into a scale-speci�c proposal generator via multiple RPNs and then classi�es the proposals, yielding stronger

multi-scale detection on high-resolution satellite images. Du et al. [22] use space-to-depth to fold spatial

cues into channels for multi-scale targets, introduce select-kernel attention for adaptive focusing, and adopt

a weightedWIoUv3 loss to stabilize regression and training. Cui et al. [23] build cross-layer multi-sequence,

multi-scale fusion within a transformer detector, combined with channel–spatial attention and an inverted

residual moving block to enhance positional cues while retaining e�ciency. Zhang et al. [24] add a small-

object detection layer and integrate a bidirectional FPN into a one-stage detector to strengthen multi-scale

fusion and improve small sign detection. Shen et al. [25] perform decision-level camera–LiDAR fusion:

detect/track images and point clouds separately, associate with Aggregated Euclidean Distance and optimal

matching to improve robustness under occlusion. Zhou et al. [26] propose multi-scale enhanced feature

fusion—using activation-free attention to emphasize saliency, a fusion pyramid to integrate multi-level

semantics, and global–local aggregation to couple long- and short-range context.

Despite steady advances, detecting very small signs remains brittle: down-sampling and stride quan-

tization smear �ne contours and suppress weak signals. Edge localization is easily perturbed by clutter,

motion blur, and compression noise, yielding inaccurate boundaries and unstable regression. Meanwhile,

large intraclass shape variation from scale, viewpoint, and occlusion continues to challenge robustness to

shape changes.

2.2 Edge and Shape Guidance

Although edges are nominally low-level cues, they remain indispensable for representation learning

and, when used as guidance, enhance the perception of edge-salient targets. Sun et al. [27] leverage target-

related edge semantics to steer high-level feature extraction, enforcing structure-aware representations. Zhou

et al. [28] propose an edge-guided cyclic localization networkwith parallel decoders—one for edge extraction

and one for feature fusion—to produce edge-enhanced features. Luo and Liang [29] model semantic-edge

correlation via a semantic-edge interaction network that combines amulti-scale attention interactionmodule

with a semantic-guided fusion module. Together, these approaches demonstrate the value of edge cues

in emphasizing target structure, guiding high-level features, and improving localization accuracy. Recent

studies also exploit intrinsic shape cues to strengthen target-speci�c perception. Although edge and shape

cues are well established in semantic segmentation, their e�cient exploitation in tra�c-sign detection

remains limited.

3 Method

In the tra�c scenarios of autonomous driving, the detection of tra�c signs still faces several challenges,

such as small target size, occlusions, low contrast, and complex backgrounds, which can lead to missed

detections and false positives.�erefore, detectors must deliver real-time performance and high accuracy so

that vehicles have su�cient time to respond to complex tra�c situations.

Fig. 1 shows the overall architecture of ES-YOLO.�e backbone network includes the original YOLOv8

backbone branch and an edge feature extraction branch. We replace the �rst two convolutional blocks

in the backbone with the proposed shape-prior convolutional modules and add a P2-level small-object
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detection head. �e edge-extraction branch mitigates edge blurring caused by weather and illumination

changes. By introducing shape-prior knowledge and a small-object detection head, themethod reduces back-

ground interference and occlusion-induced false positives, thereby enhancing the detection of small targets.

Figure 1: ES-YOLO

3.1 Edge Feature Extraction Branch

Adding an edge feature extraction branch to the backbone network aims to enhance the network’s

ability to perceive and extract edge and contour information. In complex, dynamic scenes, background

clutter (e.g., trees, street lights, buildings) and weather-induced edge blurring can cause missed detections.

By incorporating the edge extraction branch, the model’s representation capability of edges and contours is

strengthened, allowing it to better focus on tra�c sign areas with clear edges.

�e edge extraction branch consists of an edge map extraction module, convolutional blocks, an edge

feature extraction module, and an adaptive feature fusion module. �e raw image �rst passes through



Comput Mater Contin. 2026;87(1):88 5

the edge-map extractor, which uses a Sobel operator. Next, the edge feature extraction module performs

convolutional downsampling, focusing on re�ning and enhancing edge features to provide the model with

richer edge information. �e adaptive feature fusion module learns the optimal weights for fusing the same

level features of the two branches. At the same hierarchical level, features from the two branches guide

each other. �is allows the high-level semantic information of the backbone features to guide the edge

information extraction process, while using edge features to constrain the extraction range of high-level

semantic information. �is integration of geometric details from edge information enables the model to

better focus on tra�c sign areas, enhancing its anti-interference capability and alleviating issues of missed

and false detections. �e structure of the edge feature extraction module is shown in Fig. 2.

Figure 2: Edge feature extraction block

�e re-parameterization technique [30] retains the excellent feature extraction capabilities of multi-

branch structures, enabling the extraction of rich edge features from the edgemap.�is is highly e�ective for

the network to capture detailed information such as edges and contours. Additionally, it decouples the planar

structure of the inference stage from the multi-branch structure of the training stage, e�ectively improving

computational e�ciency and reducing inference time, which is crucial for the quick response required in

tra�c sign detection.

�e �nal layer of the edge feature extraction module is a parameter-free attention mechanism [31]

(SimAM). Unlike conventional channel or spatial attention, SimAM introduces no extra parameters; it

minimizes an energy function to estimate the importance of each neuron and produces a 3-D attention map

that adaptively enhances edge cues useful for detection. Since the edge map extracted by the Sobel operator

contains not only the edge information of tra�c signs but also introduces noise interference, the �exibility

and lightweight nature of the parameter-free attention mechanism are utilized to reshape the feature map,

e�ectively suppressing irrelevant information. �is enables the network to focus more on local details to

obtain richer features.

�e approach of the parameter-free attention mechanism is as follows: First, calculate the channel

statistics µc of the input feature map, as shown in Eq. (1), where C represents di�erent channels. �en,

calculate the squared di�erence of each element relative to the current channel mean value, as shown

in Eq. (2). Next, normalize the squared di�erences and apply the Sigmoid activation function to compute
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the attention map. �e calculation formula is shown in Eq. (3), where σ represents the Sigmoid function, N

represents the total number of elements in the feature map, and λ is a very small constant. Finally, the input

feature map is multiplied by the attention map to obtain the �nal weighted feature map, as shown in Eq. (4).

µc =
1

H ×W
H

∑
i=1

W

∑
j=1

Xc(i , j) (1)

Dc(i , j) = (Xc(i , j) − µc)2 (2)

Ac(i , j) = σ
⎛
⎝

Dc(i , j)
4 × (∑Dc

N
+ λ)

+ 0.5⎞⎠ (3)

Yc(i , j) = Ac(i , j) ⋅ Xc(i , j) (4)

3.2 Adaptive Feature Fusion Module

To better fuse the same-level features of the edge branch and the backbone branch, enhancing the

complementarity of the features and enabling the model to not only understand what the target object is but

also more accurately locate the target’s boundaries, this paper designs an adaptive feature fusion module. Its

structure is shown in Fig. 3. It consists of convolutional layers, pooling layers, and linear layers.

Figure 3: Adaptive feature fusion module

�e process can be described as follows: For the input same-level edge branch features fe and backbone

features fs , they are �rst concatenated along the channel dimension to obtain fu . �en, a 1 × 1 convolutional

block is used to integrate the di�erent feature information from the two branches, allowing preliminary

interaction and enhancing the richness of feature representation.

Next, the integrated feature information is input into the global average pooling layer, compressing

the feature map of each channel to obtain the global representation features Z. Z is then fed into the fully

connected layer, normalized, and activated to obtain the weights w1 and w2 for the features of the two

branches. Finally, the fused features f are output as shown in Eq. (5):

f = fe ×w1 + fs ×w2 (5)

In the tra�c sign detection task, the backbone of YOLOv8 can extract some low-level edge contour

information and high-level semantic information from the image. However, to improve the model’s sensi-

tivity to and capability to represent edge information of tra�c signs, this method adaptively fuses the more

re�ned and complete edge features extracted from the edgemap with the features extracted by the backbone.

�e adaptive feature fusion module is alternately used in the backbone and the edge branch. �is fusion

enables high-level semantics from the backbone to guide edge extraction (focusing the edge branch on target-

related boundary regions) and, conversely, uses edge features to re�ne high-level semantic extraction in

the backbone. �is is because the detailed information provided by the edge branch is o�en overlooked by



Comput Mater Contin. 2026;87(1):88 7

the backbone branch. In summary, the adaptive feature fusion module learns to balance the contributions

of the edge branch and the backbone branch, achieving the guidance of high-level semantic information

for edge feature extraction and the optimization of semantic feature extraction by edge information. �is

inter-action signi�cantly enhances the performance of tra�c sign detection, particularly the accuracy and

robustness in complex environments.

Compared with other edge-guided fusion processes, our method does not treat the edge map as an

auxiliary channel fused with semantic features by static concatenation or a �xed mixing ratio. We �rst

distill high-frequency structure with re-parameterized convolutions and suppress low-SNR responses with a

parameter-free attention mechanism to obtain a denoised boundary representation; at multiple neck scales,

a joint global summary of the two streams produces a bounded pair of weights that simultaneously modulate

the semantic and edge features, and bi-directional fusion is performed before the detection heads. When

boundaries are reliable, their weight is increased; when boundaries are unreliable, their in�uence is reduced,

yielding a reliability-weighted, content-adaptive coupling rather than �xed-ratio stacking. �is mechanism

complements the shape prior and is more robust for small and thin targets and in cluttered backgrounds.

3.3 Shape-Prior Convolutional Block

Tra�c signs have �xed shapes, including circles, triangles, and rectangles. �eir shape features are very

prominent and important for identi�cation. �erefore, this paper considers incorporating the shape prior

knowledge of circles and triangles into the feature extraction process. A circular convolutional kernel block

and a triangular convolutional kernel block are designed, forming the basis of the shape-prior convolutional

block. Its structure is shown in Fig. 4.

Figure 4: Shape prior convolution block

By embedding shape information as priors directly into the convolutional kernels, the method enables

the model to perceive and respondmore e�ectively to features that match these shapes. Because cues such as

shape, edges, and contours are low-level, they are more easily captured in the shallow layers of the network;

accordingly, we replace the �rst two backbone blocks with the pro-posed shape-prior convolutional blocks

to enhance the model’s capability to represent objects with speci�c shapes. �e design of the circular-kernel

block is detailed in Algorithm 1.
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Algorithm 1: Circular convolutional kernel assignment

1 Function Initialize the Circular Convolutional Kernel (kernel size, number of

output channels):

2 Radius = Kernel size//2;
3 Center = (radius, radius);
4 Initialization kernel weights zero matrices [kernel size, kernel size];

5 for i in (0, kernel size − 1) do

6 for j in (0, kernel size − 1) do
7 if (i − center[0])2 + ( j − center[1])2 ≤ radius2 then
8 Kernel weights [∶, ∶, i , j] = 1;
9 end

10 else

11 Kernel weights [∶, ∶, i , j] = 0;
12 end

13 end

14 end

15 return Kernel weights;

�e following example shows the weights of a circular convolutional kernel with a kernel size of 5:

W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 1 1 0

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(6)

�e initialization process for the weights of the triangular convolutional kernel is similar. For a kernel

size of 5, the weights of the triangular convolutional kernel are:

W =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

1 1 1 1 1

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(7)

By initializing the convolutional kernel weights with circular and triangular shape priors, we �x the

kernel parameters in the �rst shape-prior layer, enhancing the network’s ability to perceive �xed shapes.

In the second layer of the shape-prior block, the kernel parameters are learned dynamically, allowing the

model to remain sensitive to shape while �ne-tuning the prior. �is design provides advantages for tra�c-

sign detection: in complex, dynamic scenes, signs appear at multiple scales and views; embedding shape

priors improves robustness across scales and viewpoints and ensures the network can extract speci�c shapes.

Real-world roads also contain cluttered backgrounds that occlude signs, making it di�cult for traditional

detectors to recognize partially occluded targets. Introducing shape-prior convolutions leverages local shape

cues, enhancing the detector’s ability to recover occluded targets and reducing missed and false detections

caused by occlusion.
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3.4 Remarks

Prior edge-guided and shape-aware detectors commonly fuse edgemaps and semantic features by static

concatenation or �xed-ratio addition, o�en with single-direction guidance at a single scale near the head.

ES-YOLO learns input-conditioned gates across multiple neck scales to modulate the semantic and edge

streams, and performs bi-directional fusion before the detection heads, so that the fusion weights adapt to

image content and scale. �e shape-prior convolution block introduces an explicit structural bias toward

canonical tra�c-sign geometries, complements edge cues, reduces boundary confusion with background

textures, and strengthens discrimination for small and thin signs.�ese choices clarify how ES-YOLO di�ers

from previous designs and provide a mechanistic explanation for the consistent improvements observed on

TT100K, CCTSDB, and GTSRB, partic-ularly under illumination change, occlusion, and scale variation.

4 Experiments and Analysis

Experiments were conducted on Ubuntu 20.04 with PyTorch 1.12 using an NVIDIA TITAN V GPU.

We trained with SGD (initial learning rate 0.01), batch size 8, for 20 epochs, and enabled au-tomatic mixed

precision. �e method proposed in this paper is trained and tested on the CCTSDB [32] and TT100K da-

tasets. �e TT100K dataset is a public dataset collected in China, containing 16,000 images and 27,000

instances of tra�c signs. �e CCTSDB dataset comprises over 17,000 images, including scenarios with

variations in lighting, di�erent scales, and occlusions or damage.

4.1 Evaluation Metrics

To compare the performance of the method proposed in this study with other methods, the following

evaluationmetrics were used: precision, recall, mean Average Precision (mAP50), Floating Point Operations

(FLOPs), and Frames Per Second (FPS).

4.2 Ablation Studies

To verify the performance improvement brought by the enhanced methods proposed in this study,

ablation experiments were designed to evaluate the performance of each module. �e input size for all

experiments was set to 640 × 640. In the experiments, the large object detection head was removed while

using the P2-level detection head. �e ablation experiment results of the proposed method on the CCTSDB

dataset are shown in Table 1.

Table 1: Ablation study on the CCTSDB

Method Precision Recall mAP FLOPs FPS

YOLOv8s 0.902 0.750 0.833 11.1M 105

YOLOv8s+P2 0.898 0.775 0.840 7.4M 94

Edge-YOLOv8s+P2 0.929 0.791 0.857 13.0M 59

Shape-YOLOv8+P2 0.901 0.761 0.847 7.5M 90

ES-YOLOv8s 0.935 0.799 0.863 13.1M 55

From the data in Table 1, it can be seen that a�er adding the P2-level detection head and re-moving

the large detection head, the mean Average Precision (mAP50) increased by 0.7%. On this basis, adding the

edge extraction branch increased themean Average Precision by 1.3%. Adding the shape-prior convolutional

block increased the mean Average Precision by 0.7%. When the edge extraction branch and shape-prior
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convolutional block were combined, forming the ES-YOLOv8s network structure proposed in this paper,

the mean Average Precision improved by 3% compared to the YOLOv8s structure. �is fully demonstrates

the e�ectiveness of the edge extraction branch and shape-prior convolutional block proposed in this paper.

Additionally, the improvements in pre-cision and recall rates demonstrate a reduction in false positives and

an increase in true positives, e�ectively mitigating the issues of missed and false detections. Fig. 5 shows the

change in mean Average Precision during the training process.

Figure 5: mAP curve on CCTSDB

From the data in Table 2, it can be seen that a�er adding the P2-level detection head and re-moving

the large detection head, the mean Average Precision (mAP50) increased by 6.5%. On this basis, adding the

edge extraction branch increased themeanAverage Precision by 4.0%. Adding the shape-prior convolutional

block increased the mean Average Precision by 1.7%. When the edge extraction branch and shape-prior

convolutional block were combined, forming the ES-YOLOv8s network structure proposed in this paper,

the mean Average Precision (mAP50) improved by 10.4% compared to the YOLOv8s structure. Fig. 6 shows

the change in mean Average Precision during the training process.

Table 2: Ablation study on the TT100K

Method Precision Recall mAP FLOPs FPS

YOLOv8s 0.796 0.708 0.794 11.1M 115

YOLOv8s+P2 0.855 0.777 0.859 7.4M 101

Edge-YOLOv8s+P2 0.881 0.815 0.895 13.0M 68

Shape-YOLOv8+P2 0.865 0.802 0.876 7.5M 99

ES-YOLOv8s 0.885 0.829 0.898 13.1M 57
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Figure 6: mAP curve on TT100K

Notably, on CCTSDB the addition of the P2 small-object head yields only a +0.7% mAP gain, whereas

on TT100K the same change produces a +6.5% mAP gain. �is suggests that TT100K contains a higher

proportion of small, thin, and distant tra�c signs. �e discrepancy aligns with the design rationale of

ES-YOLO: edge cues and shape priors impose stronger constraints for small objects and blurred boundaries,

leading to larger overall improvements on TT100K. In contrast, targets in CCTSDB are generally more

discernible, so the gains are smaller but stable and consistent. Taken together, results on the two datasets

indicate that ES-YOLO delivers improvements in a consistent direction across di�erent data distributions,

demonstrating robustness and transferability.

To verify that the edge extraction branch and shape-prior block help the model focus on tra�c-

sign regions, suppress background interference, and improve sensitivity to and capability to represent

speci�c shapes, we visualize feature maps as heatmaps. We select the last feature map of the backbone for

visualization. Heatmap comparisons on CCTSDB and TT100K are shown in Figs. 7 and 8.

Figs. 7 and 8 respectively present the heatmap comparisons.�e le� column shows the original images,

the middle column shows YOLOv8 heatmaps, and the right column shows heatmaps from our method.

In Fig. 7, YOLOv8 exhibits a scattered attention pattern in complex backgrounds; attention o�en leaks to

irrelevant elements such as trees and sky, leading to imprecise edge focus around the signs. By contrast, our

method—leveraging the edge-feature extraction module and the shape-prior block—concentrates attention

on sign regions andmarkedly reduces back-ground noise. In the second row, YOLOv8 over-attends to bridge

structures and shadows, which dilutes focus on the signs, whereas our method highlights the critical edge

areas and improves detection.
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Figure 7: Heatmap visualization of the detection results on CCTSDB dataset

Figure 8: Heatmap visualization of the detection results on TT100K dataset

In Fig. 8, the �rst row contains heavy background clutter with many vehicles and buildings. Here

YOLOv8 spreads attention to car roo�ops and building façades, resulting in insu�cient coverage of the

signs; our method enhances edge awareness, suppresses interference, and achieves more precise localization.

�e second row represents a low-contrast scenario: YOLOv8 shows weak edge attention and fails to capture

blurry boundaries, while our method strengthens boundary focus and improves recognition. �ese results

demonstrate improved robustness and accuracy in both cluttered backgrounds and low-contrast settings,

e�ectively reducing missed and false detections.
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4.3 Comparison Experiments with Mainstream Detection Mode

To verify the performance of the proposed detection algorithm, comparisons were made with main-

stream single-stage and two-stage detectionmodels. Considering that the proposed improvements are based

on YOLOv8s, this study chose smaller models from the YOLOv5 and YOLOv7 series for comparison. Each

model was given an input size of 640 × 640, and experiments were conducted on the CCTSDB and TT100K

datasets.�e experimental results are shown in Tables 3 and 4.

Table 3: Comparison experiments on the CCTSDB

Method Precision Recall mAP FPS

YOLOv8s 0.902 0.750 0.833 105

YOLOv5s 0.910 0.747 0.815 98

YOLOv7-tiny 0.920 0.723 0.793 102

SSD 0.593 0.515 0.542 28

Faster R-CNN 0.769 0.783 0.774 14

R-FCN 0.791 0.802 0.797 10

YOLOv7-TS [16] 0.926 0.783 0.860 37

SC-YOLO [15] 0.938 0.768 0.843 –

ReYOLO [14] – 0.839 – –

Zhang [17] – – 0.861 –

GRFS-YOLOv8 [18] 0.874 0.724 0.803 –

Luo [20] 0.894 0.719 0.829 –

Ours 0.935 0.799 0.863 55

Table 4: Comparison experiments on the TT100K

Method Precision Recall mAP FPS

YOLOv8sz 0.796 0.708 0.794 115

YOLOv5s 0.732 0.696 0.741 99

YOLOv7s-tiny 0.530 0.611 0.604 99

SSD 0.548 0.477 0.508 29

Faster R-CNN 0.605 0.704 0.698 14

R-FCN 0.638 0.731 0.722 12

Wang [8] – – 0.651 95

Gao [4] – – 0.719 –

ReYOLO [14] – – 0.683 –

VATSD [9] – – 0.828 –

Zhang [13] – – 0.706 –

CR-YOLOv8 [19] – – 0.869 103

GRFS-YOLOv8 [18] 0.520 0.950 0.712 –

Ours 0.885 0.829 0.898 57
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According to the data in Tables 3 and 4, the proposed method shows signi�cant improvement in mean

Average Precision (mAP) compared to other mainstream single-stage detection models, while meeting the

speed requirements for real-time detection.

Under low contrast, blurred boundaries, and partial occlusions, the mAP gains indicate that ES-YOLO

is robust to challenging conditions. At the same time, the edge branch and the shape-prior module introduce

only amodest increase in parameters and computation, and the inference speed remains real-time under our

setting, which meets the requirements of tra�c scenes. Compared with the single-stage baseline, ES-YOLO

improves accuracy while keeping latency acceptable; compared with typical two-stage detectors, it avoids

the overhead of proposal generation and repeated feature resampling, achieving competitive accuracy with

lower latency. Overall, ES-YOLOo�ers a balanced accuracy–e�ciency trade-o� and is suitable for real-world

applications that require both robustness and real-time performance.

As is shown in Table 5, we conduct an additional evaluation on GTSDB to assess cross-dataset

generalization. ES-YOLO attains anmAP of 0.877, surpassing 0.826 of YOLOv8s with a gain of 5.1 percentage

points, indicating e�ectiveness on full-scene images with small signs and cluttered backgrounds.�roughput

decreases from 115 FPS to 56 FPS yet remains real-time.�e outcome is consistent with the trends on TT100K

and CCTSDB, underscoring robustness and deployability.

Table 5: Comparison experiments on the GTSDB

Method Precision Recall mAP FPS

YOLOv8s 0.841 0.786 0.826 115

Ours 0.893 0.854 0.877 56

As shown in Figs. 9 and 10, YOLOv8 results are in the middle column and our method in the rightmost

column. Fig. 9 illustrates a low-contrast nighttime scene. Under this challenging condition, YOLOv8

struggles to separate signs from the background because poor lighting reduces contrast; its bounding boxes

are vague and the con�dence scores are 0.33 and 0.48 in the examples from themiddle column.�is indicates

insu�cient boundary capture in low-contrast settings. In contrast, the proposedmethod, which incorporates

an edge-extraction module, enhances sensitivity to subtle boundaries: the boxes more accurately cover the

tra�c-sign regions and the con�dence scores rise to 0.73 and 0.85, demonstrating improved robustness in

low-contrast scenarios.

Fig. 10 presents the detection performance under complex backgrounds and partial occlusion condi-

tions. In the �rst row, representing a complex background scenario, YOLOv8 produces false detections on

background elements such as signposts and trees, resulting in o�set detection boxes and low con�dence

scores. �is is a common issue for traditional models when handling complex scenes. In contrast, the

proposedmethod leverages the shape-prior convolutionalmodule to e�ectively utilize the shape information

of tra�c signs, focusing the model’s attention on the actual tra�c signs.�e results show that the detection

boxes are more accurately centered on the tra�c signs, with con�dence scores consistently above 0.85.

Furthermore, in the second row, depicting a partially occluded scenario, YOLOv8 fails to detect the tra�c

sign occluded by the bridge. However, the proposed method successfully compensates for the missing

information through shape priors, accurately detecting the partially occluded sign and precisely marking

its location. �ese results demonstrate that the proposed method has signi�cant advantages in addressing

missed and false detections caused by complex backgrounds, low contrast, and partial occlusion.
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Figure 9: Comparison of detection results between YOLOv8 and the proposed method on CCTSDB in low-contrast
sce-narios

Figure 10: Comparison of detection results between YOLOv8 and the proposed method on TT100K in complex back-
ground and partial occlusion scenarios

In Figs. 11 and 12, the le� column shows our method, the middle column shows RT-DETR, and the

right column shows TPH-YOLOv5. As the �gures indicate, our method outperforms both baselines in

low-contrast night scenes and under complex backgrounds. In Fig. 11, it yields more accurate tra�c-sign

detections with higher con�dence and tighter boxes, demonstrating stronger robustness to low contrast.

By comparison, RT-DETR produces misaligned boxes with lower con�dence, while TPH-YOLOv5 su�ers

more missed detections and false positives due to limited adaptation to low-light conditions. In Fig. 12, our

approach also performs well in cluttered back-grounds, accurately detecting small and partially occluded

signs with high con�dence. RT-DETR showsmoderate performance but struggles on small/occluded targets;

TPH-YOLOv5 misses multiple signs and has a higher false-positive rate. Overall, these results show that the
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proposed method handles low contrast, background clutter, and partial occlusion more e�ectively, reducing

missed and false detections and exhibiting greater robustness.

Figure 11: Detection results comparison between the proposed method and other models on CCTSDB

Figure 12: Detection results comparison between the proposed method and other models on TT100K

5 Conclusion

�is paper presents ES-YOLO, which introduces an edge feature branch and a shape-prior convolution

and performs input-conditioned bi-directional adaptive fusion in the neck, enabling high-level semantics

and �ne-grained boundary information to complement each other and thereby improve the localization and
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discrimination of tra�c signs. We validate the approach on multiple datasets, and the results show stable

gains on small and thin targets, low-contrast scenes, partial occlusions, and cluttered backgrounds, while

maintaining real-time inference and demonstrating deployability. Remaining key challenges lie in complex

driving conditions and engineering constraints. Rain, fog, strong backlight, and nighttime reduce the signal-

to-noise ratio of boundaries and diminish the e�ectiveness of the fusion weights and the shape prior; domain

shi�s across devices, lenses, and regions a�ect model consistency; insu�cient coverage of long-tailed classes

and extremely small targets can still trigger false negatives and false positives; sustaining high throughput

with low latency on embedded platforms is also challenging. Future work will focus on three directions:

�rst, improving robustness under rain, fog, nighttime, and strong backlight; second, expanding evaluation

across datasets, devices, and diverse road scenarios to enhance cross-domain generalization; and third,

advancing model light weighting and inference acceleration to meet real-time deployment on on-device and

embedded platforms.
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Nomenclature

�e following abbreviations are used in this manuscript:

Nomenclature Description

YOLOv8s You Only Look Once (v8, Small)

ES-YOLO Edge- and Shape-Fusion YOLO

AFM Adaptive Fusion Module

SPPF Spatial Pyramid Pooling-Fast

BN Batch Normalization

GAP Global Average Pooling

FC Fully Connected Layer

NMS Non-Maximum Suppression

mAP50 Mean Average Precision at IoU = 0.50
FPS Frames Per Second

https://datasetninja.com/gtsdb
https://cg.cs.tsinghua.edu.cn/traffic-sign/
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