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ABSTRACT: Traffic sign detection is a critical component of driving systems. Single-stage network-based traffic sign
detection algorithms, renowned for their fast detection speeds and high accuracy, have become the dominant approach
in current practices. However, in complex and dynamic traffic scenes, particularly with smaller traffic sign objects,
challenges such as missed and false detections can lead to reduced overall detection accuracy. To address this issue, this
paper proposes a detection algorithm that integrates edge and shape information. Recognizing that traffic signs have
specific shapes and distinct edge contours, this paper introduces an edge feature extraction branch within the backbone
network, enabling adaptive fusion with features of the same hierarchical level. Additionally, a shape prior convolution
module is designed to replaces the first two convolutional modules of the backbone network, aimed at enhancing the
model’s perception ability for specific shape objects and reducing its sensitivity to background noise. The algorithm
was evaluated on the CCTSDB and TT100k datasets, and compared to YOLOvV8s, the mAP50 values increased by 3.0%
and 10.4%, respectively, demonstrating the effectiveness of the proposed method in improving the accuracy of traffic
sign detection.
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1 Introduction

The rapid advancement of autonomous driving technology is transforming the transportation sector
and enhancing both road safety and traffic efficiency. As we progress towards the widespread adoption of
autonomous driving, the accurate recognition and response to traffic signs become in-creasingly important.
Traffic signs serve as the foundation of road safety regulations, providing vi-tal guidance for navigation, speed
control, and hazard warnings, thereby ensuring safe and orderly traffic flow. However, traffic sign detection
presents significant challenges. In real-world traffic scenarios, factors such as adverse weather conditions,
poor lighting, and and long-distance imaging can result in blurred edges of traffic signs, causing inaccuracies
in detection models and leading to missed detections and false positives.

To address the issues of missed detections caused by low contrast, blurred edges, and occlusions of
traffic signs, this paper introduces an edge feature extraction branch into the model. This branch focuses
on capturing blurred edges and adaptively fuses with the corresponding level features of the backbone
network. The two branches interact, further enhancing the model’s capability to represent edge information.
Meanwhile, to tackle the problem of false positives caused by background elements resembling traffic sign
shapes in complex road environments, this paper designs a convolutional module with shape priors. This
module enhances the model’s ability to perceive specific traffic sign shapes, enabling it to focus more on
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features that match the prior shapes, thereby reducing background noise interference and significantly
decreasing the false positive rate. The contributions of this paper are summarized as follows:

i.  Based on YOLOVS, this paper designs and adds an edge branch to the backbone network. Through
the adaptive fusion module, the two branches interact, enhancing the model’s ability to perceive
edge information.

ii.  This paper designs a convolutional module with shape priors, which enhances the model’s ability to
recognize specific shapes of traffic signs, reduces interference from complex backgrounds, and thus
improves the model’s ability to perceive traffic signs.

iii. ~ This paper adds a P2-level small object detection head to YOLOVS, enhancing the model’s ability to
detect small objects. Experiments on the CCTSDB and TT100K datasets confirm that the proposed
method achieves improvements in mean Average Precision (mAP50) of 3.0% and 10.4%, respectively,
over YOLOVS.

2 Related Work

This section primarily introduces the existing related research work on traffic sign detection, edge
information guidance, and shape feature perception.

2.1 Traffic Sign Detection

Traffic-sign detection is a prominent research topic in autonomous driving; as deep learning has
matured, numerous algorithms have been proposed for classifying and detecting road traffic signs. The
mainstream traffic sign detection algorithms are one-stage detection algorithms. Examples include SSD [1]
and the YOLO family, with YOLO widely used and continually improved for its detection efficiency.

Recent work has converged on multi-scale representation and attention mechanism. Manzari et al. [2]
introduce a hybrid pyramid transformer with attribute convolution to fuse global-local features across scales,
improving robustness to sign-size variation. Li et al. [3] propose an illumination-invariant hierarchical
feature enhancement network and plugg it into existing object detectors. Gao et al. [4] propose adaptive—
spatial attention that weights informative regions during multi-scale fusion, strengthening small-object
representation. Reference [5] couples GIoU loss with a refined PANet-style neck on YOLOV4 to optimize
multi-scale fusion and box regression. Yao et al. [6] modify the YOLOv4 FPN and add a receptive-field
module to the backbone to expand context and extrac-tion capacity. Yu et al. [7] exploit inter-frame
dependencies via a VGG-YOLOV3 architecture that links adjacent frames for sequence-aware detection.
Feature strengthening with auto-augmentation and tightly-coupled extractors further improves small-sign
robustness. Wang et al. [8] add a YOLOVS5 feature-enhancement module and an auto-learned augmentation
policy to increase robustness. Wang et al. [9] further design a tightly coupled feature structure and a new
extractor to improve sensitivity to small signs. Zhang et al. [10] introduce C3Ghost to cut computation
for real-time inference while preserving accuracy. Wei et al. [11] propose a fusion module plus a corner-
expansion encoder to sharpen corner cues and improve localization. Liang et al. [12] augment sparse R-CNN
with coordinate attention on ResNeSt and add adaptive and test-time enhancement to raise accuracy and
robustness. Zhang et al. [13] integrate exposure-tone-brightness enhancement with an encoder/aggregator
producing multi-receptive-field features and fusing multi-resolution maps. Zhang et al. [14] replace standard
blocks with structurally re-parameterized modules and add pyramid weighting to narrow cross-scale
semantic gaps. Attention and neck designs evolve toward cross-stage attention, sub-pixel channel integration
with inter-layer interaction, and multi-scale attention with spatial aggregation. Shi et al. [15] employ cross-
stage attention and a neck that more fully merges detailed and semantic information. Zhao et al. [16] use
sub-pixel convolution to fold channel information into spatial resolution and propose MIFNet to strengthen
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inter-layer interaction. Zhang et al. [17] present a multi-scale attention module and a spatial aggregator
that injects low-level spatial cues into high-level features. Xie et al. [18] develop GRF-SPPF and the SPAnet
architecture with dual shortcuts and an extra small-object head to en-hance path aggregation. Zhang
et al. [19] combine channel-spatial attention with REB-based fusion to diversify receptive fields at low cost.
Luo et al. [20] integrate Ghost modules with efficient multi-scale attention in YOLOVS to accelerate inference
while retaining accuracy. Khan et al. [21] propose a unified two-stage framework that turns each FPN level
into a scale-specific proposal generator via multiple RPNs and then classifies the proposals, yielding stronger
multi-scale detection on high-resolution satellite images. Du et al. [22] use space-to-depth to fold spatial
cues into channels for multi-scale targets, introduce select-kernel attention for adaptive focusing, and adopt
a weighted WIoUv3 loss to stabilize regression and training. Cui et al. [23] build cross-layer multi-sequence,
multi-scale fusion within a transformer detector, combined with channel-spatial attention and an inverted
residual moving block to enhance positional cues while retaining efficiency. Zhang et al. [24] add a small-
object detection layer and integrate a bidirectional FPN into a one-stage detector to strengthen multi-scale
fusion and improve small sign detection. Shen et al. [25] perform decision-level camera-LiDAR fusion:
detect/track images and point clouds separately, associate with Aggregated Euclidean Distance and optimal
matching to improve robustness under occlusion. Zhou et al. [26] propose multi-scale enhanced feature
fusion—using activation-free attention to emphasize saliency, a fusion pyramid to integrate multi-level
semantics, and global-local aggregation to couple long- and short-range context.

Despite steady advances, detecting very small signs remains brittle: down-sampling and stride quan-
tization smear fine contours and suppress weak signals. Edge localization is easily perturbed by clutter,
motion blur, and compression noise, yielding inaccurate boundaries and unstable regression. Meanwhile,
large intraclass shape variation from scale, viewpoint, and occlusion continues to challenge robustness to
shape changes.

2.2 Edge and Shape Guidance

Although edges are nominally low-level cues, they remain indispensable for representation learning
and, when used as guidance, enhance the perception of edge-salient targets. Sun et al. [27] leverage target-
related edge semantics to steer high-level feature extraction, enforcing structure-aware representations. Zhou
etal. [28] propose an edge-guided cyclic localization network with parallel decoders—one for edge extraction
and one for feature fusion—to produce edge-enhanced features. Luo and Liang [29] model semantic-edge
correlation via a semantic-edge interaction network that combines a multi-scale attention interaction module
with a semantic-guided fusion module. Together, these approaches demonstrate the value of edge cues
in emphasizing target structure, guiding high-level features, and improving localization accuracy. Recent
studies also exploit intrinsic shape cues to strengthen target-specific perception. Although edge and shape
cues are well established in semantic segmentation, their efficient exploitation in traffic-sign detection
remains limited.

3 Method

In the traffic scenarios of autonomous driving, the detection of traffic signs still faces several challenges,
such as small target size, occlusions, low contrast, and complex backgrounds, which can lead to missed
detections and false positives. Therefore, detectors must deliver real-time performance and high accuracy so
that vehicles have sufficient time to respond to complex traffic situations.

Fig. 1 shows the overall architecture of ES-YOLO. The backbone network includes the original YOLOV8
backbone branch and an edge feature extraction branch. We replace the first two convolutional blocks
in the backbone with the proposed shape-prior convolutional modules and add a P2-level small-object
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detection head. The edge-extraction branch mitigates edge blurring caused by weather and illumination
changes. By introducing shape-prior knowledge and a small-object detection head, the method reduces back-
ground interference and occlusion-induced false positives, thereby enhancing the detection of small targets.
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Figure 1: ES-YOLO

3.1 Edge Feature Extraction Branch

Adding an edge feature extraction branch to the backbone network aims to enhance the network’
ability to perceive and extract edge and contour information. In complex, dynamic scenes, background
clutter (e.g., trees, street lights, buildings) and weather-induced edge blurring can cause missed detections.
By incorporating the edge extraction branch, the model’s representation capability of edges and contours is
strengthened, allowing it to better focus on traffic sign areas with clear edges.

The edge extraction branch consists of an edge map extraction module, convolutional blocks, an edge
feature extraction module, and an adaptive feature fusion module. The raw image first passes through
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the edge-map extractor, which uses a Sobel operator. Next, the edge feature extraction module performs
convolutional downsampling, focusing on refining and enhancing edge features to provide the model with
richer edge information. The adaptive feature fusion module learns the optimal weights for fusing the same
level features of the two branches. At the same hierarchical level, features from the two branches guide
each other. This allows the high-level semantic information of the backbone features to guide the edge
information extraction process, while using edge features to constrain the extraction range of high-level
semantic information. This integration of geometric details from edge information enables the model to
better focus on traffic sign areas, enhancing its anti-interference capability and alleviating issues of missed
and false detections. The structure of the edge feature extraction module is shown in Fig. 2.
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Figure 2: Edge feature extraction block

The re-parameterization technique [30] retains the excellent feature extraction capabilities of multi-
branch structures, enabling the extraction of rich edge features from the edge map. This is highly effective for
the network to capture detailed information such as edges and contours. Additionally, it decouples the planar
structure of the inference stage from the multi-branch structure of the training stage, effectively improving
computational efficiency and reducing inference time, which is crucial for the quick response required in
traffic sign detection.

The final layer of the edge feature extraction module is a parameter-free attention mechanism [31]
(SimAM). Unlike conventional channel or spatial attention, SimAM introduces no extra parameters; it
minimizes an energy function to estimate the importance of each neuron and produces a 3-D attention map
that adaptively enhances edge cues useful for detection. Since the edge map extracted by the Sobel operator
contains not only the edge information of traffic signs but also introduces noise interference, the flexibility
and lightweight nature of the parameter-free attention mechanism are utilized to reshape the feature map,
effectively suppressing irrelevant information. This enables the network to focus more on local details to
obtain richer features.

The approach of the parameter-free attention mechanism is as follows: First, calculate the channel
statistics p. of the input feature map, as shown in Eq. (1), where C represents different channels. Then,
calculate the squared difference of each element relative to the current channel mean value, as shown
in Eq. (2). Next, normalize the squared differences and apply the Sigmoid activation function to compute
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the attention map. The calculation formula is shown in Eq. (3), where o represents the Sigmoid function, N
represents the total number of elements in the feature map, and A is a very small constant. Finally, the input
feature map is multiplied by the attention map to obtain the final weighted feature map, as shown in Eq. (4).

1 H W o
= e LK) 0
D.(i,j) = (X (i, j) = pc)? )
Do D.(i, j)
A (i,7) —a(—4x(%+/\) +0.5) 3)
YC(i’j):AC(i>j)'XC(i’j) (4)

3.2 Adaptive Feature Fusion Module

To better fuse the same-level features of the edge branch and the backbone branch, enhancing the
complementarity of the features and enabling the model to not only understand what the target object is but
also more accurately locate the target’s boundaries, this paper designs an adaptive feature fusion module. Its
structure is shown in Fig. 3. It consists of convolutional layers, pooling layers, and linear layers.
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Figure 3: Adaptive feature fusion module

The process can be described as follows: For the input same-level edge branch features f, and backbone
features f;, they are first concatenated along the channel dimension to obtain f,. Then, a1 x 1 convolutional
block is used to integrate the different feature information from the two branches, allowing preliminary
interaction and enhancing the richness of feature representation.

Next, the integrated feature information is input into the global average pooling layer, compressing
the feature map of each channel to obtain the global representation features Z. Z is then fed into the fully
connected layer, normalized, and activated to obtain the weights w; and w, for the features of the two
branches. Finally, the fused features f are output as shown in Eq. (5):

f=Jfexwi+ foxwy (5)

In the traffic sign detection task, the backbone of YOLOVS can extract some low-level edge contour
information and high-level semantic information from the image. However, to improve the model’s sensi-
tivity to and capability to represent edge information of traffic signs, this method adaptively fuses the more
refined and complete edge features extracted from the edge map with the features extracted by the backbone.
The adaptive feature fusion module is alternately used in the backbone and the edge branch. This fusion
enables high-level semantics from the backbone to guide edge extraction (focusing the edge branch on target-
related boundary regions) and, conversely, uses edge features to refine high-level semantic extraction in
the backbone. This is because the detailed information provided by the edge branch is often overlooked by
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the backbone branch. In summary, the adaptive feature fusion module learns to balance the contributions
of the edge branch and the backbone branch, achieving the guidance of high-level semantic information
for edge feature extraction and the optimization of semantic feature extraction by edge information. This
inter-action significantly enhances the performance of traffic sign detection, particularly the accuracy and
robustness in complex environments.

Compared with other edge-guided fusion processes, our method does not treat the edge map as an
auxiliary channel fused with semantic features by static concatenation or a fixed mixing ratio. We first
distill high-frequency structure with re-parameterized convolutions and suppress low-SNR responses with a
parameter-free attention mechanism to obtain a denoised boundary representation; at multiple neck scales,
a joint global summary of the two streams produces a bounded pair of weights that simultaneously modulate
the semantic and edge features, and bi-directional fusion is performed before the detection heads. When
boundaries are reliable, their weight is increased; when boundaries are unreliable, their influence is reduced,
yielding a reliability-weighted, content-adaptive coupling rather than fixed-ratio stacking. This mechanism
complements the shape prior and is more robust for small and thin targets and in cluttered backgrounds.

3.3 Shape-Prior Convolutional Block

Traffic signs have fixed shapes, including circles, triangles, and rectangles. Their shape features are very
prominent and important for identification. Therefore, this paper considers incorporating the shape prior
knowledge of circles and triangles into the feature extraction process. A circular convolutional kernel block
and a triangular convolutional kernel block are designed, forming the basis of the shape-prior convolutional
block. Its structure is shown in Fig. 4.

ShapeConv
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Figure 4: Shape prior convolution block

By embedding shape information as priors directly into the convolutional kernels, the method enables
the model to perceive and respond more effectively to features that match these shapes. Because cues such as
shape, edges, and contours are low-level, they are more easily captured in the shallow layers of the network;
accordingly, we replace the first two backbone blocks with the pro-posed shape-prior convolutional blocks
to enhance the model’s capability to represent objects with specific shapes. The design of the circular-kernel
block is detailed in Algorithm 1.
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Algorithm 1: Circular convolutional kernel assignment
1 Function I nitialize the Crcular Convolutional Kernel (kernel size, number of
output channels):

2 Radius = Kernel size//2;
3 Center = (radius, radius);
4 Initialization kernel weights zero matrices [kernel size, kernel size];
5 for i in (0, kernel size — 1) do
6 for j in (0, kernel size — 1) do
7 if (i — center[0])? + (j — center[1])* < radius® then
8 Kernel weights [:,:, 1, j] = 1;
9 end
10 else
11 Kernel weights [:,:, 1, j] = 0;
12 end
13 end
14 end
15 return Kernel weights;
The following example shows the weights of a circular convolutional kernel with a kernel size of 5:
01 110
1 1 1 11
w=l11111 (6)
1 11 11
01 110

The initialization process for the weights of the triangular convolutional kernel is similar. For a kernel
size of 5, the weights of the triangular convolutional kernel are:

0 0 0 0O
001 0O
W=101 11 0 7)
1 1 1 1 1
0 0 00O

By initializing the convolutional kernel weights with circular and triangular shape priors, we fix the
kernel parameters in the first shape-prior layer, enhancing the network’s ability to perceive fixed shapes.
In the second layer of the shape-prior block, the kernel parameters are learned dynamically, allowing the
model to remain sensitive to shape while fine-tuning the prior. This design provides advantages for traffic-
sign detection: in complex, dynamic scenes, signs appear at multiple scales and views; embedding shape
priors improves robustness across scales and viewpoints and ensures the network can extract specific shapes.
Real-world roads also contain cluttered backgrounds that occlude signs, making it difficult for traditional
detectors to recognize partially occluded targets. Introducing shape-prior convolutions leverages local shape
cues, enhancing the detector’s ability to recover occluded targets and reducing missed and false detections
caused by occlusion.
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3.4 Remarks

Prior edge-guided and shape-aware detectors commonly fuse edge maps and semantic features by static
concatenation or fixed-ratio addition, often with single-direction guidance at a single scale near the head.
ES-YOLO learns input-conditioned gates across multiple neck scales to modulate the semantic and edge
streams, and performs bi-directional fusion before the detection heads, so that the fusion weights adapt to
image content and scale. The shape-prior convolution block introduces an explicit structural bias toward
canonical traffic-sign geometries, complements edge cues, reduces boundary confusion with background
textures, and strengthens discrimination for small and thin signs. These choices clarify how ES-YOLO differs
from previous designs and provide a mechanistic explanation for the consistent improvements observed on
TT100K, CCTSDB, and GTSRB, partic-ularly under illumination change, occlusion, and scale variation.

4 Experiments and Analysis

Experiments were conducted on Ubuntu 20.04 with PyTorch 1.12 using an NVIDIA TITAN V GPU.
We trained with SGD (initial learning rate 0.01), batch size 8, for 20 epochs, and enabled au-tomatic mixed
precision. The method proposed in this paper is trained and tested on the CCTSDB [32] and TT100K da-
tasets. The TT100K dataset is a public dataset collected in China, containing 16,000 images and 27,000
instances of traffic signs. The CCTSDB dataset comprises over 17,000 images, including scenarios with
variations in lighting, different scales, and occlusions or damage.

4.1 Evaluation Metrics

To compare the performance of the method proposed in this study with other methods, the following
evaluation metrics were used: precision, recall, mean Average Precision (mAP50), Floating Point Operations
(FLOPs), and Frames Per Second (FPS).

4.2 Ablation Studies

To verify the performance improvement brought by the enhanced methods proposed in this study,
ablation experiments were designed to evaluate the performance of each module. The input size for all
experiments was set to 640 x 640. In the experiments, the large object detection head was removed while
using the P2-level detection head. The ablation experiment results of the proposed method on the CCTSDB
dataset are shown in Table 1.

Table 1: Ablation study on the CCTSDB

Method Precision Recall mAP FLOPs FPS
YOLOvVSs 0.902 0.750 0.833 11.IM 105
YOLOvV8s+P2 0.898 0.775 0.840 7.4M 94
Edge-YOLOvVS8s+P2 0.929 0.791 0.857 13.0M 59
Shape-YOLOv8+P2 0.901 0.761 0.847 7.5M 90
ES-YOLOvS8s 0.935 0.799 0.863 13.1M 55

From the data in Table 1, it can be seen that after adding the P2-level detection head and re-moving
the large detection head, the mean Average Precision (mAP50) increased by 0.7%. On this basis, adding the
edge extraction branch increased the mean Average Precision by 1.3%. Adding the shape-prior convolutional
block increased the mean Average Precision by 0.7%. When the edge extraction branch and shape-prior
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convolutional block were combined, forming the ES-YOLOv8s network structure proposed in this paper,
the mean Average Precision improved by 3% compared to the YOLOVSs structure. This fully demonstrates
the effectiveness of the edge extraction branch and shape-prior convolutional block proposed in this paper.
Additionally, the improvements in pre-cision and recall rates demonstrate a reduction in false positives and
an increase in true positives, effectively mitigating the issues of missed and false detections. Fig. 5 shows the
change in mean Average Precision during the training process.

mAP@Q0.5 over Epochs

08

06

mAP@0.5

0.2

— YOLOW8
Edge-YOLOV8

—— Shape-YOLOV8

—— ES-YOLOV8

0.0
0 25 50 75 100 125 150 175 200

Epochs

Figure 5: mAP curve on CCTSDB

From the data in Table 2, it can be seen that after adding the P2-level detection head and re-moving
the large detection head, the mean Average Precision (mAP50) increased by 6.5%. On this basis, adding the
edge extraction branch increased the mean Average Precision by 4.0%. Adding the shape-prior convolutional
block increased the mean Average Precision by 1.7%. When the edge extraction branch and shape-prior
convolutional block were combined, forming the ES-YOLOv8s network structure proposed in this paper,
the mean Average Precision (mAP50) improved by 10.4% compared to the YOLOV8s structure. Fig. 6 shows
the change in mean Average Precision during the training process.

Table 2: Ablation study on the TT100K

Method Precision Recall mAP FLOPs FPS
YOLOvS8s 0.796 0.708 0.794 11.1M 115
YOLOvS8s+P2 0.855 0.777 0.859 7.4M 101
Edge—YOLOV88+P2 0.881 0.815 0.895 13.0M 68
Shape-YOLOv8+P2 0.865 0.802 0.876 7.5M 99

ES-YOLOVSs 0.885 0.829 0.898 13.1M 57
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Figure 6: mAP curve on TT100K

Notably, on CCTSDB the addition of the P2 small-object head yields only a +0.7% mAP gain, whereas
on TT100K the same change produces a +6.5% mAP gain. This suggests that TTI00K contains a higher
proportion of small, thin, and distant traffic signs. The discrepancy aligns with the design rationale of
ES-YOLO: edge cues and shape priors impose stronger constraints for small objects and blurred boundaries,
leading to larger overall improvements on TTI00K. In contrast, targets in CCTSDB are generally more
discernible, so the gains are smaller but stable and consistent. Taken together, results on the two datasets
indicate that ES-YOLO delivers improvements in a consistent direction across different data distributions,
demonstrating robustness and transferability.

To verify that the edge extraction branch and shape-prior block help the model focus on traffic-
sign regions, suppress background interference, and improve sensitivity to and capability to represent
specific shapes, we visualize feature maps as heatmaps. We select the last feature map of the backbone for
visualization. Heatmap comparisons on CCTSDB and TT100K are shown in Figs. 7 and 8.

Figs. 7 and 8 respectively present the heatmap comparisons. The left column shows the original images,
the middle column shows YOLOV8 heatmaps, and the right column shows heatmaps from our method.
In Fig. 7, YOLOVS exhibits a scattered attention pattern in complex backgrounds; attention often leaks to
irrelevant elements such as trees and sky, leading to imprecise edge focus around the signs. By contrast, our
method—leveraging the edge-feature extraction module and the shape-prior block—concentrates attention
on sign regions and markedly reduces back-ground noise. In the second row, YOLOVS over-attends to bridge
structures and shadows, which dilutes focus on the signs, whereas our method highlights the critical edge
areas and improves detection.
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Figure 8: Heatmap visualization of the detection results on TT100K dataset

In Fig. 8, the first row contains heavy background clutter with many vehicles and buildings. Here
YOLOV8 spreads attention to car rooftops and building facades, resulting in insufficient coverage of the
signs; our method enhances edge awareness, suppresses interference, and achieves more precise localization.
The second row represents a low-contrast scenario: YOLOv8 shows weak edge attention and fails to capture
blurry boundaries, while our method strengthens boundary focus and improves recognition. These results
demonstrate improved robustness and accuracy in both cluttered backgrounds and low-contrast settings,
effectively reducing missed and false detections.
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4.3 Comparison Experiments with Mainstream Detection Mode

To verify the performance of the proposed detection algorithm, comparisons were made with main-
stream single-stage and two-stage detection models. Considering that the proposed improvements are based
on YOLOVSs, this study chose smaller models from the YOLOvV5 and YOLOV7 series for comparison. Each
model was given an input size of 640 x 640, and experiments were conducted on the CCTSDB and TT100K
datasets. The experimental results are shown in Tables 3 and 4.

Table 3: Comparison experiments on the CCTSDB

Method Precision Recall mAP FPS
YOLOvS8s 0.902 0.750 0.833 105
YOLOV5s 0.910 0.747 0.815 98

YOLOV7-tiny 0.920 0.723 0.793 102
SSD 0.593 0.515 0.542 28
Faster R-CNN 0.769 0.783 0.774 14
R-FCN 0.791 0.802 0.797 10
YOLOvV7-TS [16] 0.926 0.783 0.860 37
SC-YOLO [15] 0.938 0.768 0.843 -
ReYOLO [14] - 0.839 - -
Zhang [17] - - 0.861 -
GRFS-YOLOVS [18] 0.874 0.724 0.803 -
Luo [20] 0.894 0.719 0.829 -
Ours 0.935 0.799 0.863 55

Table 4: Comparison experiments on the TT100K

Method Precision Recall mAP FPS
YOLOvS8sz 0.796 0.708 0.794 115
YOLOV5s 0.732 0.696 0.741 99

YOLOV7s-tiny 0.530 0.611 0.604 99
SSD 0.548 0.477 0.508 29
Faster R-CNN 0.605 0.704 0.698 14

R-FCN 0.638 0.731 0.722 12
Wang [8] - - 0.651 95

Gao [4] - - 0.719 -

ReYOLO [14] - - 0.683 -
VATSD [9] - - 0.828 -
Zhang [13] - - 0.706 -

CR-YOLOVS [19] - - 0.869 103
GRFS-YOLOVS [18] 0.520 0.950 0.712 -

Ours 0.885 0.829 0.898 57
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According to the data in Tables 3 and 4, the proposed method shows significant improvement in mean
Average Precision (mAP) compared to other mainstream single-stage detection models, while meeting the
speed requirements for real-time detection.

Under low contrast, blurred boundaries, and partial occlusions, the mAP gains indicate that ES-YOLO
is robust to challenging conditions. At the same time, the edge branch and the shape-prior module introduce
only a modest increase in parameters and computation, and the inference speed remains real-time under our
setting, which meets the requirements of traffic scenes. Compared with the single-stage baseline, ES-YOLO
improves accuracy while keeping latency acceptable; compared with typical two-stage detectors, it avoids
the overhead of proposal generation and repeated feature resampling, achieving competitive accuracy with
lower latency. Overall, ES-YOLO offers a balanced accuracy-efficiency trade-off and is suitable for real-world
applications that require both robustness and real-time performance.

As is shown in Table 5, we conduct an additional evaluation on GTSDB to assess cross-dataset
generalization. ES-YOLO attains an mAP of 0.877, surpassing 0.826 of YOLOv8s with a gain of 5.1 percentage
points, indicating effectiveness on full-scene images with small signs and cluttered backgrounds. Throughput
decreases from 115 FPS to 56 FPS yet remains real-time. The outcome is consistent with the trends on TT100K
and CCTSDB, underscoring robustness and deployability.

Table 5: Comparison experiments on the GTSDB

Method Precision Recall mAP FPS
YOLOvS8s 0.841 0.786 0.826 115
Ours 0.893 0.854 0.877 56

As shown in Figs. 9 and 10, YOLOVS results are in the middle column and our method in the rightmost
column. Fig. 9 illustrates a low-contrast nighttime scene. Under this challenging condition, YOLOV8
struggles to separate signs from the background because poor lighting reduces contrast; its bounding boxes
are vague and the confidence scores are 0.33 and 0.48 in the examples from the middle column. This indicates
insufficient boundary capture in low-contrast settings. In contrast, the proposed method, which incorporates
an edge-extraction module, enhances sensitivity to subtle boundaries: the boxes more accurately cover the
traffic-sign regions and the confidence scores rise to 0.73 and 0.85, demonstrating improved robustness in
low-contrast scenarios.

Fig. 10 presents the detection performance under complex backgrounds and partial occlusion condi-
tions. In the first row, representing a complex background scenario, YOLOvV8 produces false detections on
background elements such as signposts and trees, resulting in offset detection boxes and low confidence
scores. This is a common issue for traditional models when handling complex scenes. In contrast, the
proposed method leverages the shape-prior convolutional module to effectively utilize the shape information
of traffic signs, focusing the model’s attention on the actual traffic signs. The results show that the detection
boxes are more accurately centered on the traffic signs, with confidence scores consistently above 0.85.
Furthermore, in the second row, depicting a partially occluded scenario, YOLOVS fails to detect the traffic
sign occluded by the bridge. However, the proposed method successfully compensates for the missing
information through shape priors, accurately detecting the partially occluded sign and precisely marking
its location. These results demonstrate that the proposed method has significant advantages in addressing
missed and false detections caused by complex backgrounds, low contrast, and partial occlusion.



Comput Mater Contin. 2026;87(1):88 15

mendatory 0.73
mondatory 0.83

mandatory 0.86

Figure 9: Comparison of detection results between YOLOvV8 and the proposed method on CCTSDB in low-contrast
sce-narios

Figure 10: Comparison of detection results between YOLOvS8 and the proposed method on TT100K in complex back-
ground and partial occlusion scenarios

In Figs. 11 and 12, the left column shows our method, the middle column shows RT-DETR, and the
right column shows TPH-YOLOVS5. As the figures indicate, our method outperforms both baselines in
low-contrast night scenes and under complex backgrounds. In Fig. 11, it yields more accurate traffic-sign
detections with higher confidence and tighter boxes, demonstrating stronger robustness to low contrast.
By comparison, RT-DETR produces misaligned boxes with lower confidence, while TPH-YOLOV5 suffers
more missed detections and false positives due to limited adaptation to low-light conditions. In Fig. 12, our
approach also performs well in cluttered back-grounds, accurately detecting small and partially occluded
signs with high confidence. RT-DETR shows moderate performance but struggles on small/occluded targets;
TPH-YOLOV5 misses multiple signs and has a higher false-positive rate. Overall, these results show that the
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proposed method handles low contrast, background clutter, and partial occlusion more effectively, reducing
missed and false detections and exhibiting greater robustness.

Figure 11: Detection results comparison between the proposed method and other models on CCTSDB

Figure 12: Detection results comparison between the proposed method and other models on TT100K

5 Conclusion

This paper presents ES-YOLO, which introduces an edge feature branch and a shape-prior convolution
and performs input-conditioned bi-directional adaptive fusion in the neck, enabling high-level semantics
and fine-grained boundary information to complement each other and thereby improve the localization and
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discrimination of traffic signs. We validate the approach on multiple datasets, and the results show stable
gains on small and thin targets, low-contrast scenes, partial occlusions, and cluttered backgrounds, while
maintaining real-time inference and demonstrating deployability. Remaining key challenges lie in complex
driving conditions and engineering constraints. Rain, fog, strong backlight, and nighttime reduce the signal-
to-noise ratio of boundaries and diminish the effectiveness of the fusion weights and the shape prior; domain
shifts across devices, lenses, and regions affect model consistency; insufficient coverage of long-tailed classes
and extremely small targets can still trigger false negatives and false positives; sustaining high throughput
with low latency on embedded platforms is also challenging. Future work will focus on three directions:
first, improving robustness under rain, fog, nighttime, and strong backlight; second, expanding evaluation
across datasets, devices, and diverse road scenarios to enhance cross-domain generalization; and third,
advancing model light weighting and inference acceleration to meet real-time deployment on on-device and
embedded platforms.
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Nomenclature

The following abbreviations are used in this manuscript:

Nomenclature Description

YOLOVSs You Only Look Once (v8, Small)
ES-YOLO Edge- and Shape-Fusion YOLO

AFM Adaptive Fusion Module

SPPF Spatial Pyramid Pooling-Fast

BN Batch Normalization

GAP Global Average Pooling

EC Fully Connected Layer

NMS Non-Maximum Suppression

mAPs, Mean Average Precision at IoU = 0.50

FPS Frames Per Second


https://datasetninja.com/gtsdb
https://cg.cs.tsinghua.edu.cn/traffic-sign/
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