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ABSTRACT: Community detection is a fundamental problem in network analysis for identifying densely connected
node clusters, with successful applications in diverse fields like social networks, recommendation systems, biology,
and cyberattack detection. Overlapping community detection refers to the case of a node belonging to multiple
communities simultaneously, which is a much more meaningful and challenging task. Graph representation learning
with Evolutionary Computation has been studied well in overlapping community detection to deal with complex
network structures and characteristics. However, most of them focus on searching the entire solution space, which can
be inefficient and lead to inadequate results. To overcome the problem, a structural feature node extraction method is
first proposed that can effectively map a network into a structural embedding space. Thus, nodes within the network
are classified into hierarchical levels based on their structural feature strength, and only nodes with relatively high
strength are considered in subsequent search steps to reduce the search space. Then, a maximal-clique representation
method is employed on the given vertex set to identify overlapping nodes. A hybrid clique-based multi-objective
evolutionary algorithm with decomposition method is designed to address cliques and the remaining unexplored nodes
separately. The number of communities generated with this allocation method is closer to the actual partition count
with high division quality. Experimental results on nine usually used real-world networks, five synthetic networks,
and two large-scale networks demonstrate the effectiveness of the proposed methodology in terms of community
quality and algorithmic efficiency, compared to traditional, MOEA-based, and graph embedding-based community
detection algorithms.

KEYWORDS: Community detection; graph embedding; multi-objective evolutionary algorithm; cliques; link strength

1 Introduction

Community detection is used to identify groups of nodes that have similar properties or functions,
which is a challenging problem in network analysis [1]. Conventional community detection methods need
comprehensive network information, including connectivity, properties, or labels. However, traditional
methods, such as the Girvan-Newman algorithm [2], Louvain algorithm [3], and Infomap algorithm [4],
are insufficient for community detection in networks characterized by complex structures or dynamic
properties [5]. These traditional methods generate a large number of small or poorly defined communities,
which can be difficult to interpret and not be useful in downstream analyses [6].
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An overlapping network is a type of network in which nodes can belong to more than one community
or group simultaneously, such as social networks, biological networks, and technological networks [7,8]. In
social networks, for example, individuals may belong to multiple communities according to their interests,
professions, or social connections [9]. In recent years, there has been a growing interest in the development
of algorithms employing probabilistic modeling [10], graph partitioning [11], and deep learning [12].

To further improve the quality of community detection, the development of overlapping community
detection methods based on multi-objective evolutionary algorithms (MOEA) has become an increasingly
active research area [13-16]. Earlier MOEA-based methods typically optimized only an objective function,
and thus had difficulty accurately capturing multiple community structures within a network [17]. Therefore,
to address the increasing diversity of optimization problems, the use of multiple objective functions for
community detection has been proposed. Multi-objective methods consider modularity, community density,
and coverage, to enhance the global quality of the detected communities. However, MOEA-based algorithms
exhibit high computational complexity, especially when dealing with large-scale networks, resulting in
significantly increased computation times. The existing community detection methods are sensitive to
the assumptions of the network representation and the model, which limits their applicability to specific
contexts [8]. For example, MOGA-Net [13] is a multi-objective algorithm that employs locus-based repre-
sentation, to identify high-quality communities that accurately reflect the underlying structure of a network.
MOEA/D-Net [17] uses a decomposition-based approach to identify communities in networks, based on the
principles of multi-objective optimization. Wen et al. [18] designed a maximal clique-based representation to
identify highly overlapping communities by finding all maximal cliques in the network, which are complete
subgraphs that cannot be extended by adding more nodes. The aforementioned methods are restricted by
their different encoding and decoding techniques [19].

In recent years, many research papers have proposed several kinds of deep learning approaches
for community detection due to their strong ability to learn nonlinear network properties, preserve
complicated network structures with lower dimensional network embeddings, and detect communi-
ties more accurately [20]. Representative deep learning-based community detection approaches include
Convolutional Network-based [21], Graph Convolutional Network(GCN)-based [22], Graph Attention
Network-based [23], Generative Adversatrial Network-based [24], Autoencoder-based [7,25], Deep Sparse
Filtering-based [26], and Deep Nonnegative Matrix Factorization-based [27]. Among them, GCN-based
community detection has achieved great interest as it can aggregate node neighborhood information in deep
graph convolutional layers to globally capture complex features [28]. GCNs provide a powerful, flexible,
and modern deep learning framework for generating high-quality, inductive graph embeddings. Graphic
embedding-based community detection methods have emerged as a promising alternative to traditional
methods [29]. The graph embedding-based community detection methods aim to transform network data
into a low-dimensional continuous vector space, enabling more effective community detection in complex
networks. Existing graph embedding-based methods, such as DeepWalk [30], Node2vec [31], and LINE [32],
which are shallow embedding, cannot always produce high-quality embeddings or provide satisfactory
results for community detection. For example, the DeepWalk and Node2vec algorithms rely on random
walks to generate node sequences, which may not accurately capture the global network structure. In
addition, graph embedding methods are often limited by the quality and quantity of available network data,
which can affect the accuracy and reliability of community detection results [33]. In the last two years,
an increasing amount of research on graph decomposition-based community detection methods emerged.
The CPGC method [22] leverages the idea of graph decomposition by modifying the graph convolution to
combine representation learning and clustering, achieving improved community partition results. In the
HAE algorithm [34], the non-negative factorization of the matrix is used to decompose the characteristics
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of the network, using the semantics obtained to assist in training an unsupervised community detection
algorithm. These methods have validated the applicability of the graph decomposition approach in the field
of community detection.

Based on the aforementioned intuitions, in the paper, a novel structural feature-based maximal clique
MOEA/D algorithm, SFCMOEA, is proposed for the problem of overlapping community detection in
networks. In SFCMOEA, a series of methods are presented that combine graph embedding-based methods,
the maximal clique representation scheme, and the decomposition-based MOEA(MOEA/D) framework.
The main contribution of this article can be summarized as follows.

(1) A structural node extraction method is proposed, where the graph embedding method [35] and
the Minkowski distance calculation [36] are used to represent the structure of the network and the
relationships between the nodes.

(2)  Ahybrid clique-based MOEA/D (HCMOEA) method is designed to optimize multiple objectives, with
the aim of obtaining high-quality community partitioning results.

(3) Experiments are conducted on a series of synthetic and real-world networks of varying scales to
demonstrate the usability and reliability of the SFCMOEA algorithm in addressing the community
detection problem.

The remainder of the paper is organized as follows. Section 2 briefly introduces community detection
problems and the framework of MOEA-based community detection methods. The SFCMOEA and its
core components, including the SFNE method, the maximal-clique-based representation scheme, and the
HCMOEA, are described in detail in Section 3. In Section 4, the performance of the proposed SFCMOEA
is evaluated on synthetic and real-world networks, compared to six representative methods. Finally, the
conclusions are presented in Section 5.

2 Related Work

In this section, a more detailed explanation of concepts related to overlapping networks and the appli-
cation of community detection algorithms is presented. Then the MOEA model of the community detection
problem is given. Finally, the MOEA framework and the objective functions used are briefly reviewed.

2.1 Community Detection for Overlapping Networks

Overlapping networks are a type of complex network in which nodes can belong to multiple com-
munities simultaneously, which often exhibit multiple affiliations or memberships [37]. Mathematically, an
overlapping network can be represented as a graph G(V, E), where V denotes the set of nodes and E
denotes the set of edges between nodes. The overlapping community structure is defined as a collection
of communities {C;, C,,..., C}, where C; €V and C;n Ci+@ for at least one pair of communities
(i, j) [37].

Community detection is the process of identifying groups of nodes that are densely connected within
the group while having relatively few connections to nodes outside that group. In the context of overlapping
networks, the goal is to identify communities such that each node can belong to one or more communities,
depending on its connections and attributes. Overlapping community detection methods aim to identify
overlapping communities within networks. Traditional methods, such as the clique percolation method
(CPM) [38], and the local expansion and optimization method (LEOM) [39], are based on connections
or attribute relationships among nodes in the network. These methods have some advantages in terms
of interpretability and performance, but often suffer from scalability issues and are sensitive to network
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structures and parameter settings. In recent years, the Node Importance-Based Label Propagation Algorithm
(NI-LPA) has been proposed to uncover logical partitions on real networks [40].

2.2 MOEA/D

MOEA/D is effectively applied to community detection by formulating the problem as a multi-
objective optimization problem (MOP). For community detection problem, optimizations targeting such
as maximizing modularity, minimizing intercommunity edges, and ensuring balanced community sizes.
The decomposition-based method, MOEA/D, allows simultaneous optimization of multiple subproblems.
A simple illustration of MOEA/D is given in Fig. 1. In the figure, the orange nodes represent the initial
population. Each orange point corresponding to the individual solutions evaluated according to two
objectives, f; and f,. The yellow nodes connected by a curve represent the Pareto front, which signifies the
set of non-optimal solutions. The selected node A3 reaches the Pareto front through several evolutionary
iterations. Each segment of the red line represents the individual’s optimization process for either f; or f,.

fa
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Figure 1: A simple illustration of the optimization process in MOEA/D

In the development of MOEA/D, Zhu et al. [41] used a locus-based representation in conjunction
with the multiobjective community detection (MOCD) method to improve the quality of community
partition results. Furthermore, Zhang et al. [42] introduced the concepts of macro- and micropopulation
representations to obtain robust preliminary community structures. The framework of the MOEA-based
community detection method is introduced. The common characteristic shared by the two methods
mentioned above and earlier MOEA-based approaches is the presence of a representation step. In many
studies, the representation step aims to retain the most important structural and topological characteristics
of the network [17]. In order to better compatibility with MOEA-based techniques, complex networks can
be transformed into more analytical forms, by means of dimensionality reduction, noise reduction, feature
extraction, or conversion of network data into formats. Representation as a type of preprocessing step is
important in improving the quality of network data and optimizing inputs for MOEAs [18].

In the MOEA framework, the selection of both the representation scheme and the objective functions
is of significant importance. One of the chosen objective functions is the kernel K-means (KKM) function,
which takes advantage of kernel functions to map network data to a higher-dimensional feature space. On
the other hand, Ratio Cut (RC) is employed as another objective function because of its focus on achieving
balanced and well-separated communities. A lower KKM value indicates a higher intralink density, while a
lower RC value signifies a lower interlink density. The community detection problem can be formulated as a
two-objective optimization problem by minimizing the KKM and RC objectives simultaneously [43].
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3 Structural Feature Clique-Based MOEA

This section provides a comprehensive introduction to the proposed methodology, and the flowchart
for the proposed method, SFECMOEA, is presented in Fig. 2. As can be seen in Fig. 2, there are mainly four
steps in SFCMOEA, which are generating structured network information, extracting structural feature
nodes, searching for maximal-cliques, and searching for non-dominated solution using hybrid maximal
clique-based MOEA/D. For extracting structural feature nodes, graph embedding and Minkowski distance
calculation are employed to represent the structure and relationships of nodes, thereby better revealing
hidden community structures and preserving the network structure in the similarity matrix. A series of
nonlinear functions is applied to the matrix to identify a set of structural feature nodes, where each node
can represent a potential partition. Subsequently, an improved maximal clique search method is employed
to identify all maximal cliques based on the its efficient search capability. In the HCMOEA, the populations
formed by maximal cliques and nonclique nodes are processed separately. Individuals represented by
maximal cliques are optimized, while non-clique nodes are allocated based on connection strength to existing
communities. In SFCMOEA, nodes belonging to maximal cliques and those that do not are processed
separately, which can not only improve search efficiency, but also achieve more accurate partitioning for
non-clique nodes by incorporating the calculation of neighborhood similarity.

Structured network Extracting structural fez.lture nodes Se?uchln.g non—dgmlnat§d
inf i —> based on graph embedding method solution using hybrid maximal
1nformation and Minkowski distance calculation clique-based MOEA/D

Are nodes within structrua
feature nodes?

Yes Search for maximal-cliques

Figure 2: The flowchart of the proposed algorithm SFCMOEA

3.1 Structural Feature Node Extraction (SFNE) Method

The search process in an overlapping network space is often affected by isolated nodes and hidden
communities, leading to a decrease in search efficiency. To overcome this problem, the challenge is to map
the high-dimensional network space onto a lower-dimensional space while preserving the information about
the network structure. In addition, it is important to maintain the consistency of the network structure
during subsequent search processes and to effectively handle isolated nodes and hidden communities.
Thus, a method that can accurately preserve the network structure while considering isolated community
structures is needed. A method named structural feature node extraction (SFNE) is proposed, as presented in
Algorithm 1, which encodes connectivity relationships between nodes using graph embedding and similarity
computation methods. The input to Algorithm 1 is a structural embedding matrix ¢, obtained by the
struc2vec algorithm [44]. To further measure the connections between the nodes, the Minkowski distance
formula [36] is used, which is expressed as:

n 7
dij:(z‘vik_vjk‘p) ey
k=1



6 Comput Mater Contin. 2026;87(1):93

where d;; represents the Minkowski distance between nodes i and j. Here, v;; and v jx denote the k-th feature
values of nodes i and j, respectively. The parameter p determines the order of the Minkowski distance.

To more directly illustrate the process of the SENE method, the graph embedding process and the
calculation of node connections based on the original graph G are presented in Fig. 3 from the original
graph G. Fig. 3a represents a network with 13 nodes and 18 edges. By applying the struc2vec algorithm, a
multidimensional embedding space is obtained, and each node is mapped to the embedding space, resulting
in Fig. 3b. In the embedding space, each element describes the position and features of a node within the
graph. Structurally similar nodes, with weaker colors, are embedded in similar positions. Fig. 3¢ shows the
similarity matrix obtained by applying the Minkowski distance formula in the embedding space. More closely
connected nodes tend to have higher weights, whereas isolated nodes are also assigned weights. In the graph,
node 13 is an isolated node, while nodes {3, 5, 9} are closely connected. Nodes {3, 5, 9} tend to have higher
weights and are more likely to be assigned to multiple communities, leading to the phenomena of overlap.
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Figure 3: Illustration of the SENE method, which includes transforming a network into embedding space vectors and
then converting these vectors into a node similarity matrix. (a) Original network with 13 nodes and 18 links. (b) Space
vectors calculated by the struc2vec algorithm, and different colors represent points of different dimensions. (c) The
node similarity matrix, calculated using the Minkowski distance, represents each element as the position and features
of a node within the graph, with darker colors indicating stronger structural features

Algorithm 1: Structural feature node extraction method

Require: Structural embedding matrix ¢ from struc2vec.
Ensure: Structural feature node set §.
Léd=0
2:D < apply Eq.1 to ¢
3:fori=1— Ndo
4: h; < o(D;);
5:  pi < softmax(h;);
6: sorted; < argsort(p;);
7 for j=1- N%1000 do
8 § < Xi,sorted; ;>
9:  end for
10: end for
11: return 8.
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On line 2 of Algorithm 1, the node distance matrix D is obtained by applying Fq. (1) to ¢. Then, from
lines 3 to 9, the embedded features corresponding to each node are subjected to nonlinear transformations
and normalization using the sigmoid and softmax functions. The nonlinear functions tend to transform a
network into a continuous probability values. Subsequently, the nodes are sorted and selected based on the
probability values, with the top N%1000 nodes forming the structural feature vertex set, denoted by 6. As
seen in Fig. 4, the labeled nodes in § represent tightly connected structural relationships in the network. The
introduction of random numbers adds diversity to the generated vertex set. A search initiated from such a
vertex set can cover a wider range of scenarios.
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Figure 4: Application of the SFNE method to graph G in Fig. 3¢, generating graph G’. And the structural feature nodes
marked in red on G’

Fig. 4 illustrates the procedure of the SENE method, with graph G as an example. Applying the sigmoid
and softmax functions on the matrix D, the probabilities of each node belonging to all other nodes are
obtained. Afterwards, each node has v/1000 + 1 opportunities to make a selection to choose which nodes
to connect with. The set of vertex features of the structural feature is thus formed by the selected nodes to
represent the structural features of the given network. In Fig. 4, nodes {1, 4, 6, 8, 10} compose the set of
structural feature vertex. In addition, the nodes within the vertex set serve as the centers of the potential
community structures. For example, nodes {4, 6,10} have more connected nodes than the other nodes. The
ve can be seen as the bridge between two structures. At the same time, the isolated node v, participates in
the assignment, indicating a preference to be part of the community formed by the only node.

3.2 Representation Scheme

After obtaining the set of structural feature vertex, the next step is to apply the representation scheme.
Taking into account both efficiency and search accuracy, the maximal-clique algorithm [18] is chosen here.
A detailed description of the maximal clique algorithm is shown in Algorithm 2; on line 1, an empty set VX
is used as the candidate maximal clique, where K is the number of searched cliques.

Algorithm 2: Finding the maximal clique of G
Require: G(V, E)
Ensure: Set of clique nodes VX

VK= g

2: Veorted  sort(V,d)

3: minSize < 3

4: for k € d*°'¢? do

5. for node < V*°'**d do

(Continued)
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Algorithm 2 (continued)

6: neigh < neighbor(node)

7: maxClique < findClique(node)
8: if size(maxClique) > minSize then
9: VK « maxClique

10: end if

11: end for

12: end for

13: return Vsorted,

Then the unvisited nodes are each iteratively selected as the next candidate node in reverse order node
degrees d. The selected node is added to the current candidate maximal-clique and checked for adjacency
with all nodes not in the candidate set. Each node adjacent to all nodes in the maximal-clique candidate is also
added to the candidate set, and the algorithm proceeds to the next step. If the selected node is not adjacent to
any other nodes, then the algorithm backtracks to the previous node. The known maximal-clique is updated,
when the current candidate maximal-clique is larger than the known maximal-clique. Lines 4 to 12 of the
algorithm are repeated until all nodes have been visited. Using the maximal clique representation in our
example G, five cliques are obtained, as shown in Fig. 5a. In Fig. 5b, the final partitioning results are obtained
through SFCMOEA with four distinct communities in four colors. There are four overlapping nodes, with
one node belonging to a maximum of three communities. In the figure, almost all network structures are
covered, indicating the effectiveness of the strategy of starting the search from the set of structural feature
vertex. Furthermore, due to the characteristics of the maximal clique algorithm, the structures formed by
nodes {1, 2, 3,4, 5} and {9, 10, 11, 12} are particularly robust.

/) 9
e___,_
(\ o=
/S

Figure 5: Example of the maximal cliques and final partitioning results. (a) The maximal cliques obtained by searching
in G starting from the red structural feature nodes. (b) The final partitioning results obtained through SFCMOEA with
four distinct communities in four colors. Four overlapping nodes, with one node belonging to a maximum of three
communities is presented

Compared with the MOEA step, preparatory work is performed to compute the weights to quantify
the individuals in the clique structure. Once the clique are obtained, each clique in Fig. 5a is treated as an
individual. The weights between individuals are calculated, and two cliques merge if the combined weight
exceeds that of the individual cliques. The weight, also called the link strength, is defined on the basis of the
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interrelation between the internal and external nodes.

|(u, v)|u e Ci, veCj, (u, v) € E|

density (C;, C;) = T

(2)

As seen in Eq. (2), both the number of intercommunity edges and the average number of edges are
utilized to assess density. Based on the definition of density, the strength of the link between communities
C; and C; is defined as:

density(C;, C;j) x density(Cj, C;)
|Ei"C;| x [EinC|

W(Ci’ C]) = (3)

The calculated link strength W is used to determine whether two cliques should be merged as follows:

Win(c)
‘/Vin(c) + Wout(c)

T(c) = (4)

In the definition of T, the maximal clique graph is treated as a weighted network, where W;, and
W,u: represent the total weights of the internal and external edges, respectively, of the clique ¢ = |C;, Cj|. If
T(c) > 0, then the two cliques are merged and their genotype is updated.

3.3 Hybrid Clique-Based MOEA

As described in the following subsection, the proposed hybrid clique-based MOEA/D (HCMOEA)
method is specifically designed to operate on clique-structured individuals, providing advantages over
traditional techniques in terms of maintaining structural integrity and enhancing diversity. As illustrated
in Fig. 5a, each maximal-clique in a graph is a complete subgraph in which every node is connected to
every other node. Considering the clique structure, we divide the algorithm into two parts: the clique-based
optimization step and the community allocation method. The aim is to maximize the advantages offered by
tightly connected links within the discovered cliques.

3.3.1 Clique-Based Optimization

In the HCMOEA, the proposed crossover and mutation operations are designed to preserve the
maximal-clique structure of individuals while effectively increasing diversity. Here, the two parental indi-
viduals pl and p2 in Fig. 6 are taken as an example. According to the structure based on cliques, each gene
indicates a clique and g1, g», g3 belong to the same clique. Apparently, for the same clique C;, the community
label is “1” in pl but “2” in p2. Two points are randomly selected to perform gene crossover between the
two parents, resulting in the generation of new offspring. It can be seen that the offspring generated from
P2, which originally had only two divisions, now also exhibits three divisions. The crossover operation
ensures that the offspring gene sequences maintain the connections between cliques, since each node remains
connected to every other node in the clique. In the gene shuffle mutation method, a random number decides
to exchange of genes, or the cliques within the child objects. If the random number is less than the specified
probability, an exchange operation takes place. Otherwise, two random positions are generated to determine
the subsequences, and a reversal operation is performed on the genes.
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Random point 1 Random point 2

1 2 34 5 6|7
pt 1 1 1 2 2 2 3
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Figure 6: Example of the clique-based optimization process

As shown in Fig. 6, a mutation point is selected from the offspring obtained in the crossover step.
The genes on both sides of the mutation point, namely { g, g2, g3, g4} and {gs, g6, 7, &3}, are exchanged,
resulting in ¢,. As a result, the clique structure in C, exhibited a significantly different partitioning than that
of the original configuration. The mutation operation in HCMOEA is designed to enhance diversity without
compromising the maximal-clique structure that increased diversity. The cliques obtained by combining
the SFNE method with the maximal-clique representation are internally densely connected and externally
sparsely connected partitions. A global exchange strategy can enhance diversity while ensuring that the
original structure is less likely to be lost. The detailed procedure is shown in Algorithm 3.

Algorithm 3: Hybrid clique based MOEA/D

Require: Population size: PS; maximum generation: T;

neighborhood size: t; set of uniform weight vectors:
AL A%, APS)
Ensure: Collection of node dy.
1: Work out the ¢ closest weight vectors to each weight vector;
2: Initialize population P = I, I, ..., Ips;
3:fori=1-PSdo
4:  B(i) =1iy,..., iy, where A", ..., A’ are the t closest weight vectors to A';
5: end for
6:forg=1—- T do
7: fori=1- PSdo
8: if rand() < p. then

9: child < randomly select two crossover points and combine the corresponding gene sequences
from the parents;

10:  else

11: child < P;

12:  endif

13:  child < GeneShuffleMutation(child);
14: Evaluate child with KKM and RC objectives;
15:  for individual I; € B(i) do

16: EnviromentSelect([;, ci1a);

17 end for

(Continued)
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Algorithm 3 (continued)
18: P« CommunityAllocationMethod(P)
19: end for
20: end for
21: return éy.

Regarding the objective functions, the kernel K-means(KKM) [45] and Ratio Cut(RC) [46] function
are chosen. The KKM and the RC values of community C are calculated as:

KKMzz(N—n)—Zn:% (5)
i=1 J
RC=3 —W(fcfflcf) ©)

i=1

where |C;| denotes the size of a set C;, and W(C;, C;) is the weight between cliques C; and C;.

3.3.2 Community Allocation Method

Through the clique-based optimization process, a series of internally densely connected structures with
sparse external links are obtained. The next step is to assign the remaining nodes to the existing structures.
The communities of isolated nodes and nodes within cliques with a size smaller than 3 are determined using
the community allocation method. For example, in Fig. 5, the node ny3 is isolated and did not participate
in the optimization process. The measurements of these nodes with respect to the different cliques are
calculated, and then each node is assigned to the clique with the highest weight. The measurement calculation
is defined as follows:

o _ A+ II@)ATG)
T(r]+ [T (i))/2
where A; ; represents the attraction between nodes i and j, and I'(i) N T'(j) denotes the set of common

neighbors of nodes #; and ;. The advantage of the allocation method is that it preserves the existing robust
partition structure while avoiding an unnecessary increase in the number of partitions.

(7)

4 Experiments

In this section, the experimental results obtained by applying the proposed algorithm to real-world
networks and synthetic benchmark networks are presented.

4.1 Experimental Networks

In Table 1, nine real-world networks with different numbers of nodes and links are presented. The
smallest-scale network comprises only 34 nodes, whereas the largest-scale network comprises more than
2000 nodes. In addition, the ratio of nodes to edges varies significantly between the different networks. For
the generation of synthetic networks, Lancichinetti Fortunato Radicch (LFR) is a benchmark network model
to evaluate community detection algorithms [47]. The LFR model is commonly used to evaluate community
detection tasks because it can generate synthetic networks with known community structures [48]. The LFR
model allows for adjustment of parameters such as the number of nodes, average node degree, maximum
node degree, mixing parameter, community size distribution, and number of overlapping nodes to generate
networks that simulate various real-world scenarios. Multiple parameters enable researchers to analyze



12 Comput Mater Contin. 2026;87(1):93

the performance of community detection methods under different conditions. Table 2 lists the various
parameters considered: N; the average node degree k; the maximum node k,,ax; the mixing parameter
p € [0,1]; the parameters of the community size distribution, t;, t,; and the number of overlapping nodes o,,.
The parameters enable researchers to simulate networks that resemble real-world scenarios and to analyze
community detection methods under various conditions. LFR networks can serve as valuable resources for
testing and comparing algorithm performance.

Table 1: Characters of real-world networks

No. Real network Nodes Links

1 Karate 34 78

2 Dolphin 62 159
3 Cornell 183 277
4 Texas 183 279
5 Polbooks 105 441
6 Football 115 613
7 Jazz 198 5484
8 Wisconsin 251 450
9 Facebook3437 534 9626
10 Polblogs 1490 19,025
11 Netscience 1589 2742
12 Yeast 2361 6646

Table 2: Parameters used to generate LFR networks

Parameter Description Default value
N Number of nodes NA
Kmax Maximum degree of nodes 50
7 Mixing parameter NA
t1 Negative exponent for the degree sequence 2
t2 Negative exponent for the community size 1
minc Minimum community size 20
maxc Maximum community size 50
On Number of overlapping nodes NA
Om Number of memberships 2

4.2 Compared Algorithms and Performance Evaluation Indices

To fully demonstrate the advantages and comprehensiveness of the proposed algorithm, MOEA-based
methods, graph embedding-based methods, and traditional methods are taken in comparison. In the realm
of graph embedding techniques, several benchmark algorithms are considered for comparison, including
LINE [32], Node2vec [31], DeepWalk [30], and Word2vec [49]. The mentioned graph embedding-based
methods all require pre-configuration of the number of communities. Subsequently, the speaker-listener
label propagation algorithm (SLPA) [50] is used as a traditional method of detecting communities by sim-
ulating the propagation of information among nodes. For MOEA-based community detection algorithms,
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MCMOEA [18] and MEAs_SN [51], leverage the MOEA approach to simultaneously optimize multiple
objectives. Furthermore, NCMOEA integrates concepts from both MOEA and graph embedding [52].
In the NCMOEA framework, the nodes in a network are categorized into two types: candidate central
(CC) nodes, which are more likely to serve as community centers, and noncentral (NC) nodes, which are
less likely to be central. To effectively represent these different node types, NCMOEA employs a mixed
representation scheme.

In terms of experimental settings, for the traditional and graph embedding-based methods, the
parameter configurations is recommended in their respective articles. For MOEA-based methods, a common
parameter setup is applied, with a population size (PS) of 100 and a maximum generation count (ge,,,y)
of 50.

Extended modularity Q and NMI have been selected as alternative evaluation metrics. The main reason
for using Extended Modularity Q as an evaluation metric in the community detection problem is its ability
to accurately measure the quality and cohesion of community structures [53]. Q is computed on the basis of
the node assignments in the network and evaluates the degree of separation within communities as follows:

1 kik;
Q:m > (Aij_z_M])‘S(Cth) (8)
1

where A;; represents the actual number of edges between nodes i and j, k; and k; are the degrees of nodes
i and j, respectively, M represents the total number of edges in the network, and 6(C;, C;) is an indicator
function that takes the value of 1 when nodes i and j belong to the same community and a value of 0
otherwise. The advantage of extended modularity Q lies in its ability to effectively capture connectivity
patterns between nodes within and between communities.

The reason for using NMI as an evaluation metric for community detection is that it serves as a measure
of the similarity between the clustering results and the true community structure [54]. NMI is calculated as
follows:

C rue C
220 Eia[Cijllog(IC,IN/(ICiN C)1))

NMI = —; G ©)
Y |Cillog(ICil/N) + 2in1 Cjllog(|Cjl/N)

where C represents the community results, Ciry. represents the true community structure, and Cj; is the
intersection between C;, C;. Higher values of NMI indicate a greater similarity between the clustering results
and the true community structure, suggesting that the clustering algorithm has accurately captured the
underlying community structure. However, Eq. (9) overlooks the importance of the number of communities.
In community detection research, the number of generated partitions should be consistent with the true
partition in terms of the number of communities. Therefore, Eq. (9) is used as an alternative evaluation
metric in place of NMI to incorporate consideration for the number of communities [55]. f NMI is defined
as follows:

_ |Ctrue_c‘

fNMI=e Ctne x NMI (10)

4.3 Experiment Results on Real-World Networks

For the 12 real-world networks, NCMOEA, MCMOEA, MEAs_SN, LINE, Node2vec, DeepWalk,
BIGCLAM [56], COPRA, and CPM are compared to SECMOEA in terms of Q and Runtime.
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4.3.1 Experimental Results in Terms of Q

In the experimental results shown in Table 3, SFCMOEA algorithm achieves excellent results in terms
of its Q values. For nine out of 12 networks, SFCMOEA outperforms other algorithms in terms of maximum
and average values of Q (Qax> Qavg), including Dolphine, Football, Jazz, Karate, Polblogs, Polbooks, Texas,
Cornell, and Wisconsin networks. The statistical results indicate good performance on both large- and small-
scale community detection tasks. Taking the Dolphins network as an example, SFCMOEA achieves the
highest value of 0.7287 for both Q;,4x and Qg, . Performance on Polblogs demonstrates the adaptability of
SFECMOEA to dense networks. However, in the Facebook3437 network, SFCMOEA exhibits a lower value
of Q compared to other algorithms such as LINE, SLPA, and COPRA, indicating that SFECMOEA may not
be well suited for networks with few nodes and excessive overlapping phenomena. It should also be noted
that the NCMOEA, which is another MOEA-based algorithm, achieves the best results on the remaining
two datasets. In total, MOEA-based algorithms outperform traditional graph embedding-based methods in
almost all datasets.

Table 3: Comparison on the Q values of SFCMOEA with other algorithms, including MOEA-based, graph embedding-
based, and traditional methods (The best results in bold)

Network Q

Measures ~ NCMOEA MCMOEA MEAs_SN LINE Node2vec DeepWalk SLPA BIGCLAM COPRA  CPM  SFCMOEA

Dolphins Q_max 05268 05635 01737  0.0244 0.4460 03550  0.4881 0.0625  0.4592  0.3229 0.7287
Q_avg 05224 04376 01737  0.0221 0.3787 03550  0.3867 0.0358  0.3809  0.3229 0.7287

Runtime_avg ~ 4.4842 1570432  4.1615 11870 3.0214  0.499  0.0627 0.3928  0.0234  0.0023 31.5067

Football Q_max 0.6046 05741 03185 03811 0.6008  0.0470  0.5959 0.4989 05931  0.3950 0.7187
Q_avg 05726 05378 03185  0.2931 05928  0.0470  0.5683 0.4581 05224  0.3950 0.6904

Runtime_avg  6.3248  168.3201  10.1604 12176 87748  0.0483 01227 12871  0.0901  0.0258  64.8000

Jazz Q_max 0.4440  0.918  0.1408  0.1943 0.3625  0.0100  0.4417 0.0161  0.1474 0.0135 0.6335
Q_avg 0.4439 01268 0408 01752 0.3505  0.0100  0.3767 0.0068  0.0483  0.0135 0.5044

Runtime_avg ~ 14.4278 1818446 84.4050 3.6791 265231  0.0711  0.5109 4.4835  0.5572  0.4232 87.0000

Karate Q_max 0.4198  0.6284  0.641  0.0020 0.2855  0.4190  0.3718 0.2698 03594  0.1858 0.7009
Q avg 0.4198 05487  0.1641  0.0020 0.2725  0.4190  0.1450 0.1650  0.2391  0.1858 0.7009

Runtime_avg ~ 3.5346  180.8508  0.1295  0.7665 16988  0.0330  0.0178 0.1646  0.0115 0.0011 16.7600
Netscience ~ Q_max 0.9342  0.8853  0.5076  0.0951 0.8360  0.261  0.8717 01212  0.9169  0.7457 0.8507
Q_avg 0.9205  0.8638  0.5076  0.0625 0.8127  0.26]  0.8474 0.1053  0.9006  0.7457 0.8313

Runtime_avg  106.0786 231.3652  210.6395 5.0743 149.7497  0.2550  0.0054 1321328  0.4194 0.1139 109.2133

Polblogs Q_max 03972 02884 0015  0.1629 03672  0.140  0.4260 0.0149  0.0292  0.0180 0.6582
Q_avg 03970  0.1849  0.1015 0.536 0.3572  0.1140  0.4044 0.0074  0.0271  0.0180 0.6402

Runtime_avg ~ 123.9437 579.4012 478.6680 21.7998206.6383  0.2551  3.6485 119.2856  5.2285  1904.2506  286.1200

Yeast Q_max 05528 02916  0.2532  0.0827 0.5597  0.200 05156 0.0252  0.4632  0.2115 0.4839
Q_avg 03023 02667 02512  0.0562 0.5089  0.200 0.5012 0.0154  0.3826 0.2115 0.4770

Runtime_avg ~ 386.1454 6961657 565.6829 12.5816 324.7257  0.5293 18612 306.5399  1.7163 12105  248.0133

Fa;it;;mk Q_max 0.6792  0.672 01384 05157 03923  0.0810  0.4790 0.0166  0.4330 0.3319 0.3915
Q_avg 0.4808  0.1505  0.1287 05012 03571  0.0810  0.4512 0.0067  0.3612  0.3319 0.3444

Runtime_avg ~ 42.1497  651.0625 55.1954 57817 627842  0.1275  1.0538 259865  0.9624 57256  139.6800

Polbooks Q_max 05269 05978 02560  0.1915 0.4581  0.180  0.6710 0.5186  0.4865  0.3644 0.8340
Q avg 05269  0.4397 02560  0.1537 0.4283 01180  0.6436 0.4894  0.4253  0.3644 0.7861

Runtime_avg ~ 5.9773  518.4065 13.1937 10218 6.0843  0.0465 01016 10022  0.0654  0.0241 47.8000

Texas Q_max 05405  0.3382  0.0608  0.1437 05182  0.0705  0.2720 0.0890  0.1100 0.1987 0.7051
Q_avg 05213 02761  0.0608 01076 0.4979  0.0705  0.2304 0.0446  0.0929  0.1987 0.6997

Runtime_avg 8219 621773  3.4029  0.9052 5.4658  0.6343  0.0416 2.0756  0.0622  0.0034  48.9445

Cornell Q_max 0.6294 05768  0.0734 01226 0.6126  0.0412  0.4467 0.0688  0.5694  0.2407 0.7128
Q avg 0.6247 05216  0.0734  0.0679 0.5991  0.0412  0.3578 0.0259 05028  0.2407 0.6623

Runtime_avg 8711  56.4513 32020 0.8962 54315  0.6436  0.0388 2.1642  0.0550  0.0030  48.3610
Wisconsin  Q_max 0.6151 05017  0.0655 01232 05987  0.0186  0.4875 0.0492 05043  0.2213 0.7762
Q_avg 0.6039  0.4428  0.0655  0.0854 0.5829  0.0186  0.4607 0.0196  0.3566  0.2213 0.7627

Runtime_avg 12.11 62.1773 6.4031 0.9974 8.5422 0.6437 0.0565 3.8175 0.0940 0.0078 51.2687
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Furthermore, the performance of the SFCMOEA algorithm can be further evaluated by examining
the Pareto front. For MOEA-based community detection algorithms, a good quality of the generated
communities corresponds to the objectives of maximizing f1 and minimizing f2. Fig. 7 shows the Pareto
front [57] obtained by SFCMOEA on the Fb3437 dataset. In Fig. 7, there are 50 individuals, with each
data point representing the f1 and f2 values of a different individual. The upper point approaches the
optimal value for f2, while the right upper point satisfies f1 to the greatest extent. The points form a
curve, representing the Pareto front, that is, the set of non-dominated solutions in the context of the MOP.
Moreover, the curve indicates that the proposed algorithm is capable of finding a good balance between the
two objectives.
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Figure 7: Illustration of the mapping of the Pareto Front (f; = KKM, f, = RC)

Furthermore, Fig. 8 presents the results obtained by running SFCMOEA on the Football network. From
the figure, it can be observed that 7 communities are discovered in the network, differentiated by different
colors. Each partitioned result exhibits strong internal connections while the external connections remain
sparse, consistent with the objectives of community detection tasks.

4.3.2 Experimental Results in Terms of Runtime

In terms of runtime, SFCMOEA is at a moderate level in most networks in terms of average run-
time Runtime,,;. Compared to MOEA-based methods, SFCMOEA performs better than MCMOEA and
MEAs_SN at all data sizes and can perform equally to or better than the NCMOEA algorithm in larger-scale
scenarios. However, for graph embedding-based algorithms such as Node2vec and DeepWalk, SFCMOEA
has a noticeably longer runtime. Among traditional algorithms, SLPA demonstrates relatively short runtimes
compared to the graph embedding-based methods in most networks. In particular, on data sets such as
Fb3437 and Polblogs, in which the number of edges is much higher than the number of nodes, SFCMOEA
achieves a Runtime,,, close to that of Node2vec, indicating that SFCMOEA has the potential to address
efficiency issues in dense networks. The comparison between SFCMOEA and its ablated counterpart,
SFCMOEA-NE, reveals a significant difference in Runtime,,,. The ablation experiment demonstrates that
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the SFNE process enhances the computational efficiency of the algorithm while simultaneously enhancing
its partition quality.

Community 1
Community 2
Community 3
Community 4
Community 5
Community 6
Community 7

Figure 8: Community detection results obtained by applying SFCMOEA to the Football network where different colors
represent different communities

4.4 Experiment Results on Synthetic Networks

The parameters used to construct the LFR networks for these experiments are presented in Table 2.
There are a total of nine distinct parameters, of which six parameters have been set to their default values as
listed in the table. The remaining parameters N, y, and O, have been configured based on the specific network
scales needed for the experiments. Specifically, a series of LFR datasets is generated by setting the parameters
to N = {100, 500, 1000, 3000, 5000}, 4 = {0.3}, and O, = 1/10N. Eight different algorithms are compared
using LFR datasets, namely SFCMOEA, NCMOEA, MCMOEA, MEAs_SN, LINE, Node2vec, DeepWalk and
SLPA. Since LFR algorithms generate ground truth partitions, the main comparison metric used is the value
of f NMI, which provides a comprehensive evaluation that considers the number of partitions.

In Fig. 9, compared to the other algorithms, SFCMOEA performs better on datasets characterized
by a high degree of community overlap and a larger scale. As the network becomes more complex, other
algorithms show a significant decrease in performance, whereas the performance of SFCMOEA remains
stable. In the case of sparse networks, both the SLPA and Node2vec algorithms are close to the SFCMOEA.
From the perspective of community partitioning, SLPA and Node2vec algorithms generate more number
of community structures. Interestingly, as the network scale increases, the performance of the NCMOEA
algorithm actually improves. In general, in terms of evaluating the results of network construction, graph
embedding-based methods may exhibit some limitations.
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Figure 9: Example results of eight algorithms based on the f NMI evaluation metric

In addition, the runtimes on the constructed LFR network datasets, the evaluation criterion of runtime,
is also taken into account. A comparison is made among five algorithms using five different scales of
LFR datasets. The algorithms compared included traditional algorithms, graph embedding algorithms,
and MOEA-based algorithms simultaneously. Table 4 presents the Runtimeg, results of five algorithms
on datasets of different sizes. When comparing SFCMOEA to other algorithms, several advantages and
disadvantages can be observed. One notable advantage of SFCMOEA is its relatively shorter runtime
compared to algorithms such as NCMOEA and MCMOEA. In smaller datasets with 100 and 500 nodes,
SFCMOEA demonstrates a significant reduction in runtime, taking only 44 and 73 s, respectively. However,
as the size of the data set increases to 1000, 3000, and 5000 nodes, the runtime of SECMOEA also increases.
The observed increase in runtime suggests that SFCMOEA may face scalability issues and experience
longer execution times when dealing with larger networks. At the same time, MOEA-based methods fall
significantly behind LINE and SLPA in terms of runtime, while SFCMOEA maintains results that are
close to the graph embedding method Node2vec. In general, compared to MCMOEA, SFCMOEA achieves
improvements in both the quality of the resulting partitions and the running time by employing the SFNE
method to obtain an advantageous starting vertex set for the search process. In contract, as seen from Table 4,
MOEA-based methods require more time, still challenging to compete with traditional methods that do not
involve time-consuming MOEA stages but require the prior setting of the number of communities.

4.5 Performance Analysis on SENE Method

This section aims to highlight the effectiveness of the proposed SFNE method by investigating its
behavior on both real-world and synthetic network datasets. The number of nodes in the network and the
size of the structural feature vertex set used by SFCMOEA is set as the comparison standard. MOEA-based
methods, graph embedding methods and traditional methods typically perform the search starting from all
nodes as the compared algorithms. In this evaluation, LFR benchmarks generated with parameter settings
of y =0.1and y = 0.3 are used.
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Table 4: Comparison on the average runtimes among five algorithms under various scales of LFR networks

Average runtime (s)

N NCMOEA MCMOEA SLPA Node2vec SFCMOEA
100 7 263 1 6 44
500 42 322 1 57 73
1000 98 348 4 122 123
3000 729 1639 12 446 608
5000 2112 4928 14 876 1496

From the two figures shown in Fig. 10, as the scale of the network increases, the ratio of the number
of nodes utilized in SFCMOEA to all nodes in the network continues to expand. Even when the network
scale is small, there can be almost 50% savings in node usage. Combined with the evaluations of Q,
fNMI, and Runtime,,,, it indicates that the set of structural features that generate the SFNE method can
effectively represent communities and the underlying network structures. While the network scale increases,
the efficiency of node utilization also increases, which represents that the SFCMOEA has adaptability to
datasets of different scales. The improvement in node utilization also suggests that the algorithm consistently
maintains a high level of utilization of computer resources.

Algorithm's Node Usage vs Real Network Node Count Algorithm's Node Usage vs Synthetic Network Node Count
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Figure 10: Comparison on the number of nodes actually used by the SFCMOEA algorithm to the total number of
nodes in real and synthetic networks, respectively. The upper line represents the total number of network nodes, while
the lower line indicates the number of nodes used in the search process

For further analysis, Fig. 11 presents a comparison of the number of detected partitions with the actual
number of communities in 10 different scaled LFR datasets generated by SFCMOEA, MCMOEA and SLPA
algorithms. The MOEA-based methods and traditional methods are chosen for comparison to provide
a comprehensive analysis of the results. From the figure, SFCMOEA is closest to the actual number of
communities in almost all networks, with consistent results in the cases of LFR4 and LFR6. The reason can
be attributed to the vertex set generated by the SENE step, which ensures that the number of communities
generated in the subsequent community search step is close to the actual partition count. As the network
scale increases, the MCMOEA algorithm tends to generate a larger number of communities, which is also
reflected in the decreasing fNMI results. In contrast, the SLPA method performs relatively better than the
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MOEA-based methods in this regard. Considering Fig. 11 in conjunction with Fig. 10, SFCMOEA achieves
a balance by minimizing the use of nodes during the search while ensuring the reliability of the community
count generated.

Comparison of Community Counts
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Figure 11: Comparison between the number of communities detected by three algorithms (SFCMOEA, MCMOEA,
SLPA) and the actual number of communities. Each data point represents the average number of communities across
different datasets, with error bars indicating the maximum and minimum values

4.6 Experiment Results on Large-Scale Networks

In order to validate the feasibility and efficiency of SFCMOEA on large-scale real-world datasets, the
ca-Rr and ca-HePt datasets are selected. These two datasets consist of 5242 and 9877 nodes, respectively,
that make up the network. In Table 5, SFCMOEA performs well in the community detection task in large-
scale networks, while addressing the limitations of MCMOEA. Furthermore, compared to NCMOEA, an
MOEA-based algorithm that performs well on small-scale networks, the SFECMOEA algorithm demonstrates
advantages in larger-scale scenarios. However, there is still some gap between SFCMOEA and non-MOEA-
based methods.

Table 5: Comparison on the runtimes in large scale real networks

Runtimes (s)

Network
NCMOEA MCMOEA SLPA Node2vec SFCMOEA
ca-Gr 1557 NA 3 44 818
ca-HepT 6382 NA 7 73 1327

5 Conclusions

In this paper, a novel algorithm is proposed for community detection in overlapping networks, called
SFCMOEA. The SFCMOEA algorithm addresses the limitations of existing community detection algorithms.
First, to reduce the search space and speed up the search for optimal solutions, the SENE method is
designed to generate a set of vertices that collect the most influential nodes for community detection.
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Only the nodes within the vertex set are involved in subsequent search steps. To identify overlapping
nodes, a maximal clique representation scheme is employed on the generated vertex set. A link strength-
based method is then proposed to measure the interconnections between cliques, thereby improving the
quality of the detected communities. Finally, the HCMOEA approach is proposed to address cliques and the
remaining unexplored nodes separately, based on the clique-structured individuals. The HCMOEA approach
enables the generation of a number of communities closer to the actual partition count, followed by the
allocation of nodes according to the attractiveness of different communities. The number of individuals is
effectively reduced while enhancing the efficiency of the algorithm. In the experiments, various networks
have been used to test SFCMOEA against some well-known algorithms, including non-EA-based, MOEA-
based, and graph embedding-based methods for community detection. In terms of comparing the generated
number of communities, SFECMOEA shows a closer number to real partitions and greater stability. The main
drawback of SFCMOEA lies in the runtime compared to the traditional methods. Therefore, in the future,
algorithm parallelization based on CPU or GPU is requried. Furthermore, we plan to improve SFCMOEA
by incorporating additional features, such as node attributes and edge weights, and the performance of
SECMOEA on dynamic networks will also be considered.
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