Com.puters, Materials & <Térch Science Press
Continua

Doi:10.32604/cmc.2025.073500

ARTICLE Check for

updates

Non-Euclidean Models for Fraud Detection in Irregular Temporal Data
Environments

Boram Kim and Guebin Choi”

Department of Statistics, Institute of Applied Statistics, Jeonbuk National University, Jeonju, 54896, Republic of Korea
*Corresponding Author: Guebin Choi. Email: guebin@jbnu.ac.kr
Received: 19 September 2025; Accepted: 24 December 2025; Published: 10 February 2026

ABSTRACT: Traditional anomaly detection methods often assume that data points are independent or exhibit
regularly structured relationships, as in Euclidean data such as time series or image grids. However, real-world data
frequently involve irregular, interconnected structures, requiring a shift toward non-Euclidean approaches. This study
introduces a novel anomaly detection framework designed to handle non-Euclidean data by modeling transactions
as graph signals. By leveraging graph convolution filters, we extract meaningful connection strengths that capture
relational dependencies often overlooked in traditional methods. Utilizing the Graph Convolutional Networks (GCN)
framework, we integrate graph-based embeddings with conventional anomaly detection models, enhancing perfor-
mance through relational insights. Our method is validated on European credit card transaction data, demonstrating its
effectiveness in detecting fraudulent transactions, particularly those with subtle patterns that evade traditional, amount-
based detection techniques. The results highlight the advantages of incorporating temporal and structural dependencies
into fraud detection, showcasing the robustness and applicability of our approach in complex, real-world scenarios.

KEYWORDS: Anomaly detection; credit card transactions; fraud detection; graph convolutional networks;
non-euclidean data

1 Introduction

Credit card transactions are on the rise, driven by the convenience of digital payment methods and the
rapid growth of e-commerce. However, with the increase in credit card transactions, fraudulent activities
have also become more frequent. According to the Nilson Report (January 2025), global card fraud losses
reached $33.83 billion in 2023, and cumulative losses are projected to reach $403.88 billion over the next
decade [1]. Fraudulent transactions cause significant economic losses to financial institutions and consumers,
highlighting the critical need for reliable detection methods.

Traditional methods for detecting credit card fraud typically focus on large transactions at specific
merchants during certain times. For instance, instead of looking for fraud on a per-customer basis, these
methods concentrate on big purchases at major retailers or transactions involving large sums of money [2].
This approach treats each transaction separately when checking for fraud. This implies that each transaction
is assessed independently for potential fraudulent activity.

In contrast, this study explores the analysis of fraudulent transactions under the assumption that trans-
actions are not independent. By considering the dependencies among transactions, this study aims to identify
fraudulent activities through their connections. This approach recognizes that fraudulent transactions often

® Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2025.073500
https://www.techscience.com/doi/10.32604/cmc.2025.073500
mailto:guebin@jbnu.ac.kr

2 Comput Mater Contin. 2026;87(1):74

exhibit patterns and relationships that can be more effectively detected when analyzed together. This concept
is illustrated in Fig. 1.

1200 A

800

4001

Jan 2019 Apr 2019 Jul 201 Oct 2019 Jan 2020

1200 Fraud Status

legitimate

amount

fraudulent

800

4001

Octl 07 Octl 14 Octl 21
transaction time

Figure 1: Transaction occurrences over time for customer Steven Johnson. Data source: Kaggle simulated credit
card transaction dataset (see Section 3 for details). The x-axis represents transaction time and the y-axis represents
transaction amount. Red dots indicate legitimate transactions, and blue dots indicate fraudulent transactions. The lower
panel zooms into October 7-20 to highlight the temporal clustering of fraudulent transactions

Fig. 1 shows how transactions happen over time and the amounts involved in each transaction. The term
‘amount’ refers to how much money was spent in a transaction. In this figure, 12 fraudulent transactions are
linked to an individual named Steven, showing that these transactions happened close to each other in time.
It is clear that the amounts in these fraudulent transactions are generally higher than those in legitimate ones.
When we look closely at the periods when these fraudulent transactions happened (as seen in the zoomed-in
section of Fig. 1), we can see that these fraudulent transactions occurred one after another. The goal of this
analysis is to use the timing of transactions to identify fraud by looking at how these fraudulent activities are
connected over time.

As discussed earlier, many existing methods for detecting fraud rely heavily on the amounts of the
transactions. They often identify transactions as suspicious if they involve unusually large amounts of money.
Simply put, if a person who usually spends about $30 suddenly makes a $1000 transaction, it is likely to be
considered fraudulent. This reliance on transaction amounts is evident when examining the distribution of
transaction values in the data.

This approach may seem efficient but it is not foolproof. For example, in Fig. 1, the sixth fraudulent
transaction has a very small amount, making it difficult to predict it as a fraudulent transaction. How
can we identify such a transaction as fraudulent? One might think we should determine its fraudulent
nature using other explanatory variables (excluding the amount), but this is often impractical with real data.
This is because the sixth fraudulent transaction is very close in time to the fifth and seventh fraudulent

Comput Mater Contin. 2026;87(1):74 3

transactions, and therefore, due to the nature of the data, other variables (such as store information or
customer characteristics like age and gender) cannot show significant differences.

In fact, we can intuitively infer that the sixth transaction is fraudulent, even though it has a small amount,
because all the surrounding transactions are also fraudulent. For the sixth transaction to be legitimate, it
would require an unlikely scenario where a user loses their credit card, quickly finds it to make a legitimate
transaction, and then loses it again shortly after. This is not a realistic situation. It makes more sense to
assume that transactions occurring close together in time are either all fraudulent or all legitimate. Therefore,
analyzing the data as a time series is a more effective approach.

We could interpret and analyze the given data as a time series. However, applying typical time series
analysis methods is not easy. This is because many traditional statistical methods for time series, such as
autoregressive integrated moving average (ARIMA) and autoregressive with exogenous variables (ARX),
and techniques using recurrent networks, such as recurrent neural networks (RNN) and long short-term
memory networks (LSTM) [3], both assume that the observations are made at equally spaced intervals. In
other words, they assume that the data points are uniformly distributed over time. However, the transition
times in our data are not equally spaced.

For example, in Fig. 1,let’slook at the time intervals between transactions. The time gap between the first
fraudulent transaction and the immediately preceding legitimate transaction is longer than the gap between
the first and the second fraudulent transactions. This means the first fraudulent transaction happened closer
in time to the second fraudulent transaction than to the previous legitimate transaction. Therefore, when
predicting the value of the first fraudulent transaction, it makes more sense to consider the next transaction
rather than the previous one. This shows that the data points are not spaced uniformly over time, violating
the equally-spaced observation assumption underlying most temporal models.

To represent these irregular connections between observations, we reframe the indices of the given data
asagraph G = (V, E, W). In this graph, V is the set of nodes, and E is the set of edges connecting these nodes.
W is an n x n matrix, where 7 is the number of nodes in V. Each entry W; j in W represents the weight,
indicating the strength or importance of the connection between node i and node j.

In our dataset, V represents the indices of the observations. Edges (E) exist between transactions made
with the same credit card, meaning transactions from different credit cards are not connected by edges.
Additionally, the weight (W;;) of each edge in W is higher when the transactions occur closer in time,
showing stronger connections for transactions that happen close together.

Building on this structure, this study posits that utilizing temporal dependency, which reveals interre-
lations based on transaction timing, will be highly effective for analyzing fraudulent transactions, even if the
transaction amounts differ from the average.

Inspired by the characteristics of credit card transaction data, this study proposes a novel integrated
framework that models data with irregular time intervals as a graph structure and extracts embeddings
using graph convolution operations. Specifically, we encode temporal proximity between transactions as
edge weights in a graph, aggregate information from neighboring transactions through graph convolution
to generate embeddings for each transaction, and use these embeddings as input features for conventional
classification models. The main contributions of this study are as follows. First, we propose an efficient non-
Euclidean embedding method that can effectively represent transaction data with irregular time intervals
(Section 4). Second, we demonstrate that the proposed method achieves stable performance improvements
across various experimental settings, thereby establishing its robustness (Section 5). Third, we statistically
analyze and validate the effectiveness of the proposed embedding on credit card fraud detection performance
(Section 6).

4 Comput Mater Contin. 2026;87(1):74

2 Related Works

This section reviews existing research on credit card fraud transaction detection. Related work can be
categorized from four main perspectives: (1) data imbalance problem with tabular models, (2) research con-
sidering non-independence among transactions (customer-merchant relationships), (3) research leveraging
temporal dependencies, and (4) other techniques.

Credit card fraud involves highly imbalanced data. Various machine learning techniques have been
studied to handle this imbalanced data [4-6]. There are numerous studies on addressing data imbalance,
ranging from simple oversampling and undersampling methods to advanced online fraud detection systems
that have demonstrated efficiency in dealing with large-scale imbalanced data, such as the research by
Wei et al. [7]. Recent studies have specifically focused on addressing the extreme class imbalance in fraud
detection. Tayebi and El Kafhali [8,9] proposed deep learning approaches including autoencoders and
generative models to effectively handle imbalanced fraud datasets.

Meanwhile, research considering non-independence among transactions has been conducted. A
common approach to model relationships between customers and merchants in financial networks is to
use bipartite or tripartite graphs [10-12]. In the bipartite formulation, nodes represent cardholders and
merchants, and edges represent transactional relationships between them. A critical characteristic of this
approach is transaction aggregation: multiple transactions between the same cardholder-merchant pair
are combined into a single edge, with edge attributes (such as total amount) aggregated accordingly. The
fraud label is typically assigned as positive if any constituent transaction was fraudulent. Graph embedding
techniques such as Node2Vec [13] are then applied to learn node representations, which are subsequently
used for edge classification [14]. The tripartite extension introduces transaction nodes as intermediate
entities, partially preserving transaction-level information while maintaining the relational structure [15].
More recent work has explored heterogeneous graph representations incorporating multiple node types.
Wang et al. [16] proposed a heterogeneous graph auto-encoder that captures relationships between card-
holders, merchants, and transactions. While these graph-based approaches consider non-Euclidean data
structures similar to our method, they focus on structural connectivity rather than temporal proximity
between transactions.

There are also studies that leverage temporal dependencies in transactions. Sequence-based approaches
treat each customer’s transaction history as a time series and learn sequential patterns for fraud prediction.
LSTM-based approaches include Benchaji et al. [17], who proposed an LSTM-based fraud detection model,
and Alarfaj et al. [18], who combined attention mechanisms with LSTM for enhanced detection. For
Transformer architectures, Yu et al. [19] applied an advanced Transformer model to credit card fraud
detection, demonstrating superior performance over traditional machine learning techniques.

Research combining temporal dependencies with graph structures has also been conducted. Studies on
fraud detection techniques based on Graph Convolutional Networks (GCN) [20] are actively progressing.
Dynamic graph neural networks, such as DySAT [21] and ROLAND [22], extend static Graph Neural
Networks (GNNs) by allowing graph structure and node embeddings to evolve over time. Cheng et al. [23]
developed CaT-GNN, integrating causal inference with temporal graph modeling. While these approaches
effectively capture dynamic patterns, they typically require discrete time snapshots and introduce additional
computational complexity.

Since the characteristics of credit card fraud data are not identical across datasets, various tech-
niques have been developed to fit the specific properties of each data. Wheeler (2000) applied case-based
reasoning in the credit approval process [24], Srivastava (2008) used Hidden Markov Models to learn
normal cardholder behaviors [25], and Sanchez (2009) utilized association rules to extract normal behavior

Comput Mater Contin. 2026;87(1):74 5

patterns [26]. Liu et al. [27] addressed the over-smoothing problem in deep GNNs through high-order graph
representation learning.

Our proposed method differs from existing approaches in several key aspects. First, unlike traditional
tabular methods, our approach explicitly considers connectivity between observations through temporal
proximity and customer information. Second, while bipartite/tripartite graph approaches only model
customer-merchant connectivity without considering temporal relationships, our method simultaneously
incorporates both temporal proximity and customer information. Third, time series methods such as LSTM
and Transformer assume equally-spaced transactions, whereas our method naturally handles irregular time
intervals. Fourth, existing methods combining temporal dependencies with graphs use graph-based models
as the final classifier, considering connectivity across all transactions. In contrast, our method extracts GCN
embeddings as features and feeds them into a tabular classifier. Since the exponential decay function weakens
connection strengths for temporally distant transactions, the non-Euclidean structure is effectively utilized
only for temporally proximate transactions—typically cases where fraud occurs consecutively. This design
improves computational efficiency and facilitates extension to additional variables.

3 Data Description

For the analysis of fraudulent transactions, we faced challenges in accessing real data from financial
institutions like banks due to privacy concerns, as credit card transaction data is pseudonymized to protect
customers’ personal information. Consequently, we used a publicly available dataset from Kaggle' for our
analysis. To apply our graph-based analysis method described in Section 4, we require three essential
components: (i) a temporal variable to identify connectivity between transactions, (ii) customer identifiers to
construct individual transaction graphs, and (iii) node features for the GCN model. We selected this dataset
because it provides all three components: transaction timestamps (t rans_date_and_time), credit card
numbers (cc_num) as customer identifiers, and transaction amounts (amt) as node features.

The dataset comprises 1,048,575 transactions with 22 variables, including 6006 fraudulent cases
(0.573%). Among 943 cardholders, 596 experienced at least one fraud. For our graph-based analysis, we use
transaction timestamps (trans_date_and time) to compute temporal connectivity and transaction
amounts (amt) as node features. Detailed data descriptions and exploratory data analysis are available on
the Kaggle dataset page.

Fig. 2 illustrates transaction graphs for customer Katherine Tucker. Each transaction is represented as
a node, where node size corresponds to transaction amount (X,), color indicates fraud status (y: blue for
fraud, red for legitimate), and edge thickness represents temporal proximity (W). The weight W;; between
transactions i and j is computed using a Gaussian kernel based on time difference, where values close to 1
indicate temporally adjacent transactions.

The left panel shows a fully connected graph where all transactions are linked. Fraudulent transactions
tend to cluster together temporally, forming tightly connected subgraphs. The right panel retains only edges
between temporally close transactions, providing a sparser structure that highlights the temporal clustering
of fraud.

https://www.kaggle.com/datasets/dermisfit/fraud-transactions-dataset

https://www.kaggle.com/datasets/dermisfit/fraud-transactions-dataset

6 Comput Mater Contin. 2026;87(1):74
Full connectivity graph Temporal proximity graph

/

/
/

Y =
—7 7 AKX s
& / A " /

-~
7\
.\ / i S .

SN

Figure 2: Transaction graphs for customer Katherine Tucker. For visualization clarity, only 10 representative transac-
tions are shown from her total of 1250 transactions: 2 fraudulent transactions (blue) occurring on 15 January 2020, and 8
legitimate transactions (red) spanning from 16 March 2019 to 30 December 2019. Node size corresponds to transaction
amount, and edge thickness represents temporal proximity. The left panel shows the full connectivity graph; the right
panel shows the graph with only temporally close edges retained

4 Proposed Method
4.1 General Methodology

Let’s say the given data is X and y, where X is a n x p matrix and yis a vector of length n. Here, y contains
labels, while X is the design matrix necessary for predicting y. Some columns of X can define relationships
between different observations. Let’s denote one of these variables as x;. Here, j is the index of the variable
selected to define relationships between observations. Let W represent the relationships measured between
observations from x; by an appropriate method. In this context, W is an n x n matrix.

Our goal is to predict y by considering both X and Wy, ..., Wy, where] is the index set of j and
|J| is its cardinality. Since the dimension of W increases with #, it is necessary to reduce the size of W;
appropriately. For this purpose, we use the hidden layer H;Lj) learned from the graph convolution filter:
HEM) = J(D;l/ZAjD;1/2H§l)®§Z)) for/=0,1,2,...,L; - 1. Here, A; is the adjacency matrix corresponding
to W; and D j is the degree matrix of Aj, G)El) represents the learnable parameters, and o denotes the
activation function. To learn ®§l), we use a loss function similar to the one considered in [20]: £; = L0+

A/L;eg, where L’;eg = o]T.(D i —Aj)o;. o represents the output obtained by linearly transforming H" Ina
typical GCN, the last layer is a graph convolution layer. However, since our goal is to utilize the hidden layer
as a new feature, the final transformation is performed using a standard linear transform instead of a graph
convolution unit. This is to fully embed the connection information of the observations in the penultimate
hidden layer. £° represents the supervised loss with respect to the labeled part of y, and £™8 implies a
constraint that makes values more similar as the relationship between observations increases. HEZ) is the

input for the Ith layer, and H;Hl) is the output. When I = 0, H](O) is defined as X(=/), where X(~/) represents
the set of selected variables from the entire explanatory variable X, explicitly excluding x;. The output of the
final layer is defined as y. Ultimately, an appropriate tabular model Mr,pylar is trained by considering X =
Xo HI(LI) ® HgLZ) o oHD as explanatory variables to fity. Here, ® denotes concatenation. |J| represents

i
the cardinality of the set J, which is the set of variables defining relationships among observations. The

Comput Mater Contin. 2026;87(1):74 7

model Mrypylar can be any tabular classifier, such as XGBoost, LightGBM, etc. Algorithm 1 summarizes
the proposed procedure, and the overall architecture is illustrated in Fig. 3.

Non-Euclidean Feature Extractor]—>
. e
NomEucli (Ly)
on-Euclidean Feature Extractor @ H ™ X
|:: > . J > | Tabular Model |:: > Output
. jed

Data @
Non-Euclidean Feature Extractor]—) @

y

Non-Euclidean Feature

Figure 3: Overall architecture of the proposed framework. Multiple non-Euclidean feature extractors generate graph-
based representations from the input data, which are aggregated and combined with original tabular features. The
resulting features are then fed into a tabular model to produce the final output

Algorithm 1: Graph convolutional network with tabular model

Require: Design matrix X, label vector y, set of indices] for variables defining relations among observations
1: for each j €] do
2: Construct W;

3 Define the A and D; for each W

4 Initialize H{* = X(-)

5: for/=0toL;-1do

6 H§l+1) P (D;l/ZAjD;1/2H§l)®§l))

7

end for
8: Update {@?l) :1=0,1,...,L; -1} from £; = L} + AL
9: end for

(Ly)

10: Feature concatenation: X < X & HI(LI) ® HELZ) ®---oH)

11: Train a predictive model Mrpylar using (X,y).

Having established the general framework for graph-augmented feature learning, we now demon-
strate its concrete application to credit card fraud detection. The following subsection specifies the graph
construction, feature definitions, and model configuration tailored to our fraud detection task.

4.2 Application to Fraud Data

In this section, we will describe a model for analyzing fraud data using the methodology proposed in
the previous section. Let the given data be denoted as (X,y). We interpret the given data as a graph. Here,
we assume that the only column capturing the graph structure is trans_date_and_time (thus,|]J| = 1),
and we will refer to it as X ;. Therefore, the relationships in the graph can be summarized by W4, and
our task can be summarized as predicting y using X and W ;pe.

The loss function £ = £° + 1L£™8 is designed as follows. Here, £’ is the Binary Cross-Entropy (BCE)
loss: £° = —% > (yilog(:) + (1-y:)log(1- 7)), where y; is the output of the GCN model. Additionally,
L =9 (Diine — Atine)V = > j Wkeine,i j(yi—y j)z. This term represents a regularization component that
enforces smoothness in the predictions. Specifically, it penalizes the model when the predicted values j;
and y; for two observations that are close in time are significantly different. Here, D ;pc is the degree
matrix, A¢ine is the adjacency matrix, and Wi;ne i; indicates the weight or connection strength between

8 Comput Mater Contin. 2026;87(1):74

N A \2 .
observations i and j. The term) ; j Wtime,,»j(Pi— yj) ensures that the predictions for closely related
observations (i.e., those with a strong connection in the graph) are similar.

Now, let’s describe in more detail how to compute W ;. To create a weight matrix corresponding to
Xt ime> We consider cc_num because even if transactions are temporally close, if they are made by different
customer numbers, it is correct not to consider their connectivity. Therefore, W i, will have a block-matrix
structure: Weine = diag(Weine,1» Weine 2> - -» Weine,). Here, I is the set of cc_num. For a fixed i € I,
the (t,s)-th elements of Wiy ; are defined as follows, as used in [28]: Wy ine i(t,5) = exp(=|t — s]*/¢) if
t,s € T;, and 0 otherwise. In this context, T; represents the set of transaction times for the i-th customer.
The parameter ¢ is a positive constant that scales the time difference. A larger value in the exponential
function indicates that the transaction times are closer together. To summarize, the weight matrix Wy ;e
is constructed by considering both the temporal proximity and the customer number. Each block matrix
Wiine,; within Wy, represents the temporal relationships between transactions for a specific customer.
Transactions from different customers are not connected, which is reflected in the block-diagonal structure
of Wtime-

We have configured the architecture as shown in Fig. 4 to obtain the hidden layer.

time

J

‘ 16 x 8 GCN Layer: H(Z). = ReLU(AinoH!}, O

‘ 1 x 16 GCN Layer: HY = ReLU(AtimeHE:OiLe@g.)me) ‘

time time time) ‘

l

‘ 8 x 1 Linear Layer: Sigmoid (H(2> 9(2)

time time) ‘

-1/2

-1/2 . .
timeAtimeD /2 s the normalized

Figure 4: GCN architecture for extracting non-Euclidean features. Here Aiine=D e ime

(0)

adjacency matrix. The input H,? . consists of the transaction amount X,., processed through two GCN layers to

produce an 8-dimensional representation ngi)me

Here H(tgzne consists solely of X,n¢, since amt is the most crucial factor in predicting fraud. A typical

GCN architecture uses an 8 x 1 GCN Layer instead of the final Linear Layer. However, our objective is to

obtain the n x 8 matrix ngl)me
not used for graph construction), so we chose a Linear Layer solely for dimension reduction, sacrificing
()

time-*

for concatenation with the original feature matrix X (which includes variables

prediction performance in order to fully capture non-Euclidean information in H

5 Experiment & Results

We evaluate our proposed graph-augmented approach using six baseline tabular models: NeuralNet
(PyTorch-based MLP), RandomForest [29], ExtraTrees [30], XGBoost [31], LightGBM [32], and Cat-
Boost [33]. The baseline models were trained using AutoGluon-Tabular [34], an automated machine
learning framework.

5.1 Overall Performance Comparison

We conducted comprehensive experiments to evaluate our proposed method against three categories of
approaches: (i) conventional tabular models as baselines, (ii) the same tabular models augmented with GCN
embeddings (our proposed approach), (iii) sequence-based architectures including GRU [35], LSTM with

Comput Mater Contin. 2026;87(1):74 9

attention [36], Transformer-based models [37], and temporal convolutional networks (TCN) [38], and (iv)
graph-based models such as GCN [20] and DySAT [21].

The results reveal important findings across model categories. Baseline tabular models already achieve
strong performance (NeuralNet AUC 0.997, ensemble models 0.94-0.99), maintaining high precision (above
0.90) but with relatively lower recall (0.21-0.77). Sequence models achieve competitive Area Under Curve
(AUC) (GRU 0.990, LSTM 0.988, Transformer 0.985), but despite high recall (above 0.91), they suffer from
very low precision (below 0.15), exhibiting a precision-recall trade-off. Graph-based models (GCN AUC
0.985, DYSAT AUC 0.977) directly utilize graph structure for classification but show lower performance than
baseline tabular models.

In contrast, our proposed graph-augmented models achieve the highest performance by using GCN
embeddings as additional features for tabular models: graph-augmented NeuralNet attains AUC of 0.9995,
outperforming all other methods, consistently improving all baseline models (AUC improvement: 0.002-
0.054), and achieving both high precision (above 0.90) and improved recall for balanced performance. This
superior performance can be attributed to the following: (1) compared to tabular models, graph embeddings
provide temporal proximity information between transactions that tabular features alone cannot capture,
improving recall; (2) compared to sequence models, using GCN embeddings as features rather than as the
classifier preserves the stable precision of tabular models while incorporating graph information; and (3)
compared to pure graph-based models, extracting graph features and then applying well-established tabular
classifiers achieves better generalization than performing both feature extraction and classification in non-
Euclidean space.

These results cannot be directly generalized to fraud detection in general. The optimal model may vary
depending on the fraud transaction ratio, characteristics of fraud patterns, and temporal structure of the
data. However, our proposed method holds unique significance in that it appropriately combines the stable
precision of tabular models, the sequential pattern capturing capability of sequence models, and the relational
information utilization of graph models.

5.2 Prediction Confidence Analysis

AUC is a useful threshold-independent metric for evaluating the overall discriminative ability of
classifiers. However, in extreme class imbalance settings, Fl-score also warrants consideration. As shown
in Table 1, baseline Euclidean models achieve high precision (0.81-0.92) but relatively low recall (0.21-
0.78)—this occurs because they primarily detect “certain” fraud cases with high transaction amounts. In
contrast, our proposed graph-augmented models maintain precision (0.91-0.95) while improving recall
(0.76-0.88), showing improvements in Fl-score (0.84-0.90). To analyze specifically where these AUC and
Fl-score improvements originate, we examine prediction confidence.

Table 1: Comprehensive Model Comparison

Category Method Accuracy Precision Recall Fl-score AUC
NeuralNet 0.998351 0.921711 0.777902 0.843722 0.997630
RandomForest [29] 0.997302 0.823810 0.672405 0.740447 0.980178

Tabular (Baseline) ExtraTrees [30] 0.997718 0.901409 0.675181 0.772064 0.981392
LightGBM [32] 0.996949 0.842149 0.574681 0.683169 0.991976
CatBoost [33] 0.997111 0.843077 0.608551 0.706869 0.974223
XGBoost [31] 0.996748 0.810208 0.564132 0.665140 0.945512

(Continued)

10 Comput Mater Contin. 2026;87(1):74

Table 1 (continued)

Category Method Accuracy Precision Recall F1-score AUC
Graph-aug. NeuralNet 0.998834 0.924764 0.866741 0.894813 0.999516
Graph-aug. RandomForest 0.998669 0.942949 0.816769 0.875335 0.999124

Proposed Graph-aug. ExtraTrees 0.998379 0.951084 0.755692 0.842203 0.997823
Graph-aug. LightGBM 0.998862 0.914418 0.883954 0.898928 0.999481
Graph-aug. CatBoost 0.998071 0.902835 0.742921 0.815109 0.994701
Graph-aug. XGBoost 0.998656 0.914561 0.843976 0.877852 0.999132
LSTM [3] 0.968233 0.147261 0.949473 0.254977 0.987437
GRU [35] 0.967699 0.145101 0.948917 0.251712 0.990048

Sequence LSTM+Attention [36] 0.968182 0.147301 0.951694 0.255116 0.989439
Transformer [37] 0.959977 0.119489 0.940589 0.212042 0.984973
TabTransformer [39] 0.817323 0.028575 0.936702 0.055458 0.949902
TCN [38] 0.841814 0.032134 0.914492 0.062087 0.944878
GCN [20] 0.994739 0.617742 0.212660 0.316398 0.984965

Graph-based DySAT [21] 0.994475 0773913 0.049417 0.092902 0.976723

Note: Bold values indicate the best performance in each metric.

While the overall AUC values show modest improvements due to already well-trained baseline
models, the practical benefit becomes more pronounced when examining predictions for low-amount
transactions. Fig. 5 presents a comprehensive comparison of predicted probabilities for actual fraud cases
(y =1) using the LightGBM model (results for other models are available in the supplementary materials).
The top row shows histograms: the proposed model (orange) concentrates predictions near 1.0, indicating
high confidence, while the classic model (blue) spreads predictions across a wider range. This difference
is particularly striking for low-amount transactions (amt < 80), where the classic model shows a bimodal
distribution with many predictions near 0, whereas the proposed model maintains confident predictions
near 1.0.

The bottom row of Fig. 5 presents the empirical cumulative distribution function (empirical CDF) of
these predicted probabilities, providing a clearer comparison. For an ideal classifier, all fraud cases should
receive a predicted probability of 1, resulting in a step function at probability = 1 (dashed gray line). The
closer a model’s empirical cumulative distribution function (CDF) is to this ideal step function, the more
confidently it identifies fraud. The classic model (blue) shows a gradual increase across the probability
range, indicating uncertainty in fraud detection, while the proposed model (orange) concentrates predictions
near 1.0 with a median of 0.99 compared to 0.92 for the classic model. This improvement is particularly
pronounced for low-amount transactions (amt < 80) in the middle column, where the classic model’s
empirical CDF rises steeply even at low probability values. The right column shows high-amount transactions
(amt > 80), where both models perform better, but the proposed model still achieves predictions closer to
the ideal, confirming that graph-based embeddings provide additional discriminative power.

Comput Mater Contin. 2026;87(1):74 1

All fraud cases (y = 1) Transaction amount < 80 Transaction amount > 80
1400 A 200 4 1400 A
- Classic - Classic - Classic
1200 Proposed Proposed 1200 A Proposed
1000 A 1000 A
2 800 4 b= 5 800
= 3 3
5] <} 3
O 600 A © O 600 A
400 4 400 4
200 - 200 A
0- - 0 -F T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability Predicted probability Predicted probability
All fraud cases (y = 1) Transaction amount < 80 Transaction amount > 80
1.0 A 1.0 A 1.0 A
= Classic = Classic = Classic
=== Proposed === Proposed === Proposed
081 = = 1deal 081 = = 1deal 081 = = 1deal
J - i)
[06 [06 |06
A a i a
O O Q
M 0.4 |0 : M 0.4+
| |
0.2 : 0.2 : 0.2
I I
0.0 = ; 7 t ; ! 0.0 T f t 7 ! 0.0 1 ; T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Predicted probability Predicted probability Predicted probability

Figure 5: Comparison of predicted fraud probabilities for actual fraud cases (y = 1). Top row: histograms showing
prediction distributions; bottom row: empirical cumulative distribution functions (empirical CDF). Columns show all
fraud cases (left), low-amount transactions with amt < 80 (middle), and high-amount transactions with amt > 80 (right).
The classic model (blue) uses only tabular features X, while the proposed model (orange) incorporates GCN embeddings
X. The dashed gray line in empirical CDF plots represents the ideal classifier. The proposed model consistently achieves
predictions closer to 1.0, particularly for low-amount transactions where the classic model struggles

We present a visual example using Michael Rodriguez’s transactions, which include 249 test trans-
actions with 4 fraudulent cases. Table 2 compares the baseline model predictions with our proposed
graph-augmented model.

Table 2: Michael Rodriguez’s fraudulent transaction data

Timestamp Amount Label Prediction Probability
Baseline Proposed Baseline Proposed
2019-10-12 05:12 291.43 1 1 1 0.919 0.987
2019-10-12 22:12 905.52 1 1 1 0.879 0.980
2019-10-13 05:04 20.02 1 0 1 0.402 0.963
2019-10-13 22:16 736.16 1 1 1 0.778 0.982

The average transaction amount for Michael Rodriguez is 56.25. The average amount for legitimate
transactions is 49.19, while the average amount for fraudulent transactions is 488.28. In existing studies, all
transactions with high amt values were predicted as fraudulent, but a transaction with a small amt value
of 20.02 was predicted as legitimate. When amt is 20.02, the predicted probability is a low value of 0.4. In
contrast, the method utilizing graph information correctly predicted the small amt transaction as fraudulent

12 Comput Mater Contin. 2026;87(1):74

with a high probability value of 0.96. Moreover, this method showed higher probability values for high amt
transactions compared to existing studies.

This can be more easily understood by examining Fig. 6, which visualizes the graph. It depicts nine
transactions closely related to fraudulent transactions among Michael’s transactions. The graph shown is
after removing links based on the weights of the edges. This method can adequately determine fraud even
when the transaction amounts are small.

/?\\///
> T

Figure 6: Graph representation of transaction patterns for customer Michael Rodriguez

5.3 Undersampling Experiments

In the previous experiments, we maintained the original fraud transaction ratio of 0.00573 with a 7:3
train-test split. However, dealing with such extreme class imbalance is a common challenge in fraud detec-
tion. A widely-used technique is undersampling, where the majority class (legitimate transactions) is reduced
to achieve a more balanced training set while keeping the test set unchanged to reflect real-world conditions.

We conducted additional experiments with various undersampling ratios (fraud ratios from 0.05 to 0.5)
to evaluate the robustness of our proposed method. The results consistently demonstrate that incorporating
GCN embeddings into the feature set yields superior performance compared to using only the original
features, regardless of the undersampling ratio. This validates the effectiveness of our approach when
combined with standard class imbalance handling techniques. Detailed experimental settings and results are
available in our supplementary materials.’

6 Theoretical Interpretation: GCN Embeddings as Temporal Random Effects

This section provides a theoretical framework for understanding why GCN embeddings improve fraud
detection performance. We interpret the GCN embeddings as a replacement for traditional random effects
in hierarchical models, and conduct statistical tests to validate the significance of their contribution.

To simplify the theoretical discussion and enable closed-form statistical testing, we use logistic regres-
sion as the downstream classifier with an undersampled dataset (n = 8410, fraud ratio = 0.5). This choice is
justified by the robustness analysis in the supplementary materials, which demonstrates that GCN embed-
dings provide consistent performance improvements across all six model types (NeuralNet, RandomForest,
ExtraTrees, LightGBM, CatBoost, XGBoost) and all undersampling ratios (5%-50%). Therefore, insights
derived from the logistic regression setting with an undersampled dataset (n = 8410, fraud ratio = 0.5)
generalize to the broader experimental spectrum.

Our graph-based approach models both temporal and customer information together. Temporal
information can be extracted as features and placed in X, while customer effects can be considered through

2https://gucbin.github.io/n()n—uuclidcu11—m()duls—fm‘—frau d-detection/

https://guebin.github.io/non-euclidean-models-for-fraud-detection/

Comput Mater Contin. 2026;87(1):74 13

mixed effects models. Using the notation from Section 4, let X € R"™*F denote the feature matrix and y €
{0,1}" the fraud indicators. For the j-th transaction of customer i, the traditional generalized linear mixed
model with customer-level random effects is logit(P(y;; = 1)) = o + B'x;; + u;, where u; ~ N(0, 02), x;; is
the j-th row of X corresponding to customer i, and u; represents the customer-specific random effect. This
formulation assumes conditional independence of transactions given u;.

However, fraudulent transactions exhibit strong temporal clustering—multiple unauthorized charges
typically occur within minutes before detection. Our proposed method replaces the customer random effect
u; with a learned embedding: logit(P(y;; = 1)) = fo + B x;j + y"h;j, where h;; € R? is the GCN embedding
for the j-th transaction of customer i, computed from customer i’s transaction graph. This embedding
captures both customer-specific patterns (since it is derived from customer i’s own transaction history)
and temporal proximity effects (since neighboring transactions with similar timestamps contribute more

strongly). The augmented feature matrix is X = X & HI(LI) @ H‘(]L‘")

Unlike random effects, the GCN embeddings are learned through message-passing and can be treated as
fixed effects in the downstream classifier. To empirically validate this interpretation, we conducted an ablation
study (n = 8410, fraud ratio = 0.5, logistic regression). The baseline feature matrix X consists of k = 6 contin-
uous features: transaction amount (amt), customer location (1at, long), city population (city_pop),
and merchant location (merch_lat, merch_long). These features were selected because they represent
the core numerical attributes available for each transaction and are commonly used in fraud detection
literature. We also tested adding explicit temporal features (trans_hour, trans_day_of_ week) as

as defined in Algorithm 1.

direct features, but found they provide negligible improvement. This is because temporal information is
more effectively captured through the graph structure: the edge weights of the transaction graph encode
temporal proximity, and the GCN embeddings H'") learn to exploit this relational structure. The results are
summarized in Table 3.

Table 3: Ablation study: Contribution of feature components (n = 8410, fraud ratio = 0.5, Logistic Regression)

Model Configuration AUC AAUC Features

Baseline (X only) 0.831 — 6

X + Time 0.831 +0.000 8
X + Customer Effects 0.934 +0.102 927
X + Time + Customer 0.934 +0.102 929
X + GCN Embeddings 0.948 +0.117 16

As shown in Table 3, GCN embeddings achieve superior performance (+0.117 AUC improvement) with
only 16 features, compared to customer dummies which require 927 features for a +0.102 improvement.

Notably, explicit temporal features (trans_hour, trans_day_of_week) provide essentially no
improvement. This reveals a fundamental distinction between two types of temporal patterns. Absolute
temporal patterns refer to statements like “transactions at 23:00 are more likely to be fraudulent,” which would
require fraud to concentrate at specific hours or days—a pattern largely absent in our data. In contrast, relative
temporal patterns refer to statements like “a transaction temporally close to a fraudulent transaction is also
likely to be fraudulent”—this fraud clustering pattern is precisely what our data exhibits.

Conventional feature engineering cannot easily capture relative temporal patterns because doing so
would require knowing the fraud labels of neighboring transactions a priori. Our GCN-based approach

14 Comput Mater Contin. 2026;87(1):74

elegantly solves this: the graph structure encodes temporal proximity between transactions, and the message-
passing mechanism allows fraud-related signals to propagate through temporally adjacent nodes during
training. This explains why the relational structure of temporal proximity—not raw timestamp values—is the
key to improved fraud detection. To formally test significance, let f denote the logistic regression classifier.
We compare baseline model M : § = f(X) against the augmented model M, : ¥ = f(X), where X is defined
as in Algorithm 1. In our experimental setting: n = 8410 (sample size), k = 8 (number of baseline features in
X, including temporal features), and d = 8 (GCN embedding dimensions).

Under Hy: “GCN embeddings do not contribute,” the likelihood ratio statistic follows A = 2(¢; — ¢p) 4
x; asymptotically. This approximation requires regularity conditions, which we verify in Table 4. The first
condition ensures adequate sample size relative to the total number of features (k + d = 16). The second
condition is satisfied by construction since X contains all columns of X.

Table 4: Verification of y* approximation conditions for LR test (n = 8410, k = 8, d = 8)

Condition Criterion Observed Status
Large sample nf/(k+d)>10 8410/16 = 525.6 Pass
Nested models XcX By construction Pass

Permutation validation =~ Asymptotic and permutation agree Both significant ~ Pass

Finally, we validate the asymptotic y* approximation through a permutation test. By randomly permut-
ing the GCN embeddings (100 iterations), we break any true association with the outcome and obtain the null
distribution of A. Under the null hypothesis where GCN embeddings have no predictive value, this distribu-
tion has mean y = 7.11 and standard deviation ¢ = 3.59. Our observed statistic A = 2719.92 lies approximately
756 standard deviations above this null mean, providing strong evidence against Hy: A =2719.92 >
X3.0.001 = 26.12 (asymptotic p < 0.001, permutation p < 0.0001).The partial F-test confirms these findings:

_ (SSEq—-SSEy)/d _ 2 _
F = SSEl;(i’l——k—d) = 837.23 (p—value < 0001), AR~ =0.231.

These tests confirm that GCN embeddings provide statistically significant predictive value by capturing
temporal dependencies that traditional methods overlook.

7 Conclusion
7.1 Why Graph-Augmented Features Work

Sequence-based approaches (LSTM, Gated Recurrent Unit (GRU), Transformer) assume equally-
spaced time intervals, but credit card transactions occur at irregular intervals—ranging from seconds apart
during shopping sessions to days or weeks between purchases. Moreover, these models process transactions
as ordered sequences without modeling the connectivity structure between temporally proximate transac-
tions. Our graph-based approach explicitly captures irregular temporal relationships through edge weights
that encode temporal proximity, naturally handling non-uniform time spacing without requiring temporal
discretization or padding.

While non-Euclidean approaches can capture temporal and customer dependencies, they introduce
unnecessary complexity. In practice, the vast majority of legitimate transactions can be correctly classified
using Euclidean features alone—temporal clustering patterns become critical only in the vicinity of fraudulent
activity. A purely graph-based model would be computationally expensive and may overfit to relational
patterns irrelevant for normal transactions. Our analysis shows that GCN embeddings contribute an

Comput Mater Contin. 2026;87(1):74 15

additional 23.1% of explained variance (AR* = 0.231), but this contribution is localized to fraud-adjacent
regions rather than uniformly distributed across all transactions.

Our approach offers an elegant middle ground. The base Euclidean classifier efficiently handles the
majority of straightforward cases, while GCN embeddings provide supplementary non-Euclidean informa-
tion precisely where it matters—near fraud clusters. This design avoids the overhead of full graph-based
inference while retaining the benefits of temporal dependency modeling. The concatenation allows the
downstream classifier to adaptively weight Euclidean vs. non-Euclidean features based on context, achieving
both high precision (above 0.90) and improved recall without the computational burden of end-to-end
graph models. Furthermore, this modular design offers practical advantages: the GCN embedding gener-
ation is independent of the downstream classifier, allowing practitioners to leverage existing classification
infrastructure while benefiting from graph-based feature augmentation.

7.2 Limitations and Future Work

While our proposed method demonstrates strong performance on the analyzed dataset, several limita-
tions should be acknowledged. First, our evaluation is based on a single publicly available dataset that may
not fully represent the diversity of fraud patterns encountered in real-world financial systems. Credit card
fraud datasets vary significantly in their characteristics: some contain only anonymized features and lack
explicit temporal information. The generalizability of our method to these diverse fraud scenarios requires
further validation. Second, our approach constructs individual graphs for each customer, which assumes
sufficient transaction history per customer. For customers with very few transactions, the graph structure
may be too sparse to provide meaningful embeddings. Third, our approach assumes that temporal proximity
is the primary factor determining transaction relationships, which may not hold in all fraud scenarios—
for instance, when fraudsters deliberately introduce time delays between fraudulent activities. Future work
could address these limitations by: (i) evaluating on multiple fraud datasets with different characteristics, (ii)
developing adaptive methods for customers with limited transaction history, and (iii) exploring alternative
kernel functions that capture more complex temporal patterns.

Acknowledgement: Not applicable.

Funding Statement: This research was supported by the National Research Foundation of Korea (NRF) funded by the
Korea government (RS-2023-00249743). Additionally, this research was supported by the Global-Learning & Academic
Research Institution for Master’s, PhD Students, and Postdocs (LAMP) Program of the National Research Foundation
of Korea (NRF) grant funded by the Ministry of Education (RS-2024-00443714). This research was also supported by
the “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2025.

Author Contributions: Conceptualization and methodology, Guebin Choi; software, validation, formal analysis,
investigation, data curation, visualization, and writing—original draft, Boram Kim; writing—review and editing,
Guebin Choi and Boram Kim; supervision and funding acquisition, Guebin Choi. All authors reviewed the results and
approved the final version of the manuscript.

Availability of Data and Materials: The data that support the findings of this study are openly available in Kaggle
at https://www.kaggle.com/datasets/dermisfit/fraud-transactions-dataset. Supplementary materials including detailed
experimental results are available at https://guebin.github.io/non-euclidean-models-for-fraud-detection/.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

https://www.kaggle.com/datasets/dermisfit/fraud-transactions-dataset
https://guebin.github.io/non-euclidean-models-for-fraud-detection/

16 Comput Mater Contin. 2026;87(1):74

References

1. Nilson Report. Global card fraud losses reach $403.88 Billion. 2025 [cited 2025 Jan 15]. Available from: https://
nilsonreport.com.

2. Whitrow C, Hand DJ, Juszczak P, Weston D, Adams NM. Transaction aggregation as a strategy for credit card fraud
detection. Data Min Knowl Discov. 2009;18(1):30-55. d0i:10.1007/s10618-008-0116-z.

3. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-80. doi:10.1162/neco0.1997.
9.8.1735.

4. Krawczyk B. Learning from imbalanced data: open challenges and future directions. Prog Artif Intell
2016;5(4):221-32. doi:10.1007/s13748-016-0094- 0.

5. Makki S, Assaghir Z, Taher Y, Haque R, Hacid MS, Zeineddine H. An experimental study with imbalanced
classification approaches for credit card fraud detection. IEEE Access. 2019;7:93010-22. doi:10.1109/access.2019.
2927266.

6. Alam TM, Shaukat K, Hameed IA, Luo S, Sarwar MU, Shabbir S, et al. An investigation of credit card default
prediction in the imbalanced datasets. IEEE Access. 2020;8:201173-98. doi:10.1109/access.2020.3033784.

7. WeiW,LiJ,CaoL, OuY, Chen]J. Effective detection of sophisticated online banking fraud on extremely imbalanced
data. World Wide Web. 2013;16(4):449-75. doi:10.1007/s11280-012-0178-0.

8. Tayebi M, El Kafhali S. Combining autoencoders and deep learning for effective fraud detection in credit card
transactions. Oper Res Forum. 2025;6(1):8. d0i:10.1007/s43069-024-00409-6.

9. Tayebi M, El Kafhali S. Generative modeling for imbalanced credit card fraud transaction detection.] Cybersecur
Priv. 2025;5(1):9. doi:10.3390/jcp5010009.

10. Van Vlasselaer V, Bravo C, Caelen O, Eliassi-Rad T, Akoglu L, Snoeck M, et al. APATE: a novel approach
for automated credit card transaction fraud detection using network-based extensions. Decis Support Syst.
2015;75(3):38-48. d0i:10.1016/j.dss.2015.04.013.

11. Stamile C, Marzullo A, Deusebio E. Graph machine learning: take graph data to the next level by applying machine
learning techniques and algorithms. Birmingham, UK: Packt Publishing Ltd.; 2021.

12. Weber M, Domeniconi G, Chen], Weidele DKI, Bellei C, Robinson T, et al. Anti-money laundering in bitcoin:
experimenting with graph convolutional networks for financial forensics. arXiv:1908.02591. 2019.

13. Grover A, Leskovec J. node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining; New York, NY, USA: ACM; 2016. p. 855-64.

14. Zhang Q, Yan B, Huang M. Internet financial fraud detection based on a distributed big data approach with
Node2vec. IEEE Access. 2021;9:43378-86. doi:10.1109/access.2021.3062467.

15. Bruss CB, McGee A, Muench B, Chaluvaraju P, Rajput S. DeepTrax: embedding graphs of financial transactions.
In: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA); Piscataway, NJ,
USA: IEEE; 2019. p. 126-33.

16. 'Wang Y, Zhang X, Chen L. Heterogeneous graph auto-encoder for credit card fraud detection. arXiv:2410.08121.
2024.

17. Benchaji I, Douzi S, El Ouahidi B. Credit card fraud detection model based on LSTM recurrent neural networks.
J Adv Inf Technol. 2021;12(2):113-8. doi:10.12720/jait.12.2.113-118.

18. Alarfaj FK, Malik I, Khan HU, Almusallam N, Ramzan M, Ahmed M. Credit card fraud detection using state-of-
the-art machine learning and deep learning algorithms. IEEE Access. 2022;10:39700-15. doi:10.1109/access.2022.
3166891.

19. YuC, XuY, Cao], Zhang Y, Jin Y, Zhu M. Credit card fraud detection using advanced transformer model.
arXiv:2406.03733. 2024.

20. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907. 2016.

21. Sankar A, Wu Y, Gou L, Zhang W, Yang H. DySAT: deep neural representation learning on dynamic graphs via
self-attention networks. In: Proceedings of the 13th International Conference on Web Search and Data Mining;
New York, NY, USA: ACM; 2020. p. 519-27.

22. You],DuT, Leskovec]. ROLAND: graph learning framework for dynamic graphs. In: Proceedings of the 28th ACM

SIGKDD Conference on Knowledge Discovery and Data Mining; New York, NY, USA: ACM; 2022. p. 2358-66.

https://nilsonreport.com
https://nilsonreport.com
https://doi.org/10.1007/s10618-008-0116-z
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1109/access.2019.2927266
https://doi.org/10.1109/access.2019.2927266
https://doi.org/10.1109/access.2020.3033784
https://doi.org/10.1007/s11280-012-0178-0
https://doi.org/10.1007/s43069-024-00409-6
https://doi.org/10.3390/jcp5010009
https://doi.org/10.1016/j.dss.2015.04.013
https://doi.org/10.1109/access.2021.3062467
https://doi.org/10.12720/jait.12.2.113-118
https://doi.org/10.1109/access.2022.3166891
https://doi.org/10.1109/access.2022.3166891

Comput Mater Contin. 2026;87(1):74 17

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Cheng Y, Liu C, Liu Y. CaT-GNN: enhancing credit card fraud detection via causal temporal graph neural networks.
arXiv:2402.14708. 2024.

Wheeler R, Aitken S. Multiple algorithms for fraud detection. In: Applications and Innovations in Intelligent
Systems VII: Proceedings of ES99, the Nineteenth SGES International Conference on Knowledge Based Systems
and Applied Artificial Intelligence; Cham, Switzerland: Springer; 2000. p. 219-31.

Srivastava A, Kundu A, Sural S, Majumdar A. Credit card fraud detection using hidden Markov model. IEEE Trans
Dependable Secure Comput. 2008;5(1):37-48. doi:10.1109/tdsc.2007.70228.

Sanchez D, Vila M, Cerda L, Serrano JM. Association rules applied to credit card fraud detection. Exp Syst Appl.
2009;36(2):3630-40. doi:10.1016/j.eswa.2008.02.001.

Liu T, Zhang W, Chen J. Effective high-order graph representation learning for credit card fraud detection.
arXiv:2503.01556. 2025.

Shuman DI, Narang SK, Frossard P, Ortega A, Vandergheynst P. The emerging field of signal processing on graphs:
extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process Mag.
2013;30(3):83-98. doi:10.1109/msp.2012.2235192.

Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18-22.

Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63(1):3-42. doi:10.1007/s10994-
006-6226-1.

Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining; New York, NY, USA: ACM; 2016. p. 785-94.
Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. Lightgbm: a highly efficient gradient boosting decision
tree. Vol. 30. In: Advances in neural information processing systems. Red Hook, NY, USA: Curran Associates, Inc.;
2017. doi:10.32614/cran.package.lightgbm.

Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased boosting with categorical
features. Vol. 31. In: Advances in neural information processing systems. Red Hook, NY, USA: Curran Associates,
Inc.; 2018.

Erickson N, Mueller], Shirkov A, Zhang H, Larroy P, Li M, et al. AutoGluon-Tabular: robust and accurate AutoML
for structured data. arXiv:2003.06505. 2020.

Cho K, Van Merriénboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase representa-
tions using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP); Stroudsburg, PA, USA: ACL; 2014. p. 1724-34.
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate.
arXiv:1409.0473. 2015.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In: Advances in
neural information processing systems. Vol. 30. Red Hook, NY, USA: Curran Associates, Inc.; 2017. doi:10.65215/
ctdc8e75.

Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence
modeling. arXiv:1803.01271. 2018.

Huang X, Khetan A, Cvitkovic M, Karnin Z. TabTransformer: tabular data modeling using contextual embeddings.
arXiv:2012.06678. 2020.

https://doi.org/10.1109/tdsc.2007.70228
https://doi.org/10.1016/j.eswa.2008.02.001
https://doi.org/10.1109/msp.2012.2235192
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.32614/cran.package.lightgbm
https://doi.org/10.65215/ctdc8e75
https://doi.org/10.65215/ctdc8e75

	Non-Euclidean Models for Fraud Detection in Irregular Temporal Data Environments
	1 Introduction
	2 Related Works
	3 Data Description
	4 Proposed Method
	5 Experiment & Results
	6 Theoretical Interpretation: GCN Embeddings as Temporal Random Effects
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

