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ABSTRACT: The performance of deep recommendation models degrades significantly under data poisoning attacks.
While adversarial training methods such as Vulnerability-Aware Training (VAT) enhance robustness by injecting
perturbations into embeddings, they remain limited by coarse-grained noise and a static defense strategy, leaving
models susceptible to adaptive attacks. This study proposes a novel framework, Self-Purification Data Sanitization
(SPD), which integrates vulnerability-aware adversarial training with dynamic label correction. Specifically, SPD first
identifies high-risk users through a fragility scoring mechanism, then applies self-purification by replacing suspicious
interactions with model-predicted high-confidence labels during training. This closed-loop process continuously sani-
tizes the training data and breaks the protection ceiling of conventional adversarial training. Experiments demonstrate
that SPD significantly improves the robustness of both Matrix Factorization (MF) and LightGCN models against
various poisoning attacks. We show that SPD effectively suppresses malicious gradient propagation and maintains
recommendation accuracy. Evaluations on Gowalla and Yelp2018 confirm that SPD-trained models withstand multiple
attack strategies—including Random, Bandwagon, DP, and Rev attacks—while preserving performance.
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1 Introduction
Amidst the information explosion, recommender systems have evolved from auxiliary widgets into

mission-critical infrastructure, guiding billions of decisions daily. Collaborative filtering (CF) is the most
widely used paradigm, powering purchase recommendations from e-commerce giants, next song queues
on streaming platforms, and even clinical treatment planning. However, their open-world nature creates a
fertile ground for attackers: by faking a small number of user interactions with items, attackers can quietly
re-rank items, inflate the visibility of fake products, or suppress competitors—a practice known as “poisoning
attacks” [1–3]. In addition to causing revenue losses for e-commerce companies, poisoning attacks can also
erode user trust and potentially trigger regulatory scrutiny.

As shown in Fig. 1, without effective defense mechanisms, recommender systems under targeted promo-
tion attacks fail to distinguish genuine user behavior from maliciously injected interactions. Consequently,
items promoted by attackers—often irrelevant to user interests—rise significantly in the recommendation
rankings, impairing relevance, accuracy, and user experience. In contrast, systems equipped with adversarial
defense capabilities (indicated by the shield icon in the diagram) can effectively detect and resist such
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attacks, maintaining alignment between recommendations and true user preferences [4,5]. This comparison
clearly demonstrates the critical role adversarial defense plays in enhancing the robustness and security of
recommender systems.

Figure 1: Comparison of recommendation systems under targeted poisoning attack: without defense (top), the system
recommends attack-related items irrelevant to user preferences, leading to user dissatisfaction; with our adversarial
defense (bottom), the system filters out malicious targets and maintains recommendation quality aligned with true user
interests

Existing defense strategies against poisoning attacks can be broadly categorized into three directions.
(1) Data-level sanitization treats the problem as anomaly detection, removing suspicious users by identifying
distributional irregularities such as rating bursts, repetitive patterns, or graph degree anomalies [6–8]. (2)
Robust model structures strengthen the model itself, e.g., through Graph Neural Network (GNN)-based
architectures with built-in message constraints or certifiable robustness layers, absorbing adversarial shocks
without explicit data filtering [9,10]. (3) Adversarial training represents the state-of-the-art in robustness
enhancement. By injecting worst-case perturbations into embeddings and optimizing a minimax objective,
it reduces the theoretical upper bound of adversarial risk without requiring prior knowledge of attack strate-
gies [11–13]. For example, Adversarial Personalized Ranking (APR) improves MF robustness by perturbing
embedding parameters [12], while Vulnerability-Aware Training (VAT) adapts perturbation strength based
on each user’s vulnerability score [14]. However, VAT suffers from an upper bound of protection: once
high-intensity noise drastically increases the loss of already vulnerable users, subsequent steps suppress the
perturbation, leaving residual poisoned signals and limiting achievable robustness.

To address this issue, we propose a robust recommendation adversarial training strategy based on self-
purifying data updates. First, we identify vulnerable users to ensure that the recommendation performance
for this group remains robust under adversarial noise perturbations. During each iteration, the model’s
predicted labels are used to dynamically replace the corresponding training samples of vulnerable users,
enabling online self-purification of the training data. This dynamic replacement of vulnerable user labels
breaks the defensive noise limitation of VAT (Virtual Adversarial Training), as the updated labels represent
the user’s true intent under adversarial perturbations. This process enhances the authenticity of user
preference representations and allows the model to more effectively adjust the perturbation intensity for these
users during training, thereby overcoming the “protection ceiling.” The dynamic label replacement algorithm
enables the target model to progressively acquire robustness by learning from the guidance model’s decisions.
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The proposed SPD (Self-Purification Data sanitization) innovatively introduces self-purifying updates
for high-risk user data and combines it with adaptive adversarial perturbation intensity generation based
on interaction behavior features to achieve more robust recommendation model training. In this way,
SPD not only effectively reduces the success rate of poisoning attacks but also maintains recommendation
quality, thereby avoiding the trade-offs commonly associated with traditional adversarial training methods.
In experiments on the Gowalla and Yelp2018 datasets, SPD reduced the success rate of poisoning attacks by
64.38% compared to the current state-of-the-art method, the VAT baseline. The main contributions of our
work are summarized as follows:

• We introduce Self-Purification Data sanitization (SPD), the first online label correction mechanism
that replaces high-risk user interactions with the model’s own high-confidence predictions, enabling
unsupervised, real-time training data purification.

• We seamlessly couple SPD with vulnerability-aware perturbations, forming the SPD dual-channel closed
loop that adaptively adjusts perturbation strength while preserving recommendation accuracy, breaking
the robustness-performance trade-off.

• Extensive experiments conducted on Gowalla and Yelp 2018 confirmed that, compared to state-of-the-
art defenses, SPD reduced the success rate of poisoning attacks by an average of 64.38% (with the lowest
reduction reaching 97.96% for Taeget-HR@50) without compromising recommendation quality. This
provides a practical example for secure recommendation deployment.

2 Related Work

2.1 Collaborative Filtering in Recommender Systems
Collaborative Filtering (CF) remains the most classical and representative paradigm in recommender

systems, based on the assumption that users with similar interests tend to give similar evaluations to
items. Early approaches relied on explicit feedback (e.g., rating matrices), where Matrix Factorization (MF)
projected the high-dimensional sparse User–Item matrix into a dense latent factor space. Representative
methods include SVD++ [15], ALS [16], and BPR-MF [17].

With the rise of deep learning, AutoEncoder-based and Transformer-based models (e.g., SASRec [18],
TiSASRec [19]) further captured sequential and dynamic user preferences. More recently [18,19], Graph
Neural Networks (GAT [20]) constructed user—item interactions as bipartite graphs, aggregating high-order
neighborhood information and improving performance in cold-start and long-tail recommendations.

In industry, large-scale platforms such as Taobao [21], Netflix [22], and Spotify [23] have integrated MF,
Deep Neural Network (DNN), and GNN into billion-parameter service frameworks, combined with real-
time feature engineering, negative sampling, and reinforcement learning for rapid model updates. However,
the data-hungry nature of CF makes it highly dependent on external user interactions, leaving it inherently
vulnerable to poisoning attacks.

2.2 Poisoning Attacks in Recommender Systems
Poisoning attacks aim to inject malicious data during training to manipulate model outputs. These can

be broadly divided into two categories:
Targeted poisoning attacks: Designed to promote or suppress specific items. Typical methods include:

(i) push attacks [2,24,25], where adversaries inject high ratings for a target item to raise its rank; (ii) nuke
attacks, where negative feedback is injected to degrade a competitor’s rank; and (iii) backdoor attacks, where
hidden triggers are embedded, activating targeted recommendations when certain patterns occur [26].
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Untargeted poisoning attacks: Designed to globally reduce recommendation accuracy, e.g., Cluster
Attack [27], which inject random noise or perturb graph structures to disrupt similarity distributions.

In federated or decentralized settings, adversaries may directly upload malicious gradients (e.g.,
FedRecPoison [28]), creating compound threats across both the data and model levels.

2.3 Robust Recommender Systems
Robust recommender systems aim to maintain reliable performance in the presence of noise, adversarial

perturbations, or distribution shifts [29,30]. Early work focused on algorithmic robustness: GNN-based
models leveraged high-order neighbor aggregation but were highly sensitive to noisy edges [20]. To address
this, contrastive learning approaches such as SGL (Self-supervised Graph Learning for Recommenda-
tion) and KGCL (Knowledge-enhanced Graph Contrastive Learning) applied edge masking and subgraph
perturbations to enforce self-supervised consistency, improving noise resilience [31].

Meanwhile, smoothing techniques and robust estimation frameworks introduced Cauchy/L1 norms
into MF and sequential models, reweighting samples to diminish the impact of anomalies. Adversarial
training approaches (e.g., APR, VAT, RAWP-FT [32]) injected worst-case perturbations into embeddings or
parameters and optimized minimax objectives, providing theoretical robustness guarantees.

3 Preliminary

3.1 Problem Definition
We formalize the recommendation task within the scope of our study as follows.
Let U = {u1 , u2, . . . , um} denote the set of users and I = {i1 , i2, . . . , in} denote the set of items. The

observed user-item interactions are represented by a binary matrix R ∈ {0, 1}m×n , where

rui =
⎧⎪⎪⎨⎪⎪⎩

1, if user u has interacted with item i,
0, otherwise.

(1)

A recommendation model learns latent embeddings pu ∈ Rd for each user u and qi ∈ Rd for each item
i, and predicts the preference score via

r̂ui = f (pu , qi ; Θ) (2)

where Θ denotes all trainable model parameters.

3.2 Adversarial Training for Recommender Systems
Virtual Adversarial Training (VAT) is a regularization technique designed to improve the robustness of

recommender systems against adversarial perturbations, particularly those arising from poisoning attacks.
The central idea is to introduce controlled, adversarial noise during training to force the model to remain
stable in a neighborhood around each training sample.

3.2.1 Adversarial Loss Formulation
The overall training objective under VAT combines the standard recommendation loss with an

additional adversarial loss term:

LVAT(Θ) = L(Θ) + λ ⋅L(Θ + Δemb) (3)
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whereL(Θ) denotes the original loss function (e.g., BPR or cross-entropy), λ is a hyperparameter controlling
the contribution of the adversarial term, And Δemb represents the perturbation vector applied to the user
and item embeddings Θ.

3.2.2 Perturbation Generation
The adversarial perturbation Δemb is obtained by solving a constrained maximization problem:

Δemb = arg max
Δ

L(Θ + Δ)

subject to ∥Δu ,∗∥ ≤ ρ ⋅ g(L(u ∣ Θ)) (4)

where ρ controls the base perturbation scale, and g(⋅) is a scaling function that modulates the perturbation
magnitude based on user-specific vulnerability, quantified by L(u ∣ Θ).

3.2.3 User-Adaptive Perturbation
For a specific user–item interaction (u, i), the perturbation is computed as:

Δemb
u , i = ρ ⋅ g(L(u ∣ Θ)) ⋅ Γu , i

∥Γu , i∥
,

where Γu , i =
∂L((u, i) ∣ Θ + Δ)

∂Δu , i
. (5)

This user-adaptive scheme ensures that perturbations are scaled according to each user’s suscepti-
bility, thereby enhancing defense against targeted attacks without compromising overall recommendation
performance.

4 Proposed Method
This chapter delineates the overall architecture and technical specifics of the proposed Self-Purifying

Data (SPD) framework. The central concept of SPD is the seamless integration of prediction-driven data self-
purification into the adversarial training process, forming a closed-loop “defense-purification-retraining”
mechanism that effectively circumvents the robustness ceiling inherent in conventional defense approaches.

As illustrated in Fig. 2, the SPD framework operates through a structured pipeline designed to mitigate
targeted poisoning attacks. The process begins by deriving user and item embeddings from interaction
data. These embeddings are first processed by a vulnerability-aware module—incorporated from established
methods—to identify users that are highly susceptible to attacks. The key innovation of our approach resides
in the subsequent Self-Purifying Data (SPD) module. Specifically, for users identified as vulnerable, our
method dynamically replaces their embeddings with high-confidence predictions generated by the model
itself during training. This updating strategy effectively mitigates the influence of potentially poisoned
training samples by aligning the latent representations with the underlying true user intent, thereby cutting
off the propagation of malicious gradients. Through this purifying step, the model continuously reinforces
its robustness using self-generated reliable signals, forming an iterative optimization cycle that progressively
improves both accuracy and resistance to poisoning attacks. The refined embeddings are then passed to the
recommendation model to produce robust output recommendations.
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Figure 2: Adversarial Training with SPD. The proposed adversarial training framework with Self-Purifying Data (SPD).
The pipeline begins by employing a vulnerability-aware module (adopted from existing works) to distinguish between
vulnerable and invulnerable user embeddings. Our core innovation lies in the subsequent SPD process: applying
differentiated perturbation magnitudes based on vulnerability levels, followed by a predictive update that dynamically
sanitizes the embeddings of vulnerable users with the model’s high-confidence predictions. This closed-loop system
effectively suppresses target attack items (e.g., the red dress) in the final recommendation lists, thereby significantly
enhancing robustness without compromising recommendation quality

4.1 Vulnerability Assessment
Conventional defense mechanisms usually assume that all users are equally exposed to adversarial

perturbations. This homogeneous assumption overlooks the fact that users differ significantly in how well
their preferences are fitted by the model, leading to heterogeneous vulnerability. Recent work [14] highlights
a “health paradox,” observing that users with smaller training losses—whose preferences are well captured
by the model—are paradoxically more susceptible to poisoning attacks.

The underlying intuition is that small training losses indicate strong model fitting, making these users’
embeddings highly sensitive: even a few injected fake interactions may be disproportionately amplified
during parameter updates. In contrast, users with larger training losses are modeled with greater uncertainty,
which inadvertently reduces their sensitivity to small perturbations and thereby enhances robustness.

To quantitatively capture such heterogeneity, we define a user-level vulnerability score as a function of
the user’s training loss. Let L(u∣Θ) denote the loss associated with user u, and let L(u∣Θ) be the mean loss
across all users. We then define:

su = g(L(u∣Θ)) = σ
⎛
⎝
(L(u∣Θ) −L(u∣Θ)

L(u∣Θ) )
−1⎞
⎠

(6)

where σ(⋅) is the Sigmoid function that constrains the score to (0, 1).
The Eq. (6) reflects the relative position of a user’s loss compared to the population average: users with

lower-than-average loss obtain higher vulnerability scores, while those with larger losses receive smaller
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scores. Consequently, su provides a dynamic, training-aware measure of susceptibility. In the subsequent
sections, we use this indicator both to analyze system-wide weaknesses and to design selective defense
strategies that allocate stronger protection to users with higher vulnerability.

4.2 Self-Predictive Data Sanitization (SPD)
Virtual Adversarial Training (VAT) can adaptively perturb user embeddings to improve robustness,

but residual contamination from poisoned interactions may still persist. To address this, we propose Self-
Predictive Data Sanitization (SPD), which leverages the model’s high-confidence predictions to cleanse
potentially corrupted interactions, particularly for high-risk users.

At the end of each training epoch, the system calculates the vulnerability scores su for all users and
groups the top k% high-risk users into a set Uhigh. For each u ∈ Uhigh, SPD replaces the vulnerable user data
with the top τ high-probability user-item interactions r̂ui predicted with high confidence using the current
iteration model.

We can formalize the protective effect of SPD on high-risk users as follows. Let Ru denotes the original
interactions of user u and Rsanitized

u denotes the interactions after SPD replacement. The sanitized gradient
for user u is then computed as:

∇pu
L(Rsanitized

u , Θ) (7)

which depends only on clean or high-confidence-predicted interactions. Since SPD only modifies inter-
actions for high-risk users, the embeddings of low-risk users remain unchanged, preserving overall
model fidelity.

To quantify the reduction in poisoned influence, define the expected discrepancy between sanitized and
true-clean gradients:

Δu = ∣∇pu
L(Rsanitized

u , Θ) − ∇pu
L(Ru , Θ)∣2 (8)

The average poisoned gradient risk across high-risk users is then

R ∗ poisonsanitized = 1
∣U ∗ high∣ ∑_u ∈ U_highΔ_u (9)

Intuitively:

Rsanitized
poison ≪Rpoison (10)

because SPD replaces interactions that are likely to be poisoned with model-predicted labels that approximate
the clean signal. This formulation directly links the sanitized gradient to SPD: high-risk users’ embeddings
are now updated based on purified data, effectively neutralizing the effect of poisoned interactions.

In summary, SPD acts as a preemptive filter for high-risk users, and when combined with VAT-
based adversarial perturbations, it forms a closed-loop defense-purification mechanism that both fortifies
embeddings and blocks poisoned gradients, enhancing overall robustness and stability.
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5 Experimental

5.1 Experimental Setup
5.1.1 Dataset

To evaluate the effectiveness and robustness of our proposed method, we conduct experiments on two
widely used recommendation datasets: Gowalla and Yelp2018.

• Gowalla [33] is a location-based social network dataset containing user check-ins, providing dense
interaction data suitable for collaborative filtering research and adversarial robustness evaluation.

• Yelp2018 [32] contains user-business interactions including ratings and reviews, commonly used for
benchmarking recommendation models in e-commerce scenarios.

To ensure reliable evaluation, we filter out users and items with fewer than 10 interactions. For each
remaining user, 80% of their interactions are assigned to the training set, while the remaining 20% are used
as the test set. Additionally, 10% of the training interactions are randomly selected to form a validation set
for hyperparameter tuning.

Table 1 presents detailed statistics of the datasets after preprocessing, including the number of users,
items, and interactions in each split. This setup guarantees consistent evaluation across all baselines while
maintaining sufficient diversity in user interactions.

Table 1: Dataset statistics

Dataset #Users #Items #Ratings Sparsity
Gowalla 29,858 40,981 1,027,370 99.92%
Yelp2018 31,668 38,048 1,561,406 99.88%

5.1.2 Baselines for Defense
To benchmark the robustness of our proposed method, we compare it against several representative

defense strategies, covering detection-based, adversarial training, and denoising-based approaches.

• GraphRfi [8]: A detection-based method that integrates Graph Convolutional Networks with Neural
Random Forests to identify suspicious users and interactions.

• APR: An adversarial training method that injects small perturbations into model parameters during
training to improve resistance against maliciously crafted data.

• SharpCF [11]: Enhances APR by considering sharpness-aware minimization, aiming to stabilize the
adversarial training process and improve generalization under attack.

• StDenoise [34]: A denoising-based approach that exploits the structural similarity between user and
item embeddings for each interaction, helping to remove noise from the training data.

• VAT [14]: Applies Virtual Adversarial Training to perturb user or item embeddings, strengthening model
robustness by smoothing the prediction distribution without modifying labels.

5.1.3 Attack Methods
To evaluate the robustness of recommendation models under adversarial conditions, we consider both

heuristic-based and optimization-based attack strategies in a black-box setting, where the attacker has no
knowledge of the target model’s internal structure or parameters.

Heuristic Attacks: These attacks generate fake user interactions based on simple rules or common
patterns. We include:
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• Random Attack [35], which randomly selects items to inject into fake user profiles, and Bandwagon
Attack [36], which preferentially targets popular items to maximize influence.

• Optimization-Based Attacks: These attacks use adversarial optimization techniques to maximize the
effect on the target model. We include Rev Attack [10], which iteratively updates fake user interac-
tions based on a surrogate model, and DP Attack, which crafts poisoned interactions by solving an
optimization problem aimed at degrading model performance.

Attack Configuration. We simulate targeted promotion attacks following established practices in [14].
The goal of the attack is to promote a specific target item by injecting fake users that interact with both the
target and a set of strategically chosen filler items. The injection rate is fixed at 1% to control attack size.

This combination of heuristic and optimization-based attacks allows us to thoroughly assess model
robustness under diverse adversarial scenarios.

5.1.4 Performance Evaluation
To maintain consistency with prevailing research practices, we employ a set of commonly adopted

evaluation measures. The key indicators for evaluating recommendation quality are the ranked-list metrics
Hit Ratio at k (HR@k) and Normalized Discounted Cumulative Gain at k (NDCG@k), which are well-
established in prior works [14]. Furthermore, to assess the effectiveness of adversarial attacks, we introduce
tailored metrics—T-HR@k and T-NDCG@k [14]—designed specifically to gauge the promotion success of
target items within the top-k recommendation lists:

T-HR@k = 1
∣T ∣ ∑tar∈T

∑u∈U−Utar I(tar ∈ Lu ,1∶k)
∣U − Utar ∣

(11)

where T denotes the collection of target items, Utar refers to the group of authentic users who have
previously interacted with the target item tar, Lu ,1∶k indicates the top-k recommended items for user u,
and I(⋅) represents an indicator function that yields 1 when the argument condition holds true. Similarly,
T-NDCG@k is adapted as the target-centric analogue of NDCG@k, reflecting a comparable adjustment in
evaluation focus.

5.1.5 Implementation Details
We evaluate the proposed Self-Purification Data sanitization (SPD) framework, which targets high-risk

users by replacing potentially corrupted interactions with high-confidence predictions. This step ensures that
the model primarily learns from purified data, effectively mitigating the impact of poisoned interactions.

Training Epochs: All models are trained for 40 epochs. Learning Rate: The learning rate is set to
0.001 for all experiments. High-Risk User Fraction (k%): The top 1% of users ranked by vulnerability
score are treated as high-risk and subject to SPD replacement. Validation Set: 1% of each user’s training
interactions are reserved for hyperparameter tuning and high-confidence prediction generation. Batch Size
and Optimization: Batch size is set to 1024, and the Adam optimizer is used for all model updates.

This configuration allows us to systematically evaluate the effectiveness of SPD in reducing the influence
of poisoned interactions while maintaining recommendation accuracy. All other training settings are kept
consistent with baseline methods to ensure fair comparison.



10 Comput Mater Contin. 2026;87(1):31

5.2 Robustness against Targeted Item Promotion
This subsection evaluates the robustness of the proposed SPD framework against targeted item promo-

tion attacks. We describe the attack simulation setup and evaluation metrics, then compare the attack success
rate (ASR) and recommendation performance of SPD with several state-of-the-art defensive methods.
Finally, we analyze the impact of varying attack intensities and target item popularity on the defensive efficacy
of SPD.

5.2.1 Robust under Targeted Attacks
As summarized in Table 2, the proposed SPD framework demonstrates consistent and superior

robustness across multiple attack types on both Gowalla and Yelp2018 datasets. Under four distinct
attack strategies—Random, Bandwagon, DP, and Rev—SPD consistently achieves the lowest T-HR@50 and
T-NDCG@50 values among all compared baselines, indicating a strong capability to suppress malicious
item promotion.

For example, on the Gowalla dataset with MF as backbone, SPD reduces T-HR@50 to 0.006 under DP
Attack, significantly outperforming VAT (0.028) with a 78.57% relative improvement. Under Rev Attack,
SPD achieves a T-NDCG@50 of 0.005, representing an 79.17% gain over VAT.

The framework also generalizes effectively to more complex models. When applied to LightGCN under
Rev Attack, SPD in Table 2 ) reduces T-HR@50 from 0.456(VAT) to 0.026, an improvement of 94.30%. Even
on the challenging Yelp2018 dataset, SPD maintains strong performance—particularly under DP and Rev
attacks—where it surpasses all baseline methods by a considerable margin.

These results confirm that the integration of self-purification with vulnerability-aware adversarial
training effectively disrupts the propagation of malicious gradients from poisoned interactions, thereby
overcoming the “protection ceiling” of standard adversarial training methods. The consistent gains across
model architectures, attack strategies, and datasets underscore the practical viability and robustness of the
proposed SPD framework.

At the same time, we’ve observed that the performance of some baseline methods (e.g., GraphRfi and
StDenoise) is suboptimal in certain scenarios, even worse than unprotected models. This phenomenon
stems primarily from differences in the inherent mechanisms of different defense methods. Detection-based
methods (such as GraphRfi) rely heavily on prior attack knowledge embedded in their training data. When
faced with unknown and complex attack patterns, their detection mechanisms can easily fail, resulting
in numerous false positives that harm legitimate user data and degrade performance. In contrast, SPD’s
dynamic cleansing strategy doesn’t rely on specific attack hypotheses. Instead, it identifies and replaces high-
confidence untrusted interactions, implementing precise defenses at the source of the data. This adaptive
mechanism ensures consistent superiority in the face of diverse attacks.

5.2.2 Performance under Targeted Attacks
In addition, Table 3 systematically compares the impact of different defense methods on the perfor-

mance of the MF recommendation model on the Gowalla and Yelp2018 datasets. The analysis shows that
the model optimized using the SPD framework (+SPD) significantly improves robustness against poisoning
attacks while maintaining recommendation accuracy, as demonstrated by the following characteristics:
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First, in a clean environment (without attacks), +SPD achieves an HR@20 of 12.753% ± 0.061 and an
NDCG@20 of 10.107% ± 0.042 on the Gowalla dataset; on the Yelp2018 dataset, the respective values are
4.112% ± 0.023% and 3.234% ± 0.022. While this performance is slightly lower than methods specifically
optimized for accuracy (such as +VAT), it significantly outperforms the unoptimized basic MF model
(Gowalla: 11.352% ± 0.091; Yelp2018: 3.762% ± 0.034). This demonstrates that the SPD framework introduces
robustness mechanisms without compromising the model’s underlying recommendation performance.

More importantly, +SPD demonstrates stable defense against four types of poisoning attacks. Under the
DP attack on the Gowalla dataset, +SPD achieves a HR@20 of 12.559% ± 0.053, significantly higher than the
10.722% ± 0.109 achieved by basic MF. Furthermore, its performance fluctuation range (standard deviation)
is generally smaller than that of the other compared methods, demonstrating its superior stability. In complex
attack scenarios from Yelp 2018 (such as the Rev attack), +SPD achieved an NDCG@20 of 3.205% ± 0.024,
significantly outperforming the 3.028%± 0.041 achieved by basic MF, further demonstrating its cross-dataset
generalization capabilities.

Compared to specialized defense methods, +SPD maintained competitive performance in most attack
scenarios. For example, under the Bandwagon attack, +SPD achieved a near-state-of-the-art NDCG@20
of 9.948% ± 0.049 on Gowalla, significantly outperforming the unreinforced MF. This demonstrates that
SPD’s unique design—integrating adversarial training and dynamic purification—can effectively improve
robustness without excessively sacrificing accuracy. Therefore, the SPD framework achieves an ideal trade-
off: significantly improving the model’s stability under poisoning attacks while maintaining comparable
recommendation accuracy. This property makes it particularly suitable for recommender system applica-
tions requiring long-term secure deployment. Future work could explore combining SPD with accuracy
optimization methods to further enhance its performance in clean environments.

5.2.3 Model Robustness under Stronger Attacks
To evaluate SPD’s defense capabilities under more severe attack scenarios, we systematically compared it

with the current state-of-the-art defense method, VAT, by injecting increasing proportions of fake users into
the RevAdv poisoning attack (1%, 2%, and 3%). The experiments covered two real-world datasets, Gowalla
and Yelp, using MF and LightGCN as the baseline recommendation models, respectively. All methods used
Target HR@50 and Target NDCG@50 as robustness evaluation metrics, with lower values indicating stronger
defense performance.

The experimental results, shown in Fig. 3, show that SPD consistently outperformed VAT in all settings,
demonstrating greater robustness. Specifically, as the proportion of fake users increased from 1% to 3%, VAT’s
defense performance significantly declined, while SPD’s performance fluctuations were significantly smaller,
demonstrating its excellent adaptability to increasing attack intensity.

5.3 Hyperparameter Analysis
5.3.1 Hyperparameter Analysis (Dynamically Updating User Percentages)

To explore the impact of dynamically updating the user ratio on the SPD framework, we conducted
a comprehensive hyperparameter analysis. This ratio determines the proportion of users identified as
vulnerable and undergoing the self-cleaning process during each training iteration.

The systematic evaluation in Fig. 4 reveals several critical trends for designing robust defense strategies.
A key finding is the existence of a performance saturation point, most clearly demonstrated by the REV
method, which achieves diminishing returns beyond a 1.0% label replacement ratio. This provides a crucial
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operational guideline, indicating that excessive resource allocation for higher replacement ratios may
be inefficient.

Figure 3: Robustness of SPD under a larger proportion of fake users

Figure 4: Robustness changes against poisoning attacks under four poisoning attacks with different label replacement
rates

Furthermore, the divergent behaviors of the methods under scrutiny offer insights into their inherent
mechanics. While Bandwagon and DP show gradual improvements, the most dramatic trend is exhibited by
the Random method, whose significant performance gains with increasing replacement ratios suggest that
its stochastic nature benefits disproportionately from a larger volume of corrected labels.
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Collectively, these trends converge to identify an optimal operational window between 1.0% and 2.0%
for the label replacement ratio. Within this range, all methods, regardless of their underlying strategy, achieve
a favorable balance between high poisoning attack resistance and manageable computational cost, thereby
offering a concrete, data-driven basis for optimizing defense parameters.

As illustrated in Fig. 5, the hyperparameter sensitivity analysis reveals distinct response patterns of each
defense method to the label replacement ratio, affirming the broad applicability of the purification mecha-
nism. A key observation is the performance saturation of the REV method, which peaks at approximately
1.0% on both HR@20 and NDCG@20 metrics. This defines a clear efficiency frontier, beyond which further
increases in resource allocation yield minimal gains. In contrast, Bandwagon exhibits a more gradual, near-
linear improvement, suggesting a steadier but less efficient utilization of purified labels. Most strikingly, the
Random method demonstrates the highest sensitivity to the hyperparameter, achieving the most substantial
relative performance gain across the evaluated range. This underscores that even simple defense strategies
benefit profoundly from the adaptive framework, particularly when finely tuned. deployments.

Figure 5: The impact of different update user ratios on model recommendation performance under four poisoning
attacks

However, beyond certain thresholds (3.0% for HR@20, as indicated by the pink shaded region), further
increasing the replacement ratio leads to performance degradation below the clean baseline (dashed line),
suggesting that excessive purification may remove meaningful user interactions and impair generalization.
Therefore, we identify 1.0% as the optimal operating range, effectively balancing robustness enhancement
and performance preservation. These findings provide practical guidance for parameter configuration in
real-world deployments.

5.3.2 Hyperparameter Analysis (Learning Rate)
Figs. 6 and 7 present a comprehensive learning rate sensitivity analysis, evaluating recommendation

accuracy (HR@20) and attack robustness (Target-HR@50) under four poisoning attack scenarios. The results
reveal several important patterns in the interplay between optimization parameters and adversarial perfor-
mance.

As shown in Fig. 6, as the learning rate increases (up to 0.01), Target-HR@50’s performance improves
against Bandwagon and REV attacks, while DP and random attacks maintain relatively stable robustness
across the entire test range. HR@50 reaches its peak at a learning rate of 0.01, while 0.001 and 0.1 have
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the lowest attack success rates for all four attack methods. Therefore, our choice of a learning rate of 0.001
is reasonable.

Figure 6: Learning rate sensitivity analysis: Robust performance under different attack models (Target-HR@50 and
Target-NDCG@50) as a function of learning rate

Figure 7: Learning rate sensitivity analysis: recommendation performance (HR@20 and NDCG@20) under different
attack models as a function of learning rate

In contrast, Fig. 7 shows that the HR@20 metric for all attack types follows a typical inverted U-shaped
pattern, reaching optimal performance (approximately 12%) at a learning rate of 0.0005. This peak represents
the optimal balance between convergence speed and recommendation accuracy stability. Beyond this peak,
increasing the learning rate leads to a gradual decline in performance, suggesting that overly aggressive
optimization parameters can undermine the model’s ability to learn stable feature representations. The opti-
mal operating point occurs at a learning rate of approximately 0.001, where the model maintains 92% of its
peak HR@20 performance while significantly improving robustness to Bandwagon and REV attacks (target-
HR@50 improves by 37% and 29%, respectively, compared to the 0.0005 setting). This demonstrates that
moderately increasing the learning rate above the accuracy minimum can enhance the model’s generalization
against adversarial perturbations without significantly sacrificing recommendation quality.

5.3.3 Hyperparameter Analysis (τ)
To determine the optimal value for the confidence threshold τ (a key hyperparameter in our self-

update strategy), we conducted a sensitivity analysis of the SPD framework on the Yelp and Gowalla datasets.
Experiments employed the RevAdv poisoning attack method and evaluated the defense effectiveness of the
MF model under different values of τ (using Target HR@50 and Target NDCG@50 as metrics, with lower
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values indicating better defense effectiveness). As shown in Fig. 8, the SPD framework exhibited the best
defense performance on both datasets when τ = 25. This phenomenon suggests that, under the current
experimental setup, the optimal value of τ is limitedly dependent on dataset characteristics. Notably, despite
the different statistical characteristics of the two datasets, the defense effectiveness exhibited similar trends
as a function of τ, reaching its optimal value at the same τ value. This finding suggests that for the RevAdv
attack method and matrix factorization model used in this study, a relatively stable optimal range for τ may
exist. However, we recommend validating this hyperparameter in real-world applications based on specific
scenarios to account for potentially changing attack conditions.

Figure 8: Hyperparameter analysis (Tag updates τ)

5.4 Ablation Experiments
To systematically evaluate the independent contributions and synergistic mechanisms of each core

component of the SPD framework, this study designed rigorous ablation experiments. As shown in Table 4,
the experiments compared the robustness of the models under four types of poisoning attacks on the Gowalla
dataset: Random, Bandwagon, DP, and Rev (measured by T-HR@50 and T-NDCG@50, with lower values
indicating better performance).

Table 4: Ablation study on SPD framework: contribution of components to MF model’s robustness against attacks

Model Random attack (%) Bandwagon attack (%) DP attack (%) Rev attack (%)

T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50 T-HR@50 T-NDCG@50

MF 0.148 ± 0.030 0.036 ± 0.008 0.120 ± 0.027 0.029 ± 0.007 0.201 ± 0.020 0.051 ± 0.005 0.246 ± 0.097 0.061 ± 0.027
+SPD_no_V 1.643 ± 0.221 0.414 ± 0.178 0.944 ± 0.0716 0.214 ± 0.0229 0.139 ± 0.036 0.037 ± 0.008 0.691 ± 0.216 0.150 ± 0.032

+SPD_no_Update 0.121 ± 0.028 0.031 ± 0.009 0.101 ± 0.038 0.024 ± 0.008 0.028 ± 0.007 0.006 ± 0.001 0.103 ± 0.048 0.024 ± 0.011
+SPD 0.067 ± 0.023 0.018 ± 0.008 0.072 ± 0.022 0.014 ± 0.005 0.006 ± 0.003 0.002 ± 0.001 0.026 ± 0.027 0.005 ± 0.004

The experimental results show that the standard matrix factorization (MF) model, as an unprotected
baseline, exhibits high vulnerability to all attacks, particularly under Rev attacks, with a T-HR@50 of 0.246%.
The SPD_no_V model, which only introduces dynamic label updates but no adversarial noise, exhibits sig-
nificant performance degradation, with its T-HR@50 rising to 1.643% under Random attacks, demonstrating
that blind label updates lacking robustness guarantees amplify attack noise. The SPD_no_Update model,
which only introduces adversarial noise, demonstrates basic defensive effectiveness, with its T-HR@50
dropping to 0.028% under DP attacks, demonstrating that adversarial training effectively improves decision
boundary stability.

The complete SPD framework, integrating adversarial noise with a dynamic update mechanism,
achieves optimal robustness against all attacks. Its T-HR@50 is further reduced to 0.006% during DP attacks,
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a 78.6% improvement over the next-best result. This result fully demonstrates the necessity of inter-module
collaboration: adversarial noise provides fundamental robustness for the system, while dynamic purification
based on vulnerability assessment builds on this foundation to achieve precise defense. Together, these two
closed-loop approaches surpass the performance ceiling of traditional solutions.

6 Conclusion
In our research, we proposed the Self-Purifying Data (SPD) framework, which introduces a novel

dynamic label replacement approach that combines vulnerability-aware adversarial training with dynamic
label correction. Unlike traditional methods, SPD continuously purifies training data, replacing suspicious
user-item interactions with labels predicted by high-confidence models, specifically targeting vulnerable
users identified by our vulnerability scoring mechanism. This approach effectively surpasses the protection
ceiling of traditional adversarial training while maintaining recommendation performance. Extensive exper-
iments demonstrate that SPD significantly reduces the success rate of various poisoning attacks, including
DP and Rev attacks, while maintaining or even improving recommendation accuracy. This framework
demonstrates strong generalization across both shallow and deep recommendation architectures, providing
a practical solution for protecting real-world system security.
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