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ABSTRACT: Small datasets are often challenging due to their limited sample size. This research introduces a novel
solution to these problems: average linkage virtual sample generation (ALVSG). ALVSG leverages the underlying data
structure to create virtual samples, which can be used to augment the original dataset. The ALVSG process consists
of two steps. First, an average-linkage clustering technique is applied to the dataset to create a dendrogram. The
dendrogram represents the hierarchical structure of the dataset, with each merging operation regarded as a linkage.
Next, the linkages are combined into an average-based dataset, which serves as a new representation of the dataset. The
second step in the ALVSG process involves generating virtual samples using the average-based dataset. The research
project generates a set of 100 virtual samples by uniformly distributing them within the provided boundary. These
virtual samples are then added to the original dataset, creating a more extensive dataset with improved generalization
performance. The efficacy of the ALVSG approach is validated through resampling experiments and t-tests conducted
on two small real-world datasets. The experiments are conducted on three forecasting models: the support vector
machine for regression (SVR), the deep learning model (DL), and XGBoost. The results show that the ALVSG approach
outperforms the baseline methods in terms of mean square error (MSE), root mean square error (RMSE), and mean
absolute error (MAE).
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1 Introduction
Recent advances in machine learning and artificial intelligence have enabled powerful data-driven

models in many domains. However, these models typically rely on large, representative datasets. In many
practical scenarios, only a small number of samples are available due to high data collection costs, privacy
regulations, or the rarity of the underlying phenomenon. Such small datasets often lead to overfitting, poor
generalization, and unstable model behavior.

Virtual sample generation (VSG) has emerged as a promising strategy to mitigate small-data limitations
by synthetically augmenting the training set. Early work by Cho and Cha [1] introduced the idea of
generating virtual samples in population networks, and Niyogi et al. [2] showed that prior knowledge–
driven virtual examples can improve object recognition accuracy. Chen et al. [3] proposed a particle swarm
optimization–based VSG (PSOVSG) to enhance forecasting models trained on small datasets. More recently,
He et al. [4] developed t-SNE-VSG for data-driven soft sensors, demonstrating substantial accuracy gains in
data-scarce industrial settings. Several other variants and applications of VSG have also been reported in the
literature [5,6]. Together, these studies confirm that well-designed virtual samples can effectively reinforce
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learning in small-data regimes. In related small-data applications, clustering-based approaches have also
been shown to play an important role in learning from limited samples.

In this work, we focus on two common small-data conditions. The first is the genuinely low-sample
setting, where the available dataset is too small to capture sufficient variability, as in rare-disease studies with
only a handful of cases. The second is the high-dimensional, small-sample scenario, where the number of
attributes is large relative to the number of instances. In both cases, the core difficulty lies in the limited
information content of the original data set. Recent studies on decision support systems have emphasized
that, in the presence of data scarcity, transparent and interpretable modeling is essential for reliable decision-
making. To address these challenges, we propose an average-linkage virtual sample generation method
(ALVSG) that explicitly exploits the underlying data structure before generating virtual samples.

Cluster analysis provides a natural tool for uncovering latent structure in data by grouping similar
instances [7]. Li et al. [8], for example, used DBSCAN to reveal structure and improve prediction on small
datasets. Inspired by such structure-aware approaches, ALVSG employs hierarchical clustering with average
linkage (UPGMA) to construct a dendrogram of the original data. From the merging process, we derive an
average-based representation that reflects how frequently each data point participates in cluster formation.
This representation is then used as a sampling prior to generate virtual samples within data-driven attribute
bounds. The virtual samples are finally combined with the original data to form an enriched training set that
can be used with arbitrary predictive models.

We evaluate the proposed ALVSG method on two real small datasets. The first concerns medical records
for predicting the success of radiotherapy treatment for bladder cancer cells, while the second involves multi-
layer ceramic capacitors (MLCCs) commonly used in electronic devices. We benchmark ALVSG against
baseline models using support vector regression (SVR), a deep learning model (DL), and XGBoost, and assess
performance using mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE),
and paired statistical t-tests. The results provide a comprehensive view of when and how ALVSG improves
prediction accuracy in small-data settings.

The rest of this paper is organized as follows. Section 2 reviews related work on small datasets, virtual
sample generation, and forecasting models. Section 3 presents the proposed ALVSG methodology. Section 4
reports the experimental setup and results on the two case-study datasets. Section 5 concludes the paper and
outlines directions for future work.
Contributions

This paper makes the following contributions: (i) we propose ALVSG, a structure-informed virtual sam-
ple generator that derives average-based weights from agglomerative average-linkage (UPGMA) clustering
and uses them as an interpretable sampling prior; (ii) we bound the generator using data-driven ±3σ limits
per attribute and adopt uniform sampling within these bounds to mitigate mean overemphasis under small-
n uncertainty; (iii) we conduct a model-agnostic plug-in evaluation on two real small datasets (radiotherapy
and MLCC) across SVR, DL, and XGBoost with paired resampling t-tests; and (iv) we report consistent error
reductions and analyze when ALVSG helps most, offering practical guidance for deploying VSG techniques
in small-data regimes.

2 Related Works
This section reviews prior work related to small-dataset learning, virtual sample generation (VSG), and

the forecasting models used to evaluate the proposed ALVSG method.
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2.1 Small Datasets
Small datasets pose fundamental challenges for machine learning models, including high variance,

overfitting, and unreliable generalization [9]. Recent surveys have examined this “small-data dilemma”
from different disciplinary perspectives. For example, Xu et al. [10] summarized how data scarcity limits
model performance in materials science and grouped existing remedies into three levels: data-source level
(e.g., database construction, high-throughput computation), algorithm level (e.g., imbalanced learning,
specialized small-data models), and learning-strategy level (e.g., active learning, transfer learning). These
reviews highlight that small-data issues are widespread and require both data-centric and model-centric
solutions. In addition to methodological studies, practical machine learning workflows have also been
developed to accommodate small and heterogeneous datasets; for instance, Zhang and Deng introduced a
data-driven machine learning interface for materials science that explicitly targets limited-sample settings
and supports model development under data scarcity [11].

In practice, small datasets arise in many engineering and scientific problems, such as rare-disease
analysis, optimization of real-world engineering systems [12]. When the number of instances is limited
relative to the dimensionality, it becomes difficult to extract stable patterns and to build robust predictive
models. Various approaches have been explored to mitigate these issues, including dimensionality reduction
(e.g., linear discriminant analysis, LDA [13]) and structure-aware data partitioning for classification under
class imbalance [14]. Complementary to these methods, virtual sample generation has emerged as an effective
strategy to augment small datasets, and it is the main focus of this work.

2.2 Virtual Sample Generation
Virtual sample generation (VSG) aims to enrich small datasets with synthetic samples that are consistent

with the underlying data distribution. Early work, Niyogi et al. [2] introduced the basic idea of generating
virtual examples to improve network training and object recognition. These pioneering studies established
VSG as a viable tool for strengthening learning under data scarcity.

Subsequent research has proposed more sophisticated VSG mechanisms tailored to specific domains.
Li et al. [8] used a mega-trend diffusion membership function that applies DBSCAN clustering and fuzzy
membership functions to construct new attributes for small datasets. Chen et al. [3] developed PSOVSG,
which employs particle swarm optimization to generate virtual samples that improve forecasting perfor-
mance on small data. Zhu et al. He et al. [4] introduced t-SNE-VSG, which interpolates manifold features
obtained from t-SNE and estimates virtual outputs via random forests to enhance soft-sensor performance in
process industries. More recent work has further advanced VSG toward adaptive and statistically constrained
frameworks. Zhu et al. [15] presented a co-training-based VSG (CTVSG) that employs two k-nearest
neighbor regressors to iteratively generate and validate virtual samples in sparse regions of the feature space.
Cui et al. [16] integrated generative adversarial networks with active learning, conditioning the generator
on risk levels and screening synthesized samples using maximum mean discrepancy (MMD) and expert
validation. Chen et al. [17] proposed APS-VSG, which defines acceptable areas via a compact range of
interaction and uses joint probability distribution sampling to reduce randomness and improve the validity of
generated samples. Other related works and broader surveys on data augmentation across modalities further
underscore the growing interest in VSG-based approaches [5,6,18]. In addition, data augmentation is another
virtual sample which can be further enhanced by incorporating structural constraints and adversarial
perturbations into the learning process [19].

Compared with these methods, the proposed ALVSG adopts a simpler, purely structure-informed
strategy. Instead of relying on complex surrogate models or deep generative networks, ALVSG uses agglom-
erative average-linkage (UPGMA) hierarchical clustering to construct a dendrogram of the original data.
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From the merging process, we derive an average-based representation that quantifies how frequently each
instance contributes to cluster formation. This representation serves as an interpretable sampling prior for
generating virtual samples within data-driven attribute bounds. As a result, ALVSG provides a lightweight,
model-agnostic, and interpretable VSG mechanism that is particularly suitable for small tabular datasets.

2.3 Forecasting Models
To evaluate the effectiveness of ALVSG, we consider representative forecasting models that are com-

monly adopted in practical prediction tasks under limited data conditions. Motivated by such practical
settings, we consider three representative forecasting models for tabular regression: support vector regression
(SVR), a feed-forward deep learning (DL) regressor, and XGBoost. These models span margin-based
learning, neural networks, and tree-based ensembles, and they are widely used in practice due to their
strong performance on small to medium-sized structured datasets. Their behavior on original vs. ALVSG-
augmented data provides a comprehensive benchmark for our method.

2.3.1 Support Vector Regression (SVR)
Support vector machines (SVMs) were originally proposed for classification based on the principle of

structural risk minimization, aiming to find a maximum-margin separating hyperplane in a transformed
feature space. Support vector regression (SVR) extends this idea to regression by introducing an ε-insensitive
loss: deviations smaller than ε are ignored, while larger deviations are penalized [20]. Given training pairs
{(xi , yi)}n

i=1, SVR seeks a function

f (x) = w⊺ϕ(x) + b

that is as flat as possible while keeping prediction errors within an ε-tube for most samples:

min
w,b ,ξ i ,ξ∗i

1
2
∥w∥2 + C

n
∑
i=1
(ξ i + ξ∗i ) s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

yi − f (xi) ≤ε +ξ i ,
f (xi) − yi ≤ε +ξ∗i ,
ξ i , ξ∗i ≥ 0.

Here ϕ(⋅) denotes the feature mapping induced by a kernel function; we use the radial basis function
(RBF) kernel in our experiments. Only samples outside the ε-tube become support vectors and contribute
to the final model, which helps control model complexity under small-data conditions.

2.3.2 Deep Learning Regressor
Deep learning models based on feed-forward neural networks can approximate complex nonlinear

relationships by stacking multiple layers of linear transformations and nonlinear activation functions. In this
study, we employ a fully connected multilayer perceptron (MLP) as a generic deep learning regressor. The
network consists of an input layer, several hidden layers with rectified linear unit (ReLU) activations, and
a single output neuron for regression. Model parameters are learned by minimizing a mean-squared-error
loss using gradient-based optimization with backpropagation. Although deep networks are often associated
with large datasets, carefully regularized shallow architectures can still serve as competitive baselines in
small-data scenarios.
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2.3.3 XGBoost Regressor
XGBoost is a gradient boosting framework that builds an ensemble of regression trees in a stage-wise

manner, optimizing a regularized objective that balances data fit and model complexity. At each iteration,
a new tree is added to correct the residual errors of the current ensemble, and explicit regularization terms
on leaf weights and tree structure help prevent overfitting. XGBoost has demonstrated strong performance
on a wide range of structured-data tasks and is particularly effective when the number of samples is limited
but informative features are available. In our experiments, we use XGBoost as a representative tree-based
ensemble to assess how ALVSG-augmented data affect boosted decision-tree models.

3 Methodology: Average-Linkage Virtual Sample Generation (ALVSG)
This section describes the proposed average-linkage virtual sample generation (ALVSG) method. Given

a small regression dataset D = {(xi , yi)}n
i=1, where xi ∈ Rd and yi ∈ R, ALVSG aims to generate a set of

virtual samples that reflect the underlying structure of D and can be used to augment the training set.
The method consists of three main components: (1) structure extraction via average-linkage hierarchical
clustering, (2) construction of an average-based representation that encodes instance importance, and (3)
bounded uniform sampling to generate virtual samples within data-driven limits.

3.1 Average-Linkage Clustering and Notation
To exploit the latent structure of the small dataset, we first apply agglomerative hierarchical clustering

with average linkage (UPGMA) using the Euclidean distance. Each instance xi is initially treated as a
singleton cluster, and at each iteration the two clusters with the smallest average pairwise distance are merged.
This process yields a dendrogram that records the sequence of merges until all instances are grouped into a
single cluster.

Let L = {L1 , L2, . . . , LP} denote the set of merge events (linkages) in the dendrogram, where each Lp
corresponds to the set of instances present in the clusters being merged at step p. For each instance i, we
define its link count

ci = ∣{ p ∶ xi ∈ Lp }∣,

that is, the number of linkages in which instance i participates. Intuitively, instances that appear more often
in the merging process are more central to the clustering structure. We normalise these counts to obtain
instance weights

wi =
ci

∑n
j=1 c j

, i = 1, . . . , n,

which serve as a structure-informed importance measure for each data point.

3.2 Average-Based Representation
Instead of working directly with the original dataset, ALVSG constructs an average-based representation

that emphasizes structurally important instances. Conceptually, this can be viewed as forming a “virtual”
dataset in which each instance (xi , yi) is replicated proportionally to its weight wi . Equivalently, we can treat
{wi} as sample weights and compute weighted statistics over D.
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For each attribute k = 1, . . . , d and the target y, we compute the weighted mean

μk =
n
∑
i=1

wi xi k , μy =
n
∑
i=1

wi yi ,

and the corresponding weighted standard deviations

σ 2
k =

n
∑
i=1

wi(xi k − μk)2, σ 2
y =

n
∑
i=1

wi(yi − μy)2.

These statistics summarise the average-based dataset implied by the hierarchical clustering structure
without explicitly materialising replicated samples. They will be used to define the sampling region for virtual
samples in the next step.

3.3 Virtual Sample Generation
The goal of virtual sample generation is to sample new points that (1) respect the empirical scale of each

attribute and (2) preserve the structure-informed variability captured by the weights {wi}. To this end, we
adopt a bounded uniform sampling strategy.

For each attribute k and the target y, we first define data-driven bounds using the empirical rule:

�k = μk − 3σk , uk = μk + 3σk ,
�y = μy − 3σy , uy = μy + 3σy .

Under mild distributional assumptions, approximately 99.7% of the mass lies within ±3σ around the
mean. Following the rationale in [21], we use these ±3σ intervals as conservative yet data-driven bounds that
reduce the risk of generating implausible outliers. In practice, we additionally clip (�k , uk) to the observed
min–max range of attribute k to avoid extrapolation far beyond the original data.

Given the hyper-rectangle

R =
d
∏
k=1
[�k , uk],

we generate Nvs virtual inputs {x̃ j}Nvs
j=1 by sampling each dimension independently from a univariate uniform

distribution:

x̃ jk ∼ U(�k , uk), k = 1, . . . , d .

In this study, we set Nvs = 100 for both case studies. Uniform sampling is chosen instead of Gaussian
sampling because reliable estimation of higher-order moments (skewness, kurtosis) is difficult in small
datasets, and Gaussian-based sampling tends to overemphasize the mean region. Uniform sampling within
R yields broader coverage of the plausible space implied by the average-based representation, trading a small
bias for reduced variance and estimator fragility in extreme small-n regimes.

For the output variable, two options are commonly used in VSG frameworks: (1) assigning virtual
outputs via a surrogate model, or (2) sampling directly from a bounded distribution. In this work, we follow
the latter and independently sample

ỹ j ∼ U(�y , uy), j = 1, . . . , Nvs .
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The resulting virtual samples {(x̃ j , ỹ j)} are then combined with the original dataset D to form an
augmented training set

D′ = D ∪ {(x̃ j , ỹ j)}Nvs
j=1 .

3.4 Algorithm Summary
Algorithm 1 summarises the overall ALVSG procedure.

Algorithm 1: Average-linkage virtual sample generation (ALVSG)
Require: Small dataset D = {(xi , yi)}n

i=1, number of virtual samples Nvs
Ensure: Augmented dataset D′

1: Preprocess features (e.g., scaling) and apply agglomerative hierarchical clustering with average linkage
(Euclidean distance) to {xi}n

i=1.
2: From the dendrogram, record merge events L and compute link counts ci for each instance.
3: Normalise link counts to obtain weights wi = ci/∑ j c j.
4: Compute weighted means μk , μy and standard deviations σk , σy for all attributes and the target using
{wi}.

5: Define bounds �k = μk − 3σk , uk = μk + 3σk , and clip to the observed min–max of each attribute; similarly
obtain �y , uy .

6: for j = 1 to Nvs do
7: Sample x̃ jk ∼ U(�k , uk) for k = 1, . . . , d.
8: Sample ỹ j ∼ U(�y , uy).
9: end for

10: Construct D′ = D ∪ {(x̃ j , ỹ j)}Nvs
j=1 .

11: return D′.

In the experiments (Section 4), we compare forecasting models trained on the original dataset D and
on the ALVSG-augmented dataset D′ using SVR, a deep learning regressor, and XGBoost. Performance
is evaluated via MAE, MSE, and RMSE, and paired resampling t-tests are used to assess the statistical
significance of the observed improvements.

4 Experiments
We empirically evaluate the proposed ALVSG method on two real small datasets. The first case concerns

radiotherapy response in bladder cancer cell lines, where the goal is to predict resistance to Cobalt-60
treatment from protein expression profiles. The second case involves multilayer ceramic capacitors (MLCC),
where the task is to predict the K-value of ceramic powder based on process and material descriptors.
In both cases, we compare baseline models (SVR, deep learning, XGBoost) with their ALVSG-augmented
counterparts across a range of small training sizes.

4.1 Experimental Setup and Parameter Settings
Table 1 summarizes the hyperparameters used in this study. For SVR we set C = 1.0 with an RBF kernel

and γ = 0.5. The feed-forward deep learning (DL) regressor uses a learning rate of 0.1, ReLU activation,
the adam optimizer, 5000 training iterations, and momentum 0.1. XGBoost employs a learning rate of 0.1,
maximum depth of 3, and 100 estimators. Hierarchical clustering for ALVSG uses an agglomerative scheme
with average-linkage and Euclidean distance.
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Table 1: Parameter settings of the models

SVR Deep learning XGBoost Hierarchical
clustering

Settings

C = 1.0
RBF kernel
Degree = 3

Gamma = 0.5

Learning rate = 0.1
Activation = relu

Solver = adam
Training iterations = 5000

Momentum = 0.1

Learning rate = 0.1
Max depth = 3

Estimators = 100

Agglomerative
method

Average-linkage

All features are standardized (zero mean, unit variance) using statistics computed on the training split
only. To emulate small-dataset regimes, we consider training sizes s ∈ {5, 10, 15, 20, 25} on both datasets (36
and 44 total instances, respectively). For each size s and each dataset, we perform R = 20 resamples: we draw
s training points without replacement and evaluate on the remaining hold-out instances. Virtual samples are
generated only from the training split (100 VS per resample) and appended to the training data; the test set
is never augmented. Random seeds are shared between the baseline and +VS conditions to enable paired
comparisons. We restricted training sizes to {5, 10, 15, 20, 25} to cover the small-sample regime without
exhausting the hold-out pool and to avoid highly unstable estimates that arise when the remaining test set
becomes too small.

Unless otherwise specified, all statistical comparisons between baseline and ALVSG-augmented models
(SVR, DL, XGBoost) use a two-tailed paired t-test over R = 20 resamples at α = 0.05. We use the conventional
markers ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

4.2 Case 1: Radiotherapy Treatment of Bladder Cancer
Radiotherapy is a common non-surgical treatment for bladder cancer that uses high-energy radiation

to destroy tumor cells. In the dataset considered here, nine immortal bladder cancer cell lines were subjected
to Cobalt-60 treatment at doses of 5, 10, 20, and 30 Gy. Each observation consists of the expression levels of
thirteen proteins related to radiotherapy resistance (MDR, Topo II, EGFR, Neu, c-ErbB-3, c-ErbB-4, cyclin A,
cyclin D1, Cdc2, Bcl2, Rb, P16, Bax) plus two additional inputs, for a total of fifteen inputs and one continuous
output representing resistance to radiotherapy. The dataset contains 36 valid instances; further details can be
found in Chao et al. [22]. Complete per-resample results are omitted here for brevity but are available from
the corresponding author upon request.
Results

Tables 2–4 report MAE, MSE, and RMSE for SVR, DL, and XGBoost with and without ALVSG across
training sizes. For all three metrics, error decreases as the training size s increases, and in every configuration
the ALVSG-augmented variants (SVR+VS, DL+VS, XGBoost+VS) outperform their baselines. Paired t-
tests indicate that these improvements are statistically significant for all models and training sizes. Across
metrics, XGBoost+VS achieves the lowest errors at larger s, while SVR+VS and DL+VS also exhibit consistent
gains, demonstrating that ALVSG provides robust benefits across diverse model classes in this medical
small-data setting.
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Table 2: MAE of the radiotherapy case

Size 5 10 15 20 25
SVR 24.558 24.307 23.529 22.196 22.814

SVR+VS 23.661 23.123 22.929 20.898 21.923
p-value 0.018* 0.001** 0.012* 0.002** 0.003**

Deep Learning 29.658 24.523 20.297 13.609 11.498
Deep Learning+VS 26.422 21.210 17.752 11.697 10.156

p-value 0.049* 0.034* 0.039* 0.015* 0.017*
XGBoost 23.676 18.031 13.153 12.849 9.396

XGBoost+VS 20.767 16.387 12.064 10.482 8.375
p-value 0.005** 0.019* 0.029* 0.002** 0.024*

Table 3: MSE of the radiotherapy case

Size 5 10 15 20 25
SVR 859.3 802.4 712 632.4 624.6

SVR+VS 775.4 706 666.3 565.6 582.1
p-value 0.014* 9E–04*** 0.017* 0.004** 0.013*

Deep Learning 1378 1032 759.8 354.5 228.2
Deep Learning+VS 1033 678.5 506.1 236.7 174.9

p-value 0.016* 0.008** 0.008** 0.020* 0.036*
XGBoost 857 503.4 292 284.3 158

XGBoost+VS 673 410.9 234.9 187.8 121.8
p-value 0.012* 0.027* 0.017* 0.007** 0.021*

Table 4: RMSE of the radiotherapy case

Size 5 10 15 20 25
SVR 29.008 28.099 26.384 24.961 24.809

SVR+VS 27.548 26.425 25.612 23.479 23.976
p-value 0.014* 0.001** 0.022* 0.003** 0.019*

Deep Learning 36.554 31.424 26.120 18.100 14.506
Deep Learning+VS 31.575 25.762 21.864 15.098 12.888

p-value 0.013* 0.006** 0.004** 0.018* 0.044*
XGBoost 29.099 22.098 16.718 16.359 11.869

XGBoost+VS 25.611 19.984 14.939 13.254 10.540
p-value 0.010* 0.015* 0.012* 0.003** 0.016*

4.3 Case 2: Multilayer Ceramic Capacitors (MLCC)
Multilayer ceramic capacitors (MLCC) are widely used in electronic devices due to their high efficiency

and compact form factor. Ceramic powder, a key material in MLCCs, accounts for about 40% of the overall
production cost, and its batch-to-batch variability can substantially affect the dielectric constant (K-value)
and downstream yield. Manufacturers typically perform pilot runs for each new powder batch to measure
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the K-value, which increases lead time and cost. In this case study, the goal is to predict the K-value of AD143
ceramic powder from twelve input variables, including surface area (SA), particle size distribution (PSD-90,
PSD-50, PSD-10), moisture (Mois), sintering temperature (Sinter Temp), potassium content (K), dissipation
factor (DF), and several temperature-coefficient–related descriptors (TC-min, TC-max, TC-peak, D-50). The
dataset contains 44 pilot runs. Recent work has shown that ensemble models such as XGBoost are effective for
MLCC reliability and degradation modeling [23], providing additional motivation for including XGBoost as
a benchmark in this study. Per-resample results are omitted here for brevity; detailed metrics for all resamples
can be obtained from the authors upon request.
Results

Tables 5–7 summarize MAE, MSE, and RMSE for the MLCC case. As in the radiotherapy case, ALVSG
consistently improves all three models across all training sizes. For SVR, DL, and XGBoost, the +VS variants
yield lower errors than their baselines, and the corresponding p-values confirm that these differences are
statistically significant at every size. While the absolute errors are larger than in the radiotherapy task due
to the different output scales, the relative gains from ALVSG remain substantial, particularly for XGBoost,
which shows the largest reductions in MAE, MSE, and RMSE as s increases. These results indicate that
ALVSG provides stable benefits even in an industrial setting with measurement noise and batch variability.

Table 5: MAE of the MLCC case

Size 5 10 15 20 25
SVR 922.28 910.90 893.26 913.07 871.45

SVR+VS 898.49 886.22 867.41 897.23 861.97
p-value 0.044* 0.030* 0.010* 0.032* 0.011*

Deep Learning 950.99 872.31 893.52 897.41 885.22
Deep Learning+VS 928.81 852.11 879.61 886.01 878.19

p-value 0.032* 0.016* 0.006** 0.007** 0.007**
XGBoost 1091.57 1025.4 967.73 908.7 869.48

XGBoost+VS 990.37 952.98 862.08 824.61 784.38
p-value 0.006** 0.009** 7E-05*** 0.005** 0.005**

Table 6: MSE of the MLCC case

Size 5 10 15 20 25
SVR 1512493 1439413 1381649 1410075 1341264

SVR+VS 1440629 1373080 1322701 1362197 1291089
p-value 0.021* 0.032* 0.006** 0.007** 0.001**

Deep Learning 1441038 1196474 1261886 1253336 1206424
Deep Learning+VS 1339679 1135450 1213295 1217620 1180065

p-value 0.001** 0.009** 0.004** 0.015* 0.002**
XGBoost 1930038 1640953 1401754 1257027 1161295

XGBoost+VS 1591340 1418140 1160584 1052049 962299
p-value 0.01* 0.039* 0.001** 0.013** 0.011*
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Table 7: RMSE of the MLCC case

Size 5 10 15 20 25
SVR 1223 1190.9 1169.2 1182.4 1150

SVR+VS 1196 1166.3 1143.6 1161.9 1128.8
p-value 0.02* 0.018* 0.006** 0.004** 0.001**

Deep Learning 1194.3 1090.3 1119 1126.4 1091.3
Deep Learning+VS 1152.2 1063.5 1097.8 1111.1 1078.9

p-value 0.001** 0.006** 0.003** 0.009** 0.002**
XGBoost 1377.1 1271.9 1181.7 1112.1 1070.6

XGBoost+VS 1252.9 1184.3 1070.7 1014.4 975.3
p-value 0.007** 0.034* 0.001** 0.012** 0.013*

4.4 Baselines and Alternatives (Discussion)
Virtual sample generation can be realized via multiple paradigms. Manifold/interpolation-based

t-SNE-VSG [4] leverages low-dimensional embeddings; GAN/active-learning hybrids [16] and statistically
constrained APS-VSG [17] emphasize generative fidelity and validity; and co-training VSG [15] iteratively
accepts samples passing consistency checks. Compared with these, ALVSG is (i) structure-aware yet
lightweight, relying only on average-linkage dendrograms; (ii) hyperparameter-lean (no adversarial training
or heavy surrogates); and (iii) transparent, since link counts translate directly into sampling weights. On the
two real small datasets, ALVSG consistently improves three diverse predictors under paired resampling. A
full ablation against the above generative families would be valuable but data-hungry; we therefore leave a
calibrated, multi-dataset head-to-head as future work and position ALVSG as a strong, interpretable baseline
for very small tabular n, where heavier generators are brittle or hard to tune.

5 Conclusions
This paper proposed average-linkage virtual sample generation (ALVSG), a structure-aware yet

lightweight approach for small tabular regression datasets. ALVSG first applies agglomerative hierarchical
clustering with average linkage and turns dendrogram link counts into instance weights, yielding an average-
based representation that emphasizes structurally central points. It then defines conservative, data-driven
±3σ bounds per attribute and target and samples uniformly within these bounds to generate virtual samples,
which are appended to the original training set in a model-agnostic manner.

The method was evaluated on two real small-data cases: radiotherapy response in bladder cancer
and K-value prediction for multilayer ceramic capacitors (MLCC). Across both datasets, three forecasting
models (SVR, deep learning, XGBoost), and five training sizes (s ∈ {5, 10, 15, 20, 25}), ALVSG consistently
reduced MAE, MSE, and RMSE relative to training on the original data alone. Paired t-tests over resampled
splits confirmed that these improvements are statistically significant in all configurations, indicating that
simple structure-informed augmentation can provide robust gains in very small-n regimes without heavy
generative modeling.

Overall, ALVSG shows that exploiting hierarchical clustering structure to construct a weighted repre-
sentation, combined with bounded uniform sampling, is an effective and practical way to improve predictive
performance when data are scarce. Future work will extend the evaluation to additional domains and
compare ALVSG head-to-head with more complex virtual-sample generators under carefully controlled
small-data benchmarks.
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Practical Implications and Limitations
In practice, ALVSG is most useful when (i) the number of samples is very small (n < 50), (ii) features

are tabular with moderate local structure, and (iii) complex generators such as GANs are difficult to tune
or validate. It is plug-in and model-agnostic, requiring only feature scaling, a distance metric, and a choice
of Nvs.

Limitations include: (a) the method does not explicitly model the full data density; (b) uniform sampling
within ±3σ may under-represent valid extreme tails when strong prior knowledge is available; and (c)
performance can be sensitive to feature scaling and the chosen linkage/distance in the clustering step. In
domains with reliable priors, ALVSG could be combined with prior-constrained bounds or non-uniform
sampling schemes; designing such hybrids and testing them across broader small-data benchmarks is a
promising direction for future research.
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