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ABSTRACT: The method for malware detection based on Application Programming Interface (API) call sequences,
as a primary research focus within dynamic detection technologies, currently lacks attention to subsequences of API
calls, the variety of API call types, and the length of sequences. This oversight leads to overly complex call sequences.
To address this issue, a dynamic malware detection approach based on multiple subsequences is proposed. Initially,
APIs are remapped and encoded, with the introduction of percentile lengths to process sequences. Subsequently,
a combination of One-Dimensional Convolutional Neural Network (ID-CNN) and Bidirectional Long Short-Term
Memory (Bi-LSTM) networks, along with an attention mechanism, is employed to extract features from subsequences
of varying lengths for feature fusion and classification. Experiments conducted on two widely used public API-based
datasets, namely MalBehavD-V1and Alibaba Cloud, demonstrate that the proposed method reduces the number of API
call types by approximately 20% compared to representative deep learning-based API sequence detection methods,
while achieving a peak accuracy of 98.70%. Additionally, experimental results indicate that sequence length at the 95th
percentile represents the optimal solution that balances classification performance and computational efficiency.
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1 Introduction

With the escalating severity of network attacks, the number of malicious software has exhibited
exponential growth. According to a report by AV-TEST [I], there are currently over 1.4 billion malicious
software programs and potentially unwanted applications (PUAs) globally, a figure that continues to rise
rapidly, posing a significant challenge in the realm of cybersecurity.

Traditional malware detection methodologies predominantly rely on signature matching and static
analysis [2]. While these approaches are effective against known malware, they fall short in providing robust
protection against novel or unknown malware variants. Contemporary malware not only employs traditional
attack vectors but also emphasizes stealth and evasion techniques. Attackers utilize obfuscation, encryption,
and anti-sandboxing strategies [3-5], rendering malware increasingly difficult for detection systems to
identify. Consequently, behavior-based dynamic detection methods have emerged as a response to these
evolving threats.

Behavior-based dynamic detection methods assess whether a program is malicious by observing its
behavioral characteristics during runtime. For instance, malware often accesses or modifies sensitive files,
sends a large number of network requests [6,7], or performs operations using privileged access. These
behaviors are typically reflected in the invocation of interface, application programming (API) calls. Existing
malware detection methods based on API call sequences usually model and classify these sequences as
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linear text sequences, treating each API as a “word” or “token,” and representing the entire calling process
as a “sentence.” This approach leverages sequence modeling techniques from natural language processing
for feature extraction and classification. Such methods can capture the sequential relationships and local
dependencies between APIs to some extent, offering good expressive power and classification performance.
However, they often overlook the structural features and behavioral logic inherent in subsequences of varying
lengths, thus failing to fully reflect the overall behavioral patterns of malware. Furthermore, with increasing
complexity in programs, the number of API types may sharply increase, leading to excessively long call
sequences that result in sparse features, increased computational costs, and reduced modeling capabilities.
Additionally, such methods generally struggle to effectively handle complex control flow characteristics like
multidrop structures in system calls, loop execution paths, and concurrent behaviors. Consequently, their
detection capability may be significantly limited when dealing with obfuscated samples that exhibit complex
behavioral pathways or rely heavily on contextual semantics.

To address the aforementioned issues, this paper proposes a dynamic detection methodology based on
subsequences of varying lengths within API call sequences. By mining critical subsequence features from
the sequences, the method effectively determines whether a software sample is malicious. Specifically, the
API call sequence serves as the original feature. Initially, it undergoes remapping encoding, with sequence
lengths determined using percentiles. Subsequently, subsequence features of different lengths are extracted
and fused to enhance the accuracy of malicious software detection.

The primary contributions of this paper are as follows.

« A dynamic malware detection model is proposed that represents software behavior using multiple
key API subsequences of varying lengths, enabling multi-scale behavioral pattern learning beyond
conventional single-sequence representations.

« An API remapping encoding algorithm based on API suffixes has been proposed, which reduces the
variety of API calls and allows the model to focus on specific behaviors of APIs.

o The concept of percentiles from statistics has been introduced into the field of malicious software
detection, enabling a quantitative analysis of the optimal length for sequences of API calls, thereby
avoiding simplistic truncation operations aimed at unifying their lengths.

o To evaluate the effectiveness of the method presented in this paper, tests were conducted on various
public datasets consisting of different sequences of API calls. Comparative experiments were performed
using sequences with different percentile lengths, and ablation experiments were carried out to verify
the effectiveness of the proposed API remapping encoding algorithm. Experimental results demonstrate
that the method presented in this paper performs well across all utilized datasets, outperforming existing
methods that use the same datasets.

The remainder of this paper is structured as follows: Section 2 delves into the background of related work
and prior research. Section 3 introduces the proposed method for malicious software detection. Section 4
presents the experimental setup, results, and comparative analysis. Section 5 discusses the limitations of the
study and future research directions. Finally, Section 6 concludes the paper.

2 Related Work

In recent years, the field of malicious software detection has witnessed a series of studies that inte-
grate API call sequence characteristics with deep learning techniques. These approaches typically employ
deep neural networks to model dynamic behavior sequences, demonstrating significant superiority over
traditional detection methods such as signature matching and static analysis in terms of feature extraction,
behavior pattern recognition, and classification accuracy.



Comput Mater Contin. 2026;87(1):76 3

de Oliveira and Sassi [8] have proposed a malware detection approach based on Deep Graph Con-
volutional Neural Networks (DGCNNs) and introduced a dataset of 42,797 malware and 1079 benign
software API call sequences (API-Call-Sequences). This approach converts API call sequences into malware
behavior graphs, which are then input into a classifier for classification purposes. The study found that Long
Short-Term Memory (LSTM) networks outperform the DGCNN model in classifying imbalanced datasets.
However, the method only utilizes the first 100 API calls from each sequence, failing to comprehensively
analyze the calling patterns of the API call sequences and identifying 307 distinct API calls, which results in
an excessive number of API call types being input into the model.

Agrawal et al. [9] proposed a classification method based on Long Short-Term Memory (LSTM)
networks, which necessitates the additional input of system API call parameters. Kang et al. [10] introduced
an LSTM classification mock-up that employs word2vec to vectorize and encode APIs. Catak et al. [11]
developed a malware detection approach utilizing embedding layers and LSTM. These methodologies
transform the classification problem of API call sequences into a text classification task, wherein forward
analysis of API call sequences is conducted to leverage LSTM’s capability in capturing temporal relationships
and sequential characteristics among APIs for classification purposes. However, such approaches solely
focus on the forward invocation features of APIs, neglecting backward invocation characteristics that may
encapsulate crucial backward control flow information, which is vital for identifying more sophisticated
malicious behaviors. Secondly, these methods are primarily designed for short API call sequences; LSTM
may encounter issues such as gradient vanishing or explosion when dealing with longer sequences, thereby
affecting its processing capacity and accuracy. Consequently, these methods may be constrained by sequence
length in practical applications, rendering them less effective in handling long sequences or complex
malware behaviors.

Xiaofeng et al. [12] proposed a hybrid detection architecture named ASSCA, which employs a bidirec-
tional residual LSTM network and random forest to process API sequences and their statistical features,
respectively. Li et al. [13] proposed a malicious software detection framework based on Convolutional Neural
Network (CNN) and Bi-LSTM, which captures and integrates intrinsic features of API sequences, including
software behavior, API semantic information, and the relationships between APIs, to comprehensively assess
the maliciousness of samples. However, to achieve such feature fusion, in addition to the original API call
sequence, this method requires the introduction of “level” information indicating the degree of impact each
APT has on the computer system, serving to assist the model in decollating the importance of different APIs.
This level information often relies on manual annotation or prior evaluation based on domain knowledge,
resulting in additional computational and annotation overheads in practical applications, thereby reducing
the purpose and general applicability and scalability of the method. Igbal et al. [14] proposed a two-stage
ransomware detection framework based on signatures and API calls, significantly reducing the dimension-
ality of API features through feature selection, thereby validating the feasibility of low-dimensional features
in maintaining detection accuracy.

The aforementioned methodology employs API call sequences as dynamic features, utilizing embedding
techniques to transform APIs into numerical vectors, followed by detection and classification through deep
learning methods. However, the application of this approach is constrained by the number of API call types
and the length of sequences, and some methods necessitate additional analysis of APIs, thereby diminishing
the general applicability of the model. To address these issues, this paper proposes a detection method that
relies solely on the original API call sequences, employs remapping encoding and percentile lengths to reduce
the number of API call types and sequence lengths, and combines 1D-CNN and Bi-LSTM to extract features
from subsequences of varying lengths.
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3 Methodology

The proposed method in this paper consists of two primary stages: the API remapping and encoding
phase and the classification phase. During the API remapping and encoding phase, APIs are initially
subjected to remapping and encoding representation, ensuring uniform encoding and truncation for APIs
with different character encodings and varying sequence lengths. In the classification phase, the standardized
input is separately fed into a 1ID-CNN and a Bi-LSTM network to extract and integrate features from
subsequences of varying lengths. The final output is then passed through a fully connected layer to yield the
classification results, as illustrated in Fig. 1.
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Figure 1: Overall framework

3.1 API Remapping and Encoding Phase

In the Windows API, due to the variance in character set encoding methods, the preprocessor appends
suffixes such as “A”, “W”, “Ex”, “ExA’, and “ExW” to the end of the general prototype during API invocation,
based on the specific encoding type, to denote different versions (see Table 1). However, during behavioral
analysis of API sequences, these suffixes cause APIs with identical functionalities to be treated as distinct
features, resulting in varying API sequences for the same behavior across different environments, thereby
diminishing the model’s generalization capability. To enable the model to focus on the core functionality of
APIs, this paper maps APIs of different encoding methods to their general prototypes, thereby eliminating
the influence of API suffixes, as illustrated in Fig. 2: f: A — B, where A represents the set of APIs, B denotes
the set of API prototypes, and x signifies the API invocation prototype.

Table 1: Different suffixes of windows API

Suffixes Explanation

ANSI character encoding
(single-byte), employed for

A compatibility with legacy systems or
non-Unicode environments.
W Wide Character Encoding (UTF-16)
facilitates global multilingual support.
Ex Extended version typically incorporate

additional parameters or options.

(Continued)
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Table 1 (continued)

Suffixes Explanation
Extended version of ANSI character
-ExA .
encoding.
ExW Extended version of Unicode

character encoding.

Figure 2: The mapping rules of the API

Based on the mapping rules defined above, this paper designs an API remapping algorithm. Algorithm 1
outlines the specific processing procedure: initially, each API is evaluated to determine if it contains a
valid suffix identifier through regular expression matching. Upon successful matching, the WordSegment
tokenization tool is employed to segment the API, followed by a verification of whether the final word belongs
to a predefined suffix set. If the final word is identified as a member of this set, it is regarded as an appended
suffix and subsequently removed, retaining only the prototype name of the API. Conversely, if the final
word does not belong to the set, the original API is preserved without alteration. Ultimately, the algorithm
yields an API call sequence that has undergone remapping, serving as a standardized input for subsequent
feature extraction.

Algorithm 1: API suffix-based remapping algorithm

Require: API sequence S = [s1,$2,...,5,]

Ensure: Normalized API sequence S’ = [s],s5,...,5),]
1: Initialize suffix list SUFFIXES, regex pattern REGEXP
2: Initialize empty list §" < [ ]

3: Initialize segmentation function segment
4:foralls € S do

5: if s matches REGEXP then

6: segment_list <« segment(s)

7: last_token <« segment_list [-]]
8: if last_token € SUFFIXES then

9: x < s with suffix removed

10: Append x to &

(Continued)
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Algorithm 1 (continued)

11: else

12: Append sto §
13: end if

14:  else

15: Appendsto §
16:  endif

17: end for

18: return §'

The API call sequence, post-remapping, is represented using the one-hot encoding method. Specifically,
one-hot encoding transforms each distinct API into a sparse vector, where only one dimension is set to 1,
with all other dimensions being 0. This encoding approach underscores the semantic independence among
various APIs, introducing no implicit prior relationships and thus preventing potential interference caused
by numerically similar vector values.

Moreover, one-hot encoding boasts the advantages of simplicity in implementation and the absence
of reliance on external prior knowledge, providing a clear and unambiguous input representation for
subsequent classification stages. Although this encoding method may result in a higher dimensionality, the
API remapping in this approach has significantly reduced the variety of API calls, effectively mitigating the
issue of excessive dimensionality.

3.2 Classification Phase

The classification phase employs a 1D-CNN and a Bi-LSTM network for feature extraction. The
1ID-CNN, by nature, excels in processing sequential data, adept at capturing local continuous patterns,
thereby effectively extracting short-range dependency features from sequences. API call sequences, as
direct representations of program dynamic behavior, often contain several key operational segments that
reveal specific functional intents. These segments are typically composed of a series of consecutive APIs,
forming semantically related subsequences. For instance, Socket — Connect signifies a network connection,
VirtualAlloc - memcpy — VirtualFree describes the process of memory allocation, writing, and release,
while CreateFile - WriteFile - ReadFile - CloseHandle corresponds to file read-write operations.
These API segments with specific semantics serve as features to decollate different behavioral patterns,
referred to as key subsequences.

To extract key subsequences from the API sequence, a sliding window of size I (where I € [1,7n]) is
introduced, and a convolution operation is performed on the API call sequence. This sliding window moves
sequentially along the API call sequence with a step size of 1, from the start bit to the stop bit, ultimately
generating a feature map of length n — [ + 1.

Due to variations in the sliding window size, an API sequence yields 1n(n +1) subsequences, as
calculated by Eq. (1).

n+...+(n—l+1)+...+1:%n(n+1) (1)

To reduce computational load and enhance computational efficiency, the most commonly encountered
subsequence lengths of 2, 3, and 4 were selected as sliding window sizes to extract subsequence features of

-~

corresponding lengths, as illustrated in Fig. 3.
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Figure 3: 1D-CNN network architecture with convolutional kernel sizes of 2, 3, and 4

Upon completion of the extraction of subsequence features of varying lengths, a Global Max Pooling
operation was applied to each category of subsequence features. This operation effectively compresses the
feature dimension, reducing redundant information while preserving the most representative features of each
type of subsequence. By focusing on the most activated features within the subsequences, Global Max Pooling
enhances the model’s perception of key behavioral patterns, aiding in the prominence of discriminative local
features within malicious behaviors. Consequently, this approach further elevates the overall classification
performance and detection accuracy.

In an API sequence, a single API constitutes a subsequence of length 1. A unidirection LSTM can
only utilize past API call information, whereas a Bi-LSTM processes the sequence simultaneously from
both forward and backward directions, enabling a more comprehensive understanding of the dependencies
among APIs, which facilitates more precise classification of API sequences. Fig. 4 illustrates the architecture
of a Bi-LSTM unfolded along the time steps, where x denotes the input, y the output, h the forward hidden
state, and h’ the backward hidden state.

hiy hy

...... LSTM LSTM LSTM LSTM LSTM LSTM | e
b A =

U !
ht h’t+1

Figure 4: Bi-LSTM network architecture

Bi-LSTM is constructed based on LSTM units, addressing the unidirection limitation by combining
two independent LSTM layers, where the forward and backward LSTM layers do not share parameters
and are trained independently. The API sequences encoded via one-hot encoding are input into the Bi-
LSTM module, and its forward propagation, backward propagation, and final output can be calculated
using Eqs. (2)-(4).

ht = LSTM(xt, ht—l) (2)
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ht, = LSTM(Xt, ht+1,) (3)
y¢ = concat(hy, h') (4)

To identify critical APIs within the sequence, an attention mechanism was incorporated into the Bi-
LSTM network. The specific computational procedure can be delineated into the following three steps:

1) Employing the dot product of vectors as the attention value score, as expressed in Eq. (5), where s;
denotes the attention value score, g represents the query vector, and k; signifies the key vector.

si=q-k; (5)

2) Normalizing the attention value scores using the Softmax function, as illustrated in Eqs. (6) and (7),
where a; corresponds to the weighting coefficient of the associated fleshless vector, and dj indicates the
dimensionality of the key vector.

et
Softmax(x) = - (6)
2 e

i1

a; = Softmax(%) (7)
k

3) Summing the weighted fleshless vectors to obtain the attention vector, as shown in Eq. (8), where a
denotes the attention vector, v; represents the fleshless vector, and # is the sequence length.

azzn:a,-*v,- (8)

i=1

The fused features extracted by the 1ID-CNN and Bi-LSTM network are input into a neural network
composed of a fully connected layer, Rectified Linear Unit (ReLU) activation function, Dropout layer, and
an output layer employing the Sigmoid activation function for final classification. The fully connected layer
receives the fused feature vector x; and processes it according to Eqgs. (9) and (10), where W denotes the
weight matrix of the fully connected layer, b represents the bias term, and #; is the output vector of the fully
connected layer. Moreover, to prevent overfitting in the model, a Dropout layer with a dropout quotiety of
0.5 is appended after each fully connected layer. During each training iteration, this mechanism randomly
sets a portion of neuron outputs to zero, thereby avoiding model reliance on specific neurons.

ReLU(x) = max(0, x) )
h; = ReLU(x; * W +b) (10)

After computation through the fully connected layer, the output layer calculates the positive example
classification result probability y according to Eqs. (11) and (12).

Sigmoid(x) = 1+1e"‘ (11)
y = Sigmoid(h; + W + b) (12)

Additionally, the model employs binary cross-entropy as the loss function, utilizing the Adam optimizer
to refine the parameters of the network and updating the weight matrices through backpropagation.
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3.3 Model Structure and Hyperparameter Setting

Fig. 5 illustrates the specific structure of the model in this paper and the hyperparameter combinations,
which were determined through grid search. For further details, please refer to Section 4.3.
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Figure 5: Specific structure of the model and hyperparameter configuration

4 Experiments and Results

This section elaborates on the dataset and hyperparameter selections employed in the experiments,
introduces the evaluation metrics utilized during the assessment, analyzes the experimental results, and
concludes with comparative experiments, ablation studies, and an exploration of sequence lengths.

4.1 Experimental Setup and Tools

The proposed model was implemented and tested on a computer running Windows 11 Professional
(64-bit), equipped with an Intel(R) Core(TM) i5-12600KF processor (3.70 GHz), 32 GB of memory, an
NVIDIA GeForce RTX 4060 Ti graphics card (16 GB VRAM), and a 2TB hard disk. The model was developed
using Python 3.10.15, leveraging the TensorFlow 2.10.0 and Keras 2.10.0 frameworks. Additionally, it relied
on libraries such as Scikit-learn, NumPy, Pandas, Matplotlib, Seaborn, and WordSegment. These libraries are
open-source software, freely available via the Python Package Index (PyPI) platform.

4.2 Dataset

To validate the efficacy of the proposed method, this study employs two widely recognized publicly
available API sequence datasets—MalBehavD-V1 [15] and Alibaba Cloud [16]—for model training and
evaluation. Table 2 enumerates the datasets utilized.
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Table 2: The two datasets utilized for the experiment

Dataset No. malware No. benign Total Released in
samples samples
MalBehavD-V1 1285 1285 2570 2022
Alibaba Cloud 8909 4978 13,887 2018

MalBehvaD-V1 represents a novel dynamic dataset, constructed through the application of dynamic
malware analysis methodologies, specifically designed to extract API call sequences from both benign
and malicious executable files (EXE files) within Windows operating systems. Each sample undergoes
independent execution within an isolated environment powered by the Cuckoo sandbox, ensuring precise
behavioral logging. The malicious samples are sourced from VirusTotal, while the benign samples are
collected from the CNET website. The dataset encompasses a total of 2570 executable files, comprising 1285
benign samples and 1285 malicious samples.

Alibaba Cloud is a large-scale behavioral dataset released by Alibaba Cloud for dynamic malware
analysis and detection research, comprising approximately 90 million API call records. This dataset was
collected by executing Windows executable files sourced from the internet within an analog sandbox envi-
ronment, capturing the API call sequences triggered during sample execution. All samples have undergone
desensitization processing. The dataset contains a total of 13,887 executable files, including 4978 benign
samples and 8909 malicious samples.

4.3 Hyperparameter Selection

Table 3 presents the hyperparameter search space and its corresponding optimal configuration. A
grid search strategy was employed to comprehensively explore all candidate combinations. Specifically, the
training set was divided into three subsets, with evaluation conducted through cross-validation, where
each subset was individually used for validation while the remaining subsets were used for training. For
each hyperparameter configuration, the average validation accuracy across all subsets was calculated as the
primary evaluation metric.

Table 3: Hyperparameter search space and optimal hyperparameter combination

Hyperparameter Search space Best value
f fil i
Number ‘o ters in 128, 256, 512 256
convolutional layers
Number of convolutional 23,45 3
layers
Units of Bi-LSTM layer 128, 256, 512 256
Units of the first dense layers 128, 256, 512 256
Number of dense layers 1,2,3,4 3
Activation function of dense . .
relu, sigmoid, tanh relu
layers
Rate of dropout layers 0.2,0.5,0.7 0.5

Learning rate le-3, le-4 le-3
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The final hyperparameter settings were selected based on the configuration achieving the highest
average validation accuracy, while also considering training stability and computational efficiency. Notably,
although adopting larger hyperparameters (such as more convolutional filters or larger bidirectional LSTM
units) may yield minor performance improvements, it significantly increases computational and memory
overhead. Conversely, excessively small configurations are prone to convergence instability or degraded
detection performance.

4.4 Evaluation Metrics

To evaluate the performance of the model, this paper adopts Accuracy, Precision, Recall, and F1 score
as evaluation metrics, with their calculation processes detailed in Eqs. (13)-(16).

TP+ TN
Accuracy = (13)
TP+ TN+ FP+FN
.. TP
Precision = ———— (14)
TP+ FP
TP
Recall = ——— (15)
TP+ FN

Precision - Recall

F1=2 (16)

" Precision + Recall

These evaluation metrics are calculated based on the following variables: True Positive (TP): samples
that are predicted as positive by the model and are indeed positive; False Positive (FP): samples that are
predicted as positive by the model but are actually negative; False Negative (FN): samples that are predicted
as negative by the model but are indeed positive; True Negative (TN): samples that are predicted as negative
by the model and are indeed negative. Herein, positive refers to malicious samples, while negative refers to
benign samples.

In addition, this paper also employs the Area Under Receiver Operating Characteristic Curve (AUC)
as an evaluation metric. The calculation process is shown in Eq. (17).

1 TP FP
AUC = f d (17)
o TP+FN TN+ FP

4.5 Analysis of Experimental Results

In each dataset, stratified sampling with an 8:2 ratio was employed to partition the training and test
sets, followed by further 5-fold cross-validation. Subsequently, the performance of the proposed method was
evaluated on the test set based on the evaluation metrics defined in the previous section. Table 4 presents the
experimental results of the proposed method across different datasets.

Table 4: Results of the proposed method across various evaluation metrics

Dataset Accuracy Precision  Recall F1 AUC 5-fold

MalBehavD-V1 0.9767 0.9960 0.9572 0.9762 0.9891 0.9728
Alibaba Cloud 0.9870 0.9910 0.9888 0.9899 0.9975 0.9842
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On the MalBehavD-V1 dataset, the proposed method achieved outstanding detection performance,
with a precision reaching 99.60%, indicating an extremely low false positive rate. The recall rate of 95.72%
demonstrates that the model-extracted API subsequence features effectively encompass the malicious
behavior patterns of the samples. Compared to the MalBehavD-V1 dataset, the model’s recall rate on the
Alibaba Cloud dataset increased by 3.16 deci-percentage points, and the AUC improved by 0.0084, indicating
that in a larger-scale and more diverse sample environment, the proposed method maintains the advantages
of high detection and low false negatives, accurately identifying malicious samples.

From a cross-dataset comparative perspective, the proposed method achieves an accuracy exceeding
97% on both datasets, with AUC values approaching or surpassing 0.99, indicating robust classification capa-
bility and generalization performance. Regarding the trade-off between false positives and false negatives,
the method exhibits an almost error-free false positive rate on the MalBehavD-V1 dataset; on the Alibaba
Cloud dataset, although the precision slightly decreases, the recall is further enhanced, demonstrating that
the model attains a lower false negative rate at an acceptable level of false positives. Furthermore, cross-
validation results indicate that the model maintains stable performance even in the presence of distributional
differences. Fig. 6 illustrates the confusion matrices of the proposed method across different datasets.

1600

1400
16

1200

1000

- 800

Confusion Matrix Confusion Matrix
250

Benign
Benign

True
True

- 100

- 600

Malware
Malware
)

N
o

- 400

-200

Benign Malware Benign Malware
Predicted Predicted

(a) (b)

Figure 6: Confusion matrices of the proposed method across different datasets. (a) MalBehavD-V1 Dataset; (b) Alibaba
cloud Dataset

In summary, the proposed method not only demonstrates outstanding performance on the small-scale
MalBehavD-V1 dataset but also achieves higher recall and AUC on the more challenging Alibaba Cloud
dataset, thereby exhibiting an equilibrant advantage in accuracy, robustness, and generalization capability.

4.6 Comparison with Different Deep Learning Models

In Table 5, the proposed method is compared with various mainstream deep learning models on
two publicly available datasets, MalBehavD-V1 and Alibaba Cloud, in terms of performance. On the
MalBehavD-V1 dataset, the proposed method achieves an accuracy of 97.67%, representing an improvement
of approximately 1.76% over the best-performing comparative method, Transformer. On the Alibaba Cloud
dataset, the proposed method similarly attains the highest detection performance, with an accuracy of
98.70%, surpassing the best-performing comparative model, Gated Recurrent Unit (GRU), by approximately
2.37%, and achieving an AUC of 0.9975 (see Fig. 7), approaching near-perfect classification. Experimental
results indicate that single-sequence modeling approaches exhibit deficiencies in modeling long sequences
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and capturing contextual correlations, resulting in performance limitations in high-dimensional, long-

dependency API call scenarios. In contrast, the proposed method demonstrates superior generalization

capability across different data distributions and scales.

Table 5: Comparison with different deep learning models

Dataset Models Accuracy Precision  Recall F1 5-fold
LSTM 0.9280 0.9545 0.8988 0.9259 0.9241
GRU 0.9358 0.9242 0.9494 0.9367 0.9261
MalBehavD-V1 Bi-GRU 0.9572 0.9681 0.9455 0.9567 0.9580
Transformer 0.9591 0.9646 0.9533 0.9589 0.9611
Ours 0.9767 0.9960 0.9572 0.9762 0.9728
LSTM 0.6886 0.7301 0.8165 0.7709 0.6810
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Figure 7: Receiver operating characteristic (ROC) curves of various deep learning models across different datasets.
(a) MalBehavD-V1; (b) Alibaba cloud

4.7 Comparison with Existing Methods

In addition to the baseline model, this paper conducts further comparisons with recent studies on
malware behavior analysis based on the same dataset (see Table 6), which include models based on CNN
and Recurrent Neural Network (RNN), as well as those based on graph neural networks and Transformers.
Despite differences in preprocessing strategies and feature representations, the proposed method demon-
strates strong generalization capability across two datasets and various malware behavior patterns. Its

consistently superior performance across different datasets and models highlights its potential for practical

deployment in large-scale malware detection systems.
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Table 6: Comparison of the proposed method with existing approaches

Dataset Approaches Year Accuracy
MalDetConv [15] 2022 0.9610
TCN-BiGRU [17] 2025 0.9465
Tiwari [18] 2024 0.9500
MalBehavD-V1 Pham et al. [19] 2025 0.9626
DawnGNN [20] 2024 0.9638
CNN-GRU-3 [21] 2025 0.9705
Ours 0.9767
Xu et al. [22] 2020 0.9344
Mal-ASSF [23] 2023 0.9449
Luo et al. [24] 2024 0.9467
Yan et al. [25] 2025 0.9561
Alibaba Cloud DEGCN [26] 2022 0.9610
SDGNet [27] 2020 0.9730
GSB [28] 2024 0.9760
Ours 0.9870

4.8 Ablation Experiment

This subsection conducts ablation experiments on the fusion model, thereby validating the effectiveness
of the encoding method and each component of the model individually.

Fig. 8 illustrates the impact of various encoding methods on detection performance and the number of
API call types across different datasets. The results indicate that the proposed remapping encoding method
significantly outperforms traditional Embedding Layer and One-hot encoding methods on both datasets
(see Fig. 8a). Additionally, in terms of the number of API call types, the remapping encoding effectively com-
presses the dimensionality of the feature space, reducing the feature dimension by approximately 20%. This
suggests the presence of redundant APIs in the API call sequences that interfere with detection effectiveness
(see Fig. 8b). The experimental results demonstrate that semantic feature reconstruction during the encoding
stage can significantly enhance the performance of malware detection based on API call sequences.

Table 7 presents the ablation experiment results of the proposed method on the MalBehavD-V1 and
Alibaba Cloud datasets. On both datasets, the standalone use of 1D-CNN demonstrates relatively supe-
rior performance, indicating that 1D-CNN possesses significant advantages in extracting local behavioral
patterns and capturing short-range dependencies. However, its recall rate is slightly lower than that of the
proposed model, implying that reliance solely on local features is insufficient to encompass all malicious
patterns. The Bi-LSTM exhibits inferior performance compared to ID-CNN on both datasets, suggesting
that bidirectional sequential models are prone to overfitting or gradient vanishing when handling high-
dimensional long sequences. Nonetheless, Bi-LSTM achieves a relatively higher recall rate, indicating its
complementary value in capturing long-range dependencies and global temporal information. The incorpo-
ration of the Attention mechanism markedly enhances performance, demonstrating its efficacy in mitigating
redundancy in long-sequence information. Overall, the proposed method significantly outperforms single or
partial combination models across both datasets, achieving the best results in accuracy, precision, recall, and
Fl-score, thereby substantiating the effectiveness and necessity of a multi-module fusion design in malicious
behavior detection.
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Figure 8: Comparison of the effects of different encoding methods on detection performance and the number of API
call types across various datasets. (a) Accuracy; (b) Number of API call types

Table 7: Comparison of ablation experiment results

Ablati
Dataset ationt Accuracy Precision Recall F1 5-fold
component

Only ID-CNN 0.9553 0.9500 0.9611 0.9555 0.9630
Only Bi-LSTM 0.9416 0.9316 0.9533 0.9423 0.9514

MalBehavD-V1 Bi-LSTM + 09630 09877 09377 09621  0.9611
Attention

Ours 09767 09960 09572 09762  0.9728

Only ID-CNN 09755 09751 09871 09810  0.9762

OnlyBi-LSTM 09471 09632 09540 09586  0.9550

Alibaba Cloud Bi-LSTM + 09719 09897 09663 09779  0.9634
Attention

Ours 09870 09910 09888  0.9899  0.9842

4.9 Different Lengths of API Call Sequences

This paper introduces the percentile length to investigate the impact of varying sequence lengths on
the performance of detection models. A percentile is a statistical concept used to indicate the position of a
specific value within a dataset, where the p-th percentile denotes that p% of the data are less than or equal
to that value. For API call sequences, due to the extreme imbalance in sequence lengths across samples,
simple truncation fails to achieve the optimal performance of the detection model. In contrast, percentile
length not only characterizes the distribution of API call sequence lengths among samples but also mitigates
the interference of outliers on the model. Consequently, this paper selects commonly used percentile values
(25%, 50%, 90%, 95%, 99%, 100%) as the criteria for API call sequence lengths to test the performance effects
of each sequence length percentile.

Table 8 presents a comparative analysis of performance across different datasets using varying percentile
lengths. It is evident that in the MalBehavD-V1 dataset, where sequences are relatively short and uniformly
distributed, employing a lower percentile length still maintains high precision. Conversely, in the Alibaba
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Cloud dataset, the sequence length distribution is extremely imbalanced with a substantial number of
long-tail sequences, rendering the processing of complete sequences challenging. When truncation lengths
below the 90th percentile are applied, a significant decline in model accuracy is observed, indicating that
excessive truncation results in substantial loss of behavioral features. Overall, across different datasets, the
95th percentile length represents an optimal trade-off between performance and computational efficiency;
hence, this truncation length is consistently adopted in the experiments of this study.

Table 8: Comparison of percentile lengths utilized across various datasets

Dataset Percentile/% Sequence Tr.a ming Accuracy
length time/s

100 174 29.31 0.9747
99 126 22.55 0.9708

MalBehavD-V1 95 101 19.62 0.9767
90 92 18.80 0.9728
50 37 13.30 0.9455
25 20 10.68 0.9358
100 511,775 =X =X
99 29,034 X X

Alibaba Cloud 95 11,061 4670.35 0.9870
90 7101 2947.20 0.9856
50 659 310.09 0.9672
25 122 74.06 0.9456

Note: *Data exceeds the processing capacity of the device.

5 Limitations and Discussion

Although the proposed method demonstrates excellent detection performance, it may still encounter
multiple challenges during practical realtime deployment, such as computational overhead, sandbox evasion
behaviors, and data distribution discrepancies. The following sections present a systematic analysis and
discussion of these challenges.

5.1 Computational Overhead

In practical deployment, in addition to detection performance, computational complexity and realtime
performance must also be fully considered. The overall time complexity of the proposed method is approx-
imately O(L x H*), where L denotes the sequence length and H represents the hidden layer dimension. The
model’s average single-sample inference time on the Alibaba Cloud dataset is 16.38 ms, which can meet the
near realtime requirements of large-scale detection tasks. However, due to the model’s use of bidirectional
recurrent layers and attention mechanisms, the computational burden during the training phase remains
relatively high. In the future, we will focus on exploring more efficient sequence truncation strategies,
lightweight model architectures, and distributed training schemes to reduce computational overhead.

5.2 Sandbox Evasion Behaviors

This paper primarily conducts malware detection research based on API call sequences within the
Windows system, extracting behavioral features through the dynamic execution of malicious samples in
sandbox environments. However, with the continuous advancement of anti-sandbox techniques, certain
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malicious programs can identify sandbox environments and adopt countermeasures to evade dynamic
analysis. Future research may explore hybrid analysis strategies that integrate static and dynamic features, as
well as model cross-platform adaptability.

5.3 Data Distribution Discrepancies

The MalBehavD-V1 and Alibaba Cloud datasets cover a limited range of malware sample types, which
may differ from the diverse attack behaviors encountered in real-world environments. Future work could
employ incremental learning or adversarial training mechanisms to enable the model to continuously learn
new types of malware samples while maintaining detection capabilities for existing samples. Moreover,
although the Alibaba Cloud dataset exhibits a certain degree of imbalance, in practical applications, malware
data often exhibit significant class imbalance and dynamic variability. Distributional differences across data
collected at different times or from various sources may cause fluctuations in model performance. Future
research could explore transfer learning and adaptive learning strategies to enhance the model’s robustness
under distributional drift conditions.

6 Conclusion

This paper proposes a dynamic malware detection method based on API multi-subsequence, aiming to
streamline API call sequences and extract key behavioral features from these sequences. Initially, the original
API call sequences undergo remapping encoding, transforming each API into a numerical representation
with semantic discriminative capabilities to enhance the model’s recognition of different APIs. Subsequently,
a fusion architecture is constructed, incorporating two sub-models: ID-CNN and Bi-LSTM, to model and
integrate features from subsequences of varying lengths. Experimental results demonstrate that the proposed
method outperforms existing approaches across various public datasets, showcasing robust generalization
capabilities. Furthermore, by analyzing the distribution of sequence lengths in the dataset, the 95th percentile
length was adopted as the optimal truncation length for input sequences, effectively balancing the trade-oft
between preserving sequence information and computational efficiency, thereby enhancing overall detection
performance. However, the method proposed in this paper currently relies primarily on dynamic features
and lacks utilization of static features. In future research, we will further explore fusion strategies between
dynamic and static features to construct a more comprehensive hybrid malware detection framework,
enabling more thorough and accurate malware identification.
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