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ABSTRACT: Knowledge-based Visual Question Answering (VQA) requires the integration of visual information with
external knowledge reasoning. Existing approaches typically retrieve information from external corpora and rely on
pretrained language models for reasoning. However, their performance is often hindered by the limited capabilities
of retrievers and the constrained size of knowledge bases. Moreover, relying on image captions to bridge the modal
gap between visual and language modalities can lead to the omission of critical visual details. To address these
limitations, we propose the Reflective Chain-of-Thought (ReCoT) method, a simple yet effective framework inspired
by metacognition theory. ReCoT effectively activates the reasoning capabilities of Multimodal Large Language Models
(MLLMs), providing essential visual and knowledge cues required to solve complex visual questions. It simulates a
metacognitive reasoning process that encompasses monitoring, reflection, and correction. Specifically, in the initial
generation stage, an MLLM produces a preliminary answer that serves as the model’s initial cognitive output. During
the reflective reasoning stage, this answer is critically examined to generate a reflective rationale that integrates key
visual evidence and relevant knowledge. In the final refinement stage, a smaller language model leverages this rationale
to revise the initial prediction, resulting in a more accurate final answer. By harnessing the strengths of MLLMs in visual
and knowledge grounding, ReCoT enables smaller language models to reason effectively without dependence on image
captions or external knowledge bases. Experimental results demonstrate that ReCoT achieves substantial performance
improvements, outperforming state-of-the-art methods by 2.26% on OK-VQA and 5.8% on A-OKVQA.
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1 Introduction
The real world is inherently multimodal, rich in both visual and linguistic signals. A core goal of Artifi-

cial Intelligence (AI) is to develop models capable of replicating human-like visual-linguistic understanding
and causal reasoning [1,2]. Recent studies have emphasized that achieving such human-like intelligence
requires integrating perception, reasoning, and compositional learning, enabling models to build structured
causal representations that mirror human cognition [3,4]. Visual Question Answering (VQA) has emerged
as a key benchmark for this goal. In particular, knowledge-based VQA extends the challenge by requiring
models to integrate visual content with external open-domain knowledge, making it substantially more
difficult than conventional VQA. By more closely reflecting human reasoning processes, it has become a
foundational task in multimodal AI research.

Existing retrieval-based methods [5–7] generally acquire relevant information from external knowledge
sources such as Wikipedia [8], ConceptNet [9], or Google Search [10], and incorporate it, along with
the question and visual content, into pretrained models [9,11–13] for fine-tuning. The characteristics of
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external knowledge reasoning enable Language Models (LMs) to outperform vision-language models,
thereby becoming mainstream for subsequent research. However, due to limitations in the scale of knowledge
bases or the capabilities of retrievers, the knowledge retrieved by these methods may be irrelevant or
insufficient to solve complex visual problems. Moreover, many existing approaches address the modality gap
between image and text by converting images into text. LMs commonly rely on image captions as a textual
proxy for visual input, which may cause them to overlook the critical visual elements actually required to
answer the question. For example, as illustrated in Fig. 1, given the question “What material is burning?”,
both the image caption and the retrieved knowledge focus on the more salient object, the umbrella, rather
than the actual burning candle. Relying solely on these cues makes it difficult for the model to predict the
correct answer, wax, thereby highlighting the limitations of caption-based grounding and external retrieval
in complex visual reasoning scenarios.
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Figure 1: An overview of different Chain-of-Thought (CoT) based reasoning paradigms for knowledge-based VQA.
(a) CoT-based methods via Large Language Models (LLMs) generate rationales based on image captions, followed by
answer generation through a smaller Language Model (LM). (b) CoT-based methods via LM fine-tune smaller LMs with
multimodal inputs to generate rationales. (c) Illustration of the metacognitive reasoning process, involving monitoring,
reflection, and correction. (d) The proposed ReCoT framework simulates the metacognitive reasoning process by using
a Multimodal Large Language Model (MLLM) to generate a preliminary answer and reflective rationale, which is then
refined by a smaller LM to produce the final answer

To address the shortcomings of existing methods, our goal is to elicit large models to generate
effective Chain-of-Thought (CoT) rationales that encapsulate the essential knowledge and visual cues
needed to answer complex visual questions, without relying on external knowledge retrieval or image
captions. Mimicking the procedure of human thinking and reasoning, the CoT-based approaches improve



Comput Mater Contin. 2026;87(1):80 3

question-answering accuracy and interpretability by generating CoT rationales to infer answers. Some
methods [14–17] convert visual images into captions and feed them into frozen Large Language Models
(LLMs) [18] to generate CoT rationales (as shown in Fig. 1a). Although the CoT rationales generated by
these methods contain valuable knowledge from LLMs, they still require external knowledge retrieval to
enhance performance in small model reasoning [14,15,17] and are prone to missing critical visual details.
To better integrate visual information, recent multimodal CoT-based methods such as MM-CoT [19], T-
SciQ [20] and PS-CoT-Adapter [21] have been applied to datasets like ScienceQA [22]. These approaches
fine-tune smaller language models with visual features to generate detailed CoT rationales, achieving strong
performance where all necessary information is available. However, ScienceQA provides complete contextual
knowledge, making such methods effective only when reasoning does not require external information.
In contrast, knowledge-based VQA tasks rely heavily on external factual knowledge beyond the image.
Generating rich and accurate CoT rationales with small fine-tuned models is therefore highly challenging,
as further evidenced in Section 4.4. Additional methods [23,24] have adopted more complex reasoning
processes to improve performance. However, these approaches lack theoretical guidance, and the manually
designed reasoning chains often fail to provide a simple and effective framework.

Although CoT-based methods emulate certain aspects of human thinking and reasoning, they remain
far from replicating the cognitive capabilities of human intelligence. According to the metacognition the-
ory [25,26], to solve the complex problems, humans generally have two cognitive levels: the basic cognition
and the metacognition. The former helps us quickly acquire information and make preliminary judgments,
while the latter metacognition cognizes the basic cognitive process. The metacognition includes monitoring,
reflection, and correction of basic cognition. Especially, the reflective reasoning mechanism of metacognition
can reflect the basic cognitive results, thereby enabling more flexible and effective solutions to complex tasks.
Traditional cognitive reasoning in VQA models focuses primarily on direct perception and reasoning with-
out evaluating the reliability of the outputs. These models rely mainly on feed-forward reasoning processes
that lack higher-order self-monitoring and error correction. However, complex knowledge-based VQA tasks
often require evidence validation and error correction—capabilities that standard reasoning processes do not
possess. To address these challenges, it is essential to integrate human-like metacognitive mechanisms into
artificial reasoning frameworks, bridging human cognitive reflection and machine inference. Based on this
idea, we propose the Reflective Chain-of-Thought (ReCoT) me thod to simulate the human metacognitive
process by allowing the machine to monitor, reflect, and correct during reasoning to optimize the results.
Specifically, as shown in Fig. 1c,d, drawing inspiration from the theoretical models [25,27], our proposed
ReCoT method simulates the human metacognitive cycle through three corresponding stages: (1) generates
the preliminary answer, similar to the monitoring process in metacognition; (2) generates the underlying
reflective rationale based on the preliminary answer, akin to the reflection process in metacognition; and (3)
refines the preliminary answer using the rationale, analogous to the correction process in metacognition.
From the perspective of cognitive psychology, this process aligns with the Dual-Process Theory [28] and
Cognitive Load Theory [29], where initial reasoning corresponds to the fast, intuitive System 1, and reflective
reasoning corresponds to the slow, deliberate System 2. By enabling interaction between these two modes,
ReCoT effectively balances cognitive efficiency and accuracy, reducing reasoning load while enhancing
decision robustness.

Unlike traditional CoT or self-reflection approaches, which often rely on manually designed processes
and complex model architectures, ReCoT introduces a significant innovation by drawing inspiration
from metacognition theory. ReCoT goes beyond these methods by simulating a metacognitive process—
specifically the stages of monitoring, reflection, and correction. An MLLM serves as the agent for monitoring
and reflection, while a fully trained smaller language model is used for flexible correction. This compact
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approach enables high-quality answer generation without the need for additional resources such as knowl-
edge retrieval or image captions, surpassing current state-of-the-art performance. Furthermore, beyond
benchmark performance, ReCoT’s metacognitive design demonstrates potential for broader social impact.
In educational technology, it can model self-reflective learning strategies; in medical image interpretation, it
can support diagnostic reasoning with transparent reflection steps; and in complex decision-support systems,
it can enhance interpretability and reliability. These applications illustrate the generalizability and societal
relevance of metacognition-inspired AI reasoning.

Our contributions include the following three aspects:

• We propose a simple yet effective three-step CoT method, ReCoT, consistent with metacognition theory
that incorporates a reflective reasoning approach, where answers and rationales mutually reinforce each
other to enhance overall performance.

• The preliminary answers and reflective CoT rationales generated by our approach encapsulate the
essential visual elements and domain-specific knowledge necessary for addressing visual questions. With
these in place, accurate question answering can be accomplished using only a compact LM, eliminating
the need for external knowledge retrieval or image captions.

• Experimental results demonstrate the effectiveness of our approach, surpassing the state-of-the-art
methods by 2.26% and 5.8% on OK-VQA and A-OKVQA, respectively.

The remainder of this paper is organized as follows. Section 2 reviews the relevant research in
knowledge-based VQA. Section 3 introduces the proposed ReCoT framework. Section 4 presents the
experimental setup and results. Finally, Section 5 concludes the paper by summarizing the key findings and
outlining directions for future research.

2 Related Work
In this section, we review related work from three perspectives. First, we summarize recent advances in

MLLMs, which refer to models trained on large-scale image-text data to enable cross-modal reasoning. These
models facilitate visual-language reasoning by integrating visual encoders with language models. Then, we
introduce CoT techniques, which focus on reasoning frameworks that break down complex problems into
intermediate steps, thereby enhancing multi-step reasoning abilities. Finally, we discuss knowledge-based
VQA methods, which extend traditional VQA by incorporating external knowledge or leveraging internal
knowledge within models to answer more complex queries.

2.1 Multimodal Large Language Models
MLLMs [30–33] have been substantially advanced by large-scale image-text paired pre-training

[34–36], significantly enhancing their capabilities in image-language understanding and reasoning. These
models typically consist of a pretrained image encoder and a pretrained LLM. For instance, Alayrac et al. [30]
employ gated cross-attention blocks to establish connections between the image encoder and the LLM.
In contrast, Liu et al. [33,37] directly project visual features into the text embedding space through a
multilayer perceptron. Li et al. [31] introduce the Q-Former module, which effectively narrows the gap
between modalities. Earlier multimodal pretraining frameworks such as UNITER [38] laid the foundation
for unified visual-text representation, which greatly influenced the subsequent development of MLLMs.
Recently, to improve feedback optimization for MLLMs, Li et al. [39] leverage GPT-4V to generate high-
quality feedback for feedback optimization in MLLMs. To address the issue of error correction simulation
in MLLMs, reference [40] collects explainable feedback and provides new distractors for guiding the model.
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However, unlike these works, we focus on the limitations in knowledge retrieval and the quality of CoT-
based answer generation. We propose leveraging metacognitive theory to generate reflective CoT in large
models to refine preliminary answers.

2.2 CoT Techniques
LLMs [18] have recently demonstrated exceptional performance, particularly in complex problem-

solving, by employing CoT techniques to enhance multi-step reasoning capabilities [41]. Two major
paradigms of CoT techniques have been developed: Zero-Shot-CoT [42], which prompts LLMs to reason
step-by-step without demonstrations, and Few-Shot-CoT [41,43], which leverages annotated exemplars to
guide reasoning. The evolution of CoT can be traced back to intermediate reasoning models [44], which first
introduced explicit intermediate computation steps to improve transparency and reasoning control, paving
the way for modern CoT approaches. Beyond single-pass reasoning, recent research has explored multi-
round CoT reasoning [45,46], where models iteratively refine and verify their intermediate thoughts across
reasoning turns, simulating deeper metacognitive reflection. These developments lay the groundwork for
scalable reflective reasoning frameworks like ReCoT. Recent studies [19,20,47] have investigated multimodal
CoT reasoning in multimodal scenarios by employing fine-tuned LMs to enhance their performance. Zhang
et al. [19] initially introduces the concept of multimodal CoT, separating the processes of rationale generation
and answer inference. Mondal et al. [47] enhance rationale generation and answer inference through the
support of knowledge graphs, achieving greater effectiveness. Wang et al. [20] leverage LLMs to generate
high-quality CoT rationales as teaching signals, addressing the disadvantages of costly human-annotated
rationales. However, applying the aforementioned multi-modal CoT strategy to knowledge-based VQA tasks
does not yield the expected results. Our proposed method generates high-quality rationales by introducing
a simple yet effective framework, which significantly improves the final performance.

2.3 Knowledge-Based VQA
In the broader field of VQA, recent advances have explored mechanisms to overcome language

priors and enhance compositional reasoning in multimodal understanding. For instance, Chowdhury and
Soni [48] mitigate the language prior problem by enhancing visual feature representation through an
ensemble of spatial and channel attention mechanisms, which improves visual–text fusion and reduces
bias toward frequent answers. Building on this direction, Chowdhury and Soni [49] propose a unified
framework that jointly tackles language prior and compositional reasoning challenges, enabling answer
generation beyond a predefined answer space and improving overall robustness across VQA benchmarks. In
various visual reasoning tasks, external knowledge is crucial for integrating additional semantic information
and enhancing inference capabilities [50–52]. Early knowledge-based VQA methods retrieve knowledge
from various external sources and integrate the retrieved knowledge into pretrained models for inferring
answers [5,53,54]. Retrieval methods have evolved from traditional BM25 (Best Matching 25) to Dense
Passage Retrieval (DPR) [55], and more recently to multimodal selection [56]. The progressively stronger
retrieval capabilities have further enhanced the performance of knowledge-based VQA models. However,
persistent technical bottlenecks remain—such as knowledge retrieval failure (when relevant information
is absent or inaccessible) and semantic drift (when the reasoning chain diverges from the visual-linguistic
context). These issues often lead to inconsistent or hallucinated answers, underscoring the need for robust
self-monitoring mechanisms. ReCoT addresses these challenges by embedding reflective reasoning and
correction, dynamically calibrating reasoning paths to maintain semantic coherence. Due to the nature of
external knowledge reasoning, natural language pretrained models achieve better performance and have
become mainstream [6,8,52]. Lin and Byrne [6] utilize DPR to search for knowledge from knowledge corpus
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collected from [10] and infer answers in an end-to-end manner. Lin et al. [57] enhance the knowledge
retrieval capabilities of [6], addressing the issue of low granularity in image and text representations when
retrieving external knowledge. Hu et al. [52] encode various multimodal knowledge sources into large-scale
memory, resulting in significant performance improvements. However, due to limitations in the retriever’s
capabilities or the scales of the external knowledge bases, the model may fail to retrieve the necessary
knowledge to answer questions. Additionally, recent works on visual-language alignment [31] and context-
aware reasoning [23] have further advanced multimodal understanding. These studies emphasize aligning
fine-grained visual cues with linguistic semantics and reasoning adaptively based on contextual feedback.
Building upon these advances, ReCoT complements such alignment-based reasoning with a metacognitive
reflective process that continuously monitors and refines its visual-linguistic understanding.

Recent works [23,58–60] have attempted to leverage the implicit knowledge within large models to mit-
igate the limitations of external knowledge retrieval. These efforts suggest that large models could potentially
serve as a replacement for external retrieval. However, as large models accumulate more knowledge, they
tend to lose precision when answering specific questions, posing a new challenge in how to effectively harness
their internal knowledge. To address this, recent studies [20,23,45] have explored strategies for triggering
large model knowledge during CoT generation. In addition, Wang and Ge [61] have been proposed to mine
visual cues from images and generate question-answer pairs to guide MLLMs in enhancing their reasoning
capabilities. Although these approaches attempt to activate large model knowledge, they have yet to fully
exploit the knowledge embedded within large models. In contrast, our approach leverages reflective thinking
mechanisms inspired by metacognition to more effectively activate and utilize large model knowledge for
precise and contextually grounded reasoning.

3 Proposed Method
As shown in Fig. 2, ReCoT simulates a metacognitive process—specifically the stages of monitoring,

reflection, and correction—which correspond to the stages of Preliminary Generation, Reflective Reasoning,
and Answer Refinement, respectively [25,27]. In the following, these three components are depicted in detail.

3.1 Initial Generation
Due to the complexity of questions and the requirement for rationales to incorporate extensive visual

and commonsense knowledge, directly generating effective rationales is highly challenging. To address this,
inspired by reflective thinking in metacognitive theory, we first generate a preliminary answer, which serves
as the basis for subsequent reflective rationale generation. This differs from previous approaches that directly
generate rationales.

Specifically, we use a frozen MLLM to generate initial responses to complex questions. We denote the
VQA dataset as D = (Vi , Qi , Ai)

N
i=1, where Vi , Qi , and Ai represent the image, question, and a list of ten

ground-truth (GT) answers, respectively. The following instruction is constructed to acquire the preliminary
answer of the MLLM for each sample in each split:

Ins1: Answer the question using a single word or phrase.

The preliminary answer aMLLM is generated by feeding the instruction Ins1, image V, and question Q
into the MLLM. The specific formula is as follows:

aMLLM = fMLLM(Ins1 , V , Q), (1)
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where fMLLM refers to the frozen MLLM. To generate more accurate preliminary answers, we adopt LLaVA
as the MLLM, as it is specifically trained for multimodal VQA tasks.

Figure 2: The proposed ReCoT method. The upper, middle, and lower parts display Theory, Model, and Data,
respectively. The model is divided into three main steps: initial generation, reflective reasoning, and answer refinement,
which correspond to the monitoring, reflection, and correction processes in metacognitive theory

Although simple in structure, the Initial Generation stage encapsulates the model’s comprehension of
both visual and textual inputs, producing a preliminary answer that represents its cognitive state. This output
serves as the foundation for subsequent meta-level monitoring in the Reflective Reasoning stage, consistent
with the object-level cognition defined in metacognitive theory [27].

3.2 Reflective Reasoning
The CoT rationale enhances the interpretability and performance of the model. To generate a rationale

that incorporates both visual and knowledge information relevant to the question, we reflect on the
preliminary answer to gain a deeper understanding of the initial reasoning.

However, unlike previous methods that use image captions to bridge the modal gap between images
and LMs, which leads to the loss of visual information, we use LLaVA that can directly process images to
generate rationales. Specifically, we construct the following instruction:

Ins2: Please explain the answer briefly with one short paragraph.

The CoT rationale RaMLLM can be generated by combining the instruction Ins2, image V, question Q and
answer aMLLM as inputs to the MLLM. The specific formula is as follows:

RaMLLM = fMLLM(Ins2, V , Q , aMLLM). (2)
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This step is similar to the reflective regulation process in metacognition, which aims to improve
the reasoning rationale by critically evaluating the validity of the preliminary judgment, thus achieving
a deeper integration of visual information and domain knowledge. We also observed that the generated
reflective rationales often contain causal and contrastive conjunctions, suggesting that ReCoT performs
structured and interpretable reflective reasoning similar to human metacognitive processes. Although a
single reflection round is used for efficiency, it already achieves state-of-the-art performance, indicating that
ReCoT effectively captures the essential mechanism of human-like reflective reasoning.

3.3 Answer Refinement
In the final reasoning step, previous methods often rely on retrieval for commonsense knowledge and

use image captions for visual grounding, which may result in incomplete or insufficient information and
makes it difficult for the small LM to accurately infer the answer.

Since the preliminary answer and CoT rationale generated in the first two steps have extracted the
necessary visual and common-sense information and integrated them into the text modality, we are able
to infer the final answer accurately without relying on additional external knowledge or visual inputs.
Specifically, we construct the following template for the LM in this step:

Question: <Question> /n Candidate: <Candidate>Rationale: <Rationale>

We generate input texts by replacing the placeholder <Question> with the current question Q, the
placeholder <Candidate> with the preliminary answer aMLLM and the placeholder <Rationale> with
the reflective rationale RaMLLM . The constructed input is fed into the LM to generate the final answer a. The
specific formula is as follows:

a = fLM(Q , aMLLM , RaMLLM), (3)

where fLM is a LM, and we employ FLAN-T5 [62] in our implementation to leverage the reasoning
capabilities of small models [63]. Formally, the probability of the answer refinement can be expressed as
follows:

p (a ∣ Q , aMLLM , RaMLLM) =
Na

∏
i=1

pθ a (ai ∣ Q , aMLLM , RaMLLM , a<i) , (4)

where θa represents the parameters of the LM fLM , and Na denotes the length of the GT answer a.
This step refines the preliminary answer based on the generated CoT rationale, reflecting the correction

mechanism in metacognition. By leveraging the information obtained in the first two steps, we fully
endow the small LM with visual and knowledge foresight, as demonstrated in the subsequent visualization
experiments.

4 Experiments

4.1 Datasets
In traditional VQA research, several datasets such as GQA [64] have been developed. To evaluate the

knowledge-based VQA methods, researchers have constructed several knowledge-based VQA datasets, such
as OK-VQA [65], A-OKVQA [66], Encyclopedic-VQA dataset [67] and InfoSeek dataset [68].
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OK-VQA dataset. The OK-VQA dataset [65] contains 14,031 images from the 2014 partition of the
COCO dataset [36] and 14,055 questions based on these images, of which 9009 are used for training and
5046 for validation. These questions fall into 10 specific knowledge categories or ‘other’. Each sample contains
one question, one image, and ten human-annotated GT answers.

A-OKVQA dataset. The A-OKVQA dataset [66] contains 23,692 images from the 2017 partition of the
COCO dataset [36] and 24,903 questions based on these images, of which 17,056 are used for training, 1145 for
validation, and 6702 for testing. The knowledge categories of a randomly sampled subset of 1000 questions
in A-OKVQA are approximately 44%, 36%, 18%, and 3% for Visual, Commonsense, Knowledge Base, and
Physical, respectively. Each sample contains one question, one image, three human-annotated rationales and
ten human-annotated GT answers.

Encyclopedic-VQA dataset. The Encyclopedic-VQA dataset [67] consists of 221K question- answer
pairs, primarily sourced from Wikipedia. The questions are categorized into single-hop and two-hop types:
single-hop questions require answers from a single Wikipedia page, while two-hop questions necessitate a
sequential retrieval process across multiple documents. The dataset is split into 1 M training, 13.6 k validation,
and 5.8 k test samples.

InfoSeek dataset. The InfoSeek dataset [68] contains 1.3 M image-question pairs associated with
approximately 11 K Wikipedia pages. The dataset is divided into 934 k training, 73 k validation, and 348 k test
samples. The validation set includes questions that are not present in the training split and questions linked
to unseen entities. Results are reported on the validation set.

4.2 Experimental Setting
Given that LLaVA [33,37] has been extensively pre-trained and instruction-tuned on a variety of VQA

benchmarks, it exhibits strong generalization and reasoning capabilities across diverse multimodal queries.
This makes it an ideal cognitive agent in our metacognitive reasoning framework, where it is responsible
for generating both preliminary answers and reflective rationales. Specifically, we employ LLaVA-1.5 with 13
billion parameters [33,37] as the MLLM in our system. To better demonstrate that our method effectively
elicits the MLLM’s latent visual and knowledge understanding with respect to the question, we delegate
the final answer prediction to a lightweight LM. This design not only highlights the utility of the reflective
rationales but also enhances the flexibility and efficiency of the framework by fully fine-tuning the smaller
model for the answer refinement stage. For this purpose, we adopt the T5 encoder-decoder architecture [13]
under the base setting, initialized with FLAN-T5-Base (248 M) [62]. We fine-tune the LM for 20 epochs
using the AdamW optimizer, which is widely used for fine-tuning transformer-based models. The learning
rate is set to 5 × 10−5 to balance convergence speed and stability. The parameters β1 = 0.9 and β2 = 0.999 are
standard values known to stabilize optimization in transformer models. A weight decay of 0.01 is applied
to prevent overfitting while promoting generalization. The batch size is set to 32, a commonly used value
in similar tasks to balance computational efficiency and model performance. For the sequence lengths, the
maximum input length is set to 512 tokens, which is typical for transformer models, allowing the processing
of long sequences. The output sequence length is set to 64 tokens, which is sufficient for the typical answer
length in the datasets used. All training and evaluation are conducted on a single NVIDIA A800 GPU with
80 GB of memory, using Python 3.8.12 and PyTorch 1.11.0.

4.3 Experimental Results
Comparative Results on OK-VQA. Table 1 presents a comprehensive comparison between our

proposed method and existing state-of-the-art approaches on the OK-VQA dataset. The upper section
of the table reports retrieval-based methods that incorporate various forms of external knowledge.
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These include methods built on vision-language models, such as ConceptBERT [69], KRISP [5], Visual
RR [10], MAVEx [70], and UnifER [54], as well as methods based on pretrained language models, including
TRiG [8], RA-VQA [6], and REVEAL [52]. The middle section introduces comparisons with closed-source
MLLMs, which represent the frontier of proprietary systems in vision-language reasoning. These include
Flamingo [30], Gemini [71], and GPT-4V [72]. The lower section highlights methods that leverage large
models, including few-shot prompting approaches using frozen LLMs, such as PICa [58], Prophet [60],
and PromptCap [59]; methods based on LLMs augmented with external knowledge, such as REVIVE [14],
TwO [15], and SKP [73]; CoT-based reasoning methods such as VCTP [23]; and methods based on large
vision-language models enhanced with external signals, exemplified by FLMR [57] and Self-KSel-QAns [74].
The compared results for the closed-source large models are taken from [72], while the results for the other
methods are directly reported from the original papers. The ‘Pub&Year’ column indicates the conference
abbreviation and year of publication, the ‘R’ column denotes whether the method uses CoT rationales for
reasoning, and the ‘JFT’ column indicates whether the method is jointly fine-tuned with frozen large models
of 3B parameters or greater.

Table 1: Comparison with state-of-the-art methods on the OK-VQA dataset. The ‘Pub&Year’ column indicates the
conference abbreviation and year of publication. The ‘R’ column indicates whether the method uses CoT rationales to
reason answers. The ‘JFT’ column indicates whether the method is jointly fine-tuned with frozen large models of 3B or
greater. The ‘Knowledge Resources’ column indicates the main sources of knowledge

Method Pub&Year R JFT Knowledge
Resources* Accuracy

Retrieval-based
methods

ConceptBERT [69] EMNLP 2020 × × CN 33.66

Krisp [5] CVPR 2021 × ×
DBpedia + CN +
VG + haspartKB 38.35

Visual RR [10] EMNLP 2021 × × Google Search 39.20

MAVEx [70] AAAI 2022 × ×
CN +WikiPedia
+ Google Image 40.28

UnifER [54] ACMMM 2022 × × CN 42.13
TRiG [8] CVPR 2022 × × Wikipedia 50.50

RA-VQA [6] EMNLP 2022 × × Google Search 54.48

REVEAL [52] CVPR 2023 × ×
WIT + CC12M +

Wikidata 59.10

Closed-source
large models

Flamingo [30] – – – – 57.8
Gemini [71] – – – – 62.27

GPT-4V [72] – – – – 64.28
Large

models-based
methods

PICa-Full [58] AAAI 2022 × × GPT-3 48.00

(Continued)
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Table 1 (continued)

Method Pub&Year R JFT Knowledge
Resources* Accuracy

REVIVE [14] NeurIPS 2022 ✓ ×
GPT-3 +
Wikidata 56.60

Prophet [60] CVPR 2023 × × GPT-3 61.10
PromptCap [59] ICCV 2023 × × GPT-3 60.40

TwO [15] ACL 2023 ✓ ×
GPT-3 +

WikiPedia 56.67

FLMR [57] NeurIPS 2023 × ×
BLIP2 T5-XL +
Google Search 62.08

VCTP [23] AAAI 2024 ✓ × Codex 56.2

SKP [73] ACL 2024 × ✓
Vicuna + Google

Search 63.3

Self-KSel-
QAns [74] EMNLP 2024 × ✓

BLIP2 T5-XL +
Google Search 62.8

ReCoT (Ours) ✓ × BLIP-2 XL 56.76
ReCoT (Ours) ✓ × LLaVA-1.5 65.56†

Note: ∗CN and VG denote ConceptNet and Visual Genome, respectively. †The best performance is highlighted in bold.

Experimental results show that our method surpasses traditional retrieval-based approaches by 3.48%
(65.56 vs. 62.08), outperforms large model-based methods by 2.26% (65.56 vs. 63.30), and further exceeds
the best-performing closed-source model by 1.28% (65.56 vs. 64.28). The consistent performance improve-
ments observed in the reflective reasoning stage indicate that ReCoT implicitly performs metacognitive
regulation—monitoring, evaluating, and refining its reasoning process—thereby exhibiting metacognitive
characteristics in practice. Moreover, compared with methods that jointly fine-tune frozen large models
of 3B parameters or greater, our approach still achieves superior performance. Jointly fine-tuning our
model with large frozen models (3B parameters or greater) leads to a significant computational burden.
Rather than jointly training with large-scale models, ReCoT leverages MLLMs as reasoning agents during
inference to execute metacognitive processes. This design enables ReCoT to achieve performance surpassing
several baselines that jointly fine-tune models larger than 3B parameters, while significantly reducing
computational cost.

Comparative Results on A-OKVQA. In Table 2, we further evaluate the generalization ability of our
method on the A-OKVQA dataset, which consists of more challenging knowledge-intensive questions.
Our proposed ReCoT framework achieves superior performance compared to recent large model–based
approaches. Traditional methods such as ViLBERT [75], LXMERT [11], and KRISP [5] exhibit limited
performance due to their shallow visual-textual alignment and restricted reasoning capabilities. Recent
large model-based approaches, including PromptCap [59], Prophet [60], and VCTP [23], benefit from
pretrained language knowledge but still encounter performance bottlenecks, particularly in complex mul-
timodal reasoning scenarios without metacognitive guidance. The compared results for PromptCap and its
earlier methods are from [59], while the more recent works, following PromptCap, are reported from the
original papers.



12 Comput Mater Contin. 2026;87(1):80

Table 2: Comparison with SOTA methods on the A-OKVQA dataset. The ‘Pub&Year’ column indicates the conference
abbreviation and year of publication. The ‘R’ column indicates whether the method uses CoT rationales to reason
answers. The ‘JFT’ column indicates whether the method is jointly trained with frozen large models of 3B or greater

Method Pub&Year R JFT Val Test

ViLBERT [75] NeurIPS
2019 × × 30.6 25.9

LXMERT [11] EMNLP
2019 × × 30.7 25.9

KRISP [5] CVPR
2021 × × 33.7 27.1

GPV-2 [76] ECCV
2022 × × 48.6 40.7

PromptCap [59] ICCV
2023 × × 56.3 59.6

Prophet [60] CVPR
2023 × × 58.2 55.7

VCTP [23] AAAI
2024 ✓ × 53.2 53.8

SKP [73] ACL 2024 × ✓ 63.8 –
ReCoT (Ours) ✓ × 69.6† 63.7†

Note: †The best performance is highlighted in bold.

Among these methods, SKP [73] stands out as one of the strongest baselines, achieving 63.8% on the
validation set. However, our ReCoT method further improves upon SKP by a significant margin, achieving
69.6% on the validation set and 63.7% on the test set. The experimental results confirm that even in tasks
requiring complex visual understanding and external knowledge integration, ReCoT effectively incorpo-
rates preliminary cognition and reflective reasoning to dynamically refine predictions. This metacognitive
mechanism enables our method to robustly handle diverse reasoning demands and achieve state-of-the-art
performance on A-OKVQA without relying on heavy joint fine-tuning with large models.

Generalization Evaluation. To demonstrate the model’s ability to generalize across different datasets,
we conducted experiments on the Encyclopedic-VQA and InfoSeek datasets. These datasets present highly
challenging questions that require not only visual recognition but also detailed external knowledge, making
them particularly difficult for models that rely solely on visual input. As shown in Table 3, we compare our
method, ReCoT, against several advanced LLMs and MLLMs as baselines. The compared results are taken
from [77]. Compared to standard large model baselines, ReCoT demonstrates a significant performance
improvement. Vanilla models, such as Vicuna-7B and LLaMA, struggle on both the Encyclopedic-VQA
and InfoSeek datasets, which require external knowledge and visual input. In contrast, ReCoT, utilizing a
metacognitive reasoning approach, achieves higher scores of 18.6 on Encyclopedic-VQA and 11.3 on InfoSeek,
showcasing its superior generalization ability and effectiveness in multimodal tasks. When compared to
other MLLMs like InstructBLIP and LLaVA-1.5, which also integrate visual and textual input, ReCoT
outperforms them on both datasets, underscoring the value of its metacognitive framework in enhancing
reasoning and knowledge utilization. This improvement demonstrates ReCoT’s effectiveness in handling
knowledge-intensive VQA tasks.
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Table 3: More evaluation on the encyclopedic-VQA and InfoSeek datasets

Method LLM Encyclopedic-
VQA InfoSeek

LLMs
Vanilla Vicuna-7B 2.0 0.0
Vanilla LLaMA-3-8B 17.3 0.0
Vanilla LLaMA-3.1-8B 16.6 0.0
MLLMs

InstructBLIP Flan-T5 XL 12.0 8.1
LLaVA-1.5 Vicuna-7B 16.9 9.5

ReCoT (Ours) Vicuna-7B 18.6† 11.3†

Note: †The best performance is highlighted in bold.

Discuss. The superior performance of our proposed ReCoT method mainly stems from its
metacognition-inspired reflective reasoning mechanism. Unlike previous approaches that either rely on
external knowledge retrieval or direct multimodal fine-tuning, the metacognitive design enables ReCoT
to (1) activate and utilize the rich implicit knowledge within MLLMs without heavy joint fine-tuning,
(2) generate higher-quality reflective rationales that provide explicit visual-knowledge grounding, and (3)
empower smaller models to reason effectively with minimal computational cost. These reflective rationales
significantly enhance reasoning quality and stability across all knowledge categories, leading to consistent
state-of-the-art performance on above datasets.

4.4 Ablation Study
We conduct a series of ablation experiments to demonstrate the advantages of the proposed

ReCoT method.
Comparison with Rationales Generated by LLM. To verify that rationales generated by traditional

LLMs struggle to provide comprehensive information for enhancing smaller LMs, we conduct an experiment
where the rationales and corresponding answers generated by GPT-3 from KAT [17] are fed, along with the
question, into a FLAN-T5 model for fine-tuning. The experimental results are summarized in Table 4.

Table 4: Comparison of ReCoT and GPT-3 in terms of rationale quality

Model OK-VQA
GPT-3 48

GPT-3 + T5 48.41 (+0.41)
LLaVA-1.5 60.23

ReCoT (Ours) 65.56 (+5.33)

As shown in Table 4, the smaller LM achieves only a marginal improvement of +0.41% when utilizing
the rationales generated by GPT-3. In contrast, our reflective rationales significantly enhance the perfor-
mance of LLaVA-1.5, leading to an improvement of 5.33% over the original results. This demonstrates that
simply leveraging traditional LLM-generated rationales provides limited benefits for downstream reasoning,
whereas reflective rationales can substantially refine the answer quality.
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These results highlight the importance of metacognitive reasoning in rationale generation. Unlike
traditional LLM outputs, our reflective rationales dynamically correct and enrich the preliminary reasoning
process, providing more targeted and complete guidance for subsequent answer refinement. This validates
the effectiveness of the ReCoT framework in improving complex visual reasoning performance.

Comparison with Rationales Generated by LM. To verify that small LMs struggle to generate effective
rationales for knowledge-based VQA tasks, we employ the MM-CoT framework [19], which has been
commonly used in ScienceQA [22], to generate rationales and infer answers. The model architecture follows
the design shown in Fig. 1b. To further explore whether richer inputs can improve rationale quality and
answer accuracy, we incorporate different types of captions and additional retrieved knowledge. We consider
the following settings and report the results on the A-OKVQA dataset in Table 5.

Table 5: Comparison of ReCoT and MM-CoT in terms of rationale quality

Method Context A-OKVQA
MM-CoT [19] NoCap 26.60

OFACap 35.97
OFACap + K 35.91

PromptCap + K 42.85
ReCoT (Ours) – 69.6†

Note: †The best performance is highlighted in bold.

NoCap. No contextual information is provided.
OFACap. Captions generated by the OFA large model [78], initialized with the official large-

best-clean checkpoint, are used.
PromptCap. Question-related captions generated by PromptCap [59], designed to capture visual details

relevant to the question, are used.
K. Five relevant knowledge triples are retrieved from ConceptNet [79] following the retrieval method

in [7].
As shown in Table 5, MM-CoT under the NoCap setting achieves a poor performance of only 26.60%.

Providing captions improves performance to 35.97% (OFACap) and 42.85% (PromptCap+K), but even with
enhanced captions and additional retrieved knowledge, MM-CoT still falls significantly short compared to
our ReCoT, which achieves 69.6%.

These results indicate that simply providing small LMs with more external information is insufficient for
generating effective rationales in complex VQA scenarios. In contrast, our method leverages a metacognitive
reasoning process, where an MLLM dynamically monitors and refines its initial cognition, resulting in richer
and more targeted rationales. This enables ReCoT to substantially outperform methods that rely solely on
small LMs for rationale generation.

Category-Wise Effectiveness of Reflective Reasoning. To evaluate the effectiveness of our reflective
rationale in refining preliminary answers, we conduct a category-wise analysis on the OK-VQA validation
set. Specifically, we report the proportions of correctly refined, incorrectly refined, and accuracy-unchanged
cases among modified samples across different question types. The results are illustrated in Fig. 3, where each
bar represents the outcome distribution for a particular question category.
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Figure 3: Category-wise distribution of refinement outcomes, showing the proportions of correctly refined, incorrectly
refined, and unchanged after reflective reasoning on the OK-VQA validation set

The results demonstrate that our reflective reasoning mechanism consistently improves performance
across nearly all categories. Among the modified samples, approximately 50% are correctly refined in each
category, indicating the broad applicability of our approach. The category “Sports and Recreation” shows the
highest correction rate at 65%, followed by “Geography, History, Language and Culture” (57%) and “Other”
(57%). Even in categories such as “Weather and Climate” and “Science and Technology”, which often require
factual precision, the correction rates reach 53% and 50%, respectively.

In terms of incorrect modifications, the degradation rate remains below 20% in almost all categories,
showcasing the stability of the refinement process. The highest degradation occurs in “Vehicles and Trans-
portation” (22%), whereas categories like “Geography, History, Language and Culture”, “Plants and Animals”
and “Science and Technology” maintain minimal degradation at only 7%.

These results highlight the robustness and generalizability of ReCoT’s reflective reasoning process. Its
ability to consistently correct errors across diverse semantic domains suggests that the rationale captures key
visual and contextual cues overlooked in the initial prediction. Moreover, the low degradation rates indicate
that the reflection mechanism introduces minimal risk of overcorrection. This further demonstrates that
our metacognitive approach not only enhances reasoning accuracy but also maintains high stability across
various knowledge-grounded question types.

Category-Wise Performance Improvement via Reflective Reasoning. To further evaluate the effec-
tiveness of our reflective rationale in refining preliminary answers, we compare the accuracy before and after
refinement across different question categories on the OK-VQA validation set. The comparison is visualized
in Fig. 4, where the left and right portions of each bar represent the performance of the initial predictions
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and their refined results, respectively. The dark red segments indicate the category-wise performance
improvements contributed by our reflective reasoning mechanism.

Figure 4: Category-wise accuracy comparison before and after reflective refinement on the OK-VQA validation set.
Dark red segments indicate the improvement contributed by our method

As shown in Fig. 4, our method consistently improves accuracy across all categories. The most substan-
tial improvement is observed in the category “Sports and Recreation”, with a performance gain of +9.17%,
followed by “People and Everyday Life” (+6.73%) and “Science and Technology” (+7.38%). These gains
indicate the effectiveness of our approach in both commonsense-rich and knowledge-intensive domains.
Even categories with relatively strong initial performance, such as “Weather and Climate” and “Cooking and
Food”, benefit from improvements of +4.19% and +4.42%, respectively. The smallest improvement is seen in
“Vehicles and Transportation” (+2.90%), though performance still increases.

These results demonstrate that our metacognitive reflective reasoning mechanism contributes consis-
tent and meaningful improvements across diverse question types. The substantial gains in both general and
knowledge-specific domains suggest that the generated rationales effectively capture overlooked visual or
contextual cues, enabling more accurate final predictions. Furthermore, the performance improvements
are especially notable in categories where preliminary answers are more likely to suffer from superficial
understanding, validating the strength of our refinement strategy.

Effectiveness of Each Component in ReCoT. To assess the contribution of each component within
the ReCoT framework, we conduct ablation studies by systematically removing key stages. Specifically, the
‘w/o IG’ setting directly prompts LLaVA to generate rationales for answer inference without leveraging
reflection or refinement of preliminary answers. The ‘w/o PA’ setting executes both the answer generation and
reflective reasoning stages but uses only the rationale for final answer inference, discarding the preliminary
answer. Additionally, we assess the impact of incorporating captions and external retrieved knowledge. The
experimental results are reported in Table 6.

As shown in Table 6, without reflection on preliminary answers (‘w/o IG’), directly prompting LLaVA
to generate rationales leads to a substantial performance drop—achieving only 54.82% on OK-VQA, which
is 9.36% lower than our full ReCoT pipeline (65.56%). Removing the influence of preliminary answers
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(‘w/o PA’) also causes noticeable degradations in performance across both OK-VQA and A-OKVQA.
Furthermore, while incorporating image captions and externally retrieved knowledge results in very slight
performance improvements (e.g., 69.98% vs. 69.55% on A-OKVQA), the gains remain marginal compared
to the benefits brought by ReCoT’s internal reflective reasoning. Although the quality of the captions and
retrieved knowledge is substantially lower than that of the reflective rationales generated by our method,
they do contain some additional information that is not captured by the reflective rationales. However, this
supplementary information only leads to very limited improvements in overall performance.

Table 6: Ablation study of each component in our proposed method

Input OK-VQA A-OKVQA
Ours 65.56 69.55

w/o IG 54.82 61.30
w/o PA 64.18 68.19

w/OFACap 65.42 69.64
w/OFACap + K 65.58 69.71

w/PromptCap + K 65.53 69.98

These results further validate the importance of the reflective reasoning mechanism and demonstrate
that each stage of our metacognitive reasoning plays an essential and complementary role. Moreover, they
indicate that while external knowledge and captions can offer minor enhancements, the internally generated
cognition and reflection in ReCoT already provide sufficiently comprehensive information for complex
visual reasoning.

Effectiveness of Affording Knowledge and Visual Information. To validate the effectiveness of the
proposed ReCoT framework in affording essential information for answer reasoning, we compare it against
several retrieval-based state-of-the-art methods under identical settings. All compared methods employ
the T5 encoder-decoder architecture to infer answers. For a fair comparison, we initialize our model with
the same T5-large parameters used by these retrieval-based approaches. The experimental results are
summarized in Table 7, where the ‘Input’ column lists the types of information provided to each method
during answer inference.

As shown in Table 7, existing retrieval-based methods, such as TRiG [8], RA-VQA [6], and
REVEAL [52], incorporate a wide range of external knowledge sources and visual information, including
dense labels, OCR, and image captions. Despite these extensive efforts to gather and integrate external
information, their performances remain significantly lower than ours. In particular, ReCoT achieves an
accuracy of 65.71%, substantially outperforming the best retrieval-based baseline (REVEAL, 59.10%).

These results demonstrate that ReCoT can effectively afford the critical knowledge and visual cues
needed for complex reasoning tasks by internally generating preliminary answers and reflective ratio-
nales, without requiring explicit retrieval or image-to-text conversion. This highlights the strength of our
metacognitive reasoning approach in eliciting necessary information within MLLMs compared to traditional
retrieval-based pipelines.

Effectiveness across Backbones. To validate the generalizability of our proposed ReCoT framework
across different model backbones, we replace the LM with several widely-used variants, including FLAN-
Alpaca and UnifiedQA [80]. In addition, we evaluate the performance of our method when using models
with visual features or larger parameter sizes. The experimental results are presented in Table 8.
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Table 7: Comparison of methods using the same network structure and initialization parameters but different inputs

Method Input Accuracy

TRiG [8]
Question + Image caption +

Dense labeling + OCR +
WikiPedia

50.50

RA-VQA [6]

Question + Image caption +
Object name + Object

attribute + OCR + Google
search

54.48

RIVIVE [14]

Question + Image caption +
Regional tag + Visual feature
+Wikidata + Candidate +

Rationale

56.60

REVEAL [52]
Question + Visual feature +

WIT + CC12M +Wikidata +
VQA-v2

59.10

FLMR [57]

Question + Image captions +
Object name + Object

attribute + OCR + Google
search

54.85

ReCoT (Ours) Question + Preliminary
answer + Reflective rationale 65.71†

Note: †The best performance is highlighted in bold.

Table 8: Using different backbone. VF represents the visual features extracted from images

Backbone OK-VQA A-OKVQA
T5base 64.85 68.90

FLAN-Alpacabase 65.30 69.74
UnifiedQAbase 64.93 68.47
FLAN-T5base 65.56 69.55
FLAN-T5l ar ge 65.63 69.21

FLAN-T5base + VF 65.16 69.46

As shown in Table 8, our method consistently achieves strong performance across all backbones.
Specifically, when replacing the LM with FLAN-Alpacabase or UnifiedQAbase , the performance remains
comparable to that of the original FLAN-T5base model. Moreover, injecting visual features extracted from
ViT [81] (FLAN-T5base + VF) or using a larger backbone such as FLAN-T5l ar ge brings no significant
performance improvement on either OK-VQA or A-OKVQA.

These results demonstrate the robustness and generalizability of ReCoT across diverse LM backbones.
The generated preliminary answers and reflective rationales afford sufficient knowledge and visual cues for
downstream reasoning, enabling small models to achieve strong performance without the need for additional
visual features or larger model capacities. This further highlights the efficiency and flexibility of the ReCoT
framework for knowledge-based VQA tasks.
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4.5 Qualitative Analysis
To demonstrate how our ReCoT rationales effectively guide answer refinement, we present several

representative examples from the OK-VQA validation set in Fig. 5. In the first example, the model’s initial
error (“Time”) arises from language ambiguity, as it overlooks the plural context implying multiple
zones. Through rational reasoning, it recognizes that the clocks display different time zones, correcting
the answer to “Time zone.” Similar patterns appear elsewhere: some errors stem from visual misjudgment
(e.g., misidentifying the ram’s habitat or missing the mammal’s fur), while others reflect knowledge gaps
(e.g., incorrect founding year or author). Across examples, the rationales effectively leverage visual and
contextual cues to overcome these initial misunderstandings and produce accurate final predictions. These
cases demonstrate that ReCoT not only helps recover semantically rich knowledge overlooked in the initial
prediction but also enables the model to incorporate grounded visual cues and commonsense knowledge.
In addition, we observed that the generated reflective rationales exhibit good language fluency and practical
usability, further confirming their interpretability and applicability in multimodal reasoning scenarios. We
further analyze several failure cases of ReCoT to better understand its limitations. Some incorrect predictions
occur when the model’s reflective rationale fails to distinguish between semantically related but factually
incorrect concepts or when visual evidence is overemphasized while ignoring external knowledge. These
cases suggest that although ReCoT effectively enhances reasoning in most scenarios, its reflective process
can still inherit certain biases from the underlying MLLM. This highlights potential directions for improving
factual grounding and balancing visual-knowledge integration in future work.

4.6 Difference between ReCoT and Metacognition
AI is closely intertwined with human cognitive science, and understanding human learning and

reasoning processes provides valuable inspiration for building more intelligent AI systems. Although ReCoT
simulates the core processes of metacognition, a gap remains between ReCoT and a full realization of human
metacognitive mechanisms. Specifically, ReCoT currently relies on MLLMs to generate preliminary answers,
meaning that its reflective reasoning process is inherently constrained by the capabilities and training knowl-
edge of the underlying models. Furthermore, while metacognitive theory in cognitive science emphasizes
continuous and dynamic reflection across multiple iterative stages of the cognitive process, ReCoT primarily
focuses on reflecting upon cognitive outcomes without engaging in deeper multi-step iterative refinement.
Due to the frozen nature of the MLLM, if an incorrect preliminary answer is produced in the first iteration,
it becomes extremely challenging to generate a correct reflective rationale to correct it. As a result, even if
multiple iterations of reflection are performed, the probability of successfully refining the answer remains
low, while the computational cost increases significantly. Under the current framework, deeper iterative
refinement offers limited practical benefits relative to its computational overhead. Nevertheless, we believe
that ReCoT provides valuable insights into the construction of intelligent agents guided by principles of
human cognition. In future work, we will further explore how to enhance the iterative optimization capability
of ReCoT to better align with the continuous reflection mechanisms emphasized in metacognitive theory.
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Figure 5: Qualitative examples of ReCoT’s reflective reasoning process on the OK-VQA validation set. Each example
shows how ReCoT refines incorrect preliminary answers by generating rationales that integrate visual cues and
contextual knowledge, resulting in accurate final predictions aligned with GT answers

5 Conclusion
In this paper, we proposed ReCoT, a simple yet effective three-step CoT reasoning framework inspired

by metacognition theory. Under the setting where LLaVA serves as the cognitive agent, ReCoT empowers
smaller LMs with critical visual and knowledge insights to accurately infer answers. Specifically, our method
generates the final answer by reflecting on and refining an initial prediction through the use of reflective
rationales. Experimental results demonstrate that ReCoT can effectively stimulate and leverage the internal
knowledge and visual understanding embedded within MLLMs, enabling accurate reasoning without the
need for explicit retrieval or image-to-text conversion. By harnessing metacognitive reflective processes,
ReCoT achieves state-of-the-art performance on knowledge-based VQA benchmarks. Nevertheless, ReCoT
currently depends on the capabilities and training knowledge of the underlying MLLMs for both preliminary
answer generation and reflective reasoning, inherently limiting the extent of reflection achievable. Enabling
continuous and dynamic reflection to progressively refine cognitive outcomes remains a promising direction
for future research.
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To further bridge the gap between artificial and human metacognition, future work will extend
ReCoT into a multi-round reflective reasoning framework with a memory or self-monitoring mechanism,
enabling iterative metacognitive cycles for continuous evaluation and refinement. This will bring ReCoT
closer to human-like reflective cognition and support deeper, adaptive reasoning. Additionally, applying
ReCoT to low-resource languages and cross-cultural knowledge reasoning will improve inclusiveness and
generalization. Reflective reasoning can help compensate for limited external knowledge, though align-
ing it with diverse linguistic and cultural contexts remains challenging. Beyond technical development,
ReCoT’s metacognitive foundation raises important philosophical and ethical questions on AI self-reflection,
cognitive transparency, and alignment with human values. Finally, ReCoT shows potential for cross-
domain applications in education, healthcare, and human-AI collaboration, enhancing its theoretical and
interdisciplinary impact.
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