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ABSTRACT: In daily life, keyword spotting plays an important role in human-computer interaction. However, noise
often interferes with the extraction of time-frequency information, and achieving both computational efficiency and
recognition accuracy on resource-constrained devices such as mobile terminals remains a major challenge. To address
this, we propose a novel time-frequency dual-branch parallel residual network, which integrates a Dual-Branch Broad-
cast Residual module and a Time-Frequency Coordinate Attention module. The time-domain and frequency-domain
branches are designed in parallel to independently extract temporal and spectral features, effectively avoiding the
potential information loss caused by serial stacking, while enhancing information flow and multi-scale feature fusion.
In terms of training strategy, a curriculum learning approach is introduced to progressively improve model robustness
from easy to difficult tasks. Experimental results demonstrate that the proposed method consistently outperforms exist-
ing lightweight models under various signal-to-noise ratio (SNR) conditions, achieving superior far-field recognition
performance on the Google Speech Commands V2 dataset. Notably, the model maintains stable performance even in
low-SNR environments such as -10 dB, and generalizes well to unseen SNR conditions during training, validating its
robustness to novel noise scenarios. Furthermore, the proposed model exhibits significantly fewer parameters, making
it highly suitable for deployment on resource-limited devices. Overall, the model achieves a favorable balance between
performance and parameter efficiency, demonstrating strong potential for practical applications.

KEYWORDS: Keyword spotting; convolutional neural network; residual learning; attention; small footprint; noisy
far-field

1 Introduction

With the rapid development of artificial intelligence technologies, voice-based human-computer inter-
action has become increasingly common in daily life. Among them, keyword spotting (KWS) aims to detect
predefined keywords from continuous speech streams and has been widely adopted in modern intelligent
devices. For example, commercial voice assistants such as Xiaomi’s XiaoAi and Apple’s Siri can be activated
with wake words like “xiaoaitongxue” or “Hey Siri” to launch applications and perform operations [1,2]. In the
field of the Internet of Things (IoT), KWS is also applied in smart homes and in-vehicle intelligent systems,
where users interact with devices via voice commands to control speakers, televisions, or automotive systems.

Typically, these tasks are deployed on resource-constrained edge devices with limited computation and
memory. To ensure timely and accurate interaction, KWS systems are required not only to exhibit strong
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noise robustness but also to maintain a compact model size and low memory footprint, thereby meeting the
stringent performance and energy constraints of mobile platforms.

In real-world applications, however, KWS faces a significant challenge: performance degradation in
noisy environments. In practical usage scenarios, where acoustic conditions are highly dynamic and noise
levels vary, KWS systems are prone to false alarms or missed detections, which can severely affect user
experience. With the growing demand for edge-based voice interaction, increasing research attention has
been devoted to developing lightweight KWS models suitable for deployment on resource-limited devices.
Under ideal conditions such as low noise and near-field speech, these small-footprint models have already
demonstrated promising recognition performance [3-7].

Nevertheless, in more complex real-world environments—for instance, in far-field scenarios with
significant noise interference—their performance often deteriorates drastically. In particular, models with
simplified architectures and fewer parameters usually suffer from limited generalization ability, making them
vulnerable to unseen acoustic conditions. As a result, such models often experience accuracy degradation,
delayed responses, or frequent false activations, which undermines both user experience and system
reliability [8-11].

The main contributions of this paper are summarized as follows: We propose a lightweight keyword
spotting model for noisy environments, namely Time-Frequency Dual-Branch Parallel Residual Network
(TF-DBPResNet). The network leverages residual convolution and depthwise separable convolution for
feature extraction, with a dual-branch parallel structure in the time and frequency domains as its core. This
design fully exploits the critical characteristics of speech signals across temporal and spectral dimensions,
thereby improving the model’s adaptability to diverse acoustic conditions. We design a Dual-Branch Broad-
cast Residual (DBBR) module to separately extract temporal and spectral features via two parallel branches.
Through broadcast learning, the module achieves cross-dimensional information fusion and reconstruction,
enhancing the feature representation capability. To further strengthen the joint perception between the
time and frequency domains, we introduce the Time-Frequency Coordinate Attention (TFCA) module,
inspired by coordinate attention mechanisms. TFCA models long-range dependencies along both time and
frequency axes, effectively capturing salient responses in the time-frequency space and guiding the network
to emphasize key information regions. We develop a curriculum learning strategy combined with online
hard example mining to further enhance the model’s generalization under complex noise conditions. This
strategy organizes training samples from easy to hard while dynamically focusing on the most challenging
inputs at each stage. As a result, the model improves its ability to discriminate difficult samples and non-ideal
speech inputs, while maintaining efficient convergence.

2 Related Works

With the development of deep learning, deep neural networks were among the first to demonstrate
success in the keyword spotting (KWS) task, and subsequent research has achieved continuous progress
based on this foundation [12]. In 2015, Sainath et al. first applied convolutional neural networks (CNNs)
to KWS [13]. Compared with traditional fully connected networks, CNNs offer fewer parameters and
higher computational efficiency, while effectively modeling the temporal and spectral correlations in speech
signals. Furthermore, CNNs allow flexible adjustment of network depth and width, making it easier to build
lightweight models on edge devices with low computational cost. As a result, CNNs have shown significant
advantages and become increasingly prevalent in KWS applications [14].

Speech signals inherently exhibit strong temporal sequential dependencies, which must be considered
during modeling. Although CNNs were widely adopted in early KWS systems due to their local receptive
field modeling, small parameter size, and computational efficiency, their fixed receptive fields limit the ability



Comput Mater Contin. 2025;87(1):9 3

to capture long-range contextual dependencies, often neglecting the global temporal structure of speech. To
address this limitation, recurrent neural networks (RNNs) were introduced into speech modeling. Variants
such as long short-term memory (LSTM) and gated recurrent units (GRU) leverage gating mechanisms
to mitigate the vanishing and exploding gradient problems of vanilla RNNs, thereby capturing long-term
dependencies more effectively. In non-real-time scenarios, bidirectional LSTMs can simultaneously model
past and future context, further improving KWS performance [15]. For wake-word detection, however, where
speech segments are typically short and long dependencies are unnecessary, bidirectional GRUs achieve
comparable accuracy while significantly reducing memory usage and training costs. Despite their stronger
temporal modeling capacity, RNN-based methods are generally more complex and incur higher latency
compared to CNNs, making them less suitable for real-time edge deployment. In 2017, Arik et al. proposed
the convolutional recurrent neural network (CRNN) architecture [9], which combines the advantages of both
CNNs and RNNs by extracting local time-frequency features with CNNs and modeling long-range temporal
dependencies with RNNs. This approach outperforms standalone CNN or RNN models for KWS tasks [16].

To meet the deployment requirements on mobile and embedded devices, researchers have proposed
various small-footprint KWS models. Representative work includes Google’s MobileNet series (2017), which
applies depthwise separable convolutions (DS-CNNs) to reduce parameter size while maintaining good
accuracy. DS-CNNs decompose standard convolutions into depthwise convolutions across channels and
pointwise convolutions along the channel dimension, further reducing computational cost [17]. Another
line of work, TC-ResNet, adopts stacked residual modules for efficient modeling, making it suitable for
low-latency inference scenarios [18]. In addition, MatchboxNet employs temporal depthwise separable con-
volutions for end-to-end speech recognition, serving as an important reference for later lightweight models.

To improve model robustness in non-ideal acoustic environments, some studies have introduced atten-
tion mechanisms to enhance the network’s focus on critical temporal features in audio, thereby improving
noise robustness to a certain extent [2,19-21]. Moreover, self-attention structures such as Transformers have
also been applied to speech modeling. With their strong global modeling capacity, they outperform tradi-
tional convolutional and hybrid CNN-attention models in speech recognition tasks [22-24]. However, these
methods usually incur high computational and memory costs, making them impractical for deployment in
real-world applications such as smart speakers, wearable devices, or in-vehicle systems.

To further enhance KWS performance under noisy conditions, multi-condition training is commonly
employed as a simple yet effective strategy for improving robustness in small-footprint speech models.
By exposing the model to speech samples with various noise levels during training, the model learns to
generalize better to noisy conditions. Nevertheless, when the gap between different signal-to-noise ratio
(SNR) levels is too large, the model often struggles to learn discriminative features within such a complex
noise space, leading to reduced training efficiency and limited robustness. To overcome this issue, recent
studies have proposed curriculum learning (CL) as an alternative [25,26]. Inspired by the human learning
process, CL starts training with clean or high-SNR speech samples, allowing the model to first capture
fundamental speech structure. As training progresses, more challenging samples with lower SNRs are
gradually introduced, thereby improving the model’s ability to adapt to noisy conditions. This progressive
learning strategy effectively mitigates the problem of early exposure to overly difficult samples in multi-
condition training. Experimental results show that CL provides greater improvements in noise robustness,
especially for small-footprint models intended for real-world deployment. Balancing lightweight model
design and noise robustness therefore remains a critical challenge in the development of small-footprint
KWS systems.
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3 Methodology
3.1 Model Architecture

In this work, we construct a lightweight network architecture for keyword spotting (KWS), namely
the Time-Frequency Dual-Branch Parallel Residual Network (TF-DBPResNet). The overall framework is
illustrated in Fig. 1. The architecture consists of three main components: a Pre-Convolution Block, multiple
Time-Frequency (TF) Blocks, and a Post-Convolution Block. The encoder is built upon residual convo-
lutions and depthwise separable convolutions, which achieve efficient computation with a small number
of parameters.
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Figure 1: Overview of TE-DBPResNet model architecture
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The input first passes through the SE-Res Pre-Convolution Block for preliminary feature extraction. It is
then processed by four consecutive TF-Blocks, each of which contains two key components: the Dual-Branch
Broadcast Residual (DBBR) module and the Time-Frequency Coordinate Attention (TFCA) module. These
two components work collaboratively to fully exploit and fuse temporal and spectral information from the
input features, thereby enhancing the network’s representational power for complex speech patterns.
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Specifically, the DBBR module integrates time-frequency features of different scales or pathways
through a compression-broadcast fusion mechanism along the non-modeled dimension. This design
strengthens the synergy between local details and global structures. The TFCA module, inspired by coordi-
nate attention, guides the network to separately model attention weights along the time and frequency axes.
By dynamically adjusting the importance of each position in the feature map, TFCA highlights informative
regions while suppressing redundant information. The collaboration between DBBR and TFCA not only
improves feature representation but also significantly enhances robustness against noise interference, making
the model particularly suitable for speech tasks in multi-noise scenarios.

At the end of the network, the Post-Block is composed of three 1D depthwise separable convolution
layers, which further enhance feature representations while maintaining low parameter complexity. Through
progressive convolutional operations, the model extracts higher-level and more discriminative features. The
extracted high-dimensional features are then compressed temporally via max-pooling, followed by a fully
connected layer and a Softmax activation to output the final class probabilities, thus achieving accurate
keyword detection.

3.2 SE-Res

To achieve preliminary extraction of salient features from speech signals, we design an acoustic
feature encoding module, SE-Res, as the pre-convolution block, based on a stack of multiple convolutional
layers, as shown in Fig. 2. This module consists of seven consecutive 3 x 3 2D convolutional layers, each
followed by Batch Normalization (BN) [27] and a nonlinear activation function named ReLU [28], in order
to enhance the model’s nonlinear representational capacity and accelerate convergence. By continuously
stacking small receptive field kernels, the module effectively expands the overall receptive field of the
network, thereby improving its ability to model local speech patterns and short-term temporal context.
Compared with using a single large kernel, this design achieves a better balance between parameter efficiency
and modeling capability.

In addition, to strengthen the modeling of channel-wise feature importance, a Squeeze-and-Excitation
(SE) attention module [29] is introduced at the end of the convolutional stack. The SE module explicitly
models inter-channel dependencies and adaptively learns the weight of each channel, thereby enhancing
the network’s sensitivity to critical channel features. This mechanism emphasizes key acoustic regions while
suppressing redundant background information, further improving the discriminative power and robustness
of the model.
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Figure 2: SE-Res architecture

3.3 Dual-Branch Broadcast Residual Block

In traditional one-dimensional convolutional neural networks, the convolution operation exhibits good
translation equivariance. That is, if the input signal undergoes a shift along the time axis, the resulting
feature maps after convolution will also show the same shift. This property is crucial for sequence modeling,
as it ensures the consistency and locality of feature extraction. However, when the feature maps obtained
from 1D convolution are transformed into the frequency domain for further processing, this translation
equivariance is often no longer preserved. On the other hand, methods based on 2D convolution still require
more computation compared to 1D approaches.
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BC-ResNet introduces Broadcast Residual Learning to address the limitations of using either 1D or
2D convolutions alone [30]. Instead of processing all features in 1D or 2D space, it performs convolution
along the frequency dimension of 2D features. Then, it averages the 2D features across the frequency axis
to obtain temporal representations. After several temporal operations, the model broadcasts the 1D residual
information back to the original 2D feature map, achieving residual mapping. This learning approach enables
convolutional processing along the frequency direction, thereby leveraging the advantages of 2D CNNs while
minimizing computational cost. However, noise affects speech differently in the time and frequency domains.
In the time domain, noise tends to be random and irregular, while in the frequency domain, it may introduce
additional spectral components. Most existing convolution-based KWS models combine time-domain and
frequency-domain convolutions sequentially, leading to a serial processing pattern where time-domain
information lost after frequency convolution cannot contribute to subsequent temporal modeling, and
vice versa.

BC-ResNet adopts a serial residual stacking structure, where temporal and frequency convolutions
are performed in sequence within the same path. This sequential modeling causes the later convolution to
overwrite or disturb features extracted by the earlier one, resulting in time-frequency coupling, long gradient
propagation paths, and inter-feature interference. In contrast, the proposed DBBR module processes the
time and frequency domains in parallel. The temporal convolution branch focuses on speech dynamics (e.g.,
phoneme duration, energy variation), while the frequency convolution branch captures spectral distribution
characteristics (e.g., formants, timbre). These two branches operate independently, enabling time-frequency
decoupled modeling. During backpropagation, the temporal and frequency branches compute their gra-
dients independently, avoiding the gradient coupling problem commonly seen in serial architectures such
as BC-ResNet. This parallel gradient propagation mechanism stabilizes model optimization and promotes
balanced learning of time-frequency representations. At the fusion stage, the two domain-specific features
are aggregated, preserving their individual details while capturing cross-domain correlations.

Reference [31] employs both 2D frequency-domain convolutional sub-blocks and 1D time-domain
convolutional sub-blocks for feature extraction. Considering that ConvMixer [31] adopts a serial processing
scheme during feature extraction, which may lead to information loss in the propagation process, our method
instead adopts a dual-branch structure to extract frequency- and time-domain features in parallel, thereby
enhancing feature retention and representational capacity. To more effectively perform joint modeling of
the structural characteristics of speech signals in both time and frequency dimensions, this paper designs
the DBBR (Dual-Branch Broadcast Residual) learning module, inspired by the ideas of the aforementioned
model, as shown in the Fig. 3.
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Figure 3: Dual-branch broadcast residual module

This module extends the concept of broadcast residual learning [30]. As shown in the Fig. 4, convolution
modeling is first performed along the frequency dimension. The resulting features are then compressed into
the time dimension through frequency-wise average pooling, followed by further convolution operations
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along the time axis. Finally, the residual information is broadcast back to the original dimensionality and
added element-wise to the input features. While maintaining efficient residual learning, the dual-branch
structure enables decoupled modeling of both time and frequency dimensions, and the broadcast mechanism
facilitates cross-dimensional information fusion.
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Figure 4: Broadcast residual learning

Given an input feature tensor x € R¥**#*W where B denotes the batch size and H and W denote the
frequency and time dimensions, respectively, the input is processed through two parallel branches: Time
Branch: The input x is passed through the Time Conv Domain sub-block to extract temporal dependencies
while preserving the feature dimensionality. Convolution is followed by Batch Normalization (BN) and the
Swish activation function [32,33]. Frequency Branch: Similarly, the input x is passed through the Frequency
Conv Domain sub-block to extract frequency-domain features. In particular, sub-band normalization and
the Swish activation function are applied here.

This structure achieves independent decoupled modeling of time and frequency features, providing
stronger direction-aware and expressive capabilities compared with traditional 2D convolution. As shown
in Table 1, Frequency Conv corresponds to the parameters of the 2D depthwise separable convolution, while
Time Conv corresponds to the parameters of the 1D depthwise separable convolution.

Table 1: Parameter settings of frequency conv and time conv

Domain TF-Blockl TF-Block2 TF-Block3 TF-Block4
P Kernel 5x1 5x1 7 x1 7 x1
FEQUERCY conv - hannel 64 32 16 8
Time conv Kernel 1x9 1x11 1x13 1x15
Channel 64 64 64 64

After completing independent modeling along the time and frequency directions, the feature outputs
of each branch are subjected to average pooling along the non-modeled dimension to obtain compact one-
dimensional representations. Time branch: The input is F(") ¢ RE*H*W Average pooling is performed along
the time dimension W, resulting in a one-dimensional frequency representation:

=(T) 1 & )

O (b,n) = — 3 BT (b, hyw) 1)
Ww=1

(F)

Frequency branch: The input is F ~ € RE*P*W_ Average pooling is performed along the frequency
dimension H, resulting in a one-dimensional time representation:

=(F) 1 & (r)
F ' (b,w)=—=> F(b,h,w) (2)
H h=1
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Next, a dual-path gating mechanism is introduced on the one-dimensional features of both branches
to further enhance representational capacity. This mechanism consists of two independent 1D convolutional
paths with separate weights, activated by Sigmoid and Tanh functions, respectively, and combined via
element-wise multiplication at the same position.

Time gating path:

£ E ") = o(ComviDy(F ")) @ tanh(Comv1Dy (F ")) ©
Frequency gating path:

#(E") = o(Comv1Dy(F")) @ tanh(ConviD, (F)) v

Here, o(-) denotes the Sigmoid activation, and © represents element-wise multiplication. All four
ConvlD layers are independent learnable convolutional kernels, each followed by a BatchNorm layer to
stabilize training. At this stage, the two gated outputs are broadcast back to the original input dimensions
via a broadcasting mechanism and then added element-wise with the original input feature x, yielding two
residual signals:

R(D = x + Broadcast( 1549 (5)
RP) = x+ Broadcast(f5"°) (6)

These two residual outputs are then concatenated along the channel dimension:

Reoncar = Concat[R(7, R(P)] (7)

Finally, to enhance the expressive capacity of the fused representation, the concatenated residual features
are passed through a 1 x 1 2D convolution for channel mapping, followed by BatchNorm and a Swish
activation, producing the final module output:

Output = (S(BN(COWlel(Rconcat))) (8)

where §(-) denotes the Swish activation function, and BN denotes the BatchNorm layer.

3.4 Time-Frequency Coordinate Attention Module

In this paper, we introduce the coordinate attention mechanism into acoustic feature modeling [34]
and propose a Time-Frequency Coordinate Attention module, whose architecture is illustrated in Fig. 5.
This module fully considers the phenomenon that noise in speech signals exhibits non-uniform interference
across different time frames and frequency bands. Inspired by the design philosophy of coordinate attention,
which encodes contextual information separately along spatial dimensions, TFCA models attention inde-
pendently in the time and frequency domains. This guides the model to adaptively focus on discriminative

temporal segments and frequency regions.
Specifically, given an input 2D feature map x € RE*©*H*W ‘svhere B is the batch size, C the number

of channels, and H and W represent the frequency and time dimensions, respectively, the TFCA module
processes the features as follows:
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Figure 5: Time-frequency coordinate attention module

Average pooling is applied along the frequency and time directions to obtain two direction-aware
features:

1H
Go(iye L 9
1) = 3 L x0) ©)
1W
Gu(i) = i 10
#(i) = 37 2, X J) (10)

where G € RE*C*>W and G € RB*C*HX1 are the pooled feature maps along the frequency and time axes.
After reshaping Gt and G, they are concatenated as G, = Concat(Gr, Glf) € RBXCx(H+W)x1

Then, a convolution layer followed by Batch Normalization and the h-swish activation function [35] is
applied to G.,; to obtain a compact representation:

Gemp = h_swish(BN(Conv(Geat))) (11)

Gemp is split into two sub-tensors: Vi, Vr = Split (G, pp) € RBxFxHx1 ¢ RBxExwxl,

Two convolution layers with sigmoid activation are used to generate the attention weights in each
direction:

ar =0 (COI’Ilel (Vp)) € RBXCXIXW (12)
ar = 0(Convy,y (Vy)) € REXCxHX (13)

The attention maps are applied to the original feature map to jointly reweight it in both the frequency
and time dimensions:

Y =x(Ep(ar)Ep(ar) (14)

where Y is the output of the TFCA module. By encoding long-range dependencies along both frequency
and time axes through coordinate attention, the TFCA module explicitly emphasizes discriminative regions
in the time-frequency domain. Compared with conventional channel attention, TFCA not only considers
inter-channel relationships but also captures cross-location dependencies along temporal and spectral axes,
thereby enhancing the model’s noise robustness and its ability to focus on target segments.

3.5 Curriculum Learning with Online Hard Example Mining

To enhance the model’s generalization ability and robustness in complex acoustic environments,
we design a training strategy that combines curriculum learning with online hard example mining
(OHEM) [36]. Within this framework, curriculum learning controls the progressive difficulty across training
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stages, while OHEM focuses on the samples that are most difficult for the current model to learn in each
stage, thereby achieving a synergistic improvement of local optimization and global robust learning.

Specifically, the training process is divided into five stages of increasing difficulty: in the initial stage,
clean speech data is used for training; in the next three stages, noisy samples with signal-to-noise ratios of
0, -5, and —10 dB are successively introduced; in the final stage, half of the training samples are further
augmented with far-field reverberation (RIR) to simulate real distant scenarios. Each stage continues until
no improvement in validation metrics is observed over five consecutive epochs.

To measure the training quality of each epoch, a stage advancement criterion crit is defined as the
difference between the normalized validation accuracy and the validation loss. Eq. (15) defines the calculation
of normalized accuracy and loss:

a, —min(A)

Norm(an) = max(A) — min(A)’

A={ajay...,an} (15)

If crit does not surpass the historical best value within five consecutive epochs, the model is considered
to have sufficiently learned in the current stage. The best model parameters are then reloaded, and training
proceeds to the next stage.

During training, the OHEM strategy is introduced to strengthen the model’s ability to learn from crucial
hard samples. Concretely, for each mini-batch, all sample losses are calculated, and the OHEM cross-entropy
loss is applied, as shown in Eqs. (16) and (17). The training focuses on the samples with the highest loss within
the batch, which are then used for backpropagation.

C

L(t,p) == tx-log(pk) (16)
k=1

LOHEM = mean (L(ti,p,‘), i€ Knum) (17)

where t; is the label, py is the probability vector, and Ky, denotes the index set of the K hardest samples
selected within the current batch.

To improve training stability and robustness, we combine Curriculum Learning with Online Hard
Example Mining (OHEM). Specifically, OHEM is applied only during the first five epochs of training. This
design is motivated by the observation that the model’s feature representations are still developing in the
early stage, where emphasizing hard samples can accelerate convergence and enhance discriminative ability.
As training progresses, the model gradually learns to classify most easy samples correctly, and the overall
loss distribution becomes more concentrated. In this stage, continuously emphasizing hard samples through
OHEM may bias the optimization process toward a few outliers, increasing the risk of overfitting. Therefore,
after the initial five epochs, the training process switches to full-sample learning under the guidance of
the curriculum schedule, which gradually increases the sample difficulty. We also explored alternative
scheduling strategies, including applying OHEM for a longer duration or throughout the entire training
process. However, these approaches either led to slower convergence or inferior validation performance.
Consequently, we adopted the early-stage OHEM strategy, which demonstrates a better trade-off between
robustness and generalization.

This strategy quickly guides the model in the early stage to focus on highly discriminative yet difficult
samples, thereby improving the precision of its overall decision boundary. OHEM is applied only briefly
in the initial stage of curriculum learning, to avoid destabilizing the model by introducing hard samples
too early. By integrating stage-wise difficulty control with localized sample optimization, this joint strategy
ensures stable training while significantly improving robustness to low-SNR and far-field speech samples.
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4 Experiments
4.1 Experimental Setup
4.1.1 Dataset

The experiments in this paper were conducted on the Google Speech Commands V2 dataset [37], which
consists of 105,000 speech clips, each lasting 1 s with a sampling rate of 16 kHz, covering 35 different words.
To perform the 12-class keyword classification task, the selected classes include 10 specific command words:
“up,” “down,” “left,” “right,” “yes,” “no,” “on,” “off,” “go,” and “stop,” along with 2 special categories: “silence”
(background silence) and “unknown” (comprising the remaining unselected words). The official predefined
splits of training, validation, and test sets were adopted, with training, validation, and test accounting for
80%, 10%, and 10%, respectively.

To simulate complex far-field noisy environments, two additional public datasets were introduced and
mixed with the original speech data—one for background noise addition and the other for generating far-
field speech signals. Specifically, the MUSAN noise corpus [38] was employed, which contains 930 noise
recordings sampled at 16 kHz, with a total duration of about 6 h. It covers a wide range of real-world noise
types, including technical sounds (e.g., DTMF tones), natural environmental sounds (e.g., thunder), and
everyday noises (e.g., car horns). In our experiments, these noises were randomly selected and superimposed
onto speech commands at varying signal-to-noise ratios (SNRs), thereby creating diverse noisy speech
scenarios to emulate the challenging acoustic conditions that devices may encounter in practice.

Furthermore, to generate far-field speech effects, we utilized the reverberation impulse responses
(RIRs) provided by the BUT Speech@FIT Reverberation database [39]. This dataset contains reverberation
data from 9 rooms of different sizes, categorized into large, medium, and small volumes. Each room
includes multiple microphone-loudspeaker configurations to capture different acoustic propagation paths.
These RIR filters were convolved with speech signals to synthesize far-field speech containing realistic
reverberation characteristics.

In practical keyword spotting applications, the acoustic environment often varies significantly due to
background noise, reverberation, multi-speaker interference, and recording device differences. To simulate
realistic acoustic conditions, we employed the MUSAN and BUT Speech@FIT Reverberation database
(BUT RIR) datasets for noise and reverberation augmentation. The MUSAN dataset contains various
types of non-stationary noises (such as background speech, music, and ambient sounds) and multi-
speaker speech mixtures, while the BUT RIR dataset introduces realistic recording variations caused by
different microphones, rooms, and speaker positions. Through these augmentations, our data preparation
process effectively covers a wide range of complex real-world scenarios, including non-stationary noise,
multi-speaker interference, and device capture variations. In addition, these augmented conditions were
incorporated during both training and evaluation to ensure that the robustness of the proposed model was
thoroughly assessed under realistic and acoustically challenging environments.

4.1.2 Implementation Details

In terms of input features, this work adopts FBank features. The speech signal is first processed with a
short-time Fourier transform (STFT) using a 25 ms frame length and a 10 ms frame shift. A 64-dimensional
log-Mel filterbank is then extracted as the model input, and the resulting Mel-spectrograms are normalized
to a fixed size of 98 x 64.

During model training, multiple data augmentation strategies are applied to improve generalization.
First, the raw audio is randomly shifted in the time domain within a range of ~100 ms to +100 ms. Second,
spectrogram masking is performed, where random regions along both the time and frequency axes are
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obscured, with the maximum mask length set to 25 frames or 25 frequency bins. In addition, to simulate noisy
environments in real applications, background noise at SNR levels of 0 dB, —5 dB, and —10 dB is mixed with
clean speech, constructing noisy training samples such as [clean, 0], [clean, 0, 5], and [clean, 0, -5, —10].
During testing, speech samples with an unseen SNR level of 20 dB are introduced to evaluate the model’s
generalization ability under novel noise conditions.

For training, a batch size of 128 is used. The initial learning rate is set to 1 x 107> and decays by a factor of
0.85 every 4 epochs starting from the 5th epoch. The Adam optimizer is employed. In the first 5 epochs, an
OHEM-based cross-entropy loss is used, where the top 70% hardest samples (with the highest losses) in each
mini-batch are selected for backpropagation. Afterward, standard cross-entropy loss is adopted to measure
the difference between predictions and ground-truth labels.

4.2 Results

This section evaluates the performance of different keyword spotting models on the far-field speech
command recognition task. The baseline models are retrained using the official source code provided by
the designed data environment, under the same experimental settings as this work. The testing conditions
include clean speech as well as noisy speech at different signal-to-noise ratio (SNR) levels (20, 0, -5, and
—10 dB). Table 2 summarizes the parameter size (K), multiply-accumulate operations (MACs, M), and
recognition accuracy (%) of each model under the different testing conditions. Note that the term ‘Clean’
in this paper refers to the far-field clean condition, i.e., without additive noise but still under reverberant
far-field acoustic environments

Table 2: Comparison with other models

Accuracy of far-field test command,

Model Num.of params (K) MACs (M) SNR in dB (%)
Clean 20dB 0dB -5dB -10dB
MHALtt-RNN 784 305.19 77.32 74.89 63.12 54.98 51.23
ResNet-15 [40] 238 894.56 89.45 86.67 79.81 74.37 67.52
MatchboxNet-6 x 2 x 64 [3] 140 40.11 87.54 85.28 74.91 70.68 61.56
BC-ResNet-6 [30] 206 58.25 89.78 86.72 77.02 69.82 64.92
BC-ResNet-8 [30] 353 90.57 89.86 86.85 7768 70.64 66.32
ConvMixer [31] 119 22.34 90.52 87.54 7849  72.63 67.02
TF-DBPResNet 103 38.65 92.17 90.82 82.68 78.84 71.93

As shown in the Table 2, TF-DBPResNet achieves the best performance in terms of accuracy under
all SNR conditions, especially in low-SNR scenarios (e.g., 10 dB), where it still maintains an accuracy of
71.93%. This demonstrates strong robustness and generalization ability. In contrast, the conventional MHALt-
RNN, which relies on a multi-head attention mechanism, introduces a large number of parameters and
computational overhead. Its accuracy drops rapidly in low-SNR conditions, reaching only 51.23%, indicating
high sensitivity to noise. Although ResNet-15 achieves 89.45% accuracy on clean speech [40], its MACs reach
894.56 M, posing challenges for deployment on resource-constrained devices. The proposed TF-DBPResNet
significantly reduces the number of parameters and MACs, implying lower memory and computational
demands. MatchboxNet-6 x 2 x 64, which is constructed by stacking one-dimensional depthwise separable
convolutions, maintains relatively low computational cost and parameter count. However, its recognition
results under different SNR conditions reveal that this method performs noticeably worse than the proposed
model in noisy environments, suggesting that relying solely on 1D DWSConvs may limit the network’s
ability to robustly model features under complex noise interference [3]. BC-ResNet, a broadcast residual
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network that combines both 1D and 2D convolutions [30], generates BC-ResNet-6 and BC-ResNet-8 by
scaling its network size. While increasing the scale improves recognition accuracy, both parameter count
and computational complexity remain significantly higher than those of TF-DBPResNet. Convmixer adopts
a serial structure for feature extraction, modeling the temporal domain first and then the frequency domain
using 1D and 2D depthwise separable convolutions, respectively. This sequential extraction process may cause
the loss of critical information during the transformation [31].

To further evaluate the generalization capability of the proposed model, we conducted cross-dataset
validation using the Google Speech Commands V1 (GSC V1) dataset. Although our primary experiments
were performed on Google Speech Commands V2 (GSC V2), evaluating the model on GSC V1 allows us to
examine its robustness and generalization performance under distributional shifts. Both GSC V1 and GSC
V2 share a similar task definition, consisting of one-second spoken utterances of short command words. The
main differences lie in the fact that, compared with GSC V1, GSC V2 includes additional samples, improved
label quality, and the removal of noisy or ambiguous recordings. Consequently, GSC V1 represents a distinct
yet related data distribution, providing a reasonable scenario for testing cross-dataset generalization.

In this evaluation, the model was trained exclusively on the GSC V2 training set, without any exposure
to GSC V1 data. During testing, the trained model was directly evaluated on the GSC V1 test set, without
any fine-tuning or adaptation, ensuring that the results truly reflect the model’s ability to generalize across
different but related datasets.

As shown in Table 3, we further evaluated the model trained on GSC V2 under various noise conditions
using both the GSC V2 and GSC V1 test sets. The results demonstrate that our model maintains good
generalization performance when tested on GSC V1, even under noisy conditions.

Table 3: Cross-dataset generalization evaluation

Accuracy of far-field test command, SNR in dB (%)

Dataset
Clean 20dB 0dB -5dB -10 dB
Google speech commands V2 9217 90.82 82.68 78.84 71.93
Google speech commands V1 92.65 91.21 82.93 78.79 72.11

To evaluate the deployment potential of our model on resource-constrained hardware, we simulated
embedded CPU performance by measuring the inference latency in a CPU-only environment (Intel Core
i7-13620H, 2.5 GHz). On the CPU-only platform, the model achieved an average inference latency of
12.4 ms per sample with a memory footprint of 4.8 MB, indicating its potential for real-time deployment
on embedded devices. These results suggest that the proposed model can perform real-time inference on
embedded systems, validating its suitability for low-power keyword spotting applications.

To better understand the behavior of the TFCA module, we visualize its attention together with the
input features. Fig. 6 shows three representations of an example keyword audio “stop”: (a) The original
Fbank features, representing the time-frequency distribution of the input signal; the color intensity reflects
the spectral amplitude, with black indicating stronger frequency components and light gray indicating
weaker components. (b) The attention map generated by the TFCA module, highlighting regions deemed
important by the model. Colors range from dark red to yellow, where yellow indicates high attention at the
corresponding time-frequency location, and dark red or black indicates low attention. This map reveals the
model’s attention distribution over time and frequency. (c) The overlay of the Fbank features and the attention
map. The semi-transparent heatmap represents attention intensity. Brighter regions indicate that the model
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both attends strongly and that the spectral amplitude is high at that time-frequency location, while dark gray
or dark red regions indicate low amplitude or attention. From the overlay, it can be observed that the TFCA
module effectively focuses on the time-frequency regions corresponding to the keyword, confirming that
the attention mechanism concentrates on information relevant for keyword recognition.
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Figure 6: Visualization of TFCA Attention on Keyword Audio. (a) The original Fbank features. (b) The attention map
generated by the TFCA module. (c) The overlay of the Fbank features and the attention map

In summary, the proposed TF-DBPResNet achieves the most balanced performance across all eval-
uation metrics, showing particularly significant advantages in low-SNR scenarios, thereby validating the
effectiveness of the proposed architecture in far-field noisy environments.

4.3 Ablation Study

To verify the effectiveness of the proposed DBBR and TFCA modules, we conducted ablation
experiments under noisy far-field conditions using the same curriculum learning-based multi-condition
training strategy. Specifically, we evaluated the impact of these two key modules on model performance
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by removing the DBBR module, the TFCA module, and both modules simultaneously. In the experiment
where DBBR was removed, the original parallel feature extraction was replaced with a serial structure,
where frequency-domain convolution and time-domain convolution were applied sequentially to simulate
traditional step-by-step processing. This design aimed to assess the contribution of the parallel time-
frequency feature extraction strategy to improving model performance. To ensure a fair comparison in the
ablation study, when the DBBR module was removed, we replaced it with a serial structure of comparable
parameter count and computational complexity. As shown in Table 4, the total number of parameters of
the serial structure (w/o DBBR: 102.7 K) is very close to that of the full model (102.9 K), indicating that the
observed performance degradation mainly stems from the absence of the DBBR mechanism rather than a
reduction in model capacity.

Table 4: DBBR and TFCA ablation experimental results in TF-DBPResNet

Accuracy of far-field test command, SNR in dB (%)

Method Num.of params (K)
Clean 20 dB 0dB -5dB -10 dB
TE-DBPResNet 102.861 92.17 90.82 82.68 78.84 71.93
w/o DBBR 102.705 91.39 89.25 81.57 76.98 70.02
w/o TFCA 90.573 91.75 89.67 81.76 7723 70.82
w/o DBBR+ w/o TFCA 90.417 90.89 88.72 81.05 76.46 69.86

As shown in the Table 4, removing any of the proposed modules led to a decline in overall recognition
accuracy, indicating that each module contributes meaningfully to performance improvement. Under clean
speech conditions, removing either the DBBR or TFCA module caused only slight degradation, while in low-
SNR environments, the performance drop became more pronounced. The performance decrease was larger
when DBBR was removed than when TFCA was removed, highlighting that the dual-branch parallel time-
frequency feature extraction of the DBBR module plays a more critical role in enhancing noise robustness.
When both modules were removed, the accuracy was lower than when only one module was removed,
turther validating the effectiveness of the proposed approach.

To validate the effectiveness of the OHEM algorithm, as shown in the Table 5, we introduced the OHEM
cross-entropy loss function at different training stages (epochs 0, 5, 10, 15, and 25) for optimization. The
experimental results demonstrate that applying OHEM within the first 5 epochs can significantly improve
model performance, achieving an improvement of approximately 0.57% compared to not using OHEM.
However, when extending the application period of OHEM to the first 25 epochs, the system performance is
adversely affected. This suggests that prolonged use of OHEM may cause the model to excessively focus on
hard samples, leading to overfitting and ultimately degrading overall recognition performance.

To validate the effectiveness of the curriculum learning strategy in improving model robustness, we
compared it with the conventional multi-condition training method, and the results are shown in the Table 6.
It can be observed that under all SNR conditions, the TF-DBPResNet model trained with curriculum learning
consistently outperforms the version trained with multi-condition training. On clean speech, the accuracies
of the two approaches are 92.17% and 91.09%, respectively, showing a relatively small difference. However,
as the SNR decreases, the performance gap gradually widens. In particular, under 0 dB, -5 dB, and —-10 dB
conditions, curriculum learning yields improvements of approximately 2.83%, 2.93%, and 3.17% in accuracy;,
respectively. These results indicate that curriculum learning, by progressively guiding the model from easy
to difficult samples, helps the model adapt more robustly to complex noisy environments and significantly
enhances the generalization and robustness of the speech recognition system under low-SNR conditions.



Comput Mater Contin. 2025;87(1):9 17

Table 5: Comparison of introducing OHEM at different epoch

Accuracy offar-field test command , SNR in dB (%)

Epoch o
ean
0 91.65
5 92.17
10 92.09
15 91.88
25 91.79

Table 6: Comparison between curriculum learning and multi-condition training

- 1 0,
TE-DBPResNet Accuracy of far-field test command, SNR in dB (%)

Clean 20dB 0dB -5dB -10 dB
w/Curriculum learning 9217 90.82 82.68 78.84 71.93
w/Multi-condition Training ~ 91.09 88.26 79.85 75.91 68.76

5 Conclusion

This work addresses the challenges of robustness and model lightweighting in the speech wake-
up keyword detection task by proposing a compact model that integrates a time-frequency dual-branch
structure with attention mechanisms—TF-DBPResNet. The model introduces a dual-branch broadcast
residual module (DBBR) and a time-frequency coordinate attention module (TFCA), effectively enhancing
recognition performance under varying SNR conditions. With only approximately 103 K parameters,
TF-DBPResNet demonstrates excellent performance on multiple far-field wake-up word recognition tasks
in the Google Speech Commands V2-12 dataset, significantly outperforming several comparative models.

Furthermore, a curriculum learning strategy combined with online hard example mining is employed
to further improve the model’s generalization ability. Experimental results show that, compared with
conventional multi-condition training, curriculum learning substantially improves accuracy under low-SNR
conditions, effectively mitigating performance degradation in complex acoustic environments.

In summary, TF-DBPResNet demonstrates superior robustness and practicality while maintaining
extremely low computational cost, making it well-suited for deployment on resource-constrained edge
devices and showing promising application potential. However, the current model still has certain limita-
tions; for example, its adaptability to specific accents or low-resource languages may be insufficient, and its
robustness under extreme noise conditions requires further improvement. Future research could consider
incorporating adaptive noise suppression mechanisms to enhance the model’s stability in complex acoustic
environments. Meanwhile, multimodal information fusion (e.g., combining visual or other sensor data)
may further improve recognition accuracy. In addition, exploring transfer learning or cross-accent training
strategies could enhance the model’s generalization ability for low-resource languages or diverse accents.
These directions provide potential avenues to improve the model’s scalability and practical applicability.
Moreover, the current model can only recognize predefined wake-up words; to optimize user experience,
algorithms for custom wake-up word recognition need to be explored. Future work will further investigate
the model’s noise robustness and lightweight design.
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