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ABSTRACT: Android smartphones have become an integral part of our daily lives, becoming targets for ransomware
attacks. Such attacks encrypt user information and ask for payment to recover it. Conventional detection mechanisms,
such as signature-based and heuristic techniques, often fail to detect new and polymorphic ransomware samples. To
address this challenge, we employed various ensemble classifiers, such as Random Forest, Gradient Boosting, Bagging,
and AutoML models. We aimed to showcase how AutoML can automate processes such as model selection, feature
engineering, and hyperparameter optimization, to minimize manual effort while ensuring or enhancing performance
compared to traditional approaches. We used this framework to test it with a publicly available dataset from the
Kaggle repository, which contains features for Android ransomware network traffic. The dataset comprises 392,024 flow
records, divided into eleven groups. There are ten classes for various ransomware types, including SVpeng, PornDroid,
Koler, WannaLocker, and Lockerpin. There is also a class for regular traffic. We applied a three-step procedure to select
the most relevant features: filter, wrapper, and embedded methods. The Bagging classifier was highly accurate, correctly
getting 99.84% of the time. The FLAML AutoML framework was even more accurate, correctly getting 99.85% of the
time. This is indicative of how well AutoML performs in improving things with minimal human assistance. Our findings
indicate that AutoML is an efficient, scalable, and flexible method to discover Android ransomware, and it will facilitate
the development of next-generation intrusion detection systems.

KEYWORDS: Automated machine learning (AutoML); ensemble learning; intrusion detection system (IDS); ran-
somware traffic analysis; android ransomware detection

1 Introduction

In the virtual world, Android phones are now an integral part of our daily lives. They are vital to business,
medicine, entertainment, finance, and communication. This critical role demonstrates the importance of
ensuring adequate security protection. The Internet is linking more and more devices and services, which
means that the number and sophistication of cyberattacks with which we must deal are increasing. Malware
attacks are among the most significant threats, as they generate billions of dollars in losses worldwide [1,2].
Ransomware is currently among the most destructive forms of attack. There are numerous forms of this, such
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as crypto-ransomware and lock-screen ransomware. The Lock-screen ransomware blocks you from accessing
by displaying imitation warning messages. However, Crypto-ransomware encrypts valuable documents,
photos, and videos, making them unrecoverable without a decryption key [3,4]. Simplocker, LockerPin,
and WannaLocker are among the popular sets of ransomware that illustrate how attacks are becoming
increasingly sophisticated and perilous. There is a need to develop effective methods for detecting cyber
threats, as they can cause significant harm and are becoming increasingly difficult to identify.

The primary methods by which traditional identification methods perform well are the use of signatures
and heuristics. They are suitable for known threats but not very effective for polymorphic or new ones [5,6].
Static analysis techniques are not effective, as attackers often employ code obfuscation and encryption
to bypass security measures [7]. Dynamic analysis is another option, but it requires sandbox testing and
substantial computational power, making it difficult to scale in real-time [8,9]. The area of machine learning
(ML)-based ransomware detection has grown significantly, as it can identify both traditional and novel
attack patterns by examining distinctive behavioral characteristics [10]. However, all the ML models we
currently have utilize a single classifier, which is not always effective in terms of generalization and is
not particularly efficient against various types of ransomware. Ensemble learning has improved accuracy,
but requires manual selection of features and optimization of hyperparameters, making it less flexible and
efficient [11]. Additionally, it is challenging to identify threats early on, as most approaches do not detect
attacks until significant damage has been caused [12]. In this research, a thorough comparative study is
conducted among conventional ensemble-based techniques (such as Random Forest, Gradient Boosting,
and Bagging) and Automated Machine Learning (AutoML) systems (like TPOT, EvalML, and FLAML)
to address these challenges. AutoML, on the other hand, automatically finds the best models, simplifies
hyperparameter tuning, and improves generalization. This differs from typical ML processes, which require
manual optimization. The goal of this study is to show that AutoML can automate the model-building process
and match or beat the performance of traditional ensemble classifiers. This would be an effective and scalable
method for discovering Android ransomware. The key contributions of this work are summarized as follows:

« Automated Detection Pipeline: We introduce a completely automated Android ransomware detection
system that combines a three-stage hybrid feature selection approach (filter, wrapper, and embedded
methods) with AutoML-based classification, thus minimizing the need for manual configuration and
enhancing performance.

» Reorganizing Classes in a Hierarchical Manner: Through the application of hierarchical clustering to
consolidate ransomware families into groups that behave similarly, generalization can be enhanced, class
imbalance minimized, and training simplified.

o Strict Baseline Comparison: Stratified K-fold cross-validation is used to test rigorous traditional
ensemble models to ensure that they are fair and reliable. The results show that AutoML-powered
models, particularly FLAML, have better detection accuracy than traditional ensemble baselines,
demonstrating their ability to adapt to evolving cyber-attack patterns.

« Evaluation: We offer complete results, including confusion matrices, ROC curves, learning curves,
and importance of permutation characteristics that demonstrate the robustness, reproducibility, and
scalability of the proposed framework for real-world applications.

2 Related Works and Research Gap

Current advancements in intrusion detection have heavily relied on machine learning (ML) and deep
learning (DL) techniques to identify malicious activity across various topics, including Android ransomware.
Intrusion detection systems (IDS) mainly detect threats at the host and network levels. However, their
theoretical foundations are highly relevant to the Android environment, where ransomware is a rapidly
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increasing attack type. Current research on IDS from 2025 [13] suggests that adaptive anomaly detection
and multimodal feature utilization are crucial for making systems more resilient against evolving cyber
threats. These frameworks were not created solely for the purpose of ransomware. Still, they do illustrate the
importance of utilizing detection models that work well in various diverse scenarios and can be automated
and scaled. These are also significant concepts in this research. Old-style static analysis techniques, such as
feature extraction from app permissions, have been only moderately effective against Android ransomware,
especially when the malware is evasive or constantly changing. To address these issues, researchers gradually
began to employ dynamic behavioral profiling, i.e., observing API calls, network activity, and system
logs during the program’s execution. This approach reduces the likelihood that systems will be targeted
by sophisticated ransomware and makes it easier to identify new and established methods by which
hackers attack.

Numerous research studies have employed the use of ML and DL models to identify ransomware using
these concepts. For example, the authors in [14] proposed an ensemble machine learning approach trained on
203,556 network traffic samples, including benign data and ten ransomware families. Their models achieved
precision, recall, and Fl-scores that were all above 99%, and feature importance analysis revealed significant
behavioral features. They further indicated that certain classes had poorer true positive rates and emphasized
the necessity for adaptive methods that can deal with new ransomware types.

Meanwhile, most current research on locating Android malware has increasingly emphasized employ-
ing both static and dynamic analysis to avoid problems each technique has independently. Static analysis is
effective in identifying bugs, but it may not always be successful against code obfuscation or zero-day threats.
Dynamic analysis, on the other hand, costs more in terms of time and processing power, but it gives you a
better understanding of behavior. In this area, the DL-AMDet framework is a big step forward. It possesses a
static detection module that employs CNN-BiLSTM and an autoencoder-based anomaly detection module.
This hybrid approach achieved 99.935% accuracy, which was superior to that of the majority of other
state-of-the-art models [15]. These frameworks have served us well, but they still demonstrate that there
are trade-offs between their accuracy, scalability, and the difficulty of extracting features. These concerns
underscore the need for more research into optimally improved hybrid deep learning solutions, primarily
through the combination of ensemble techniques and AutoML systems that can automate feature selection,
model optimization, and accommodation of the changing nature of malware.

An Automated Android Malware Detection framework (AAMD-OELAC) was proposed in [16]. It
integrates LS-SVM, KELM, and RRVFLN with hyperparameter tuning using a hunter-prey algorithm that
significantly enhances detection rates. However, although it performed satisfactorily, the system required
frequent updates to remain effective in response to the other side’s alterations. Ahmed et al. [17] compared
392,035 network traffic records and evaluated DT, SVM, KNN, FNN, and TabNet models for binary
classification. The work highlighted issues related to computational complexity and poor generalization,
despite SVM achieving a 100% recall rate and DT attaining an accuracy rate of 97.24%. It recommended
the usage of a combination of various techniques to improve things. There have also been studies on deep
learning methods. Khan et al. [18] proposed an LSTM model based on eight feature selection techniques
and majority voting to recognize 19 key features from the CI-CAndMal2017 dataset. The optimized LSTM
achieved 97.08% accuracy, surpassing previous benchmarks, but larger datasets are required for further
verification. Ali et al. [19] presented MALGRA, a dynamic-analysis-driven malware detection system that
extracted API-call N-grams and then applied TF-IDF(Term Frequency-Inverse Document Frequency) for
selecting the most discriminative behavioral features. The work compared the performance of several
classical machine learning models such as Logistic Regression, Random Forest, Decision Tree, and Naive
Bayes and found that logistic regression performed best with an accuracy of 98.4% for malware/benign
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datasets. Interestingly, their results demonstrated that behavioral N-gram features combined with lightweight
ML classifiers can outperform many traditional static opcode-based approaches, especially against malware
using obfuscation and evasion. AutoML is a game-changing technique in this area only introduced in the
recent past. Brown et al. [20] demonstrated the efficacy of AutoML for large-scale malware detection with
the SOREL-20M and EMBER-2018 datasets, where AutoML-tuned FFNNs and CNNs outperformed hand-
crafted pipelines. Bromberg and Gitzinger [21] developed DroidAutoML, a scalable microservice framework
for automatically selecting models and hyperparameters. This was a significant improvement over Drebin
and MaMaDroid. All the same, these works pointed out challenges in real-time deployment and the need
for adaptive strategies in the face of evolving threat environments. Feature selection has also been a key area
of focus. Masum et al. [22] coupled DT, RE NB, LR, and NN classifiers with feature selection. They proved
that Random Forest had higher accuracy, F-beta, and precision measures. Khammas [23] developed a static-
analysis technique which operates on raw bytes and employs Gain Ratio to identify the best 1000 n-gram
features with an accuracy of 97.74%. Although these results were excellent, it was more challenging to
generalize against obfuscated binaries, as it employed only static techniques.

Despite these advances, several issues remain to be solved. Most modern approaches rely on either
static or dynamic analysis, which are inefficient against obfuscation techniques or run slowly, making them
less effective. Many machine learning models are still based on single classifiers or basic ensembles with
hyperparameters that have been manually set. This makes it more difficult to scale and protect against new
attacks. Additionally, previous research often utilizes datasets that are too small or outdated, rendering them
less applicable in practice. Even ensemble approaches tend not to have automation or explainability, which
makes them less effective for operational security. Table 1 provides an overview of significant works, focusing
on their datasets, classification strategies, performance measures, and key issues. The table indicates that the
majority of recent approaches rely heavily on static analysis or specific traffic datasets, making it challenging
for them to handle new types of ransomware. Ensemble and deep learning models have enhanced detection
precision but tend to require manual feature engineering and hyperparameter adjustment, rendering them
much less scalable as threats constantly evolve. Existing research on AutoML-based techniques holds promise
but primarily targets general malware detection. It does not frequently utilize class reorganization or hybrid
feature selection to address class imbalance and high-dimensional data issues. To address these issues,
this research provides an end-to-end and scalable Android ransomware detection mechanism based on
hierarchical class grouping, a three-phase hybrid feature selection process, and ensemble learning powered
by AutoML. This mechanism is designed to enhance accuracy, flexibility, and replicability while minimizing
human intervention, thereby creating a more effective defense mechanism in practical scenarios.

Table 1: Summary of related works on Android ransomware detection, including datasets, methods, results, and
limitations

Major Classi. No. of No. of oL

Reference ol Key results Limitations

contribution type features samples

Ensemble ML AdaBoost: Focused on static

for A i 1%, f ;
Hossain or Android Binary/ 85 (10 99 ,A) eat'ure's
etal. [14] TansOmware o1 oo celecte d) 203,556 Stacking: generalization to
’ with feature 98.9%, RF: unseen families
selection 98.7% not tested.

(Continued)
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Table 1 (continued)

Major Classi. No. of No. of L.
Reference N Key results Limitations
contribution type features samples
(A)IE?J/IADC_ Auto AAMD- Small dataset;
Alamro . _ . OELAC: 96.4% scalability on
ensemble with ~ Binary engi- 7500
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metaheuristic neered L )
. optimization) validated.
tuning
. ML/DL models RE: 95.2%, DT- Limited to
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) 85 (19 94.8% .
Ahmed ransomware Binary (86,182 runtime
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etal. [17] via traffic balanced) efficiency not
) features)
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L
Khan . . CNN-LSTM complexity; needs
detect th B 1 40,000
etal. [18] crectorwl mary ? Hybrid: 94.3%  larger datasets for
feature o
. generalization.
selection
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. N-grams 120 .
analysis-based behavioural
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Bi tracted 60 LR: 98.49 )
etal. [19] API-call mnary. - extracte ( v dataset size; relies
N-grams + from malware, on sandbox
TE-IDF sandbox 60 benign) execution.
logs
AutoML-based Requires massive
deep learning ~20M NAS- q .
Brown , 2381 . datasets and high
etal. [20] on large Binary (EMBER) (SOREL- optimized compute
o malware 20M) CNN: 97.2%
resources.
datasets
. Limited
Bromberg - Droid AutoML . AutoML RF: validation on
and for automated . 24-82 Millions (6 )
L Binary 96.1%, KNN: Android
Gitzinger =~ model selec- (reduced) datasets)
. . 94.3% ransomware
[21] tion/tuning
datasets.
Feature- ,
selection RF (Accurac Dataset details
Masum Multi- Not Not Y unclear;
framework for ) . not clearly e
etal. [22] class specified  specified reproducibility
ransomware reported) .
) issues.
detection
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Table 1 (continued)

Major Classi. No. of No. of L.
Reference s Key results Limitations
contribution type features samples
Static Vulnerable to
byte-level obfusca-
Khammas 3-gram _ 1000 RF: 91.7% (Byte _ _
. .. Binary 1680 tion/packing;
[23] analysis with (3-g) n-grams) i
purely static
feature aporoach
selection PP .

3 Proposed Framework

In this research, a fully automated framework overcomes the shortcomings of conventional Android
ransomware detection by comparing rigorous ensemble learning algorithms with state-of-the-art AutoML
algorithms such as FLAML, TPOT, and EvalML. AutoML streamlines the process by automatically selecting
a model, extracting features, and tuning hyperparameters. This contrasts with manually building pipelines
and tuning them. This automation reduces the number of personnel required and enables the handling of the
ransomware threat’s dynamic nature. The system employs a hierarchical clustering approach to categorize
ransomware families into broader groups based on their behavior. This method enhances class balance and
facilitates straightforward generalization. Additionally, the entire preprocessing pipeline, along with a hybrid
feature selection approach in three stages, including filter, wrapper, and embedded techniques, has been
utilized. This method is helpful to minimize dimensionality without losing the ability to differentiate between
things. The proposed framework offers a twofold perspective by contrasting legacy ensemble methods and
pipelines generated by AutoML, which optimize independently from start to end. Experimental results show
that AutoML, specifically FLAML, consistently outperforms the best ensemble baselines in terms of accuracy.
It also makes notable improvements in efficiency and scalability. This research lays the groundwork for future
advancements in improving next-generation ransomware detection systems. Fig. 1 shows the whole process
of the proposed framework for Android ransomware detection.

3.1 Materials and Environment Setup

Experiments were conducted partly in a Kaggle notebook environment and partly on a local Windows
machine equipped with an Intel Core i7 (14-core) processor and 16 GB of RAM. All experiments were
conducted in Python 3.11 using conventional scikit-learn packages, along with state-of-the-art Automated
Machine Learning (AutoML) libraries such as FLAML, TPOT, and EvalML, as well as state-of-the-art
boosting algorithms including XGBoost, Light GBM, and CatBoost. GPU acceleration was enabled for TPOT
with NVIDIA RAPIDS/cuML where possible, and was run in a WSL2 (Windows Subsystem for Linux
v2.3) environment. In Kaggle notebooks, GPU acceleration was enabled through the runtime settings of the
notebook. The original dataset, after being loaded into memory, consumed approximately 258 MB of RAM.
A fixed random seed (42) was used across all experiments to ensure reproducibility of results.

For EvalML, experiments were executed with EvalML 0.84 and Python 3.11. The core dependencies were
NumPy (>1.24), pandas (>1.5), scikit-learn (>1.2), and matplotlib (>3.7), in addition to the optional pack-
agenlp_ primitives for text/NLP features for Featuretools. The packages were all installed collectively,
and the kernel was restarted to prevent potential binary incompatibility issues. The installation command
utilized for complete reproducibility is:
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pip install -upgrade pip; pip install numpy>=1.24 pandas>=1.5
scikit-learn>=1.2 matplotlib>=3.7 evalml==0.84 nlp_primitives

The computer environment and software versions used are listed in Table 2, allowing for precise
replication of the reported findings.
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Figure 1: Proposed framework for Android ransomware detection using AutoML and ensemble baselines

Table 2: Software and library versions

Category Model/Library Version

Scikit-learn (Random Forest, Gradient Boosting, HistGradient

E bl del 1.2.2
Core Ensemble models Boosting, Extra Trees, Bagging, AdaBoost, Decision Tree)
EvalML 0.84.0
AutoML Framework FLAML 2.3.4
TPOT 1.0.0
XGBoost 2.0.3
Boosting models LightGBM 4.5.0

CatBoost 1.2.7
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3.2 Dataset Description

The work in this research utilizes a publicly available Android ransomware dataset from Kaggle [24],
which contains both benign and ransomware network traffic samples. The dataset comprises 392,034 network
flow records, each described by 86 features, where 81 are numeric and five are categorical. There are
43,091 benign samples and 348,943 ransomware samples representing various Android ransomware families
such as Simplocker, LockerPin, and WannaLocker. This allows for an 11-class multi-class classification
task where 10 class labels represent different ransomware families and one label represents the benign
category. Each sample point refers to a network flow instance and is characterized by flow-based features
that encompass connection identifiers, protocol-level features, temporal behaviors, statistical metrics, and
TCP flag information. A full preprocessing pipeline was established to ensure data integrity before model
development. The dataset was thoroughly checked for duplicates, infinite values, and missing (NaN) values
sequentially. Duplicates were not found. Infinite values were substituted with NaN, and after conducting
null checks, it was ensured that no rows had to be removed. The final dataset size was therefore not altered,
thereby ensuring its completeness and quality. The final dataset held 348,943 ransomware samples (88.99%)
and 43,091 benign samples (11.01%), as indicated by Table 3.

Table 3: Dataset distribution after preprocessing

Class Sample count Proportion (%)
Ransomware (Grouped Families) 348,943 88.99
Benign 43,091 11.01
Total 392,034 100.00

3.3 Initial Approaches

The experimental setup utilizes a multi-stage methodology to tackle the inherent problems involved in
Android ransomware classification, i.e., class imbalance, feature dimensionality, and the need for automated,
scalable model optimization. The solution proposed combines three complementary elements: (i) hierarchi-
cal clustering-based class restructuring, (ii) a hybrid feature selection pipeline to counter dimensionality,
and (iii) exploration of conventional ensemble learning approaches vs. AutoML-based pipelines. Both of
these combine to constitute a comprehensive solution that not only improves classification accuracy but also
represents the practical advantages of automation.

Hierarchical Clustering for Class Grouping: The ransomware families usually share the same behav-
ioral patterns, which can cause confusion during the classification phase and lead to noise overfitting in a
dataset-specific way. To address this limitation, we performed hierarchical clustering to combine ransomware
families at both semantic and behavioral levels, based on class-level centroids. This class reformulation has
three valuable advantages:

1. Class Imbalance Mitigation: Consolidating minority classes with behaviorally related families reduces
class imbalance, minimizing bias toward the dominant classes while preserving semantic meaning.

2. Computational Efficiency: Reducing the classification problem from 11 to 8 classes decreases train-
ing complexity by approximately 27%, resulting in faster training times and reduced computational
overhead.

3. Improved Generalization: Grouping into broader behavioral categories makes the model robust,
enabling better detection of new ransomware specimens of the same behavioral category.
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The preprocessed dataset was transformed into a sparse high-dimensional matrix. Class centroids were
computed to represent each ransomware family within the feature space. For a class Cy, with n; samples, its
centroid yj is computed as:

MkZi > X 1

nk ijCk

where x; is the feature vector of a sample belonging to class Cy, these centroids are representative mean
points for their respective classes. To estimate inter-class similarity, we calculated pairwise Euclidean
distances between centroids. For two centroids, 1, = [fa15- - - fap] and gy = [p1, . . . » hpp |, their Euclidean
distance is:

d(pa> phv) = (2)

D
> (faj— thoj)?
j=1

With these distances, hierarchical agglomerative clustering based on Ward’s linkage was employed in
iteratively merging the most similar classes. The gain in within-cluster sum of squares (SSE) when merging
two clusters C; and Cj is calculated as:

nin;

A(Ci, C)) = i =y ? 3)

n;+n;
where |y; — uj|? is the Euclidean distance between cluster centers. The resulting dendrogram showed clear
behavioral similarities between different ransomware families. This step reduced the number of output
classes from 11 to 8, unifying similar families into higher-level behavioral groups.

Clustering was used only on ransomware families. The benign category was left distinct to allow models
to continue differentiating between malicious and benign traffic. This method minimizes noise by clustering
statistically equivalent ransomware families into broader classes, thereby improving robustness and reducing
the possibility of overfitting to small variations within families.

The in-depth outcomes of the clustering process, such as dendrogram visualization and the final
grouped class distribution, are discussed in Section 4.

Pre-Processing

Preprocessing of data is necessary to ensure the integrity, consistency, and suitability of the dataset for
developing machine learning models. The following steps were utilized uniformly to prepare the Android
ransomware dataset:

1. Elimination of Duplicate Records: Potential duplicate rows were identified using
the duplicated () command and removed to maintain data integrity and prevent redundancy
during model training.

2. Handling Missing and Infinite Values: Infinite and large numerical values were substituted with NaN
for consistent presentation. Such rows with NaN values were further removed to have a complete and
consistent dataset.

3. Feature Segmentation and Normalization: The data was separated into numerical and categorical
features to make it easier for correct preprocessing. The numerical features were scaled using the
assistance of StandardScaler, as in Eq. (4), to enable the characteristics to be compared:
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X _
Xscaled = T‘u (4)

where y and o are the mean and standard deviation of each numerical feature, respectively.

4. Categorical Encoding: The categorical features were encoded into numerical representations using
LabelEncoder, preserving category identity without the dimensionality increase that is associated with
One-Hot Encoding.

With these preprocessing steps, the dataset was rendered standardized, noise-free, and well-structured,
providing a sound foundation for feature selection, class clustering, and subsequent model training.

3.4 Hybrid Feature Selection Strategy

Feature selection is a critical part of machine learning workflows that improves dimensionality reduc-
tion, eliminates duplicate or unnecessary features, and improves model performance and computational cost.
For these purposes, we employed a three-stage hybrid feature selection strategy that leverages the strengths
of filter, wrapper, and embedded methods by capitalizing on their complementary advantages. This approach
is mathematically discussed in Algorithm 1.

Algorithm 1: Three-stage hybrid feature selection algorithm

Require: Dataset D = {X, y}, number of top features to select in filter stage k, number of wrapper-selected
features n, Lasso regularization parameter «
Ensure: Final optimized feature subset Ffjpq)
1: Stage 1: Filter Method (Mutual Information)
2: Calculate the mutual information between every feature x; € X and target y:
) -5 St o 57
3: Rank features by I(x;; y) and keep the top-k:
Ffilter = TOP-k{I(xi;,’V)}f:l
4: Stage 2: Wrapper Method (Recursive Feature Elimination)
5: Train a Random Forest classifier RF on Fgjter.
6: Use Recursive Feature Elimination (RFE) to recursively eliminate the least important features until n
are left:
Furapper = RFE(RF, Fiilter, 1)
7: Stage 3: Embedded Method (Lasso Regularization)
8: Fit a Lasso regression model on Fyapper to carry out embedded selection:

) N
f3 = argming {ﬁ El(}/i - XiB)* + 0‘||/3|1}

RETAIN features with non-zero coefficients:

Ffinal = {xj € erapper | ﬁjer}
STATE Return: F,q

This three-step architecture combines the speed of filter methods and model-agnostic features, the inter-
action sensitivity of the wrapper method, and the embedded regularization’s sparsity-promoting feature. The
outcome is a small highly discriminative feature subset that enhances generalization, minimizes overfitting,
and minimizes training time. Constant or near-constant-value columns were eliminated in preprocessing,
as seen in Table 4, before executing the feature selection pipeline.
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Table 4: List of columns with constant values

Feature name

BwdAvgPacketsPerBulk
FwdURGFlags
FwdAvgBulkRate
RSTFlagCount
ECEFlagCount
BwdPSHFlags
BwdURGFlags
CWEFlagCount
BwdAvgBytesPerBulk
FwdAvgBytesPerBulk
FwdAvgPacketsPerBulk
BwdAvgBulkRate

This was done because qualities with fixed values exhibit no sample-to-sample variation and thus bring
no discriminatory power to the model. Additionally, they may lead to an unwanted increase in computational
complexity without improving performance.

Step 1: Filter Method. We started by applying the SelectkBest method with Mutual Information
(mutual_info_classif) as the scoring metric. This approach assesses the relationship between each
feature and the target variable, selecting the top 20 features that yield the greatest information gain
in classification.

Step 2: Wrapper Method. The learnt features from the filter method were then enhanced by Recur-
sive Feature Elimination (RFE) with Random Forest classifier as the base estimator. RFE removes the
least important feature recursively based on model performance until we are left with the top 10 most
significant features.

Step 3: Embedded Method. We then employed Ll-regularized (Lasso) regression with Select
FromModel on the outcome of RFE. L1 regularization was selected because it possesses the ability to impose
sparsity by setting the weights of less informative features to a specific value, thereby supporting both feature
selection and model learning. This helps curb redundancy in the high-dimensional feature space, enhances
generalization by reducing the probabilities of overfitting, and emphasizes the most discriminative features
involved in ransomware detection. Table 5 presents the features selected at each step of the feature selection.

Table 5: Features selected by filter, wrapper, and embedded methods

Filter Wrapper Embedded
FlowID FlowID SourcelP
SourcelP SourcelP SourcePort
SourcePort SourcePort DestinationIP
DestinationIP DestinationIP TimeStamp
TimeStamp TimeStamp FlowPacketsPerS
FlowDuration FlowDuration FlowIATMean
TotalLengthOf FwdPackets FlowPacketsPerS FlowIATMax

(Continued)
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Table 5 (continued)

Filter Wrapper Embedded

FwdPacketLengthMax FlowIATMean InitWinBytesForward
FwdPacketLengthMean FlowIATMax
FwdPacketLengthStd InitWinBytesForward
FlowPacketsPerS
FlowIATMean
FlowIATMax
PacketLengthMean
PacketLengthStd
PacketLengthVariance
AveragePacketSize

AvgFwdSegmentSize
SubflowFwdBytes
InitWinBytesForward

As a measure of the discrimination capability of the chosen set of features, we employed Permutation
Importance, a model-agnostic interpretability technique that estimates the importance of each feature by
measuring how predictive accuracy decreases when we randomly perturb individual features. This method
allows that the importance scores of the features not to be affected by the internal weighting scheme of a
given model; hence, we have a fair and unbiased evaluation. After feature selection, the final features and
their permutation importance scores are listed in Table 6. It indicates that TimeStamp was identified as the
most significant feature (importance score: 0.6022), indicating the vital role played by temporal patterns
in identifying malicious activity. This finding aligns with previous studies that highlight the importance of
timing anomalies and burst patterns as key features of ransomware activity. Network-layer features such as
SourcelP and DestinationIP also scored highly, once more emphasizing the importance of IP-level traffic
patterns in discriminating between benign and malicious flows. Additionally, temporal features derived
from flows like FlowIATMean, FlowIATMax, and InitWinBytesForward were significant contributors by
capturing inter-arrival time aspects and window-based flow behavior. Although the features SourcePort and
FlowPacketsPerS had lower individual importance scores, they are still valuable additions whose collective
contribution enhances the model’s discriminative ability. In conclusion, the selected feature subset optimizes
the trade-off between dimensionality reduction and predictive performance preservation. By selecting the
most informative features, the generated models are more effective, less prone to overfitting, and better
at generalizing across new ransomware strains. This reduced feature set served as a basis for subsequent
ensemble and AutoML-based classification trials.
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Table 6: Final set of selected features and their permutation importance scores

Feature Importance score
TimeStamp 0.602158
SourcelP 0.509532
DestinationIP 0.071642
InitWinBytesForward 0.005049
SourcePort 0.002935
FlowIATMean 0.002203
FlowIATMax 0.001763
FlowPacketsPerS 0.000073

3.5 Ensemble-Based Approaches

Ensemble learning is especially useful in the scenario of Android ransomware detection, primarily
because it averts overfitting, which is the issue with most high-dimensional and imbalanced datasets. By
aggregating several base learners, ensemble approaches make predictions more stable, decrease variance, and
prevent one single model from memorizing noise or artifacts from minority classes. This feature is vital in
security datasets, where generalization to unknown families of ransomware needs to be made [14,22]. This
work compares some of the most popular ensemble methods as baselines. Random Forest-based bagging
alleviates variance by bootstrap aggregation and majority voting. Boosting algorithms, such as Gradient
Boosting, XGBoost, CatBoost, and LightGBM, iteratively train a sequence of weak learners to reduce residual
errors and achieve state-of-the-art classification performance on tabular problems, including traffic analysis
and malware classification. Extra Trees, a variant of Random Forest, adds extra randomization in choosing
splits and further improves variance reduction with increased computational efficiency. Histogram-based
boosting variants enhance scalability by feature binning, thereby accelerating training on extremely large
datasets. Recent contributions like PerpetualBooster provide a hyperparameter-free alternative by adjusting
boosting iterations and depth through a single budget parameter, effectively solving the tuning problem
that exists within conventional ensembles. Combined, these models provide coverage of bagging, boosting,
randomization-based, and parameter-free methods, creating a thorough baseline collection for measuring
AutoML pipelines. This creates a robust performance benchmark and emphasizes the additional benefits of
automation for enhancing scalability.

3.5.1 Justification of Baseline Selection

The nine baseline models capture the key ensemble learning paradigms typically employed in network
security:

o Bagging: Bagging and Random Forest reduce variance through averaging predictions across boot-
strapped samples.

o Boosting: Gradient Boosting, HistGradientBoosting, XGBoost, LightGBM, and CatBoost work to fit
sequentially to minimize residuals with high predictive capability.

« Randomization-Based: Extra Trees employ random selection of splits to enhance generalization
and efficiency.

o Classical Baseline: AdaBoost is added as a baseline classical boosting reference, even though it is prone
to overfitting on highly unbalanced datasets.
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3.5.2 Consistency of Experimental Design

To promote fairness, all baseline models were trained from a common stratified 80:20 train/test split
and underwent identical preprocessing operations, that is, deletion of duplicates, scaling, label encoding, and
class organization in hierarchy. This ensures that if performance differences are observed, they will reflect
the model’s ability and not the leakage of data, distribution changes, or different preprocessing.

3.5.3 Hyperparameter Optimization

All baseline model hyperparameters were systematically optimized with randomized search and
stratified 5-fold cross-validation to maximize macro-averaged Fl-score. The best hyperparameters can be
found in Table 7. All other unmentioned parameters were left with the default values from the library
for reproducibility.

Table 7: Optimized hyperparameter configuration for ensemble baselines

Model Hyperparameter setting

Random Forest Configured with 200 decision trees; randomization controlled by seed = 42.
Uses 200 boosting stages with learning rate = 0.1, 80% subsampling per stage,

Gradient Boosting feature selection by /features, maximum tree depth = 5, and a fixed random

seed.
HistGradientBoosting Trained with default histogram-based splitting, random seed = 42.

200 boosting rounds, learning rate = 0.1, depth limited to 5 levels, \/features

LightGBM feature sampling, full parallel execution enabled, random seed = 42, and silent

training mode.
Bagein Base estimator: decision tree classifier; 200 bootstrap samples, 90% sampling
8818 ratio, 80% feature subset per iteration, random seed = 42.

200 randomized trees with unlimited depth, minimum split size = 4, minimum
Extra Trees . .
leaf size = 1, parallel execution across cores, random seed = 42.

100 boosting iterations, learning rate = 0.1, log-loss evaluation metric, label

XGBoost
008 encoder disabled, and fixed random seed.
CatBoost 100 boosting steps, learning rate = 0.1, tree depth = 6, silent mode enabled,
random seed = 42.
AdaBoost 100 boosting iterations with learning rate = 0.1 and fixed random seed.

3.6 AutoML-Based Approaches

AutoML reduces human effort by automatically preprocessing features, selecting models, and adjusting
hyperparameters, thereby enhancing scalability and reproducibility. AutoML is especially important in
cybersecurity because the model needs to respond quickly to changing threats. We compared three AutoML
frameworks FLAML, TPOT, and EvalML that were chosen for their contrasting design philosophies.

o FLAML: A computationally efficient, lightweight AutoML library that dynamically scales the time and
computational resources to find near-optimal learners within constrained time budgets, making it ideal
for repeated retraining in security scenarios [21].

o TPOT: Uses genetic programming to develop end-to-end machine learning pipelines such as prepro-
cessing, model selection, and hyperparameter optimization. The use of GPU acceleration with NVIDIA
RAPIDS/cuML greatly enhances exploration speed on large ransomware datasets [25].
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o  EvalML: Offers an interpretable and predictable AutoML process via Bayesian optimization, with built-
in categorical data and class imbalance handling, and the ability to create deployment-ready models
through automated hyperparameter tuning [26].

All experiments for AutoML were conducted using uniform preprocessing pipelines, stratified train-test
splits, and a fixed random seed (random_state = 42) for replicability. A summary of the training settings has

been provided in Table 8.

Table 8: AutoML training configurations

Framework Configuration

FLAML time_budget = 5000, metric = accuracy, task = classification, early_stop = True, seed = 42
max_time_mins = 1000, n_jobs = 5, use_GPU = True (RAPIDS/cuML), scoring =
‘accuracy, random_state = 42
AutoMLSearch (X _train, y_train, problem_ type = “multiclass”,
random_seed = 42, optimize for = *“accuracy”)

TPOT

EvalML

3.7 Evaluation Phase

Throughout the evaluation stage, the performance of the trained model was assessed using various
standard metrics to confirm its effectiveness in detecting Android ransomware. This check was conducted
using the test dataset, which was excluded from the training procedure to provide an unbiased evaluation of
the model’s capability to generalize. The performance metrics used in this study are detailed in Table 9.

Table 9: Description of performance metrics used for evaluation

Metric Description Formula
Calculates the percentage of accurate predictions, TP+ TN
Accuracy including true positives and true negatives, out of
TP+ TN +FP+FN
all assessed cases.
Fraction of predicted positive instances that were TP
Precision actually correct, reflecting the ability to avoid false TP+ FP
positives. "
Ability of the model to correctly identify actual TP
Recall positive cases, important for capturing all malware —_—
. TP+ FN
or attack instances.
Fl Harmonic mean of precision and recall, balancing 5 Precision x Recall
-score X
both metrics, especially under class imbalance. Precision + Recall
The average of recall scores across all classes, robust 1
Balanced Acc. & . = ¢ Recall;
to class imbalance. C

Computes the metric independently for each class ]
Macro Avg. and then takes the unweighted mean, treating all e >, Metric;
classes equally.
The unweighted average of the Area Under the ]
Macro AUC ROC Curve (AUC) calculated in a one-vs-rest =N /01 TPR;(FPR;*(u)) du
manner for each class. ¢
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The performance of the proposed framework was comprehensively evaluated using a stratified 80:20
train-test split, which preserved the original class balance. This ensured that ransomware and benign traffic
were represented proportionally in the test and training sets. Additionally, some ransomware families were
excluded from the training step to test the model’s ability to generalize against novel threats, a crucial
consideration for its real-world effectiveness.

4 Results and Analysis

This section demonstrated the experimental outcome of our Android ransomware detection system,
comparing classical ensemble learning methods with AutoML-based ones. In addition to the final accuracy
values, we include cross-validation results, learning curve analysis, and confusion matrix analysis to ensure
that the performance is stable, unbiased, and not simply a result of overfitting or anomaly in datasets.
Our findings suggest that although ensemble baselines produce acceptable performance, AutoML systems,
especially FLAML, always achieve higher accuracy, scalability, and efficiency, underscoring their pragmatic
benefits in automating pipeline optimization.

Within our initial exploratory analysis, we employed hierarchical clustering to recluster ransomware
families into behaviourally coherent groups. The Euclidean distance matrix, shown in Fig. 2, captures
pairwise similarities between centroids of classes, with darker color indicating closer distance. Interestingly,
Pletor was seen as an outlier, always having high distances from other families, reflecting its distinctive
behavior. The dendrogram in Fig. 3 indicates the hierarchical relationships between the families; classes that
combine at lower distances are more similar. For instance, WannaLocker and Simplocker, and Koler and
PornDroid, were close relatives, reflecting a high behavioral similarity between them. To identify meaningful
clusters, we imposed a horizontal cutoff line at a distance threshold of 1, resulting in eight ransomware
groups, as listed in Table 10. In addition, Table 11 compares the initial class distributions with the regrouped
distributions and shows a reduction in class complexity that may improve generalization.

Euclidean Distance Between Ransomware Class Centroids Hierarchical Clustering D of Class Centroids
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Figure 2: Pairwise Euclidean distances between class Figure 3: Dendrogram of ransomware class centroids
centroids
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Table 10: Ransomware class grouping

Group name Constituent ransomware classes

WL_SL WannaLocker & Simplocker
PD Kl PornDroid & Koler
JisLP Jisut & Lockerpin
Charger Charger (individual group)
RansomBO RansomBO (individual group)
SVpeng SVpeng (individual group)
Pletor Pletor (individual group)
Benign Benign (non-malicious class)

Table 11: Comparison of class distribution before and after category consolidation

(a) Pre-Consolidation (b) Post-Consolidation
Class Instances Grouped category Instances
Svpeng 54,161 PD_KTI' 90,637
PornDroid 46,082 WL_SL? 69,041
Koler 44 555 Svpeng 54,161
Benign 43,091 JisLP? 50,979
RansomBO 39,859 Benign 43,091
Charger 39,551 RansomBO 39,859
Simplocker 36,340 Charger 39,551
WannaLocker 32,701 Pletor 4715
Jisut 25,672
Lockerpin 25,307
Pletor 4715

Note: 'Combined PornDroid + Koler instances, “Combined
WannaLocker + Simplocker instances, *Combined Jisut + Locker-
pin instances.

4.1 Ensemble Learning Approach

We have utilized and compared nine ensemble methods according to their capability to detect Android
ransomware. All models were trained and tested using a stratified data split to create a class-balanced dataset.
The metrics (accuracy, precision, recall, and Fl-score) have been used to evaluate them. Comparison results
are shown in Table 12. In general, the ensemble algorithms performed better than standard DNNs and CNNs,
with eight out of nine models achieving an accuracy of over 99%. More concretely, the best results were
achieved with Bagging, Gradient Boosting and Random Forest; their accuracies and Fl-scores are nearly
100%. These results highlight the high potential of these models in accurately distinguishing between normal
and adversarial traffic.
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Table 12: Performance comparison of classifiers on ransomware dataset with extended metrics

Model Accuracy Balanced Ma-c 1:0 Macro Recall MacroF1 Macro AUC
Acc. precision

Bagging 0.9984 0.9974 0.9973 0.9974 0.9974 1.0000
Gradient Boosting 0.9981 0.9967 0.9971 0.9967 0.9969 1.0000
LightGBM 0.9961 0.9938 0.9946 0.9938 0.9942 1.0000
HistGradientBoosting ~ 0.9960 0.9948 0.9946 0.9948 0.9947 1.0000
Random Forest 0.9953 0.9899 0.9936 0.9899 0.9917 1.0000
XGBoost 0.9943 0.9909 0.9928 0.9909 0.9918 1.0000
Extra Trees 0.9914 0.9853 0.9907 0.9853 0.9879 0.9999
CatBoost 0.9897 0.9843 0.9888 0.9843 0.9865 0.9999
AdaBoost 0.5755 0.4636 0.3999 0.4636 0.4127 0.9248

The results presented in Tables 13-21 demonstrate visually that ensemble learning is an effective model
for detecting Android ransomware. They maintained an exceptional performance at all times, with a global
accuracy >99.4%, and macro/weighted Fl-scores above 0.99 for every technique mentioned above (Random
Forest, XGBoost, Bagging, Gradient Boosting and HistGradientBoosting). These models not only have good
majority class performance, but also surprisingly high precision and recall for minority families such as Pletor
and Charger, which further demonstrates their capability in dealing with imbalanced datasets.

On the other hand, Extra Trees, CatBoost and LightGBM were performing quite well (98.9%-99.6%
accuracies), but somewhat less consistently in the multimodal class detection than RF for minority classes.
On the other hand, except for performance, which was severely downgraded with overall accuracy falling
to 57.4% and poor class-wise Fl-scores, indicating it possesses weak generalization ability in multi-class
ransomware detection. Finally, the conclusions are that Bagging, Gradient Boosting, HistGradientBoosting,
Random Forest and XGBoost as their best recommendable ensemble algorithms; and good baselines for
what to compare against more complex AutoML-based or hybrid models.

Table 13: Results of the CatBoost classifier

No. Class Precision Recall FI1-Score Support
0 Benign 0.9985 1.0000  0.9992 8618
1 Charger 0.9896 0.9765  0.9830 7910
2 JisLP 0.9699 0.9949 0.9822 10,196
3 PD_KI 0.9845 0.9856 0.9850 18,128
4 Pletor 0.9790 0.9406 0.9594 943
5  RansomBO 0.9927 0.9923  0.9925 7972
6 SVpeng 0.9974 0.9948  0.9961 10,832
7 WL_SL 0.9989 0.9899  0.9944 13,808

Accuracy: 0.9897
Macro Avg: 0.9888 0.9843  0.9865 78,407

Weighted Avg: 0.9897 0.9897  0.9897 78,407
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Table 14: Results of the XGBoost classifier

No. Class Precision Recall Fl-Score Support
0 Benign 0.9999 0.9992  0.9995 8618
1 Charger 0.9908 0.9933  0.9920 7910
2 JisLP 0.9881 0.9886  0.9884 10,196
3 PD Kl 0.9917 0.9933  0.9925 18,128
4 Pletor 0.9795 0.9629 0.9711 943
5 RansomBO 0.9957 0.9959  0.9958 7972
6 SVpeng 0.9990 0.9989  0.9989 10,832
7 WL_SL 0.9974 0.9951 0.9963 13,808

Accuracy: 0.9943
Macro Avg: 0.9928 0.9909 0.9918 78,407
Weighted Avg: 09943 0.9943  0.9943 78,407
Table 15: Results of the random forest classifier

No. Class Precision Recall F1-Score Support
0 Benign 1.0000 1.0000 1.0000 8618
1 Charger 0.9967 0.9925  0.9946 7910
2 JisLP 0.9926 0.9903 0.9915 10,196
3 PD Kl 0.9935 0.9961 0.9948 18,128
4 Pletor 0.9768 0.9374 0.9567 943
5  RansomBO 0.9947 0.9977  0.9962 7972
6 SVpeng 0.9966 0.9987  0.9976 10,832
7 WL_SL 0.9967 0.9967  0.9967 13,808

Accuracy: 0.9954
Macro Avg: 0.9935 0.9887 0.9910 78,407
Weighted Avg: 0.9953 0.9954  0.9953 78,407
Table 16: Results of the extra trees classifier

No. Class Precision Recall FI1-Score Support
0 Benign 0.9994 0.9983  0.9988 8618
1 Charger 0.9914 0.9804  0.9859 7910
2 JisLP 0.9796 0.9868  0.9832 10,196
3 PD Kl 0.9873 0.9892  0.9883 18,128
4 Pletor 0.9866 0.9385  0.9620 943
5  RansomBO 0.9926 0.9962  0.9944 7972
6 SVpeng 0.9957 0.9993 0.9975 10,832
7 WL_SL 0.9970 0.9946 0.9958 13,808

Accuracy: 0.9914
Macro Avg: 0.9912 0.9854 0.9882 78,407
Weighted Avg: 0.9915 0.9914 0.9914 78,407
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Table 17: Results of the HistGradientBoosting classifier

No. Class Precision Recall FI1-Score Support
0 Benign 0.9991 0.9988  0.9990 8618
1 Charger 0.9956  0.9942  0.9949 7910
2 JisLP 0.9923  0.9916  0.9920 10,196
3 PD_KI 0.9938  0.9955  0.9947 18,128
4 Pletor 0.9820  0.9852  0.9836 943
5 RansomBO 09974  0.9974  0.9974 7972
6 SVpeng 0.9994  0.9994 0.9994 10,832
7 WL_SL 0.9974 0.9965  0.9969 13,808

Accuracy: 0.9960
Macro Avg: 0.9946  0.9948  0.9947 78,407
Weighted Avg: 0.9960  0.9960  0.9960 78,407
Table 18: Results of the gradient boosting classifier

No. Class Precision Recall FIl-Score Support
0 Benign 1..0000  1.0000  1.0000 8618
1 Charger 0.9976 ~ 0.9973  0.9975 7910
2 JisLP 0.9964  0.9983  0.9974 10,196
3 PD_KI 0.9983 0.9987  0.9985 18,128
4 Pletor 0.9883 0.9852  0.9867 943
5 RansomBO 09981  0.9979  0.9980 7972
6 SVpeng 0.9988  0.9994  0.9991 10,832
7 WL_SL 0.9981  0.9962  0.9972 13,808

Accuracy: 0.9981
Macro Avg: 0.9970  0.9966  0.9968 78,407
Weighted Avg: 0.9981 0.9981  0.9981 78,407
Table 19: Results of the LightGBM classifier

No. Class Precision Recall F1-Score Support
0 Benign 0.9990  0.9998  0.9994 8618
1 Charger 0.9970  0.9937  0.9953 7910
2 JisLP 0.9907  0.9936  0.9922 10,196
3 PD_KI 0.9947  0.9951  0.9949 18,128
4 Pletor 0.9818 0.9745  0.9782 943
5 RansomBO  0.9966  0.9977  0.9972 7972
6 SVpeng 0.9990 0.9995  0.9993 10,832
7 WL_SL 0.9983 0.9963  0.9973 13,808

Accuracy: 0.9961
Macro Avg: 0.9946  0.9938  0.9942 78,407
Weighted Avg: 0.9961 0.9961 0.9961 78,407
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Table 20: Results of the AdaBoost classifier

No. Class Precision Recall FI1-Score Support
0 Benign 0.0000  0.0000  0.0000 8618
1 Charger 0.4345  0.8834  0.5825 7910
2 JisLP 0.3677 0.8510  0.5136 10,196
3 PD_KI 0.0000  0.0000  0.0000 18,128
4 Pletor 0.0000  0.0000  0.0000 943
5 RansomBO  0.8689  0.8857  0.8773 7972
6 SVpeng 0.7157 0.9955  0.8327 10,832
7 WL_SL 0.7405 0.8331 0.7841 13,808

Accuracy: 0.5741
Macro Avg: 0.3909 0.5561 0.4488 78,407
Weighted Avg: 0.4093 0.5741 0.4679 78,407
Table 21: Classification report of the bagging classifier

No. Class Precision Recall FI1-Score Support
0 Benign 1..0000  1.0000  1.0000 8618
1 Charger 0.9997  0.9980  0.9988 7910
2 JisLP 0.9984  0.9987  0.9985 10,196
3 PD_KI 0.9986  0.9990  0.9988 18,128
4 Pletor 0.9946  0.9926  0.9936 943
5 RansomBO 0.9989 0.9987  0.9988 7972
6 SVpeng 0.9992 0.9996  0.9994 10,832
7 WL_SL 0.9984 0.9973  0.9978 13,808

Accuracy: 0.9984
Macro Avg: 0.9985 0.9980  0.9982 78,407
Weighted Avg: 0.9984 0.9984  0.9984 78,407
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To ensure the reliability of our conclusions as well as to mitigate a potential performance bias introduced
by one train-test split, we conducted 5-fold stratified cross-validation. The results in Table 22 indicate that,
there are standard deviations under all settings and this justifies the model maintains similar performance

on separate folds of the dataset.

Table 22: 5-Fold cross-validation results (mean + std) for traditional ensemble models

Model Accuracy Balanced Acc. Macro precision Macro recall Macro F1
Random Forest 0.9946 + 0.0003 0.9889 + 0.0007 0.9935 + 0.0003 0.9889 + 0.0007 0.9911 + 0.0003
Gradient Boosting 0.9982 + 0.0002 0.9971 + 0.0007 0.9971 + 0.0006 0.9971 + 0.0007 0.9971 + 0.0006
HistGradientBoosting ~ 0.9955 + 0.0004 0.9937 + 0.0009 0.9932 + 0.0007 0.9937 + 0.0009 0.9935 + 0.0008
LightGBM 0.9963 + 0.0001 0.9944 + 0.0005 0.9951 + 0.0005 0.9944 + 0.0005 0.9947 + 0.0004
Bagging 0.9983 + 0.0002 0.9974 + 0.0006 0.9972 + 0.0005 0.9974 + 0.0006 0.9973 + 0.0005

Extra Trees

XGBoost

0.9908 + 0.0003
0.9947 + 0.0002

0.9851 + 0.0010
0.9920 + 0.0005

0.9901 + 0.0004
0.9933 + 0.0004

0.9851 + 0.0010
0.9920 + 0.0005

0.9875 + 0.0006
0.9927 + 0.0002

(Continued)
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Table 22 (continued)
Model Accuracy Balanced Acc. Macro precision Macro recall Macro F1
CatBoost 0.9913 + 0.0003 0.9871 + 0.0030 0.9879 + 0.0018 0.9871 + 0.0030 0.9875 + 0.0022
AdaBoost 0.6012 + 0.0450 0.4919 + 0.0431 0.4490 + 0.0475 0.4919 + 0.0431 0.4521 + 0.0476

For a deeper understanding of Bagging classifier’s behavior, we also investigated its learning curve as
shown in Fig. 4. This curve displays the same metric on the training set and the cross-validation set at varying
numbers of training samples. It can be observed that the cross-validation accuracy begins at a lower level and
then gradually increases as more training data is presented, indicating that the model’s overfitting is reducing
and it is learning more generalizable patterns.

Learning Curve: Bagging (DecisionTree)
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Figure 4: Bagging learning curve plotting training vs. validation accuracy against increasing training sizes.
Convergence shows there is no overfitting

The continued separation of the training and validation curves reflect a certain degree of variance-
the model is probably overfitting at this point. However, the validation curve is still increasing, indicating
that more data benefits the model, and its generalization performance will improve. Robust cross-validation
scores support that the models do generalize well. This robustness stems from the use of Ll-regularized
feature selection, which discards less relevant features, as well as from ensemble methods, which decrease
variance by averaging and thereby overcome overfitting. The Bagging classifier emerged as the best performer
among all evaluated models. For further assessing its performance, the confusion matrix in Fig. 5 confirms
that for most predictions, there are only a few misclassifications for all classes.
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Confusion Matrix - Bagging Classifier
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Figure 5: Confusion matrix for bagging classifier

The results further support the argument that the Bagging classifier is the best model for Android
ransomware classification. Scoring critically high accuracy of 99.84%, it demonstrates ideal precision and
recall for all ransomware families, demonstrating the capacity to filter out false positives or negatives. For the
family of gradient boosting models, Gradient Boosting (GB) turned out to be better than today’s options,
including LightGBM, HistGradientBoosting, XGBoost, and CatBoost, due to its superior compatibility
with multi-class ransomware specifics. The Random Forest classifier did also perform well with an accuracy
of 99.54% and is thus a solid choice for this classification problem. While the Extra Trees classifier
was great and had an accuracy of 99.14%, it was not as strong as the best performing models. At the
other end of the scale, conversely, AdaBoost did much worse than the competition with a small 57.41%
accuracy, likely proving that its boosting is not particularly well coordinated for the difficult multi-class
task of android ransomware data. Cross-validation and learning curve examination ensure the performance
shown is trustworthy and not due to data bias/overfitting. However, the validation accuracy for smaller
training sizes is increasing slowly in the learning curve, which means that the convergence speed of the
Bagging classifier is limited and can be a bottleneck for large-scale or real-time applications. In contrast
to ensembles consisting of manually designed models, AutoML-powered models, such as FLAML, can
dynamically optimize hyperparameters and model selection, which often results in faster convergence and
efficient learning that overcomes this limitation.

4.2 AutoML Approaches

Three highly popular AutoML toolkits were analyzed for automating the choice of mod-
els/hyperparameters: EvalML, TPOT and FLAML. They avoid the extensive manual experimentation
required to find an optimal pipeline by conducting a targeted search for near-optimal pipelines, making
experimental efforts more affordable and competitive with or even better than exhaustive searches. Inter-
pretability and handling of imbalanced data are also a focus of EvalML, in combination with internal
preprocessing logic. The best pipeline (label encoding, missing value imputation, under sampling and
then a column wise transformation), resulted into an XGBoost model found by EvalML. With both these
preprocessing steps in a pipeline, we obtained approximately 99.38% accuracy with just about 12.5 s of
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training! As shown in Fig. 6, the component-wise structure of EvalML provides an excellent trade-off
between interpretability and accuracy.
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Figure 6: EvalML best pipeline

TPOT uses a method called genetic programming to breed, develop and refine pipelines, even with
a limited configuration (only 5 generations and 20 individuals), TPOT generated AoB pipeline, which
contains pipelines with one or more pre-processing stages such as imputation, scaling, variance filterer,
and feature union. The last model, which was built on an ExtraTreesClassifier achieved an outstanding
performance of 99.49% with the overall training time being about 2 h and 45 min. The resulting pipeline
structure in Fig. 7 illustrates the flexibility of TPOT to build intricate and efficient architectures.

Conversely, FLAML focuses on fast and lightweight AutoML at a low computational cost. With a tight
timing of 300-sec (5-min) budget, FLAML efficiently converged to an effective Random Forest Classifier,
attaining the best-observed accuracy of 99.85%. The best setting had a final setup with 92 estimators and
hyperparameter tuning for maximum features, leaf nodes at entropy splitting. The learning curve in Fig. 8
illustrates the efficiency and scalability of FLAML for quick turnaround experiments.

From the comparative study of the above three AutoML frameworks (Table 23), it is evident that
there are clear trade-offs between accuracy and effort during training. FLAML selected the Random Forest
classifier as the best model and achieved a top accuracy of 99.85% at around 38 min of training time. TPOT
chose an Extra Trees classifier with a lower accuracy (99.49%) and a much more expensive cost of training,
almost 3 h took for performing evolutionary search during model selection. Compared to this, EvalML
performed extremely well, selecting an XGBoost predictor with 99.38% accuracy and running in just12.5s.
Despite its lower accuracy, this was by far the fastest result out of any framework.



Comput Mater Contin. 2026;87(1):27

25

Pipeline
— pipeline-1: Pipeline
| ColumnSimpleImputer

| ColumnSimpleImputer()

v

pipeline-2: Pipeline
~ MinMaxScaler

MinMaxScaler ()
v

- VarianceeThreshold

VarianceeThreshold(threshold=0 )883915062)
|

- featureunion-1: FeatureUnion

FeatureUnion(tranformer list=[

("'skiptransformer',
SkipTransformer()), Passthrough())])

skiptransformer passthrough

skiptransformer passthrough
~ SkipTransforme ~ Passthrough
SkipTransformer ( Passthrough()
| | |
v

v ExtraTreesClassifier

max f features=0.81404552543743, min_samples
leaf=17, min samples split=15, n

Figure 7: TPOT best pipeline

FLAML Learning Curve

‘g —e— Validation Loss per Trial
0:641 -~-- Best Validation Loss So Far
0.5 4
w 0.4
w
o
-
[
.2
= 034
i
s
0.2 1
0.1 A 0
0.0 & Voo ° ®*—G— 2
0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

Figure 8: FLAML learning curve

Specific hyperparameter settings, detailed in Table 24, can reveal how each framework fine-tunes the
models it uses. FLAML optimized Random Forest with 92 estimators and entropy splitting as well as feature
sampling control, while TPOT specialized Extra Trees to have constraints on split and leaf samples. XGBoost
configuration for EvalML used a max depth of 6, learning rate (eta) of 0.1 with 100 estimators and was
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supported by automated preprocessing steps to include label encoding, imputation, undersampling as well
column selection. These findings highlight that, even though FLAML returned the accurate model overall
but EvalMLs trade-off between accuracy and computation was better than other methods, which is very
beneficial in situations for a fast convergence.

Table 23: Performance comparison of AutoML frameworks

AutoML framework Best model Accuracy (%)  Training time

FLAML RandomForestClassifier 99.85 37 min and 52 s

TPOT ExtraTreesClassifier 99.49 2 h, 45 min, 16 s
EvalML XGBoostClassifier 99.38 12.5s

Table 24: Optimal hyperparameters according to the models

AutoML Best hyperparameter results
Best ML leaner: rf, Best hyperparameter config: {
FLAML ‘n_estimators’: 92, ‘max features’: 0.6193, ‘max_leaves':
30482, ‘criterion’: ‘entropy’ }
TPOT ExtraTreesClassifier (max features = 0.8144, min samples_leaf =

17, min_samples_split = 15, n_Jjobs = 1)
XGBoostClassifier(eta = 0.1, max _depth = 6, min_child_weight
1, n_estimators = 100, n_jobs = -1, eval_metric = ‘logloss’)

EvalML

5 Limitations

The experiments were performed in a laboratory setting with an offline dataset. The AutoML techniques
used in the study are demanding as they need storage of previous iterations’ results, to reutilize previous
computations for the following iteration. This phenomenon results in a conflict between memory (or CPU)
and elapsing time for computation. In certain situations, both resources get heavily taxed as the earlier
trial parameter results have to be kept in memory for further operations. While some AutoML tools,
including H2O itself (Rob0 machine learning platform among others) offer model explainability features,
this was not investigated in this paper. To ensure evaluations are fair and consistent, these explainability
tools were intentionally excluded. Another drawback of this study is that several AutoML modules are
maintained and updated regularly leading to differences in their performance. Therefore, different results
may be obtained due to other implementations in the future, and they may even improve upon what has
been presented [27-29].

6 State-of-the-Art-Comparison

To assess the efficiency of classical and automated approaches to Android ransomware detection, a
comparative study was conducted that integrated findings from the current literature with the intended
hybrid AutoML ensemble approach, as depicted in Table 25. Classic ensemble methods, including Bagging,
Gradient Boosting (GB), and Random Forest, performed remarkably well in terms of detection accuracy,
with all models achieving an accuracy of over 99.75%. Interestingly, the Bagging model achieved the best
performance at 99.84%, closely followed by GBM at 99.83% and Random Forest at 99.75%. This reflects
their ability to perform well under diverse ransomware behaviors. Other methods, such as LightGBM,
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HistGradientBoosting, XGBoost, and CatBoost, also reported high performances. Nonetheless, AdaBoost
performed poorly, with an accuracy of 59.67%, likely due to its vulnerability to imbalanced and multiclass
data distributions. Conversely, the emergence of Automated Machine Learning (AutoML) frameworks has
transformed model building by reducing the need for extensive manual configuration and still achieving
competitive or even better results. Among these, FLAML excelled by achieving a peak precision of 99.85%
within a restricted time, proving to be both efficient and accurate. TPOT, which utilizes genetic programming
to search for fully optimized pipelines, achieved an accuracy of 99.49%, albeit at the expense of a longer
execution time. The EvalML, whose combined preprocessing and model tuning achieved a better 99.38%
accuracy through a more efficient process. Alternative research approaches have also proposed architectures,
such as DroidAutoML, a microservice-based framework that claims an improvement of up to 11% over
more conventional tools like Drebin and MaMaDroid. AutoML-generated deep learning models have been
successfully applied to large-scale malware datasets, such as SOREL-20M and EMBER-2018, achieving
impressive detection performance in both static and online analysis settings. These observations demonstrate
the potential of AutoML as a highly effective and scalable solution for detecting Android ransomware.

Table 25: Comparison of state-of-the-art android ransomware detection methods

Mai
Reference Year Class. Sel. Feat. Dataset am Acc. (%)
model
100
Hossain Kaggle Android Baggin (Bin.)
, 2024 Binary & 10 Ransomware g8lng "
etal. [14] Multi (203,556 samples) Ensemble 99.82
: P (Multi)
Kaggle Android .
Ah D
med 2024 Binary 19 Ransomware (392,035 0% 9724
etal. [17] Tree
samples)
FNN
AndroZoo (benign), (Keras; 3
Farhan [30] 2024 Binary 20 RansomProber dens:e 98.9
(malicious)
layers)
RansomProber (2721
Sharma ransomware) + Random
2021 Bi 20 99.67
et al. [31] mnary AndroZoo (2000 Forest
benign)
Kaggle Android Bagging; 99.84:
This Work 2025 Multiclass 8 Ransomware (392,035 FLAML o
99.85
samples) (AutoML)

7 Conclusion and Future Work

This study presents the use of ensemble learning models and AutoML-powered pipelines in the context
of Android ransomware detection. Using a three-stage hybrid feature selection method based on hierarchical
class grouping, the proposed framework proved to be highly resilient. The Bagging and FLAML were
identified as the best-performing classifiers. All the above processes, along with stratified train-test splits,
cross-validation, learning curves, confusion matrices, and ROC analysis, were performed to ensure the
results’ reliability and reproducibility. The results highlight the power of AutoML to reduce human effort,
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speed up pipeline building, and obtain competitively or even better accuracy compared to manually tuned
ensemble baselines. These findings make AutoML a promising candidate for future intrusion detection
systems, particularly in settings where rapid model adaptation is needed to mitigate the latest threats.
Although the showcased framework demonstrates excellent performance when modeled in controlled
laboratory environments, its industrial scalability and real-world usability have yet to be proven. Subsequent
work ought to focus on deployment experiments on big scales in production-like network environments
to test inference latency, throughput, resource usage, and integration overhead. Furthermore, longitudinal
testing on streaming network traffic is recommended to assess the framework’s robustness against concept
drift and the dynamic nature of ransomware variants. Such findings will provide strong proof of concept for
the framework’s applicability to security operations centers (SOCs) and establish a compelling argument for
its real-world deployment.
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