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ABSTRACT: Accurate and reliable power system data are fundamental for critical operations such as grid monitoring,
fault diagnosis, and load forecasting, underpinned by increasing intelligentization and digitalization. However, data loss
and anomalies frequently compromise data integrity in practical settings, significantly impacting system operational
efficiency and security. Most existing data recovery methods require complete datasets for training, leading to sub-
stantial data and computational demands and limited generalization. To address these limitations, this study proposes
a missing data imputation model based on an improved Generative Adversarial Network (BAC-GAN). Within the
BAC-GAN framework, the generator utilizes Bidirectional Long Short-Term Memory (BiLSTM) networks and Multi-
Head Attention mechanisms to capture temporal dependencies and complex relationships within power system data.
The discriminator employs a Convolutional Neural Network (CNN) architecture to integrate local features with global
structures, effectively mitigating the generation of implausible imputations. Experimental results on two public datasets
demonstrate that the BAC-GAN model achieves superior data recovery accuracy compared to five state-of-the-art and
classical benchmark methods,with an average improvement of 17.7% in reconstruction accuracy. The proposed method
significantly enhances the accuracy of grid fault diagnosis and provides reliable data support for the stable operation of
smart grids, showing great potential for practical applications in power systems.

KEYWORDS: Power system; data recovery; generative adversarial network; bidirectional long short-term memory
network; multi-head attention mechanism; convolutional neural network

1 Introduction

Driven by increasing intelligence and digitization in power systems, modern grid data have grown
significantly in complexity. The widespread deployment of sensors, smart meters, and IoT devices enables
real-time collection and transmission of operational, power delivery, weather, and business data [1-3], sup-
porting enhanced grid monitoring and management [4]. However, data integrity is frequently compromised
by missing or incomplete values resulting from equipment failures and communication network issues [5].
This data loss severely impacts critical functions including real-time monitoring, fault diagnosis, and load
forecasting [6]. A notable example is the 2018 California grid outage, where missing monitoring data from
substations significantly hampered fault diagnosis and restoration efforts, ultimately affecting approximately
200,000 households and businesses [7]. Consequently, effective recovery of missing data is essential for
ensuring power system reliability and security.

Methods for recovering missing data in power systems are broadly classified as statistical, machine
learning (ML), and deep learning (DL) approaches. Statistical methods encompass techniques such as linear
interpolation [8], multiple imputation [9], and regression imputation [10]. Time-series specific approaches
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include the ARMA model (combining autoregressive (AR) and moving average (MA) components) for
prediction [11], ARIMA for non-stationary time series recovery [12], and spatial interpolation using Delaunay
triangulation [13]. While these methods primarily infer missing values based on underlying statistical
characteristics, they often struggle to effectively capture the complex nonlinear dynamics and temporal
dependencies inherent in power system data due to its intricate nature.

As recognition of power system data complexity grows, machine learning (ML) has been increasingly
adopted for missing data imputation. Compared to statistical methods, ML excels at automatically learning
intricate data patterns. For instance, K-Nearest Neighbors (KNN) has been applied to impute missing
wind power data [14], hybrid approaches combine statistical and ML techniques like kernel canonical
correlation analysis to enhance accuracy [15], and random forest-based multiple imputation algorithms
have been developed [16]. However, ML methods typically depend on explicit feature engineering. Given
the high dimensionality, nonlinearity, and complex temporal dependencies inherent in power system data,
these approaches often struggle to capture deep underlying relationships, limiting their effectiveness in
complex scenarios.

Deep learning (DL) advances beyond conventional ML by employing sophisticated neural architectures
to autonomously extract latent patterns and correlations from raw data. Representative approaches include:
bidirectional RNNs (M-RNN) for data stream interpolation [17]; GRU-D models incorporating masking and
time intervals [18]; graph networks enhanced with sparse spatiotemporal attention for improved robustness
to sparsity [19]; conditional score diffusion models for time series imputation [20]; Gaussian mixture
models parameterized via maximum likelihood estimation [21]; and denoising autoencoders for missing
data handling [22]. Despite these innovations, DL-based imputation methods remain challenged by complex
missing patterns and limitations in model robustness.

To address these challenges, generative adversarial networks (GANs) have emerged as a promising
approach for missing data imputation, leveraging their strong generative capabilities to produce realistic and
plausible imputation results. Notably, GAIN (Generative Adversarial Imputation Network) [23] introduced
a GAN-based framework that generates high-quality imputations through adversarial training. However, the
GAIN model exhibits two key limitations for power system applications: (1) Its reliance on fully connected
neural networks hinders effective capture of long-term temporal dependencies essential for complex power
system time series characterized by strong periodicity and temporal correlations, and (2) It inadequately
models local data correlations, limiting its ability to exploit local patterns and variation trends inherent in
power system data.

To overcome these limitations, this paper proposes BAC-GAN (Bidirectional LSTM with Multi-Head
Attention and CNN-based Discriminator Generative Adversarial Network), an enhanced GAN architecture
for power system data imputation. The generator integrates bidirectional long short-term memory (BiLSTM)
networks with multi-head attention (MA) mechanisms to capture complex temporal dependencies. Simulta-
neously, the discriminator employs a convolutional neural network (CNN) architecture to effectively model
local features and global structures, mitigating the generation of implausible imputations.

The principal contributions are:

«  We propose BAC-GAN, a novel generative adversarial network framework incorporating Bidirectional
LSTM with Multi-Head Attention and a CNN-based Discriminator, specifically designed for high-
accuracy imputation of missing data in power systems.

» The generator integrates Bidirectional LSTM (BiLSTM) networks with a Multi-Head Attention (MA)
mechanism to comprehensively capture complex long-term temporal dependencies, while the dis-
criminator employs a Convolutional Neural Network (CNN) architecture to effectively model local
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features and integrate them with global structural context, thereby ensuring the plausibility of generated
imputations.

o  Comprehensive experimental evaluation on two public power system datasets demonstrates that BAC-
GAN achieves significantly superior imputation accuracy compared to five state-of-the-art and classical
benchmark methods.

The remainder of this paper is organized as follows. Section 2 provides prerequisite knowledge. Section 3
highlights the BAC-GAN model. Section 4 presents experimental analysis. The conclusions are shown
in Section 5.

2 Prerequisite Knowledge

Consider a d-dimensional space. Assume that X = X; x ... x X; is arandom variable with a distribution
denoted as P(X). X is referred to as the power data vector, representing observed data in the power system.
Meanwhile, a random variable M = (M,, ..., M) takes values in {0,1} and M is called the mask vector,
which identifies which components in X are observed values (M; = 1 represents observed values, and M; = 0
represents missing values). For each i € {1,...,d}, the original space X; is extended to define a new space
X = X; U {+}, where » is a special symbol used to represent unobserved values.

Based on this, a new random variable X = (X, ..., X;) € X is defined, with its computation rule as
follows:
- Xi, M;=1
Xi=1" m
*, Mi = O

The power system data matrix is X € RV*¢, and M is its corresponding mask matrix. The input missing

data matrix is X = X ® M, where X = X ® M denotes element-wise multiplication.

3 The BAC-GAN Model

Given the temporal and high-dimensional nature of power system data, this paper proposes a missing
data recovery model named BAC-GAN (as shown in Fig. 1), which is based on an improved Generative
Adversarial Network.

The generator adopts a structure that combines BiLSTM with a multi-head attention mechanism.
BiLSTM integrates historical information and future trends through its bidirectional information flow
mechanism, aiding in a comprehensive understanding of the dynamic characteristics of time series data. The
multi-head attention mechanism captures global dependencies and key time points in the sequence through
weighted allocation, further enhancing the model’s ability to model temporal features and compensating for
BiLSTM’s limitations in capturing global contextual information.

The discriminator employs a CNN architecture. Power system data often exhibit high dimensionality,
containing multivariate information such as voltage, current, frequency, and load. CNNs can capture local
correlations and underlying structures within the data. When processing high-dimensional data, the CNN
models interdependencies among variables through multi-channel input mechanisms, reducing the impact
of redundant information. This provides more reliable feedback signals to the generator, prompting it to
continuously optimize the imputation performance. Through adversarial training between the generator and
the discriminator, high-precision recovery of missing data is ultimately achieved.
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Figure 1: Recovery model

3.1 Generator

Conventional generators typically employ fully connected networks, which fail to effectively capture
bidirectional temporal dependencies and global features, resulting in low-quality imputed data. To address
this issue, this paper proposes a generator architecture based on a BiLSTM and multi-head attention
mechanism.The core of our temporal modeling is a two-layer BiLSTM. This stacked design aims to learn
hierarchical temporal representations: the first BILSTM layer processes the input sequence and generates
preliminary hidden states containing fundamental bidirectional patterns; the second BiLSTM layer builds
upon this foundation to model more complex and abstract long-term dependencies at a higher level of
feature abstraction. This hierarchical processing enables the network to capture intricate temporal dynamics
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that might be missed by a single-layer BILSTM. Subsequently, the output from the second BiLSTM layer
is fed into a single-layer multi-head attention mechanism. We employ a single attention layer not for
deep feature transformation, but to serve as a powerful global weighting and aggregation module. Its
function is to reweight the temporal features refined by the BiLSTM, identifying and emphasizing the
most critical time steps across the entire sequence from multiple representation subspaces. This single-layer
structure effectively captures global contextual relationships while avoiding the computational overhead and
overfitting risks associated with multi-layer attention stacking. The detailed structure is illustrated in Fig. 2.
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Figure 2: Improvement of generator structure

Generator G receives the power data with missing values X, the mask matrix M, and the noise-processed
Z after masking as inputs. Through adjustments by the mask matrix, randomness is introduced only at the
missing value positions, thereby aligning with the target distribution dimensions, i.e., the input data X =
G(X,M,(1-M) 0 Z).

BiLSTM is an extension of LSTM, consisting of two LSTMs: one processes information in the forward
direction, while the other handles information in the backward direction. BiLSTM can capture bidirectional
temporal information in sequences, making it suitable for tasks that require consideration of both past and
future information.

Based on the temporal features extracted by BiLSTM, the multi-head attention mechanism further
enhances the feature representation capability. The multi-head attention mechanism employs multiple
attention heads to capture dependencies between different time steps of the input sequence from distinct
subspaces. For the query (Query), key (Key), and value (Value) of the input sequence, denoted as Q, K and
V, respectively, the computation for a single head of attention is as follows:

. QKT
Attention(Q, K, V') = softmax (7) 1% (2)
k

where ﬁ is the scaling factor, \/dy is the dimension of the key, and the softmax function ensures the
k

normalization of attention weights. The multi-head attention mechanism computes attention in parallel
through multiple independent attention heads and concatenates the results of all heads. By leveraging this
mechanism, the model can capture global dependencies in temporal data from diverse perspectives, further
refining feature representation.
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3.2 Discriminator

In the model proposed in this paper, a hint matrix (Hint Mechanism) and a CNN-based network
architecture are introduced to enhance the discriminator’s capability, as illustrated in Fig. 3.
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Figure 3: Improvement of discriminator structure

The hint matrix provides information about the validity of the original data, helping the discriminator
more accurately distinguish between observed and imputed values. Particularly in cases of severe data
missingness, the generator may produce multiple plausible imputation results, making it challenging for the
discriminator to make effective judgments. The calculation formula for the hint matrix is:

H=BoM+0.80 (1-B) 3)

where B is a defined random variable and M is the mask matrix.

The input to the discriminator consists of the generated sample X and the hint matrix H. To better
capture the features in the input data X and enhance the discriminator’s ability to distinguish between
observed and imputed values, a CNN architecture is adopted for the discriminator. In this model, the
discriminator is structured with three convolutional layers, which are systematically designed to extract
hierarchical features from the input data through sequential convolutional operations. The initial convolu-
tional layer functions as a low-level feature detector, capturing fundamental patterns and local structures
within the input. As the network depth increases, the subsequent layers progressively learn more abstract and
complex representations: the second layer integrates local features to identify intermediate patterns, while the
third layer synthesizes global contextual information, enabling the discriminator to effectively distinguish
subtle inconsistencies between observed and imputed values. This hierarchical feature extraction mechanism
significantly enhances the discriminator’s capacity to evaluate data authenticity across multiple scales.

3.3 Loss Function
3.3.1 Discriminator Loss Function

The discriminator D aims to distinguish between observed values and generated values. The loss
function of the discriminator is defined as cross-entropy:

i=1

> [M;ilog(D(x;)) + (1= M;)log(1 - D(x;))] (4)

n

Lp=-

|~

where D(x;) represents the probability predicted by the discriminator that the i-th component is real data,
M is the i-th value in the mask matrix (with missing positions marked as 0), and n is the total number of
data samples.
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3.3.2 Generator Loss Function

The objective of the generator is to impute missing data by generating values that are as realistic
as possible, such that the discriminator cannot easily distinguish between observed and imputed values.
Furthermore, to ensure the accuracy of the imputed data at the positions of observed values, a reconstruction
error term is incorporated.

(1) Adversarial Loss. The generator aims to mislead the discriminator into classifying the imputed data
as observed data. The adversarial loss is applied exclusively to the positions of missing values:

i=1

LE" === 3 [(1- Mi)log(D(x:))] (5)

S| =

n
where 1 — M, ensures that the loss is computed only for missing values, and D(x;) represents the probability
predicted by the discriminator that the i-th component is real data.

(2) Reconstruction Loss. To ensure that the imputed values produced by the generator align closely with
the ground truth data at observed positions, the reconstruction loss is formulated as follows:

LY (- M) (xi - G(x:))?]
w2 (1= My)
where x; represents the ground truth data values, and G(x;) denotes the imputed values generated by the

generator G. The total loss function of the generator is defined as a weighted sum of the adversarial loss L&'
and the reconstruction loss L;:

Ly = (6)

Lo =L&" + aLy (7)

where « is a hyperparameter that balances the two loss functions.

4 Experimental Analysis

This project runs on the Ubuntu 20.04 operating system, equipped with an Intel® Xeon® Platinum
8474C processor (16-core vCPU) and an NVIDIA GeForce RTX 4090D GPU (24 GB VRAM). The deep
learning framework used is PyTorch 2.0.0, with Python version 3.8 and CUDA version 11.8. Our experimental
datasets and source code will be available at https://github.com/zhangsul234/BAC-GAN (accessed on 23
November 2025). In the subsequent experiments, this study aims to address the following research questions:

RQI: How does the performance of the proposed model compare to other methods as the proportion
of missing data increases?

RQ2: How does the proposed model perform across different datasets?

4.1 Datasets
Datasets are shown in Table 1.

(1) Residential Load Dataset (RLD): The dataset comprises residential household electricity consump-
tion data, with daily load profiles sampled at 15-min intervals, resulting in a feature dimension of 96. This
dataset provides detailed documentation of typical residential electricity usage patterns and holds significant
value for analyzing and predicting household electricity consumption behaviors. The time series plot is
shown in Fig. 4.

(2) Smart Meter Dataset (SMD): The SMD aggregates hourly energy consumption and multi-
dimensional electrical parameters—including voltage, current, and power factor—from smart meters
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deployed across urban and suburban regions in a regional power distribution network. Covering a full
calendar year of 2020 (8760 hourly records), the dataset integrates metadata such as timestamps and device
status, enabling comprehensive analysis of load profiles, anomaly detection, and missing data imputation
under realistic grid operation scenarios. The time series plot is shown in Fig. 5.

Table 1: Experimental dataset

Acronym Dataset name Instance Feature
RLD Residential load dataset 1580 96
SMD Smart meter data 8760 134
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Figure 4: Time series plot of RLD (15-min intervals)
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Figure 5: Time series plot of SMD (I-h intervals)

4.2 Compared Algorithms

1. KNN [14]: This method identifies the K nearest observations to a sample with missing data using
Euclidean distance and performs a distance-weighted average to impute the missing values.
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2. VAE [24]: By maximizing the likelihood in the latent space and minimizing the discrepancy between
the generated data and the original data, this approach recovers missing values.

3. GAIN [23]: Built upon the Generative Adversarial Network (GAN) framework, this model recovers
missing data by performing conditional modeling of the missing locations and adversarial training.

4. M-RNN [19]: This method constructs a generative module based on Recurrent Neural Networks
(RNNs) to model temporal dependencies by integrating historical and contextual information. It achieves
data recovery through recursive prediction.

5. MIVAE [25]: By jointly optimizing the posterior likelihood of latent variables and the reconstruction
error, this approach generates multiple probabilistic imputations within a variational framework, effectively
modeling the uncertainty of missing values and enabling high-accuracy data recovery.

4.3 Evaluation Metric

Root Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and the
Coefficient of Determination (R?) are commonly used evaluation metrics for assessing the accuracy of
predictive models or algorithms. The formulas for each metric are as follows:

V 1 i=1 .
RMSE:\J NZ(yl,_),i)z (8)
N
1 i=1 2
MSE = NZ(}H = 9i) ©)
N
1 i=1 X
MAE=NZ|yi—yi (10)
N
i=1 P RY
RE-1- ZN 0i=Ji)” 1)

— —
N (ri=7)?

where y; is the actual value at the missing position, y is the mean value, j; is the imputed value at the missing

position obtained by the imputation algorithm, and N is the total number of missing values.

4.4 Experimental Analysis

Sixty percent of the dataset was used as the training set, twenty percent was allocated to the validation
set, and the remaining twenty percent was used for the test set. The experimental data were subjected to
random missingness at missing rates ranging from 10% to 90%.

The selection of the optimal hyperparameters, specifically Hint = 0.9 and Alpha = 400, was driven by a
systematic grid search on the validation set with a 50% missing rate, with the results detailed in Table 2.

Table 2: Hyperparameter selection experiment

(Alpha, (Alpha, (Alpha, (Alpha,
Hint) MSE Hint) MSE Hint) MSE Hint)
(100,0.6)  0.0985 (200,0.5) 0.0875 (400,0.5) 0.0458 (800,0.5) 0.0652
(100,0.6)  0.0974  (200,0.6) 0.0812  (400,0.6) 0.0412  (800,0.6)  0.0612
(100,0.7)  0.0875  (200,0.7) 0.0789  (400,0.7)  0.0398  (800,0.7)  0.0545

MSE

(Continued)
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Table 2 (continued)

(Alpha, (Alpha, (Alpha, (Alpha,
Hint) MSE Hint) MSE Hint) MSE Hint)

(100,0.8)  0.0814  (200,0.8) 0.0745 (400,0.8) 0.0354  (800,0.8) 0.0446
(100,0.9)  0.0755 (200,0.9) 0.0678 (400,0.9) 0.0215 (800,0.9)  0.0401

MSE

Our analysis of the experimental data reveals a clear trend of consistent performance improvement as
the Hint value increased from 0.5 to 0.9 across all Alpha groups. For instance, within the critical Alpha =
400 group, the MSE decreased monotonically from 0.0458 at Hint = 0.5 to 0.0215 at Hint = 0.9, indicating
that providing more precise location information to the discriminator is crucial for guiding the generator to
produce more accurate imputations in high-missing-rate scenarios. The optimality of Alpha = 400 emerges
from its synergistic interaction with Hint = 0.9, as evidenced by the performance comparison with other
combinations. While the combination of Alpha = 200 with Hint = 0.9 yields a relatively high MSE of 0.0678,
and Alpha = 800 with Hint = 0.9 achieves a better but still suboptimal MSE of 0.0401, the pair of Alpha =400
with Hint = 0.9 achieves the lowest MSE of 0.0215 across the entire parameter space tested. This demonstrates
that Alpha = 400 provides the ideal weight for the reconstruction loss, ensuring the generator not only fools
the discriminator but also accurately reconstructs the known values—a capability fully leveraged when the
discriminator is well-informed through Hint = 0.9. Therefore, this specific combination was selected as it
represents the configuration where the generator receives the most effective guidance from the discriminator
while being simultaneously constrained to achieve the highest factual accuracy. The parameters of the
network model are configured as shown in the Table 3.

Table 3: Model parameters

Parameters Value
Hint 0.9
Missing_rate 0.1-0.9
Alpha 400
num_epochs 1000
Batch_size 64

The imputation results of the RLD dataset across a range of missing rates are shown in Tables 4-8. The
time series after imputation for a missing rate of 0.5 is shown in Fig. 6.

Table 4: RMSE of RLD under different missing rate level

Method

Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 01163 0.1321 01327 0.1414 01558 0.1611 0.1648 0.1874 0.2185

GAIN 0.0825 0.1080 0.215 01750 0.1898 0.2453 0.3198 0.3370 0.3726
KNN 0.1586 0.1645 0.1653 0.1696 0.1712 01734 0.2105 0.2235 0.2339
VAE 0.2041 0.2103 0.2409 0.2740 0.2753 0.2781 0.2790 0.2804 0.2822

(Continued)
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Table 4 (continued)

Method

Missing rate

0.1

0.2

0.3 0.4

0.5

0.6

0.7

0.8

0.9

MRNN 0.1208 0.1800 0.2275 0.2305 0.2430 0.2906 0.2974 0.2998 0.3345
MIVAE 0.1341 01715 0.2074 0.2171 0.2201 0.2597 0.2607 0.2654 0.2697
Table 5: MSE of RLD under different missing rate level
Method

Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 0.0135 0.0174 0.0176  0.0200 0.0243 0.0260 0.0272 0.0351 0.0477
GAIN 0.0068 0.0117 0.0148 0.0306 0.0360 0.0602 0.1023 0.1136  0.1388
VAE 0.0252 0.0270 0.0273 0.0288 0.0293 0.0301 0.0443 0.0499 0.0547
KNN 0.0416 0.0442 0.0580 0.0751 0.0758 0.0773 0.0779 0.0787 0.0796
MRNN 0.0146 0.0324 0.0517 0.0531 0.0590 0.0844 0.0885 0.0899 0.1119
MIVAE 0.0180 0.0294 0.0430 0.0471 0.0484 0.0674 0.0680 0.0704 0.0727

Table 6: MAE of RLD under different missing rate level
Method

Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 0.0998 0.1144 01182 0.1195 0.1254 0.1382 0.1511 0.1654 0.1796
GAIN 0.0615 0.0825 0.0886 0.1328 0.1491 0.1847 0.2882 0.2936 0.3305
VAE 0.1258 0.1267 0.1279 0.1314 0.1406 0.1485 0.1762 0.1780 0.1852
KNN 0.1760 0.1799 0.2118 0.2473 0.2489 0.2512 0.2598 0.2642 0.2565
MRNN 0.1123 01566 0.1715 0.1804 0.1896 0.2685 0.2703 0.2775 0.2955
MIVAE 0.1194 01367 0.1304 0.1417 01569 0.1614 0.1789 0.1814 0.1914

Table 7: R? of RLD under different missing rate level
Method
Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BAC-GAN 0.9865 0.9825 0.9824 0.9800 0.9757 0.9740 0.9728 0.9649 0.9523

GAIN 0.9732 0.9683 0.9552 0.9494 0.9440 0.9398 0.9377 0.9201 0.8907

MIVAE 0.9487 0.9354 0.9217 0.9201 0.9199 0.9155 0.9109 0.9001 0.8999

MRNN 0.9360 0.8527 0.8065 0.7770 0.7896 0.7684 0.7578 0.8356 0.7478

VAE 0.7858 0.7829 0.7858 0.7189 0.7210 0.6943 0.6899 0.6418 0.6039

KNN 0.6583 0.6558 0.5742 0.6049 0.5842 0.5727 0.5522 0.5314 0.5204
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Table 8: Recovery time of RLD under different missing rate level (Unit: ms)

Method
Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 69 80 95 143 152 178 f188 201 260
GAIN 78 85 99 103 110 138 165 198 241
VAE 84 98 107 118 136 187 196 219 264
KNN 120 134 174 189 201 213 239 287 334
MRNN 94 102 103 178 198 215 245 258 298
MIVAE 97 102 110 137 146 199 235 244 294
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Figure 6: Time series plot of RLD after imputation (Missing rate = 0.5)

At low missing rates (0.1-0.3), the models were evaluated using metrics such as MSE, RMSE, and
MAE. The results indicate that the proposed model performed second only to GAIN. At medium to
high missing rates (0.4-0.9), the proposed model achieved the best performance across these metrics,
significantly outperforming other methods, demonstrating its strong robustness in handling high missing
scenarios. Furthermore, the model exhibited favorable R? values, indicating its ability to effectively capture
the relationship between the imputed data and the ground truth. On the other hand, by comparing recovery
times, the proposed model also showed favorable recovery times, suggesting that it not only excels in terms
of accuracy but also efficiently handles the computational workload.

The imputation results of the RLD dataset across a range of missing rates are shown in Tables 9-13. The
time series after imputation for a missing rate of 0.5 is shown in Fig. 7
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Table 9: RMSE of SMD under different missing rate level

Method
Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BAC-GAN 0.1363 0.1371 0.1378 0.1390 0.1436 0.1438 0.1542 0.1597 0.1627

GAIN 0.1064 0.1109 0.1292 0.1783 0.1820 0.1850 0.1968 0.2081 0.2087

VAE 0.2210 0.2211 0.2297 0.2326 0.2349 0.2370 0.2393 0.2421 0.2471

KNN 0.1733  0.2182 0.2681 0.2689 0.2736 0.2769 0.2820 0.2949 0.2968

MRNN 0.1295 0.1945 0.2195 0.2752 0.2870 0.2901 0.2993 0.3017 0.3130

MIVAE 0.1414 01517 01774 01801 0.1921 0.2017 0.2114 0.2152 0.2314

Table 10: MSE of SMD under different missing rate level
Method

Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 0.0186 0.0188 0.0190 0.0193 0.0206 0.0207 0.0238 0.0255 0.0265
GAIN 0.0113 0.0123 0.0167 0.0318 0.0332 0.0342 0.0387 0.0433 0.0436
VAE 0.0480 0.0489 0.0528 0.0541 0.0552 0.0561 0.0573 0.0586 0.0611
KNN 0.0300 0.0476 0.0719 0.0723 0.0749 0.0767 0.0795 0.0869 0.0881
MRNN 0.0168 0.0378 0.0482 0.0752 0.0823 0.0846 0.0896 0.0910 0.0979
MIVAE 0.0200 0.0230 0.0315 0.0324 0.0369 0.0404 0.0447 0.0463 0.0535

Table 11: MAE of SMD under different missing rate level
Method

Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 0.1014 0.1071 0.1160 0.1173 0.1207 0.1278 0.1348 0.1379  0.1390
GAIN 0.0780 0.0810 0.0989 0.1352 0.1393 0.1418 0.1567 0.1556 0.1563
VAE 0.1860 0.1863 0.2032 0.2064 0.2089 0.2112 0.2138 0.2168 0.2221
KNN 0.1374 01731 0.2133 0.2138 0.2175 0.2200 0.2238 0.2336 0.2353
MRNN 0.1001 0.1602 0.1835 0.2339 0.2471 0.2666 0.2881 0.2922 0.3001
MIVAE 0.1101 0.1317 0.1379 0.1401 0.1497 0.1501 0.1697 0.1897 0.2014

Table 12: R? of SMD under different missing rate level
Method
Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BAC-GAN 0.9503 0.9400 0.9401 0.9317 0.9256 0.9220 0.9201 0.9129 0.9089

GAIN 0.9274 09117 0.9008 0.9017 0.8994 0.8954 0.8845 0.8514 0.8102

VAE 0.7895 0.7785 0.7565 0.7486 0.7341 0.7214 0.7100 0.6458 0.6130

(Continued)
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Table 12 (continued)

Method
Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
KNN 0.6624 0.5618 0.5012 0.4512 0.4529 0.4408 0.3917 0.3879 0.3540
MRNN 0.8971 0.8814 0.8543 0.8241 0.8214 0.8107 0.8047 0.7778 0.7521
MIVAE 0.9101 0.9087 0.9065 0.8958 0.8914 0.8814 0.8797 0.8701 0.8696

Table 13: Recovery time of SMD under different missing rate level (Unit: ms)

Method

Missing rate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BAC-GAN 402 554 689 898 1201 1388 1590 1958 2164
GAIN 356 417 598 752 1024 1411 1741 2378 2575
VAE 312 401 498 665 997 1347 1607 2187 2413
KNN 845 1054 1254 1423 1665 1998 2385 2798 3041
MRNN 498 654 758 994 1474 1554 1745 2063 2369
MIVAE 641 875 956 1001 1417 1697 1956 2407 2598

o Recovery (Missing Rate=0.5)
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Figure 7: Time series plot of SMD after imputation (Missing rate = 0.5)

The proposed model demonstrates outstanding performance across all missing-rate scenarios, with
its superiority being particularly pronounced at medium to high missing rates (0.4-0.9). Under these
conditions, the model significantly outperforms comparative methods in terms of imputation accuracy,
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robustness, and ability to capture complex temporal dependencies. Meanwhile, BAC-GAN also exhibits
excellent recovery time efficiency, maintaining fast response capabilities even under high missing-rate
conditions, highlighting its strong applicability in practical situations where high proportions of data loss
commonly occur.

Based on the four evaluation metrics mentioned above, the proposed model demonstrates excellent
recovery performance under most missing-rate scenarios. The key to its success lies in the fact that
BAC-GAN integrates BILSTM and a multi-head attention mechanism, which effectively captures complex
dependencies in time-series data and enhances the learning of global relationships. Meanwhile, the incorpo-
ration of CNN improves the model’s ability to handle high-dimensional data and strengthens local feature
extraction, thereby increasing the accuracy and robustness of data recovery.

4.5 Ablation Study

To validate the effectiveness of individual components in our proposed BAC-GAN framework, we
conducted comprehensive ablation studies under various missing rate scenarios (0.2, 0.4, 0.6, 0.8). As
demonstrated in Tables 14 and 15, the complete BAC-GAN model consistently achieves superior or compet-
itive performance across all missing rates, particularly excelling at higher missing scenarios (0.6-0.8).

Table 14: Ablation study results on RLD dataset under different missing rates

0.2 0.4 0.6 0.8

MSE MAE MSE MAE MSE MAE MSE MAE

BAC-GAN  0.0174 0.1144 0.0200 0.1195 0.0260 0.1382  0.0351 0.1654
B-GAN 0.0180  0.1230  0.0264 0.1264 0.0310 0.1614 0.0794 0.2497
BC-GAN 0.0178 01149 0.0213 0.1201 0.0278 0.1397 0.0456 0.1756
BA-GAN 0.0183  0.1201 0.0245 0.1214 0.0281 0.1412 0.0642 0.1879
A-GAN 0.0190 0.1268 0.0287 0.1307 0.0541 0.1798 0.1014 0.2789
AC-GAN 0.0109 0.0798 0.0254 0.1256 0.0297 0.1498 0.0754 0.2014
C-GAN 0.0186  0.1245 0.0275 0.1301 0.0419 0.1697 0.0851 0.2596
GAN 0.0117  0.0825 0.0306 0.1328 0.0602 0.1847 0.1136  0.2936

Table 15: Ablation study results on SMD dataset under different missing rates

0.2 0.4 0.6 0.8

MSE MAE MSE MAE MSE MAE MSE MAE

BAC-GAN  0.0188 0.1071 0.0193 0.1173  0.0207 0.1278 0.0255 0.1379
B-GAN 0.0193  0.1079 0.0259 0.1248 0.0265 0.1345 0.0312  0.1511
BC-GAN 0.0134 0.0910 0.0199 0.1189  0.0219 0.1298 0.0261  0.1412
BA-GAN 0.0156  0.0970 0.0208 0.1197 0.0232 0.1307 0.0278 0.1489
A-GAN 0.0201 0.1175 0.0304 0.1304 0.0327 0.1401 0.0412 0.1543
AC-GAN 0.0178  0.1041 0.0216 0.1211 0.0242 0.1316  0.0287  0.1501
C-GAN 0.0197 0.1085 0.0274  0.1297 0.0298 0.1365 0.0387  0.1525
GAN 0.0123  0.0810 0.0318 0.1352 0.0342 0.1418 0.0433 0.1556

Method
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The performance degradation observed in partial component models reveals the complementary
nature of the designed modules in this work. The BA-GAN variant demonstrates consistently intermediate
performance, indicating that the attention mechanism contributes significantly to feature extraction but
requires the constraint module to achieve optimal results. The A-GAN and C-GAN models exhibit relatively
weaker performance, confirming that individual components alone are insufficient to handle complex
missing data patterns.

Furthermore, the progressive performance decline from BC-GAN to BAC-GAN highlights the chal-
lenging nature of high missing-rate scenarios and validates the robustness of the proposed model. The
complete BAC-GAN model maintains the most stable performance trajectory, exhibiting the smallest per-
formance degradation as the missing rate increases from 0.2 to 0.8. These findings collectively demonstrate
that the synergistic integration of all components in BAC-GAN is crucial for achieving robust performance
across diverse missing data scenarios, with each element playing a distinct yet interdependent role in the
overall architecture.

5 Conclusion

With the continuous development of power systems, the complexity and diversity of power data have
been steadily increasing. Due to factors such as sensor failures and communication interruptions, missing
or anomalous data frequently occur in power systems, posing significant challenges to system monitoring
and management. To address this issue, this paper proposes a data recovery method based on an improved
Generative Adversarial Network (BAC-GAN). The generator of this method incorporates bidirectional
LSTM and multi-head attention mechanisms to capture complex dependencies in time-series data, while
the discriminator employs CNN to integrate local features with global structures, ensuring the rationality
of data recovery. Without relying on complete datasets, this method achieves high-precision data recovery.
Experiments conducted on three publicly available power system datasets demonstrate that the BAC-GAN
model exhibits significant advantages in recovery accuracy compared to five state-of-the-art and classical
data recovery methods, providing an effective solution for missing data recovery in power systems.

The study of nonlinear generation mechanisms for multidimensional data represents a critical direction
for the future development of smart grids. Current generation models based on linear assumptions struggle
to accurately capture the complex dynamic coupling characteristics among source-grid-load-storage com-
ponents. This limitation is particularly evident in high-penetration renewable energy integration scenarios,
where traditional methods fail to adequately characterize the spatiotemporal correlations of wind and solar
power outputs and load response characteristics. Future research should focus on developing interpretable
generation architectures that integrate domain knowledge, ensuring that the data generation process aligns
with power system operational principles.

As the scale and complexity of power system data continue to grow, missing data recovery methods
based on generative adversarial networks still hold broad prospects for development. On one hand, more
efficient network architectures and training strategies can be explored to further enhance the recovery
accuracy and generalization capability of the model. On the other hand, the integration of technologies such
as edge computing and federated learning may enable efficient data recovery in distributed environments.

Furthermore, although this study does not delve deeply into the application of Generative Adversarial
Networks in multidimensional data fusion within power systems, the potential of GANs in handling multidi-
mensional power data deserves further exploration. GANs can integrate different types of data and generate
high-quality recovery results, which would significantly improve the comprehensiveness and accuracy of
data recovery in power systems. While this paper primarily focuses on time-series data recovery, future work
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could extend the application of GANs to multidimensional data fusion. By integrating various types of data
in power systems, the performance and robustness of missing data recovery could be further enhanced.
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