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ABSTRACT: In the image fusion field, fusing infrared images (IRIs) and visible images (VIs) excelled is a key area.
The differences between IRIs and VIs make it challenging to fuse both types into a high-quality image. Accordingly,
efficiently combining the advantages of both images while overcoming their shortcomings is necessary. To handle this
challenge, we developed an end-to-end IRI and VI fusion method based on frequency decomposition and enhancement.
By applying concepts from frequency domain analysis, we used the layering mechanism to better capture the salient
thermal targets from the IRIs and the rich textural information from the VIs, respectively, significantly boosting the
image fusion quality and effectiveness. In addition, the backbone network combined Restormer Blocks and Dense
Blocks; Restormer blocks utilize global attention to extract shallow features. Meanwhile, Dense Blocks ensure the
integration between shallow and deep features, thereby avoiding the loss of shallow attributes. Extensive experiments
on TNO and MSRS datasets demonstrated that the suggested method achieved state-of-the-art (SOTA) performance
in various metrics: Entropy (EN), Mutual Information (MI), Standard Deviation (SD), The Structural Similarity Index
Measure (SSIM), Fusion quality (Qabf ), MI of the pixel (FMIpix e l ), and modified Visual Information Fidelity (V IFm).
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1 Introduction
Infrared images (IRIs) are formed using infrared sensors to receive thermal information from objects.

They offer robustness against weather conditions and strong anti-interference properties, making them
invaluable in various applications, including military, medical, industrial inspection, and daily life applica-
tions [1–5]. Nonetheless, the resolutions of IRIs are low, and the detailed characteristics and background
conditions of the object cannot be well expressed. Conversely, high-resolution visible images (VIs) can
show rich texture features of objects in good environments, and their visual effects are better than the IRIs.
However, under low-light conditions, it is simple to misidentify the items inside the scene. Taking into
account this complementarity, the IRI and VI fusion method is developed to combine the information of IRI
thermal radiation with that of VI texture detail within the same scene, ensuring that the fused image mitigates
the deficiencies of low contrast and low resolution in IRIs and the susceptibility to lighting conditions
in VIs. The fused images are beneficial for promoting downstream tasks, particularly image recognition,
segmentation, and target detection.
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Recently, the ongoing progress of deep learning (DL) has resulted in applying multiple DL models in IRI
and VI fusion procedures, yielding favorable outcomes [6–8]. Despite that, most existing methods perform
convolution operations in the spatial domain, aiming at achieving feature extraction, feature fusion, and
image generation. Limited by the local modeling capacity of convolutional neural networks, such methods
fail to consider the global image information, thus limiting the fusion method’s robustness [9]. In addition,
a high-quality fused image demands more IRI target features and VI detailed features. How to find a balance
between the two features is a difficult problem. Although some methods have made attempts [10], designing
effective network architectures and loss functions remains a formidable task.

To solve these problems, we proposed an end-to-end IRI and VI fusion method relying on frequency
decomposition and enhancement, named FDEFusion. First, to better extract the thermal radiation and
texture features belonging to low- and high-frequency information, respectively, motivated by the frequency
domain idea, we introduced an improved dual branches architecture to separate the IRIs and VIs into
low- (basic layer) and high-frequency parts (detail layer), respectively, and then the corresponding layer
was weighted fusion to form the new basic layer and detail layer, making subsequent feature extraction
more targeted. Subsequently, to balance the information of IRI thermal radiation and that of VI texture,
we introduced the gradient and intensity loss into the loss function. Gradient loss promoted incorporating
rich texture characteristics in the fused image, whereas intensity loss restricted the fused image to preserve
a comparable intensity distribution to that of the source images. By regulating the parameters of intensity
and density loss, we could modify the ratio of thermal radiation to texture information. Lastly, to avoid
information loss in feature fusion, we exploited Restormer Blocks and Dense Blocks as the backbone network
for feature extraction. Restormer Blocks could extract shallow features based on global attention, and Dense
Blocks concatenated features to avoid the loss of shallow features. This method had the following innovations:

(1) A dual-branch solution was used to design network architecture and loss function, balancing target
and detail information of IRIs and VIs, respectively.

(2) Restormer blocks were used to replace the traditional CNN module, enabling the capture of global
information of images. Meanwhile, Dense blocks were used to concatenate features, avoiding informa-
tion loss.

2 Related Works
Currently, the progress of DL has resulted in the development of various DL-based fusion algorithms

in the domain of IRI and VI fusion, which are categorized depending on their properties and concepts.

2.1 Convolutional Neural Network (CNN)-Based Methods
The fundamental aspect of image fusion is the extraction of characteristics from source images.

CNN possesses considerable advantages in feature extraction, thereby yielding more information than
conventional manual feature extraction techniques [1–3,11,12]. Liu et al. [13] introduced a Siamese CNN to
obtain weight maps for integrating pixel information obtained from two source images. Li et al. [14] suggested
a dual-branch structure for feature extraction, utilizing filter functions to divide IRI and VIs into basic and
detail layers. To highlight the details, the ResNet network [15] was then used to enhance detail layers and
finally fuse base layers and detail layers. However, this method only considered the detail layers and lacked
feature extraction of base layers. Subsequently, Li and Wu [16] also proposed to use a dense network to merge
shallow and deep features to achieve feature reuse. Compared with ResNet, it reduced the parameter number
and improved the effectiveness of feature extraction. Despite these advances, CNNs’ limited receptive fields
could result in shallow features lacking global context [9]. Additionally, existing methods often overlook the
IRI and VI information balance when calculating loss functions [10].
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2.2 Generative Adversarial Network (GAN)-Based Methods
Presently, GAN, with the robust capability to fit data distributions and generate distributed samples

from unsupervised data, has been highly regarded in the image fusion field. Ma et al. [17] pioneered GAN
application in image fusion with FusionGAN that characterized image fusion as an adversarial interaction
between the generator and discriminator, utilizing the discriminator to compel the generator’s output
image for more incorporation of the source image information. Given that the above method used only
one discriminator, and this adversarial relationship resulted in incomplete information in the fused image
as well as the loss of IRI source details, Ma et al. [18] suggested a dual-discriminator conditional GAN
named DDcGAN. Dual discriminators increased the complexity of networks and neglected the source
image’s high-level semantic information. Yin et al. [19] proposed a new method based on the Cross-Scale
Pyramid Attention Generative Adversarial Network (CSPA-GAN). Through the pyramid decomposition
path, residual attention fusion rules, and cross-scale interaction, they effectively solved the information bias
problem in the fusion of IRIs and VIs and generated a fused image with more natural visual effects.

2.3 Autoencoder (AE)-Based Methods
To solve the training problem of a few-sample datasets, some scholars introduced AE into image fusion.

Prabhakar et al. [20] first put forward an unsupervised DL image fusion framework named DeepFuse. Li
et al. [21] presented an IRI and VI fusion architecture relying upon nest connection and spatial/channel
attention models. The nested connection introduced could maintain the multi-scale feature information.
The spatial/channel attention models were designed to explain the importance of deep features at each
spatial and channel position. Zhang et al. [22] unified the image fusion into an issue of intensity and
texture ratio maintenance of the source image. Intensity constraints provided a coarse pixel distribution,
while gradient constraints enhanced texture details. Xu et al. [23] brought forward an end-to-end unified,
unsupervised image fusion network for multiple tasks. Although the methods based on AE solved the
problem of training data absence, the fusion strategies often lacked solutions designed for deep feature fusion.
Hu et al. proposed an innovative image fusion framework called AFFusion [24], which effectively solved the
problem of illumination degradation and improved the texture fidelity of the fused image by combining the
atmospheric scattering physical model with frequency domain feature enhancement.

2.4 Methods Based on Transformer
Inspired by their success in NLP [25,26], transformers have been adapted for computer vision [27]. Vs

et al. [28] designed a Transformer-based multi-scale fusion method to capture local and global contextual
image information. Tang et al. [29] constructed a dual attention residual module to make the network pay
more attention to important attributes and designed a Transformer module for the construction of long-
range relations. However, transformers face computational challenges due to their quadratic complexity to
input sequence length. Rao et al. innovatively combined the lightweight Transformer module with adversarial
learning, using the former to capture global dependencies across space and channels and the latter to
improve the discriminability of the fusion results, thus constructing a novel hybrid paradigm for image fusion
tasks [30].

3 IRI and VI Fusion Methods Based on Frequency Decomposition and Enhancement
This section introduces the end-to-end IRI and VI fusion method relying upon frequency decomposi-

tion and enhancement. The core concept of this method is to perform layered interactive processing on the
IRIs and VIs, then extract features from each layer separately, and finally integrate these features into a fused
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image. By employing an end-to-end network architecture, this method evades the manual design of fusion
rules in the automatic encoding phase through feature map concatenation.

The method consists of three main stages: (1) Image Decomposition: The IRI and VI source images
are decomposed into distinct layers. Moreover, the high- and low-frequency information correspond to the
detail and base layers, respectively. Afterward, the detail and base layers of the source images are weighted
and fused to obtain new layers, respectively. (2) Encoder: The new base and detail layers are input into
the encoder for the extraction of respective deep features. (3) Decoder: The extracted deep features are
concatenated at the feature dimension and inputted into the decoder to construct the fused image. To
guarantee that the fused image has more IRI thermal radiation information and VI texture information, our
loss function comprises the gradient and intensity loss, each with a specific proportion parameter to balance
their contributions. Fig. 1 shows the specific framework diagram. Table 1 describes the implementation
details of the framework, including the modules in each stage, the input and output of each stage, and the
corresponding feature dimensions.

Figure 1: The architecture of this paper

Table 1: The specific framework details

Architecture
diagram

Core
components Input Output Feature dimension

Input layer

The source VI
image input

module

The
source

VI image

V : VI image after
grayscale

conversion

Input: H ×W × 3
Output: H ×W × 1

The source IRI
image input

module

The
source

IRI
image

I: IRI image after
“Lagrange

interpolation+single-
point

correction”

Input: H ×W × 1
Output: H ×W × 1

(Continued)
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Table 1 (continued)

Architecture
diagram

Core
components Input Output Feature dimension

Decompos-
ition layer

Guided filtering
module

V (the
guided
image)
and V

Vb: the basic layer
of V

Vd: the detail layer
of V

Input: H ×W × 1
Output: H ×W × 1

V (the
guided
image)
and I

Ib: the basic layer
of I

Id: the detail layer
of I

Input: H ×W × 1
Output: H ×W × 1

Weighted fusion
module

Vb, Vd,
Ib, Id

VIb: the new basic
layer after

weighted fusion
VId: the new detail

layer after
weighted fusion

Input: H ×W × 1
Output: H ×W × 1

Encoder
layer

Restormer
module VIb, VId

R_V Ib : the shallow
feature of the new

base layers
R_V Id : the shallow
feature of the new

detail layers

Input: H ×W × 1
Output: H ×W × 1

Dense Block
module

R_V Ib ,
R_V Id

F_V Ib : the deep
features of the new

base layer
F_V Id : the deep

features of the new
detail layer

Input: H ×W × 1
Output: H ×W × 64

Feature con-
catenation

layer

Channel
concatenation

module

F_V Ib ,
F_V Id

F_ f used:a fused
high-dimensional

concatenation
feature vector

Input: H ×W × 64
Output: H ×W × 128

Decoder
layer

Convolutional
module F_ f used Fusion image Input: H ×W × 128

Output: H ×W × 1

3.1 Image Decomposition
To make the feature extraction of the subsequent encoder more targeted, this section needs to

decompose images, where both frequency information is separated from the source images. Furthermore,
the corresponding frequency information is weighted fusion. The specific steps include:

(1) Guided Filter: A guided filter [31] is utilized to divide the source images into base and detail layers.
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The VI is chosen as the guided image because the detail texture in the VI is more pronounced, which
enhances the layering effect.
The specific implementation process of guided filtering is as follows:

1© Input and Output Definitions
Assume the source VI is V and the source IRI is I.
Our goal is to obtain four components: Vb (visible light base layer), Vd (visible light detail layer),

Ib (infrared base layer), and Id (infrared detail layer).
2© Decomposition Process

VI Decomposition:

{Vb = GuidedFil ter(guide_image = V , input_image = V , r, ε
Vd = V − Vb

(1)

IRI Decomposition:

{Ib = GuidedFil ter(guide_image = V , input_image = I, r, ε
Id = I − Ib

(2)

here, GuidedFil ter() is the guided filter function, which is a linear transformation model,
according to the literature [31], r is 45 and ε is 0.3 in this paper. IRI decomposition also uses
VI as a guided image, transferring the rich gradient structure information of VI to the infrared
base layer Ib. This means that the edges and structure of Ib align with VI, while Id primarily
contains infrared-specific details that are inconsistent with the structure of VI. This provides an
ideal foundation for fusion strategies.

(2) Weighted Fusion: The corresponding source images’ base and detail layers are fused to acquire new
base and detail layers. Since VIs contain more detailed information and IRIs contain more target
information, by adjusting the weight parameters, we can ensure that the new detail layer predominantly
captures detailed information from the VI. In contrast, the new base layer primarily incorporates target
information from the IRI. The formula is as follows:

{V Id = αId + βVd
V Ib = βIb + αVb

(α + β = 1) (3)

In Formula (3), V Id and V Ib are the new detail and base layers, Vd and Vb are the detail and base layers
of VI, Id and Ib are the detail and base layers of the IRI, respectively.

3.2 Encoder
For effective capture of the images’ global features and to overcome the limited receptive field of CNN,

this paper adopts Restormer Blocks [32], which have an efficient global attention mechanism. Restormer
Blocks can generate low-quality images, and in this paper, the generated images are considered shallow
features with global characteristics. Meanwhile, because CNN can easily lose some shallow features during
forward propagation, this paper employs a Dense Block to achieve the reuse of shallow features. The specific
steps include:
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(1) Restormer Blocks are deployed to extract shallow characteristics from the input image. The inputs
include the new base and detail layers, and the outputs are the shallow features of both layers. The
formula is as follows:

R_V Ib = R(V Ib), R_V Id = R(V Id) (4)

where, R(⋅) represents Restormer Blocks, R_V Ib and R_V Id are the shallow feature of the new base
and detail layers; V Ib and V Id are the new base and detail layers, respectively.

(2) Dense Blocks [33] are used to achieve the reuse of shallow features. The input of each layer refers to the
concatenation of the output feature maps of all previous layers. This helps avoid losing shallow features
in deep networks. The output F_V Ib and F_V Id are the depth feature maps of the new basic and detail
layers. The formula is as follows:

F_V Ib = D(R_V Ib), F_V Id = D(R_V Id) (5)

where, D(⋅) represents Dense Blocks, F_V Ib and F_V Id are the deep features of the new base and
detail layers.

(3) The feature vectors F_V Ib and F_V Id are concatenated to form a fused high-dimensional feature
vector F_fused, which is then fed into the subsequent Decoder.

F_ f used = Concat(F_V Ib , F_V Id) (6)

here, Concat() is the channel-level concatenation function. Because the number of channels of F_V Ib
and F_V Id are both 64, the number of the input channel of F_fused is 128.

3.2.1 Restormer
Restormer first encodes the input image through a 3 × 3 convolution, then inputs it into a 4-level

symmetrical encoder-decoder to obtain deep features, and finally uses the residual principle to add the
deep features to the input image to obtain the reconstructed output image. Each level of the encoder-
decoder contains multiple Transformer Blocks. In the encoder, from the first to the fourth level, each level
downsamples the features while adding attention heads. In the decoder, from the fourth level to the first level,
each level upsamples the features and uses jump connections to concatenate with the previous level in the
encoder. For example, after the fourth level in the decoder is upsampled, it is concatenated with the third
level in the encoder. The architecture diagram of Restormer is shown in Fig. 2.

Restormer’s innovation lies in its improved Transformer Block, replacing the Self-Attention (SA) with
the Multi-Dconv head Transposed Attention (MDTA) module and the Feed-Forward Network (FFN)
with the Gated-Dconv Feed-Forward Network (GDFN). The MDTA architecture is shown in Fig. 3. Here,
Norm uses Layer Norm for layer normalization; the 1 × 1 convolution uses point-by-point convolution,
and the 3 × 3 convolution uses channel-by-channel convolution. Combining these two forms a depthwise
separable convolution, significantly reducing the computational effort required to calculate Q, K and V.
The calculations of Q and K form the cross-covariance between channels, which in turn establishes global
contextual attention. This feature map is multiplied by the V matrix and added to the input features to
produce the output features.

GDFN is designed as the element-wise product of two linear projection layers, one of which is
activated by the GELU nonlinearity. Like MDTA, GDFN also uses depthwise separable convolution to extract
information between different channels to improve computational efficiency. The framework diagram of
GDFN is shown in Fig. 4:
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Figure 2: Restormer architecture

Figure 3: MDTA architecture
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Figure 4: GDFN architecture

3.2.2 Dense Block
Dense Blocks are derived from the DenseNet network, a deep convolutional neural network. DenseNet

achieves feature reuse by introducing dense connections within the network, reducing information loss
during forward propagation, and improving the model’s generalization and performance. The DenseNet
network primarily consists of DenseBlocks and Transition blocks. The DenseNet framework is shown
in Fig. 5.

Figure 5: DenseNet architecture

Each Dense Block consists of several Dense Layers. Each layer takes the output of all previous layers as
its input, forming a densely connected structure. The output feature maps of each layer must be of the same
size to allow for channel-wise connections. The Dense Block uses BN+ReLU+Conv architecture. Here, the
input to a convolutional layer includes the output features of all previous layers. Since these layers come from
different layers and therefore have widely varying numerical distributions, they must first pass through a BN
layer to normalize their values before being convolved. Since this article only has one Dense Block, there is
no Transition module. The Dense Block is used to extract deep features from the input image. Its input is the
shallow features of the new base layer and detail layer output by the Restormer module. Through the Dense
Block, deep features of these new base layer and detail layer are extracted. The dense network consists of
three convolutional layers, each of which uses the same 16 3 × 3 convolution kernels and a ReLU activation
function. The structure is shown in Fig. 6.

Finally, the deep features of the detail layer and base layer are concatenated in the feature dimension,
avoiding the need to manually design fusion rules. The size of each convolutional block is shown in Table 2.
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Figure 6: Dense Block structure

Table 2: Parameters of each convolution layer of Dense Block

Kernel_Size Stride Input_Channels Output_Channels Activation
C1 3 1 1 16 ReLu
C2 3 1 16 16 ReLu
C3 3 1 32 16 ReLu
C4 3 1 48 16 ReLu

3.3 Decoder
The decoder is responsible for generating the fused image by combining the shallow and deep attributes

extracted from the encoder. It primarily consists of convolutional modules. Its structure diagram is shown
in Fig. 7.

Figure 7: Decoder architecture
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The parameters of each convolution block are shown in Table 3.

Table 3: Parameters of each convolutional layer of the decoder

Kernel_Size Stride Input_Channels Output_Channels Activation
D1 3 1 128 64 ReLu
D2 3 1 64 32 ReLu
D3 3 1 32 16 ReLu
D4 3 1 16 1 ReLu

3.4 Loss Function
To boost the quality of the fused image, it is essential to use a loss function that ensures the fused image

contains more information from the source images. Therefore, this paper designs the loss function as follows:
it comprises two components: loss between the fused image and the IRI and loss between the fused image and
the VI. Each of these losses is further categorized into gradient and intensity loss. Gradient loss fosters the
incorporation of rich texture characteristics in the fused image, whereas intensity loss ensures that the fused
image preserves a comparable intensity distribution to the original images. Consequently, the loss function
comprises four terms with varying weights, indicated as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Losstotal = LossI + LossV

LossI = λ1Lint(I, F) + λ2Lgrad(I, F)
LossV = λ3Lint(V , F) + λ4Lgrad(V , F)

(7)

In Formula (7), LossI refer to the loss between the infrared image I and the fused image F. And LossV
refer to the loss between the visible image V and the fused image F. Lint(I, F) and Lgrad(I, F) denote
the intensity loss and gradient loss between the infrared image I and the fused image F. Lint(V , F) and
Lgrad(V , F) denote the intensity loss and gradient loss between the visible image V and the fused image F.
λ1, λ2, λ3, λ4 are the weighting coefficients for each loss term. The design is indeed to have two independent
sets of weighting parameters: one for IR and another for VI. The weights for the IR loss components sum to 1
(λ1 + λ2 = 1). And the weights for the VI loss components sum to 1 (λ3 + λ4 = 1). This separate normalization
allows for flexible and independent balancing of the intensity and gradient contributions from each modality
within the total loss function.

This paper sets four parameters to constrain the proportions of these four loss functions in the total
loss. This methodical approach to loss function design is pivotal for applications requiring high-quality fused
images, ensuring that both the structural and detail information from the source images are maintained.

The intensity and gradient loss formulas for IRI and VIs are:

⎧⎪⎪⎨⎪⎪⎩

Lint(I, F) = 1
H∗W ∥F − I∥2

2

Lgrad(I, F) = 1
H∗W ∥∇F −∇I∥2

2
;
⎧⎪⎪⎨⎪⎪⎩

Lint(V , F) = 1
H∗W ∥F − V∥2

2

Lgrad(V , F) = 1
H∗W ∥∇F −∇V∥2

2
(8)

In Formula (8), H and W refer to the height and width of the source and the fused image; I and V
represent IRI and VI; F and ∇F are the fused image and its gradient; ∇I and ∇V are the gradient of the
IRI and VI, respectively. The gradient is the sum of both squares of the horizontal and vertical gradients.
The intensity loss is the square of 2-norms of the difference between the pixel values of the fused and source
images. Gradient loss is the square of 2-norms of the gradient difference between the fused and source images.



12 Comput Mater Contin. 2026;87(1):30

4 Experimental Analysis

4.1 Experimental Datasets
We conducted experiments on two public datasets: MSRS (https://github.com/Linfeng-Tang/MSRS,

accessed on 01 August 2025) and TNO (https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029,
accessed on 01 August 2025). MSRS contained 1083 pairs training images and 361 pairs test images, which
included aligned IRIs and VIs. TNO comprised randomly 25 pairs of IRIs and VIs. The overall framework was
Pytorch. We used the MSRS training set for model training. During training, the VIs were converted from
RGB color space to grayscale, and the IRIs were converted to single-channel infrared images by Lagrange
interpolation and single-point correction [34]. The model was trained for 40 epochs, with a learning rate of
1e−4. After every 20 epochs, the learning rate dropped by one order of magnitude.

4.2 Experimental Evaluation Metrics
Following the literatures, we adopt the widely-used metrics: Entropy (EN) [35], Mutual Information

(MI) [36], Standard Deviation (SD) [37], Average Gradient (AG) [37], The Structural Similarity Index
Measure (SSIM) [38], Fusion quality (Qabf) [39], MI of the pixel (FMIpix e l ) [40], and modified Visual
Information Fidelity (V IFm) [40,41].

4.3 Parameter Selection
To study the effect of different parameters in image decomposition and loss function on the experimen-

tal results, this section compared 4 different sets of parameters in the TNO dataset, which influenced the
balance of thermal radiation and texture detail information in the final fused image.

Table 4 listed the average metric values with 4 set parameters: A, B, C, and D in the TNO test dataset.
Moreover α, β, λ1, λ2, λ3, λ4 were the parameter values in the sets. EN, MI, SD, AG, SSIM, Qabf, FMIpix e l
and V IFm represented different metric values utilized to quantitatively evaluate the efficiency of the fused
images. Bold indicated the best result. Italics and underlined indicated the second best result.

Table 4: The comparison of different parameter selections

α β λ1 λ2 λ3 λ4 EN MI SD AG SSIM Qabf F MI pi x e l V IF m

A 1/2 1/2 1/2 1/2 1/2 1/2 6.873 3.013 0.161 0.234 0.951 0.508 1.046 0.688
B 1/2 1/2 2/3 1/3 1/3 2/3 6.913 3.096 0.175 0.253 1.037 0.523 1.184 0.704
C 1/3 2/3 1/2 1/2 1/2 1/2 7.083 3.128 0.172 0.266 1.018 0.513 1.207 0.701
D 1/3 2/3 2/3 1/3 1/3 2/3 7.117 3.153 0.185 0.284 1.056 0.529 1.253 0.726

Note: Bold indicated the best result. Italics and underlined indicated the second best result.

From Table 4, the metric values in the A set were lower than the other three groups, the metric values in
the D set achieved the best results, and the metric values in the B and C sets were slightly different. This was
consistent with our cognition. By comparing A and B or C and D, to produce a high-quality fused image, the
IRI intensity loss should have a higher proportion than the VI, whereas the gradient loss of the VI should have
a higher proportion than that of the IRI. This was because gradient loss encouraged the fused image to include
rich texture details, while intensity loss restricted the fused image to maintain a similar intensity distribution
as the source images. Further, by comparing B and D or A and C, we could find that we should increase the
proportion of VIs in the new detail layer and increase the proportion of IRIs in the new basic layer. This
was because VIs contain more detailed information, and IRIs contain target information. Collectively, the
dual-branch mechanism in this paper could significantly contribute to the image fusion process.

https://github.com/Linfeng-Tang/MSRS
https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029
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4.4 Ablation Study
This paper improved the performance by introducing a dual-branch mechanism, Restormer Blocks,

and Dense Blocks. This section would verify the different effects of the improved points through ablation
experiments in the TNO dataset. To verify the contribution of the dual-branch frequency decomposition, we
compare our full model (Dual-Branch+Restormer+Dense) against a strong baseline that removes the Dual-
Branch module. This baseline, denoted as “Restormer+Dense (without Dual-Branch)” in Table 5. In addition,
we also compared the original backbone network model (Restormer) with Restormer+Dense (without Dual-
Branch) module.

Table 5: Comparison of ablation experiments

EN MI SD AG SSIM Qabf F MI pi x e l V IF m

Restormer 5.876 1.875 30.468 4.876 0.825 0.387 0.923 0.693
Restormer+Dense (without

Dual-Branch) 6.029 2.077 34.687 5.263 0.902 0.443 1.046 0.648

Dual-
Branch+Restormer+Dense 7.117 3.153 0.185 0.284 1.056 0.529 1.253 0.726

Note: Bold indicated the best result.

Dense Block achieved feature fusion by connecting feature maps. This fusion helped the network learn
richer feature representations and improved the model performance. Therefore, in the TNO test dataset
(Table 5), the Restormer backbone network with the addition of Dense blocks had achieved improvements
in EI, MI, SD, AG, SSIM, Qabf, FMIpix e l and V IFm . On the basis of the above, we introduced a dual-branch
mechanism to the backbone network. This could make the fused image contain more target features of IRIs
and detailed features of VIs. Therefore, Table 5 demonstrated that a dual-branch mechanism could effectively
promote the fused image quality.

4.5 Experimental Results and Comparative Analysis
To verify the fusion effect of our method, images from the TNO dataset representing three dif-

ferent times of day and various scenes were selected: a portrait at night, a garden in the evening, and
a field during the day. In the following, we compared our method with SOTA approaches introduced
in Section 2, including Joint Sparse Representation Fusion (JSR) [11], Cross Bilateral Filter-based Fusion
(CBF) [12], IRI and VI Fusion using Deep Learning-based Fusion (IVFDL) [14], Dense Network-based
Fusion (DenseFuse) [16], GAN-based Fusion (FusionGAN) [17], Proportional Maintenance of Gradient and
Intensity (PMGI) [22], Unified Unsupervised Image Fusion (U2Fusion) [23], Quantum Computing-Induced
Image Fusion(QCFusion) [41], simplified infrared and visible image fusion network (SimpliFusion) [42], and
image fusion framework with a hierarchical loss function (HiFusion) [43]. In addition, we also compared
the algorithms on the MSRS test set and TNO dataset.
(1) Portrait at night

Fig. 8 depicts that the portrait of JSR was relatively blurry. The trees in the distance were basically
invisible; The portrait of CBF had a noticeable gradient reversal on the right side. And there was a clear
structural deviation in JSR and CBF; IVFDL, FusionGAN, and QCFusion had an overall dark background,
lacking the visible background information. Here, the quantum weight map generation strategy and fusion
rules proposed by the QCFusion algorithm were too sensitive to the thermal radiation characteristics of
IRIs, resulting in the systematic suppression or dilution of visible light texture and background details in
information competition. DenseFuse and U2Fusion lacked infrared information in the legs of the portrait;
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PMGI contained sufficient visible information but had slightly insufficient detail features. The fused images
generated by the SimpliFusion and HiFusion algorithms were clear but had some color distortion, ignoring
the balance of the overall fusion effect. The soldiers’ backs on the ground and the trees in the distance indicate
this. The image from the method presented in this paper was generally smoother, although some details were
less prominent. The quantitative metrics in Table 6 further confirm this observation. Table 6 elucidated that,
in the scene of the portrait at night, our method was higher than other algorithms in EN, MI, SD, SSMI, Qabf
and V IMF . But our method was lower than IVFDL and U2Fusion algorithms in AG and lower than PMGI
algorithm in FMIpix e l . The reason was that IVFDL used explicit fusion rules to directly select the sharpest
edges in the decomposed detail layer, thereby maximizing gradients. And U2Fusion used an information-
preserving loss in its unsupervised learning framework. This loss maximized the similarity between the fused
image and the source image in the deep feature space, driving the network to adaptively learn and generate
fused results that were rich in detail and retain complete information. Although U2Fusion generated images
through information-preserving loss, this process might sacrifice some pixel MI, resulting in the image’s
FMIpix e l score not being the highest. PMGI had a highest FMIpix e l value because its core gradient and
intensity preservation loss function directly forced the fused image to be similar to the sum of the two source
images at the pixel level, thereby maximizing the preservation of the original information of the source
images. We added clear red rectangular annotations to key areas in Fig. 8 and explained them in the text.
These annotations highlighted the advantages of our method in detail preservation, hot object prominence,
and naturalness and contrast, while also marking the problems of other algorithms. Figs. 9 and 10 also used
this red rectangular annotation.

Figure 8: Portrait at night
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Table 6: Comparison of metric values of the portrait at night

EN MI SD AG SSMI Qabf F MI pi x e l V IF m

JSR 6.596 2.641 0.107 0.133 0.925 0.458 0.789 0.239
CBF 6.656 2.757 0.125 0.116 0.906 0.392 0.187 0.249

IVFDL 6.320 2.209 0.111 0.209 0.646 0.214 0.258 0.631
DenseFuse 7.043 1.271 0.086 0.102 0.532 0.223 0.688 0.444
FusionGAN 6.826 2.693 0.073 0.113 0.978 0.468 0.521 0.435

PMGI 6.936 2.290 0.138 0.170 0.997 0.560 0.987 0.565
U2Fusion 7.363 2.060 0.123 0.193 0.888 0.516 0.837 0.641
QCFusion 4.551 0.698 0.037 0.063 0.663 0.187 0.397 0.174
SimpliFusion 6.539 2.477 0.104 0.011 0.702 0.555 0.755 0.495
HiFusion 6.521 2.332 0.101 0.015 0.723 0.571 0.726 0.508

Ours 7.505 2.834 0.144 0.188 1.024 0.607 0.891 0.654

Note: Bold indicated the best result. Italics and underlined indicated the second best result.

VI IR

IVFDL DenseFuse

Ours

U2FusionPMGIFusionGAN

CBFJSR

HiFusionSimpliFusion

QCFusion

Figure 9: Garden in the evening
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Figure 10: Field during the day

(2) Garden in the evening
Fig. 9 represented that the overall image of JSR was close to IRI, but lacked details; The image of

CBF had a gradient reversal below the clouds; IVFDL lacked background information such as the clouds
of sky, but contained a lot of detailed information in the foreground; Although PGMI also contained a
lot of detailed information, it liked DenseFuse and FusionGAN showing ghosting in the sky; FusionGAN
had insufficient infrared information for the garden, which made the garden information not clear. The
image generated by the QCFusion algorithm was different from IRI, indicating that it lacked sufficient IRI
information. SimpliFUsion and HiFusion had similar fusion effects to our algorithm in this paper, but were
slightly inferior in clarity, and the background light were slightly exposed. Our method had a slight loss
of detail in the trees, but it showed a better fusion impact for the infrared information of the background.
Likewise, Table 7 revealed that, in the scene of the garden in the evening, our method was higher than other
algorithms in EN, MI, SSMI, Qabf and V IFm . Here, for AG, the proposed method surpassed the U2Fusion
algorithm and was lower than IVFDL algorithm. For SD and FMIpix e l , the proposed method was lower than
JSR algorithm. This was because JSR algorithm adaptively captured and retained the essential structure and
most salient information by seeking the sparsest representation of images under an overcomplete dictionary,
which was highly consistent with the original intention of SD and FMIpix e l to measure structural fidelity
and information retention, respectively. Therefore, it performed well in SD and FMIpix e l . Our algorithm
balanced frequency decomposition with loss function, focusing more on the natural layers of the images and
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high-quality integration of key information rather than simply pursuing extreme contrast or direct copying
based on pixel statistics. Therefore, its effect on these two indicators was slightly weaker than that of JSR.

Table 7: Comparison of metric values of the garden in the evening

EN MI SD AG SSMI Qabf F MI pi x e l V IF m

JSR 7.486 4.106 0.195 0.106 0.690 0.334 2.141 0.708
CBF 7.010 1.969 0.141 0.099 0.904 0.451 1.014 0.672

IVFDL 7.339 2.550 0.130 0.371 0.520 0.260 1.059 0.722
DenseFuse 7.450 2.091 0.116 0.100 0.411 0.198 0.759 0.625
FusionGAN 6.887 2.158 0.175 0.081 0.905 0.491 1.060 0.613

PMGI 7.426 1.646 0.182 0.129 0.844 0.464 1.101 0.767
U2Fusion 7.457 1.821 0.151 0.128 0.762 0.477 0.850 0.755
QCFusion 6.933 1.696 0.146 0.157 0.531 0.204 0.448 0.629
SimpliFusion 6.849 3.577 0.141 0.011 0.572 0.519 1.069 0.641
HiFusion 6.887 3.495 0.145 0.011 0.573 0.526 1.046 0.643

Ours 7.563 4.343 0.189 0.178 0.951 0.528 1.103 0.807

Note: Bold indicated the best result. Italics and underlined indicated the second best result.

(3) Field during the day
Fig. 10 demonstrates that the image from JSR is generally blurry. The background in the sky is completely

black, lacking visible information. ; The image of CBF failed to address the gradient reversal effect caused
by bilateral filtering, and there were obvious white spots on some branches; IVFDL highlighted the infrared
information of the house, but the overall detail features were not prominent enough, especially several
rows of footprints in front that were almost invisible; DenseFuse and U2Fusion performed better in detail
representation than JSR algorithm. However, the fusion of infrared information and visible light information
was unnatural. For example, the color of footprints in front of the house was inconsistent. The image of
the FusionGAN algorithm was relatively blurry, making it difficult to see the details of the house. PMGI
had a relatively good overall effect, better integrating the IRI thermal radiation information and the VI
detail features. But there were artifacts in the background of the image. QCFusion has serious detail loss
and gradient reversal. SimpliFusion and HiFusion had uneven color processing, with large black areas in
the foreground and right side of the sky. Our method retained infrared radiation information and better
preserved the background, especially the sky and footprints, which contained ample visible information.
Likewise, Table 8 showed that in the scene of the field during the day, our method was higher than other
algorithms in EN, SD, SSMI, Qabf, FMIpix e l and V IFm . Meanwhile, our algorithm was lower than the IVFDL
algorithm in AG and was lower than the HiFusion and SimpliFusion algorithms in MI. The reason was the
hierarchical loss function of the HiFusion algorithm, especially the feature-level loss and pixel-level loss,
which required the fused image to retain the key information from the two source images to the greatest
extent possible. The spatial attention fusion strategy of the SimpliFusion algorithm adaptively and maximally
retained and transfers the information of the dual-modal source images to the fused image through weighted
summation. These were highly consistent with the goal of MI to measure information retention.
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Table 8: Comparison of metric values of the field during the day

EN MI SD AG SSMI Qabf F MI pi x e l V IF m

JSR 6.733 2.278 0.229 0.161 0.832 0.502 1.818 0.563
CBF 7.141 2.276 0.133 0.302 0.930 0.347 0.537 0.538

IVFDL 6.484 1.886 0.234 0.482 0.697 0.220 0.552 0.641
DenseFuse 6.938 1.242 0.120 0.186 0.390 0.262 0.855 0.516
FusionGAN 7.193 2.148 0.137 0.151 0.929 0.331 0.898 0.506

PMGI 7.373 1.979 0.174 0.337 0.860 0.454 0.511 0.598
U2Fusion 7.553 1.897 0.144 0.185 0.891 0.579 0.715 0.518
QCFusion 7.194 1.465 0.191 0.130 0.253 0.185 1.022 0.590
SimpliFusion 7.254 3.786 0.199 0.013 0.574 0.531 1.305 0.601
HiFusion 7.259 3.960 0.204 0.014 0.597 0.557 1.333 0.640

Ours 7.952 2.435 0.237 0.409 1.106 0.613 1.822 0.835

Note: Bold indicated the best result. Italics and underlined indicated the second best result.

(4) Average test results on the TNO dataset
Table 9 shows the average test results for the TNO data set. Our algorithm proposed in this paper

excelled across multiple key fusion metrics, achieving state-of-the-art performance. Specifically, this method
achieved optimal values for EN, MI, SD, SSIM, Qabf, FMIpix e l and V IFm , outperforming the next-best
algorithm by 0.8%, 0.2%, 3.2%, 4.3%, 4.2%, 11.9% and 7.9%, respectively. Although slightly inferior to the
IVFDL algorithm in AG, its overall performance advantage was significant, fully validating the effectiveness
of the proposed frequency domain decomposition and enhancement strategy, and the combination of the
Restormer module and the Dense Block, which significantly improved the information richness, structure
preservation, and visual quality of the fused image.

Table 9: Mean values of each metric for the TNO dataset

EN MI SD AG SSIM Qabf F MI pi x e l V IF m

JSR 6.765 3.057 0.179 0.126 0.860 0.393 1.104 0.589
CBF 6.570 2.267 0.123 0.141 1.006 0.395 0.328 0.537

IVFDL 6.558 2.330 0.162 0.325 0.663 0.234 0.356 0.646
DenseFuse 6.545 1.516 0.098 0.102 0.432 0.204 0.524 0.483
FusionGAN 6.533 2.209 0.114 0.093 1.011 0.410 0.631 0.521

PMGI 6.997 2.005 0.142 0.194 0.945 0.427 1.002 0.503
U2Fusion 7.060 2.113 0.130 0.138 0.905 0.497 0.810 0.562
QCFusion 4.511 0.775 0.058 0.077 0.532 0.250 0.238 0.297
SimpliFusion 6.572 3.024 0.163 0.016 0.678 0.507 0.960 0.669
HiFusion 6.591 3.144 0.165 0.016 0.680 0.504 1.010 0.653

Ours 7.117 3.153 0.185 0.284 1.056 0.529 1.253 0.726

Note: Bold indicated the best result. Italics and underlined indicated the second best result.

(5) Average test results on the MSRS test set
Table 10 shows the average test results for the MSRS test set. Our algorithm demonstrated leading

performance across multiple key evaluation metrics. Specifically, it achieved optimal values for five metrics:
EN, MI, SD, AG, and SSIM. This demonstrated that its fusion results were the best in terms of information
richness, source image information preservation, contrast, texture detail clarity, and structural preservation.
In particular, on the core information preservation metric MI, our algorithm achieved a score of 3.158, slightly
outperforming HiFusion (3.152), demonstrating its superior information fusion capabilities. Furthermore,
on the feature-level fusion evaluation metrics FMIpix e l and V IFm , the method achieved the highest scores
of 1.043 and 0.687, respectively, further validating its advantages in pixel-level information fusion and visual
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information fidelity. Although our algorithm’s Qabf was slightly lower than SimpliFusion’s, its comprehensive
lead in most metrics, especially its significant advantages in information preservation (MI, EN) and structure
preservation (SSIM), fully demonstrates the superiority of its overall fusion performance. At the same
time, Table 10 also showed that our algorithm had good generalization performance on different datasets.

Table 10: Mean values of each metric for the MSRS test set

EN MI SD AG SSIM Qabf F MI pi x e l V IF m

QCFusion 4.497 0.765 0.058 0.077 0.532 0.236 0.248 0.291
SimpliFusion 6.570 3.073 0.163 0.016 0.678 0.566 0.958 0.669
HiFusion 6.590 3.152 0.165 0.016 0.680 0.539 1.007 0.653

Ours 7.105 3.158 0.172 0.115 1.054 0.557 1.043 0.687

Note: Bold indicated the best result. Italics and underlined indicated the second best result.

5 Summary of This Chapter
In order to better extract the information on IRI thermal radiation and VI detailed texture, we suggested

an end-to-end IRI and VI fusion approach with frequency decomposition and enhancement. This method
first processed IRIs and VIs in separate layers weights and fused the corresponding layers so that the basic
layer contained more IRI thermal radiation information, and the detail layer contained more VI detailed
texture information. Then, Restormer was employed for the extraction of the shallow features in the basic
and detail layers, respectively, and these features were put into the dense network, aiming at extracting the
depth features. Finally, the features were stitched on the channel and input into the decoder to produce the
fusion image. During the network training process, gradient and intensity loss were introduced to balance
the IRI target information and the VI detailed information. In comparison to conventional algorithms, our
findings manifested that the fused images had achieved SOTA in various metrics, including EN, MI, SD,
SSIM, Qabf, FMIpix e l and V IFm .
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Abbreviations
Abbreviation Full Term
IRIs Infrared images
VIs Visible images
SOTA State-of-the-art
EN Entropy
MI Mutual information
SD Standard deviation
SSIM The structural similarity index measure
Qabf Fusion quality
FMIpix e l MI of the pixel
V IFm Visual information fidelity
DL Deep learning
CNN Convolutional neural network
GAN Generative adversarial network
CSPA-GAN The cross-scale pyramid attention generative adversarial network
V VI image after grayscale conversion
I IRI image after “lagrange interpolation+single-point correction”
Vb The basic layer of V
Vd The detail layer of V
Ib The basic layer of I
Id The detail layer of I
VIb The new basic layer after weighted fusion
VId The new detail layer after weighted fusion
R_V Ib The shallow feature of the new base layers
R_V Id The shallow feature of the new detail layers
F_V Ib The deep features of the new base layer
F_V Id The deep features of the new detail layer
F_ f used A fused high-dimensional concatenation feature vector
SA Self-attention
MDTA The multi-dconv head transposed attention module
FFN The feed-forward network
GDFN The gated-dconv feed-forward network
JSR Joint sparse representation fusion
CBF Cross bilateral filter-based fusion
IVFDL IRI and VI fusion using deep learning-based fusion
DenseFuse Dense network-based fusion
FusionGAN GAN-based fusion
PMGI Proportional maintenance of gradient and intensity
U2Fusion Unified unsupervised image fusion
QCFusion Quantum computing-induced image fusion
SimpliFusion Simplified infrared and visible image fusion network
HiFusion Image fusion framework with a hierarchical loss function
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