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ABSTRACT: With the growing complexity and decentralization of network systems, the attack surface has expanded,
which has led to greater concerns over network threats. In this context, artificial intelligence (AI)-based network
intrusion detection systems (NIDS) have been extensively studied, and recent efforts have shifted toward integrating
distributed learning to enable intelligent and scalable detection mechanisms. However, most existing works focus
on individual distributed learning frameworks, and there is a lack of systematic evaluations that compare different
algorithms under consistent conditions. In this paper, we present a comprehensive evaluation of representative
distributed learning frameworks—Federated Learning (FL), Split Learning (SL), hybrid collaborative learning (SFL),
and fully distributed learning—in the context of AI-driven NIDS. Using recent benchmark intrusion detection datasets,
a unified model backbone, and controlled distributed scenarios, we assess these frameworks across multiple criteria,
including detection performance, communication cost, computational efficiency, and convergence behavior. Our
findings highlight distinct trade-offs among the distributed learning frameworks, demonstrating that the optimal choice
depends strongly on system constraints such as bandwidth availability, node resources, and data distribution. This work
provides the first holistic analysis of distributed learning approaches for Al-driven NIDS and offers practical guidelines
for designing secure and efficient intrusion detection systems in decentralized environments.

KEYWORDS: Network intrusion detection; network security,; distributed learning

1 Introduction

The evolution of communication networks has advanced through successive generations, moving
from centralized infrastructures toward highly distributed and heterogeneous ecosystems. In particular,
virtualization, edge computing, and the rapid growth of Internet of Things (IoT) devices have reshaped
the topology of modern networks, where computation and data exchange are no longer limited to the
central backbone but are instead distributed across the network. This structural transformation has improved
scalability and service flexibility, but it has also expanded the attack surface, exposing a broader range
of vulnerabilities as the number of distributed nodes increases. These vulnerabilities are not only more
numerous but also more diverse, since each node may differ in capability, connectivity, and exposure. In
such distributed environments, traditional centralized intrusion detection struggles to handle the volume
and variability of threats.
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Recently, research on Al-based network intrusion detection systems (AI-NIDS) has advanced across
diverse directions, and research interest has increasingly moved toward distributed environments. In these
settings, data typically remains at the local node, while communication links are often constrained by
limited bandwidth and variable delay. To address these conditions, several distributed learning frameworks
have been established as key approaches in AI-NIDS research. As representative approaches, Federated
Learning (FL) [1] enables collaborative training of a shared model in distributed environments by allowing
local nodes to train models independently and aggregate their updates at a server. This design reduces the
exposure of raw data and supports privacy preservation in sensitive domains. Building on this concept,
Split Learning (SL) [2] adopts a different strategy by partitioning a model into a front-end at the local
node and a back-end at the server, where only intermediate activations and gradients are exchanged.
This arrangement alleviates computational burden on resource-constrained nodes. Extending these two
frameworks, Split-Federated Learning (SFL) [3] integrates the aggregation strategy of FL with the model
partitioning of SL. In this hybrid design, local nodes train the front-end components while the server
maintains the back-end and aggregates front-end updates, thereby enabling both privacy preservation and
reduced local workload. Beyond these server-coordinated frameworks, Gossip Learning (GL) [4] offers a
fully decentralized alternative. In this setting, participants exchange model parameters asynchronously with
randomly selected peers over a communication graph, without relying on a central server. This decentralized
mechanism eliminates single points of failure and provides robustness in dynamic network environments.
Collectively, these frameworks can be regarded as fundamental distributed learning approaches for building
AI-NIDS in distributed environments, and they have been actively applied in scenarios such as mobile edge
computing, radio access networks, and industrial or enterprise IoT systems. Furthermore, prior studies have
identified several key challenges for AI-NIDS in such settings, including non-IID data distributions, partial
participation of nodes, and resource constraints at local nodes.

Despite recent progress, most prior studies have concentrated on individual frameworks, and their
evaluations have generally been restricted to specific settings. Assumptions regarding data partitioning,
synchronization, and trust models vary across works, while datasets, attack scenarios, and preprocessing
pipelines also differ, making direct comparison difficult. Moreover, system-level factors such as local
computational load and communication volume are often treated as secondary considerations or reported
with inconsistent definitions. To address these gaps, this paper presents a comparative study of FL, SL,
SFL, and gossip learning in the context of AI-NIDS. We define a unified problem setting that incorporates
local nodes at the edge, an aggregation server, and realistic network constraints. The evaluation covers
multiple dimensions, including detection accuracy, convergence under different data distribution scenarios,
computational burden at local nodes, and per-round communication overhead. Finally, experimental
results on two representative network intrusion datasets—5G-NIDD and CICIDS2017—under deployment
scenarios reflecting realistic 5G and conventional network environments provide comprehensive insights.
The outcome is a comparative analysis that offers guidance for designing AI-NIDS in distributed networks,
where accuracy, efficiency, robustness, and privacy need to be jointly balanced.

The main contributions of this paper are summarized as follows:

«  We provide a systematic comparative study of four major distributed learning frameworks—federated
learning (FL), split learning (SL), split-federated learning (SFL), and gossip learning—in the context
of AI-NIDS. To enable direct and consistent comparison, we define a unified problem setting that
harmonizes assumptions on data partitioning, synchronization, and trust models.

«  Our evaluation extends beyond detection accuracy to include system-level aspects such as convergence
under non-IID partitions, computational load at local nodes and per-round communication overhead.
This multi-dimensional perspective reveals the inherent trade-ofts of each approach.
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o Through experiments on two representative network intrusion datasets—5G-NIDD and CICIDS2017—
under deployment scenarios reflecting realistic 5G and conventional network environments, we provide
empirical evidence on the strengths and limitations of each framework. The findings offer practical
guidance for selecting and adapting distributed learning approaches when designing AI-NIDS for
heterogeneous and resource-constrained environments.

By filling the gap in systematic comparisons, this study contributes to a more consistent understanding
of distributed learning algorithms and their roles in network intrusion detection for both researchers
and practitioners. The remainder of this paper is organized as follows. Section 3 reviews related work on
distributed AI-NIDS. Section 2 outlines the four distributed learning frameworks—federated, split, split-
federated, and gossip learning. Section 4 introduces our evaluation framework, which defines a unified
setting and consistent dimensions, including accuracy, convergence and computational and communication
costs. Section 5 presents experimental results with comparative analysis on representative datasets and
deployment scenarios. Section 6 concludes with key findings, design implications, and future research direc-
tions.

2 Background

The design of distributed learning frameworks has evolved to meet the challenges of scalability, data
privacy, and resource heterogeneity in distributed environments. Several frameworks have been proposed
to support collaborative model training without centralizing raw data, each with distinct mechanisms for
data handling, model partitioning, and communication. Among them, federated learning (FL), split learning
(SL), split-federated learning (SFL), and gossip learning have emerged as representative approaches. These
frameworks differ in terms of server involvement, device-side workload, and communication structure,
yet all share the goal of enabling scalable and privacy-preserving distributed learning. This section provides
an overview of these frameworks, establishing the conceptual foundation for the comparative analysis
that follows.

2.1 Federated Learning

Federated learning (FL) [1] is a collaborative training algorithm in which multiple local nodes train a
shared global model without centralizing raw data, as shown in Fig. la. Let Dy = {(x1, %1), .- +» (Xn,> Yn, ) }
denote the local dataset of node k € {1, ..., K}. Each node maintains local parameters wy, initialized from
the global model w(*) at round ¢, and optimizes them by minimizing the following local objective:

Lon) =~ f(swi) ), (W

Nk (xi,y:)€Dy

where /(-) denotes the loss function for classification. Through several steps of local gradient descent, each
node obtains updated parameters wim), which are then transmitted to a central server. The server aggregates

these updates using the Federated Averaging (FedAvg) rule:

t+1 K ong (t+1) K
wlt+) = > —w, ’, wheren=> ng. (2)
k=1 1 k=1

The resulting global model w(**!) is redistributed to all nodes, and this process iterates until con-
vergence. Since raw samples remain local, FL addresses a fundamental requirement of data privacy while
enabling collaborative training of a globally shared model in distributed environments. Although FL offers
privacy guarantees while enabling collaborative training, several challenges arise in practice. In particular,
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training a full model at each node can impose computational burden on devices with limited resources. As
an alternative to mitigate such issues, Split Learning (SL) can be considered, where the model is partitioned
between the local node and the server. In this framework, shallow layers are executed locally while deeper
layers remain at the server, reducing the computational demand on resource-constrained devices.

Activations & Labels 5
—

£
. § i & M‘Jde/ . Gradients
. g i i ; Aggregation .

ml Activations & Labels >

[ PP
. ‘ Gradients

(a) Federated Learning (b) Split Learning

1 |
o i
ihe

ctivations & Labels

Lctntions & Labek,
‘ g Gradients % g
O S v

\2
N
Front-end Feee .
44—

(c) Split-Federated Learning (d) Gossip Learning

Figure 1: Workflow comparison of representative distributed learning frameworks

2.2 Split Learning

Split Learning (SL) [2] is a distributed training algorithm designed to alleviate the computational
burden on resource-constrained devices while still enabling collaborative model training. In SL, a model
is partitioned between the local node and a central server, as shown in Fig. 1b. Typically, the initial layers
(front-end) are executed at the local node, while the remaining deeper layers (back-end) are hosted on the
server. This design allows local nodes to perform only partial computation, thus reducing their workload
and memory requirements.

Formally, let the model be decomposed into two parts: front(-;Wy) for the local node and foac (5 Ws)
for the server, where w and w;, denote the respective parameters. For an input sample x; at node k, the local
node computes the intermediate activation (smashed data):

hi :ffront(xﬁwf)- (3)

The activation h;, along with the ground-truth label y;, is transmitted to the server, where the back-end
model continues the forward propagation and computes the loss £(x;, y;) as follows:

L(xi,y:) =€(Pi>yi), where ;i = frack(hizwy). (4)
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After computing the loss, the server performs backpropagation through its back-end layers and sends
the gradient with respect to the activation h; back to the local node. Based on these computations, the server
updates its parameters w;, and the local node correspondingly updates w using the received gradient. This
iterative process is repeated over multiple training rounds until convergence. This partitioned design reduces
the need for full model execution at the local side and enables devices with limited resources to participate
in collaborative learning. Nonetheless, since SL relies on a relay-based training procedure across clients—
where updates are processed sequentially rather than in parallel—it often leads to inefficient training in
distributed environments.

2.3 Split-Federated Learning

Split-Federated Learning (SFL) [3] is a hybrid framework that integrates the collaborative aggregation
mechanism of FL with the model partitioning principle of SL. The key idea is to offload the heavy
computation of deep layers to a central server, while still coordinating distributed training across multiple
nodes through federated aggregation (see Fig. Ic). This design enables resource-constrained devices to
participate in large-scale collaborative learning without incurring the full computational burden of training
entire models.

Formally, the model is decomposed into two components: a front-end frront(-; Wy ) residing at node
k, and a back-end fy,ck(+; W, ) maintained at the server. For an input sample x; € Dy, node k computes the
smashed data:

hi :ffront(xi;wf,k)- (5)

The activation h; together with the label y; is transmitted to the server, where the back-end produces
the output and evaluates the loss:

L(xi>yi) =L foack (hiswp), yi). (©)

After computing the loss, the server performs backpropagation through its back-end layers to update
wy,. During this process, the gradient with respect to the intermediate activation /;, denoted Vj, L, is also
obtained. This gradient is transmitted back to node k, where it is used to continue backpropagation through
the front-end model. The local node uses Vj,, L to perform backpropagation through its front-end model
firont (W ), which results in the update of the local parameters wy . In this way, both wy, at the server and
Wy k at the node are updated in a coordinated manner across the split boundary. After a set number of local
updates, all participating nodes transmit their updated front-end parameters wy ; to the server. The server
then aggregates these updates using a federated averaging rule:

L K
wp= Z 7wf,k, where n = Z Nks (7)
k=1 k=1

producing the synchronized front-end parameters wy, which are redistributed to all nodes for the next
training round. This hybrid procedure balances efficiency and scalability by allowing local nodes to execute
only shallow layers, which reduces computation and memory demand, while federated aggregation main-
tains collaborative benefits across heterogeneous datasets. Compared with standalone SL, SFL alleviates the
inefficiency of relay-based training because multiple nodes can participate in parallel.
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2.4 Gossip Learning

Gossip learning (GL) [4] is a fully decentralized training algorithm in which nodes exchange and
aggregate model parameters directly with randomly selected peers, without relying on a central coordinator
or server. This design eliminates single points of failure and relaxes infrastructural assumptions, while still
enabling collaborative learning over horizontally partitioned datasets (see Fig. 1d).

Formally, let the local dataset at node k be denoted as Dy = {(x;, y;)}, and let the node maintain a
model wy with an associated version ;. In the basic protocol, each node periodically selects a peer and
sends a sampled copy of its current model. Upon reception, the peer merges the incoming model with its
own and subsequently performs a local update on Dy. The process is fully asynchronous: nodes are not
synchronized in rounds, and each incoming message is processed immediately. While different variants
implement the sample, merge, and update steps differently (e.g., averaging vs. replacement), the overall
procedure remains consistent. A generic abstraction of the update rule is given by:

W,(f) = merge(w,it), wft)), wl(cm) = Uk(w,(f); Dk), (8)

where merge(-,-) denotes parameter aggregation, for instance

wif) = ocw,((t) +(1- a)wgt), 9)

and Uy (+) represents a local update such as a stochastic gradient descent step.

To enhance communication efficiency, gossip learning incorporates techniques such as parameter
subsampling and token-based flow control, which enable it to operate reliably under bandwidth con-
straints or bursty communication patterns. Empirical evidence further indicates that GL can match, and
in some scenarios even surpass, the performance of federated learning when both are limited to the same
communication budget. These findings position gossip learning as a practical decentralized alternative to
federated learning.

3 Related Work

Federated learning (FL) has been the most widely adopted distributed learning algorithm for network
intrusion detection. Early efforts combined standard machine learning or deep models with FL to realize
collaborative detection without raw data exchange [5-8]. Later works introduced specialized strategies to
cope with communication overhead, imbalance in attack samples, and heterogeneous environments. For
instance, Zhang et al. [9] combined hierarchical K-Means aggregation with SMOTE-ENN resampling to
address both aggregation efficiency and skewed class distributions. Hamdi [10] applied a Convolutional
Neural Network (CNN) within an FL framework and evaluated different aggregation rules under imbalanced
IoT traffic. Popoola et al. [11] targeted zero-day botnet scenarios, assuming that each device contributed only
partial attack knowledge. Beyond basic learning integration, researchers have experimented with diverse
FL architectures. Chaabene et al. [12] aggregated decision trees into a random forest ensemble across
devices. Wang et al. [13] adopted mutual information-based feature selection to lower dimensionality while
preserving accuracy. Yilmaz et al. [14] studied placement strategies of FL-based IDS in lossy IoT networks,
highlighting sensitivity to detector location. To enhance security, Ma and Su [15] embedded secure multiparty
computation into a semi-supervised FL framework for Software Defined Network (SDN)-based Artificial
Intelligence of Things (AIoT). In healthcare-oriented Internet of Medical Things (IoMT) settings, Itani
et al. [16] demonstrated that traditional Machine Learning (ML) models combined with FL could handle
device heterogeneity. Otoum et al. [17] and Alharbi [18] introduced federated transfer learning (FTL) with
layer freezing and local fine-tuning, enabling adaptation to Non-Independent and Identically Distributed
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(non-IID) conditions. Fahim-Ul-Islam et al. [19] extended this by incorporating meta-learning and robust
aggregation to strengthen interpretability on constrained IoMT devices. Within Industrial Internet of Things
(IIoT) and ¢, FL has been integrated with different deep models and privacy-enhancing techniques. Khoa
et al. [20] leveraged a deep belief network in a collaborative detection design. Li et al. [21] combined FL
with Gated Recurrent Unit (GRUs) and fog computing to mitigate Distributed Denial of Service (DDoS)
attacks. Ruzafa-Alcazar et al. [22] introduced differential privacy, whereas Li et al. [23] and Makkar et al. [24]
adopted Paillier-based homomorphic encryption. A lightweight approach was further explored by Soomro
et al. [25] through symmetric-key encryption and mutual authentication. Mobile networks and next-
generation infrastructures have also been addressed. Jayasinghe et al. [26] designed hierarchical FL detection
for Beyond 5G, while Maiga et al. [27] used FL in virtualized network functions with hybrid deep models.
Singh et al. [28] advanced FL by integrating balanced sampling and feature augmentation, coupled with
knowledge distillation. In Open Radio Access Network (RAN), Attanayaka et al. [29] proposed peer-to-
peer FL tailored to RIC controllers, whereas Benzaid et al. [30] introduced continual learning within FL to
preserve knowledge over sequential tasks. Alalyan et al. [31] adopted secure peer aggregation, and Pithani
and Rout [32] developed clustered FL strategies to counter non-IID data in 6G IoT-edge networks.

While FL has been applied across diverse domains, its reliance on full local training has motivated the
exploration of split learning (SL), where only a portion of the model is trained on local devices. Park et al. [33]
implemented a model-split intrusion detection framework in the context of 5G networks, where shallow
layers are deployed on distributed devices and deeper layers remain at an edge server. Their evaluation on a
real 5G testbed showed that this architecture substantially reduced computation and memory requirements
at the device side while sustaining detection accuracy close to centralized baselines.

Building upon the complementary strengths of FL and SL, split-federated learning (SFL) has been
introduced as a hybrid approach that integrates federated aggregation with model partitioning. In this
approach, the front-end model segments are maintained on distributed devices and periodically aggregated
in a federated manner, while the back-end remains at a central server. The study in [34] demonstrated that
the SFL design alleviates the computational load on individual nodes by confining local updates to front-end
models, while maintaining collaborative benefits through federated aggregation and centralized back-end
training. Their evaluation confirmed that SFL reduces both training latency and device-side complexity, yet
sustains accuracy comparable to conventional FL even under heterogeneous data distributions. Furthermore,
the authors emphasized its scalability in large-scale deployments where efficiency in both computation and
communication is essential.

In contrast to these server-assisted frameworks, gossip learning eliminates centralized orchestration
altogether by propagating model updates through peer-to-peer exchanges across a communication graph.
This fully decentralized paradigm inherently removes the risk of single-point failure and provides adaptabil-
ity in dynamic network settings. Recent work has begun to explore its feasibility for intrusion detection. For
example, the study in [35] applied gossip-based collaborative learning to anomaly detection tasks, showing
that iterative peer exchanges can converge toward accurate detection performance without requiring a
coordinating server. The authors reported robustness against unreliable communication links and scalability
across large, heterogeneous topologies.

4 Evaluation Methodology

This section introduces the evaluation methodology used to compare distributed learning algorithms
for Al-based intrusion detection. The evaluation framework establishes a unified procedure that balances
model performance with system efficiency, ensuring fair comparisons across FL, SL, SFL, and GL.
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4.1 Objectives and Scope

The purpose of this evaluation framework is to establish a unified methodology for comparing
distributed learning algorithms in the context of Al-driven network intrusion detection systems (AlI-
NIDS). While federated learning (FL), split learning (SL), split-federated learning (SFL), and gossip learning
(GL) differ significantly in their training dynamics and communication structures, a consistent evaluation
protocol is required to assess their effectiveness under comparable conditions. The evaluation framework
defines objectives along two axes. First, it seeks to measure detection capability. The goal is to determine how
accurately and reliably each framework identifies malicious traffic under heterogeneous and distributed data
conditions. Second, it emphasizes operational efficiency. The focus is on the extent to which each framework
can deliver robust performance while respecting practical constraints such as computation, communication
bandwidth, and system scalability.

The scope of evaluation extends beyond isolated performance metrics. The methodology incorporates
resource usage, communication overhead, and robustness to data imbalance, ensuring that the assess-
ment reflects deployment realities. The unified pseudocode in Algorithm 1 operationalizes this scope
by prescribing a common evaluation flow. Each framework is executed under identical conditions of
dataset partitioning, training rounds, and hyperparameter settings while logging costs and outcomes in a
standardized manner. This abstraction allows results to be compared fairly without introducing structural
bias toward any specific framework.

Algorithm 1: Unified evaluation flow for distributed AI-NIDS

Require: Framework p € {FL, SL, SFL, GL}, clients K, rounds T, partitions { Dy }, validation/test sets
D.ais Diess> cut index ¢ (for SL/SFL)
1: Setup: Initialize parameters depending on p
0 0 0 0 0 0 0
FL: wl(iL)’ SL: W( ) - (ng) W) ) SFL: gF)L = WEF)L W gF)Lb) GL:w ( )
2:fort=0to T—ldo

3 Sample active clients A; ¢ K
4 for each k € A, do
5 if p = FL then
6: (WEL k> Dcomms Acomp) < LOCALSGD(w'?, Dy)
7 else if p = SL then
8 (wé?ﬁk, gtL)b Acomms Acomp) < SPLITSTEPSL(WgtL) ,wgtL) ,Dy)
9 else if p = SFL then
10: (WSFLy s WS21, » Acomms Acomp) < SPLITSTEPSFL(w(7; ,w(p) , Dk)
11: else
12: (WGLk> Acomm> Acomp) < GOSSIPROUND(wgr,, Dk )
13: end for
14: COST = LOGROUNDCOST(k, t, Acomms Acomp)
15: end for
16:  if p = FL then
17: (m) < Yked, Z A ,1] WELk
18:  else 1f p SFL then
19: Wg?Llf) < Lked, #kn] SFLy .k
20: Broadcast Wz(: ; ~ and wst Y to clients

(Continued)
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Algorithm 1 (continued)

21: end if

22: Ocval < EVALPOLICY(DWI , w;tLH) , wgt;l) , wgf;) , w(GtLH))
23: RECORD(t, cost, 9eva1)

24: end for

25: return REPORT (Dtest) with mean and standard deviation

4.2 Evaluation Procedure

We adopt the unified evaluation procedure in Algorithm 1 to ensure that all learning frameworks are

executed under identical conditions. At initialization, each framework instantiates its parameters according

to its structure. FL initializes with a single global model wl(EOL). SL and SFL define a split configuration

(0) (0)
(Wf GL*
This initialization step guarantees that all baselines are aligned before training commences. Note that we

, wgo) ) at a designated cut index c. GL assigns each participating node an initial parameter vector w

configure the predictive model, that is, the intrusion detection model, with an identical architecture across
all learning frameworks to ensure fair evaluation.

Each training round ¢ begins by sampling a set of active clients .4, € K, which reflects partial availability

in distributed settings and subsequently triggers framework-specific updates at the selected nodes. In FL,

the server first transmits the current global model wl(:tL) to all active clients. Each client k then performs local

optimization on its assigned partition Dj. After completing the local updates, each client returns the updated
parameters wgy i to the server for aggregation. In SL, training is carried out by splitting the network into a

client-side front-end and a server-side back-end. Each active client k computes the forward pass of its front-

Q)

end wSLf,k

on local data Dy and transmits the resulting activations to the server. The server continues the

computation on the back-end wg?b, performs the backward pass, and returns the gradients with respect to

the cut layer. Using these gradients, the client updates its front-end parameters, while the server updates
the centralized back end. In SFL, the training procedure follows a similar split execution, with additional

steps for federated aggregation of the client-side front ends. Each client k maintains its own front-end model
()

Wp Lk processes local data to generate activations, and transmits them to the server for back-end training.

é?Lb using the received activations. After local updates, the client-
(t+1)

specific front ends are aggregated into a global front-end model WS?—LI

The server updates the shared back end w

, which is broadcast back to all local
nodes. In GL, training is performed in a fully decentralized fashion without a central coordinator. Each
(GtL), . and periodically engages in randomized peer-to-peer exchanges. During
each round, a client selects peers according to a predefined communication graph G and budget R, mixes its
parameters with those received, and performs a local update step using Dj. Through repeated gossip inter-
actions, model knowledge propagates across the network, leading to approximate consensus and enabling
fair comparison with centralized and semi-centralized frameworks. Note that each of these update routines

also records communication cost Acomm and computation cost Acomp through LoGROUNDCOST, ensuring

client k holds its own model w

that efficiency metrics are consistently measured across all frameworks. Communication overhead Acomm
captures transmitted and received payloads, which differ across frameworks: FL requires one upload and
one download per round, SL and SFL involve repeated activation-gradient exchanges, and GL accumulates
traffic from peer gossip steps. Computation cost Acomp is quantified in terms of Floating Point Operations
(FLOPs) to evaluate the degree of computational burden incurred on clients (i.e., resource-constrained local
nodes) during training.
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Aggregation is performed only in frameworks where coordination across nodes is required. In FL, the

server collects the locally updated parameters wg; ; from active clients and computes a weighted average

according to local data sizes, producing a new global model wl(,fLH) that is redistributed for the next round.

~(gtF)Lh in a centralized manner, while the client-side

front ends wsryx are aggregated into a global front-end wggﬁf)

In SFL, the server continues to train the back-end model w

using the same weighted strategy and then
broadcast back to all clients.

Evaluation is conducted at the end of each training round using the validation set D, ,; under a unified
policy. The EvaLPOLICY function enforces consistency across frameworks by applying an identical evaluation
flow. In FL, the aggregated global model wl(f;l) is assessed directly. In SL, each client front end is paired

with the back end wgt;), and metrics are averaged over clients. In SFL, the synchronized global front end

wg;JrLlf) is combined with the updated back end w§;+L1 b) for evaluation. In GL, representative node models

are sampled to compute metrics that reflect decentralized consensus. Across all frameworks, evaluation
metrics include accuracy and F1 score (harmonized mean of precision and recall), ensuring comparability
of detection performance. At the same time, the cost statistics logged by LOGROUNDCOST are stored together
with evaluation results, enabling subsequent analysis of efficiency in parallel with detection accuracy.

To establish baselines, we incorporate a centralized model that adopts the identical structure of the
detection model and is trained with the full dataset. This centralized model serves as an upper-bound
reference, while FL, SL, SFL, and GL capture distinct trade-offs in communication, computation, and
coordination. The unified evaluation flow ensures that their strengths and weaknesses are revealed under
identical budget constraints. Final performance is reported on Dy,;; as mean and standard deviation over
multiple seeds, highlighting variability introduced by client sampling, peer selection, and data partitioning.

4.3 Evaluation Dimensions

The evaluation procedure is structured along four complementary dimensions that collectively capture
both the algorithmic accuracy and the system-level feasibility of distributed AI-NIDS frameworks. These
dimensions ensure that comparisons extend beyond raw detection capability to include resource usage,
communication efficiency, and operational resilience.

Detection Performance. As the most fundamental evaluation dimension, predictive accuracy is quanti-
fied using standard classification metrics such as accuracy and F1 score. These indicators reflect the ability of
each framework to correctly distinguish benign and malicious traffic under heterogeneous and imbalanced
data distributions. Final performance is reported on the held-out test set D;.s; to provide an unbiased
estimate of generalization. Specifically, accuracy and Fl-score are defined as

TP+ TN 2 x Precision x Recall
Accuracy = , Fl-score = —
TP+ TN+ FP+FN Precision + Recall
where Precision = % and Recall = %. These metrics are computed per class and averaged to ensure

balanced multi-class evaluation.

Training Convergence. Another important dimension is the reliability of convergence during training.
This is measured on the validation set D, ,; by tracking how loss decreases and accuracy improves across
rounds. We also record the number of iterations required to reach a target performance level, providing a
clear view of whether each framework achieves stable and consistent progress under the unified evaluation
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protocol. In this work, the classification loss is computed using the standard cross-entropy function:

C
Y yiclogpic

i=1 c=1

L=—

z| =

where N denotes the batch size, C the number of classes, y; . the one-hot encoded ground truth, and p; . the
predicted probability. The convergence trend is observed by analyzing the reduction and stabilization of £
across training rounds.

Resource Efficiency. Given that local nodes in distributed environments operate under limited
resources, computational footprint is explicitly measured. This includes per-round floating-point operations
(FLOPs) and cumulative execution time incurred at local nodes during forward and backward passes.
These measurements provide a systematic basis for evaluating whether a framework imposes computational
demands that exceed the practical capacity of resource-constrained devices. For quantitative evaluation, the
client-side computation cost per global round is defined as

K

1
Ciocat = 7 2 (N - FLOPs ),
k=1

where K denotes the number of local nodes, Ny the number of samples processed by node k, and FLOPs
the per-sample operation count at its front-end model.

Communication Overhead. Communication is often the dominant cost in distributed training, and
we explicitly measure it by recording the volume of transmitted and received payloads per round as well as
the number of exchanges required. Framework-specific communication patterns are reflected in this metric:
FL involves one upload and one download per round, SL and SFL incur batch-level activation-gradient
transfers, and GL relies on repeated peer-to-peer parameter mixing. This provides a consistent basis for
assessing how framework-specific communication behaviors impact scalability. In addition, the cumulative
communication volume is averaged per round across all participating nodes, allowing fair comparison of
framework scalability and bandwidth utilization under identical experimental conditions.

By organizing the evaluation along these four dimensions, the methodology ensures that both algo-
rithmic performance and system feasibility are accounted for, thus yielding a balanced and reproducible
comparison across distributed learning frameworks.

5 Experiments and Analysis

This section presents the experimental setup and findings for comparing distributed learning frame-
works in Al-driven intrusion detection. We evaluate FL, SL, SFL, and GL on a 5G network dataset with a
unified backbone and controlled distributed settings, and report results along four dimensions: detection
performance (accuracy/Fl1), convergence behavior, client-side computational footprint, and communica-
tion overhead.

5.1 Dataset Description

To evaluate the distributed learning frameworks under realistic cellular conditions, we adopt
5G-NIDD [36], a contemporary intrusion-detection dataset captured on a fully functional 5G Test Network
(5GTN), and the CICIDS2017 dataset, a widely used benchmark that simulates diverse benign and malicious
traffic reflecting modern intrusion scenarios.
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5.1.15G-NIDD

The dataset contains benign and malicious flows that reflect real-world behavior in mobile networks,
and was built to address the scarcity of real 5G traffic for AI-NIDS research. Benign traffic was generated
by actual handsets attached to 5GTN—covering HTTP/HTTPS browsing and streaming, together with
SSH and SFTP sessions via deployed client-server apps on user equipment—so as to preserve natural
traffic characteristics. The attack set covers DoS/DDoS and port-scanning families across volume, protocol,
and application layers. Specifically, the dataset includes ICMP flood, UDP flood, SYN flood, HTTP flood,
slow-rate DoS (e.g., Slowloris and Torshammer), and three types of scans (SYN scan, TCP connect scan,
and UDP scan). Captured packets were processed into network flows, yielding 1,215,890 labeled records
with both binary (benign vs. malicious) and multiclass tags. The resulting dataset exhibits an imbalanced
class distribution, which reflects real network prevalence. Fig. 2 (left) presents a detailed breakdown of the
dataset distribution. To transform the raw traffic into an interpretable format for AI models, we applied
additional preprocessing steps. Specifically, we converted categorical features using one-hot encoding and
normalized numerical features with a min-max scaler. As a result, each data record was represented with 91
transformed features.

5G-NIDD(N = 1,215,890) CICIDS2017(N = 2,830,743)

BENIGN 2,273,097 (80.30%)
DoS Hulk 231,073 (8.16%)
457,340 (37.61%) PortScan 158,930 (5.61%)
DDoS 128,027 (4.52%)

477,737 (39.29%)

140,812 (11.58%) DoS GoldenEye { 10,293 (0.36%)

FTP-Patator {7,938 (0.28%)
SSH-Patator { 5,897 (0.21%)
20,052 (1.65%) £ Dos siowloris{ 5,796 (0.20%)
DoS Slowhttptest | 5,499 (0.19%)

Bot {1,966 (0.07%)

73,124 (6.01%)

SYN Scan {88 20,043 (1.65%)
Web Brute Force {1,507 (0.05%)

Web XSS {652 (0.02%)

UDP Scan {8l 15,906 (1.31%)

SYN Flood {§§ 9,721 (0.80%) Infiltration | 36 (0.00%)
Web Sql Injection {21 (0.00%)

ICMP Flood { 1,155 (0.09%) Heartbleed {11 (0.00%)

0 100,000 200,000 300,000 400,000 500,000 500,000 1,000,000 1,500,000 2,000,000 2,500,000
Rows Rows.

Figure 2: Class distributions of the 5G-NIDD (left) and CICIDS2017 (right) datasets

5.1.2 CICIDS2017

The CICIDS2017 dataset is a widely adopted benchmark for evaluating intrusion detection systems
and is designed to reproduce realistic network environments containing both benign and malicious traffic.
The dataset includes diverse attack categories, including DoS, DDoS, PortScan, Brute Force, Web-based
attacks (SQL Injection and XSS), Infiltration, and Botnet activities, in addition to normal background traffic.
Each record corresponds to a bidirectional network flow extracted from packet captures, with 80 numerical
and categorical features that characterize statistical, time-based, and content-level properties of network
behavior. To maintain consistency with the preprocessing applied to 5G-NIDD, we performed identical
feature transformations. Categorical attributes were converted using one-hot encoding, while continuous
features were normalized with a min-max scaler. After preprocessing, each sample was represented as a
78-dimensional feature vector. Fig. 2 (right) presents the overall class distribution of the CICIDS2017 dataset.
The dataset exhibits strong class imbalance due to the predominance of DoS and PortScan traffic, reflecting
real-world intrusion distributions.

For both datasets, we partitioned the samples into training and testing subsets with an 8:2 ratio. The
training portion was further distributed across local nodes according to each data distribution scenario (i.e.,
IID, non-IID, and skewed), ensuring consistency with the evaluation settings described in Section 5.1. This
setup allows for a controlled and fair comparison across all distributed learning frameworks.
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5.2 Implementation Details

To ensure fairness across all frameworks, we explicitly describe the implementation setup and assump-
tions adopted in this study.

Data Distribution Scenarios. To comprehensively evaluate all distributed learning frameworks, we
consider three data distribution scenarios: IID, non-IID, and skewed. In the IID scenario, we assume an
idealized data environment where each local node holds an equal-sized subset with a class distribution
identical to that of the global training set. This setting reflects a balanced and fully homogeneous data
partition across nodes, ensuring that all participants contribute equally to the global model aggregation
process. To simulate non-1IID client datasets, we partition the training set such that both the data volume and
class composition differ across local nodes. Specifically, we draw per-node class proportions from a Dirichlet
distribution to induce statistical heterogeneity. The concentration parameter is fixed at « = 0.3 to enforce
strong class imbalance across local nodes in all experiments. This setup captures realistic distributed learning
environments where clients possess uneven and biased data distributions. Finally, the skewed scenario
represents an extreme case of heterogeneity. In this configuration, each local node is assigned data belonging
to a single class only, producing a highly imbalanced partition that tests the consistency of each framework
under the most challenging distributional conditions.

Model Configurations and Hyperparameter Settings. For consistent evaluation across all frameworks,
we adopt a unified model architecture as the predictive model. The model first projects each input record
into a 128-dimensional space through a linear layer, followed by two sequential 1D convolutional layers
with 128 and 64 filters, respectively. A max-pooling operation reduces the temporal dimension, after which
the output is flattened and processed through two fully connected layers of sizes 128 and 64. The final
fully connected layer produces logits over the target classes. Nonlinear transformations use Rectified Linear
Unit (ReLU) activations throughout the network. In SL and SFL configurations, the cut layer is placed
immediately after the first convolutional block. This design delegates the projection and first convolutional
layer to the local front end, while subsequent convolutional and fully connected layers are processed at the
server side. This placement balances the computational burden between local nodes and the server while
retaining sufficient feature expressiveness in the smashed activations. All frameworks share a unified set of
hyperparameters to ensure consistent training conditions and fair comparison. Each experiment runs for 100
global rounds and a batch size of 256. The learning rate is fixed at 1 x 107> across all models, and the number
of local nodes is set to eight. These parameters are applied uniformly to maintain identical optimization
dynamics across frameworks. Framework-specific parameters are configured as follows. In FL, each local
node performs ten local epochs per round before the global aggregation step. In SL, synchronization between
local and server-side components occurs once per round after each local epoch. In SFL, the front-end models
are aggregated with the server every five rounds, while maintaining continuous back-end updates. In GL,
each node executes R = 3 gossip exchanges per round, enabling decentralized parameter mixing under the
same total number of local computations. These configurations preserve comparability while capturing the
operational characteristics of each framework.

Assumptions. The central aggregator (server) is regarded as benign and trusted, coordinating model
aggregation and back-end updates. Local nodes are assumed to behave honestly without adversarial collu-
sion, tampering, or data poisoning. In practical deployment settings, edge nodes are generally provisioned
and maintained by a mobile network operator (i.e., service provider), which provides a reasonable degree
of operational trust among participating entities. The consideration of malicious or Byzantine behaviors
is beyond the scope of this study, as the focus here is on evaluating learning performance and efficiency
under cooperative conditions. With respect to network conditions in the distributed learning process, we
consider a more practical setting where the network state may occasionally lose stability. Instead of assuming
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perfectly synchronous participation, we introduce controlled node churn to emulate realistic fluctuations
in connectivity. Specifically, in each global training round, 25% of the local nodes are randomly excluded
from participation, simulating temporary dropouts or unavailable connections. The remaining 75% of nodes
perform local updates and transmit their payloads to the server, after which the aggregation proceeds
based on the available contributions. This setup allows the evaluation to account for partial asynchrony and
dynamic participation, reflecting conditions that may arise in real distributed network environments.

5.3 Performance Evaluation

To evaluate the detection performance of distributed learning frameworks, we conduct experiments on
two network intrusion datasets.

5.3.1 Experimental Results on 5G-NIDD Dataset

Table 1 summarizes the detection performance of centralized and distributed learning frameworks
under three data distribution scenarios: IID, non-IID, and skewed. The comparison highlights how different
frameworks respond to variations in data heterogeneity while preserving detection accuracy. Note that we
set the number of local nodes equal to the number of attack classes, resulting in eight local nodes in the
experimental setup.

Table 1: Accuracy and per-class Fl-score comparison on the 5G-NIDD dataset

. . Normal Attack
Scenario Learning Accuracy
Benien HTTP ICMP SYN SYN Slowlori TCP UDP UDP
enig flood flood flood scan owloris scan flood scan

- Centralized 0.9812 09767 0.9973 10000 0.9997 0.9974 0.9946 0.9973 0.9764  0.9950

Federated 0.9743 0.9677 0.9964 1.0000 0.9997 0.9962 0.9933 0.9979 0.9679 0.9974
Split 0.9742 0.9679  0.9957 1.0000 0.9997 0.9962 0.9918 0.9978 0.9680 0.9974

1D Split-Fed  0.9761 0.9698 09966 0.9974 09993 0.9959 0.9936 0.9976 0.9704 0.9976
Gossip 0.9748 0.9681 0.9968 1.0000 0.9993 0.9972 0.9941 0.9979 0.9686 0.9962

Federated 0.9711 09643 0.9962 1.0000 0.9997 0.9963 0.9930 0.9979 0.9631 0.9974

Non-IID Split 0.9145 0.9227  0.9518 - 0.0200 0.9098 0.8888  0.9161  0.9057 0.9954
Split-Fed  0.9735 0.9667 0.9961 1.0000 0.9997 09972 0.9927 0.9975 0.9670 0.9968

Gossip 0.9618 0.9534 09952 1.0000 0.9993 0.9969 0.9908 0.9976  0.9503  0.9962

Federated 0.8433 0.9414 0.2617 1.0000 0.1835 0.9508 0.5408  0.1112  0.9458 0.9723

Skewed Split 0.4552 0.6634 - - - - - - 0.2367  0.1483
Split-Fed  0.9588 0.9506 0.9934 1.0000 0.9997 0.9971 0.9873 0.9972 0.9465 0.9960

Gossip 0.5977 0.7884  0.3270 - - 01718  0.4501 - 0.5256  0.1608

Under the IID scenario, all distributed frameworks achieve performance comparable to the centralized
baseline. Federated, Split, Split-Fed, and Gossip learning record accuracies above 0.974, with Split-Fed
slightly outperforming others at 0.9761. This result indicates that when data is evenly distributed, each
framework can effectively approximate the centralized upper bound. In the non-IID scenario, accuracy
differences become more pronounced. Federated and Split-Fed maintain high accuracy around 0.9711 and
0.9735, respectively, confirming their resilience to moderate heterogeneity. Gossip also sustains acceptable
performance at 0.9618, though slightly lower than federated variants. By contrast, Split learning exhibits
significant degradation to 0.9145, reflecting sensitivity to non-IID distribution due to its reliance on per-client
front ends without global synchronization. The skewed scenario presents the most challenging case, where
client data distributions are severely imbalanced. In this scenario, performance divergence is substantial.
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Split learning collapses to 0.4552 accuracy, indicating poor adaptability. Gossip partially mitigates this effect
but remains limited at 0.5977. Federated learning also struggles, dropping to 0.8433. In contrast, Split-
Fed demonstrates strong robustness, achieving 0.9588 accuracy, which is much closer to the centralized
reference. This suggests that combining split execution with federated aggregation provides better tolerance
against highly skewed data distribution. Overall, the results show that while all frameworks perform
well under IID conditions, resilience to non-IID and skewed distributions varies significantly. Split-Fed
consistently achieves accuracy closest to the centralized baseline across all scenarios. More detailed per-class
performance, including attack-specific detection rates, is provided in Table 1, complementing the aggregated
accuracy analysis.

5.3.2 Experimental Results on CICIDS2017 Dataset

Table 2 presents the evaluation results of distributed learning frameworks on the CICIDS2017 dataset
under both multi-class and binary classification settings. The experiments assess how each framework
maintains detection accuracy and stability under different data distributions. Three data distribution
scenarios—IID, non-IID, and skewed—are considered for the multi-class setting, whereas the skewed
configuration is omitted for binary classification, since applying extreme class imbalance to two categories
would not represent a realistic detection scenario. All results are averaged over ten independent runs, and
the corresponding standard deviations are reported.

Table 2: Accuracy and Fl-score comparison on the CICIDS2017 dataset

X . Multi-classification Binary classification
Scenario  Learning
Accuracy Fl-score Accuracy Fl-score

- Centralized 0.9886 + 0.001 0.7163 + 0.001 0.9884 + 0.0004 0.9816 + 0.0006
Federated 0.9812 + 0.0001 0.6579 + 0.0011 0.9847 + 0.0001 0.9758 + 0.0002
1D Split 0.9783 +£ 0.0014 0.5828 + 0.0047 0.9805 + 0.0003 0.9693 + 0.0006
Split-Fed 0.9856 + 0.0001 0.7088 + 0.0043 0.9856 + 0.0001 0.9772 + 0.0001
Gossip 0.9842 + 0.0002 0.6649 + 0.01 0.9841 + 0.0005 0.9748 + 0.0007
Federated 0.9748 + 0.0008 0.5427 £ 0.0116 0.9850 + 0.0005 0.9763 + 0.0007
Non-IID Split 0.9319 + 0.0012 0.4749 + 0.0057 0.9625 + 0.0012 0.9397 + 0.0018
Split-Fed 0.9760 + 0.001 0.6792 + 0.0055 0.9854 + 0.0002 0.9768 + 0.0003
Gossip 0.9473 £ 0.001 0.5516 + 0.0074 0.9688 + 0.001 0.9495 + 0.0014

Federated 0.8351 + 0.01 0.0766 + 0.0116 - -

Split 0.8157 + 0.0003 0.0926 + 0.0008 - -

Skewed .
Split-Fed 0.9090 + 0.0003 0.2482 + 0.0271 - -
Gossip 0.8143 + 0.0001  0.0906 + 0.001 - -

Under the IID condition, all distributed frameworks exhibit performance close to the centralized
baseline (0.9886 + 0.001 accuracy, 0.7163 + 0.001 Fl-score). Among distributed models, Split-Fed achieves
the best multi-class performance, reaching 0.9856 + 0.0001 accuracy and 0.7088 + 0.0043 Fl-score. Gossip
and Federated learning also maintain competitive accuracies above 0.981, with Gossip slightly outperforming
Federated in terms of Fl-score. In the binary classification setting, all frameworks achieve accuracy above
0.980 and Fl-scores exceeding 0.969, demonstrating that balanced data distributions allow all architectures
to converge effectively toward the centralized reference.
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In the non-IID scenario, where class proportions vary across local nodes, the performance gap
among frameworks becomes more pronounced. Split-Fed and Federated learning maintain high multi-class
accuracies of 0.9760 + 0.001 and 0.9748 + 0.0008, respectively, with Fl-scores above 0.54, indicating stable
convergence under moderate heterogeneity. Gossip learning achieves 0.9473 + 0.001 accuracy with slightly
lower F1, while Split learning experiences a substantial decline to 0.9319 + 0.0012 accuracy and 0.4749 +
0.0057 Fl-score. A similar trend is observed in the binary setting, where Split-Fed and Federated maintain
Fl-scores around 0.975, whereas Split drops to 0.9397, confirming its sensitivity to uneven data composition
across nodes.

In the skewed multi-class configuration, where each local node contains samples from only a single
dominant class, all methods experience substantial Fl-score degradation (e.g., Federated 0.0766, Split
0.0926). Nevertheless, Split-Fed demonstrates notable resilience, maintaining 0.9090 + 0.0003 accuracy and
the highest Fl-score of 0.2482 + 0.0271 among distributed frameworks. This result indicates that combining
split execution with federated aggregation can better tolerate extreme class skew compared to standalone
distributed or split configurations.

Overall, consistent with the observations from the 5G-NIDD experiments, all frameworks perform
comparably to the centralized baseline under IID conditions, while Split-Fed consistently achieves the
highest accuracy and F1-score under both non-IID and skewed distributions. These results confirm that Split-
Fed provides the best balance between detection performance and robustness in heterogeneous distributed
intrusion detection environments.

5.4 Comparison of Convergence Behaviors

To further analyze the optimization dynamics of different distributed learning frameworks, we examine
their convergence behaviors on both 5G-NIDD and CICIDS2017 datasets. This analysis provides comple-
mentary insights to the accuracy-based evaluations by revealing how each framework progresses during
training, stabilizes over time, and responds to varying levels of data heterogeneity. All convergence curves
are plotted using the models that achieved the best performance among ten independent runs.

Fig. 3 presents the convergence behaviors of the distributed learning frameworks on the 5G-NIDD
dataset across the three data distribution scenarios. These results complement the accuracy outcomes
reported in Table | by offering a dynamic perspective on optimization stability and training progression.
Under the IID scenario, all frameworks achieve rapid convergence during the initial training epochs.
Accuracy curves approach the centralized baseline almost immediately, and the loss curves remain low and
stable throughout training. This confirms that when client data is evenly distributed, FL, SL, SFL, and GL
exhibit comparable optimization dynamics and achieve performance levels close to the centralized reference.
In the non-IID scenario, divergence among frameworks becomes apparent. Federated learning and Split-
Fed maintain smooth and reliable convergence, consistent with their maximum accuracies observed, 0.9711
and 0.9735, respectively. Gossip learning also converges to a high accuracy level, although its trajectory
displays mild oscillations. By contrast, Split learning demonstrates pronounced instability, with highly
fluctuating loss values and stagnating accuracy at 0.9145. This instability highlights the structural limitations
of split execution without federated synchronization under heterogeneous data distributions. The skewed
scenario yields the most pronounced differences. Split-Fed achieves the highest accuracy among distributed
frameworks (0.9588), but its accuracy curve reveals stronger oscillations than those observed in the IID
and non-IID cases, reflecting the difficulty of training under highly imbalanced client data. Nonetheless, the
overall trend indicates consistent progression toward high accuracy. Federated learning shows slower and
noisier convergence, stabilizing at a lower level of 0.8433. Gossip learning suffers from persistent instability,
with accuracy fluctuating substantially and failing to approach the centralized baseline, converging at 0.5977.
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Split learning collapses almost entirely, as both loss and accuracy fail to stabilize, resulting in a peak
accuracy of only 0.4552. These convergence behaviors demonstrate that while all frameworks are capable
of stable learning under IID conditions, their robustness to data heterogeneity varies significantly. Split-Fed
consistently provides the most favorable trade-oft, delivering both high final accuracy and relatively stable
convergence across all scenarios, thereby validating its effectiveness as a hybrid approach that integrates split
execution with federated aggregation.
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Figure 3: Convergence behaviors of FL, SL, SFL, and GL on the 5G-NIDD dataset across (a) IID, (b) non-IID, and (c)
skewed scenarios

A similar trend is observed in the experiments conducted on the CICIDS2017 dataset. Fig. 4 shows
the convergence behaviors of FL, SL, SFL, and GL on the CICIDS2017 dataset across the three data
distribution scenarios in the multi-class classification setting. As with 5G-NIDD, these curves complement
the accuracy outcomes in Table 2 by revealing optimization stability over training. Under the IID condition,
all frameworks converge rapidly within the first few epochs. Accuracy quickly approaches the centralized
reference and remains near saturation, while loss stays low and stable throughout training. This indicates that,
under balanced data, all methods exhibit nearly identical optimization dynamics. In the non-IID scenario,
differences become clearer. Split-Fed and Federated show smooth trajectories with small oscillations and
maintain high accuracy, whereas Gossip also converges well but with slightly noisier curves. By contrast,
Split displays pronounced instability, where loss oscillates with large spikes and accuracy remains below the
other methods, reflecting its sensitivity to heterogeneous local class compositions. In the skewed multi-class
configuration, the impact of extreme imbalance becomes apparent. Split-Fed sustains the highest accuracy
with moderate oscillations, while federated learning plateaus at a lower yet relatively steady level. Gossip
exhibits visible fluctuations in both accuracy and loss, and Split shows the most severe instability, with
persistently high and volatile loss that prevents accuracy from improving further. Overall, the CICIDS2017
results align with those observed on 5G-NIDD. All frameworks behave similarly under IID partitions, but
their convergence behavior under heterogeneous and skewed distributions varies substantially. Across all
scenarios, Split-Fed achieves the most favorable balance between accuracy and convergence stability.
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5.5 Computation and Communication Costs

A critical dimension of distributed intrusion detection is the computational burden placed on local
nodes, which are often resource-constrained compared to centralized servers. To quantify this aspect, we
analyze the portion of the detection model that each framework delegates to the local side.

In federated learning (FL) and gossip learning (GL), each local node trains the entire detection model.
This entails handling approximately 6.48 MFLOPs per sample and maintaining 128 k parameters, corre-
sponding to the full computational footprint of the model. As such, these frameworks demand significant
processing and memory resources from each client, which may challenge deployment in environments with
constrained devices. In contrast, split learning (SL) and split-federated learning (SFL) delegate only the
front-end of the model to the local side, while the back-end remains centralized. The front-end comprises
the projection layer and the first convolutional block, amounting to 0.246 MFLOPs and 12.5 k parameters.
This corresponds to roughly 3.8% of the total FLOPs and 9.8% of the parameters relative to the full model.
Consequently, the local workload is substantially reduced, allowing lightweight devices to participate in
distributed training without incurring prohibitive costs.

Communication cost is quantified in terms of payloads transmitted between clients and the server (or
peers in gossip-based training). To establish a consistent basis, we first present the common assumptions
used in the calculation. The input dimension is fixed at 91 (considering the 5G-NIDD dataset), and the
total number of parameters in the full detection model is approximately 119,625, corresponding to 0.48 MB
assuming 32-bit floating-point representation. The front end, consisting of the projection layer and the
first convolutional layer, contains 12,288 parameters (#0.049 MB). The cut layer for SL and SFL is placed
immediately after the first convolutional block. At this point, the activation tensor for a batch of size B = 256
has the shape (B,128,126), resulting in 16,128 elements per sample. This corresponds to 64,512 bytes per
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sample for the forward activations, with an equivalent size for the backward gradients. Consequently, each
mini-batch transmission across the cut layer requires 2 x B x 64, 512 bytes per client.

Based on these assumptions, Table 3 summarizes the per-round communication requirements with
eight participating clients. In FL, each client uploads and downloads the entire model per round, which
results in ~1.0 MB per client or 8.0 MB in total. GL requires peer-to-peer exchanges of the model parameters.
With five exchanges per client per round, the total cost amounts to 2.5 MB per client or 20 MB across the
system. By contrast, SL introduces significantly higher overhead. Each batch requires uploading activations
and downloading gradients for the cut layer, leading to 32.5 MB per client and 260 MB in total per round. SFL
incurs a nearly identical activation-gradient cost, but with an additional overhead from uploading client-
specific front ends for aggregation and broadcasting the aggregated model (~0.1 MB per client), resulting in
32.6 MB per client or ~260.4 MB across all eight nodes. Compared with FL and GL, these values are orders
of magnitude higher, representing a significant bandwidth bottleneck inherent in split-based frameworks.
Overall, the analysis highlights a fundamental trade-off. While SL and SFL reduce local computational
demands by oftloading back-end training to the server, they require substantially higher communication
bandwidth. FL and GL present the opposite characteristics, achieving lightweight communication at the cost
of higher local computation. Note that the preceding calculations are based on the 5G-NIDD dataset, where
each input sample comprises 91 features, but the same formulation can be linearly extended to other network
intrusion datasets such as CICIDS2017 by scaling with respect to the feature-space dimensionality.

Table 3: Communication overhead per round (batch size = 256, 8 clients)

Framework Per-client volume Total per round (8 clients)
Federated learning 1.0 MB 8.0 MB
Split learning 32.5 MB 260.0 MB
Split-Fed learning 32.6 MB 260.4 MB
Gossip learning 2.5MB 20.0 MB

6 Discussion

The comparative experiments across 5G-NIDD and CICIDS2017 datasets collectively reveal that the
convergence stability and communication—-computation trade-offs of distributed frameworks are closely tied
to data heterogeneity and structural partitioning. Split-Fed learning (SFL) consistently demonstrated the
most favorable balance between model performance and stability, maintaining high accuracy even under
skewed data while significantly reducing local computational demands. This result validates the effectiveness
of hybrid training that integrates split execution with federated aggregation. In contrast, Split learning (SL)
suffered from training instability in heterogeneous settings due to the absence of global synchronization,
while Gossip learning (GL) exhibited fluctuating convergence, reflecting its sensitivity to inconsistent peer
interactions. Federated learning (FL) achieved stable optimization but incurred higher local computation,
making it less suitable for lightweight edge devices.

Among federated learning variants, Fed Avg was adopted as the representative baseline in this study, as
it remains the most widely used aggregation strategy and serves as the canonical reference for evaluating
distributed frameworks. To ensure an unbiased comparison, additional validation was conducted using
FedProx [37] and SCAFFOLD [38] on the 5G-NIDD dataset under the imbalanced data condition. As
illustrated in Fig. 5, all three methods exhibit similar convergence patterns, maintaining accuracies above 0.9
after the early epochs. FedProx exhibits a convergence trend highly similar to that of FedAvg, reflecting stable
optimization behavior under heterogeneous data. SCAFFOLD demonstrates slightly higher fluctuations



20 Comput Mater Contin. 2026;87(1):8

in the early stage, likely due to its control variate adjustment under limited local updates, but ultimately
converges to a comparable accuracy level. These results confirm that the learning dynamics of federated
optimization remain consistent across different variants and justify the use of FedAvg as a representative
benchmark in the comparative evaluation of distributed learning frameworks.
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Figure 5: Convergence comparison of federated learning variants (FedAvg, FedProx, and SCAFFOLD) on the
5G-NIDD dataset under the imbalanced data scenario

From a deployment perspective, these findings suggest that framework selection should depend on
the operational context. In environments with relatively homogeneous data and adequate device capability,
FL or GL can provide efficient solutions with limited communication overhead. However, in scenarios
characterized by heterogeneous and resource-constrained nodes—such as Open RAN and large-scale IoT
infrastructures—SFL offers a more practical trade-off by offloading the computational burden to the server
while preserving distributed learning benefits.

Despite the observed advantages, the evaluation also highlights an inherent limitation of split-based
frameworks: their substantial communication payloads caused by transmitting intermediate activations and
gradients. Although such costs may be mitigated through compression or asynchronous updates, further
research is required to explore scalable communication-efficient variants. Moreover, dynamic network
conditions and node intermittency—factors partially modeled in this study through randomized node
participation—remain open challenges for real-world deployment.

Limitations and Future Work. This study focuses on evaluating the fundamental learning dynamics
and resource trade-offs among distributed training paradigms under benign network and participant
assumptions. Although we modeled occasional node dropout to reflect imperfect connectivity, we did not
consider malicious or adversarial behaviors. In real-world open network environments, such as Open RAN
or federated IoT deployments, adversarial nodes or poisoning attacks may compromise model integrity.
Incorporating robust aggregation mechanisms, trust-aware updates, and adversarial-resilient defenses thus
represents a crucial extension of this work.

Furthermore, privacy-preserving techniques such as differential privacy and homomorphic encryption
were beyond the current experimental scope. Integrating these mechanisms while maintaining detection
accuracy and convergence efficiency poses an important research direction. Future extensions may also
explore adaptive split placement and compression-aware communication schemes to improve scalability
under bandwidth-constrained or heterogeneous conditions.
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7 Conclusion

This work presented a unified evaluation of four distributed learning frameworks for AI-driven
intrusion detection under identical experimental conditions. Results show that all frameworks converge
reliably under IID data, but their resilience diverges as heterogeneity increases. Split learning, while reducing
device workload, suffers from instability as client-specific front ends diverge under heterogeneous data.
Split-federated learning demonstrates the most consistent accuracy across non-IID and skewed scenarios,
balancing reduced local computation with federated aggregation. Gossip learning achieves decentralized
training without a server but exhibits oscillations under severe skew. Federated learning remains a strong
baseline, offering stable performance with moderate coordination costs. System-level analysis highlights the
trade-off between computation and communication. Split and split-federated learning shift computation to
the server but incur high bandwidth from activation-gradient exchange, while federated and gossip learning
impose heavier local computation but require much less communication. Overall, Split-Fed emerges as the
most effective compromise, while FL and GL suit bandwidth-limited but capable devices. These findings
provide guidance for selecting frameworks in distributed networks and establish a foundation for future
work on efficiency, robustness, and privacy in AI-NIDS.

Future work will strengthen the practical value of distributed AI-NIDS. Promising directions include
activation compression and quantization for split variants, topology and token control for gossip exchanges,
adaptive participation and cut-layer placement under changing bandwidth. Robustness to adversarial
behavior and privacy leakage from exchanged signals also warrants deeper study in realistic 5G and Open
RAN deployments.
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