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ABSTRACT: As a cornerstone for applications such as autonomous driving, 3D urban perception is a burgeoning
field of study. Enhancing the performance and robustness of these perception systems is crucial for ensuring the
safety of next-generation autonomous vehicles. In this work, we introduce a novel neural scene representation
called Street Detection Gaussians (SDGs), which redefines urban 3D perception through an integrated architecture
unifying reconstruction and detection. At its core lies the dynamic Gaussian representation, where time-conditioned
parameterization enables simultaneous modeling of static environments and dynamic objects through physically
constrained Gaussian evolution. The framework’s radar-enhanced perception module learns cross-modal correlations
between sparse radar data and dense visual features, resulting in a 22% reduction in occlusion errors compared to vision-
only systems. A breakthrough differentiable rendering pipeline back-propagates semantic detection losses throughout
the entire 3D reconstruction process, enabling the optimization of both geometric and semantic fidelity. Evaluated
on the Waymo Open Dataset and the KITTI Dataset, the system achieves real-time performance (135 Frames Per
Second (FPS)), photorealistic quality (Peak Signal-to-Noise Ratio (PSNR) 34.9 dB), and state-of-the-art detection
accuracy (78.1% Mean Average Precision (mAP)), demonstrating a 3.8× end-to-end improvement over existing hybrid
approaches while enabling seamless integration with autonomous driving stacks.

KEYWORDS: Radar-vision fusion; differentiable rendering; autonomous driving perception; 3D reconstruction;
occlusion robustness

1 Introduction
High-fidelity 3D modeling is increasingly being applied to urban scenarios, such as traffic monitoring.

While Gaussian Splatting (GS) and Neural Radiance Field(NeRF) based models [1] achieve impressive
reconstruction and rendering quality, they do not provide real-time traffic detection and recognition
capabilities. Additionally, most existing research primarily focuses on static scenes. Although extensions
such as Block-NeRF [2] and GS-based networks [3] aim to address large-scale streets by dividing them into
subscenes, they still struggle to achieve real-time monitoring of dynamic objects.

Urban scene reconstruction faces three main challenges: (1) Speed–accuracy tradeoff: Neural Radiance
Field (NeRF, [1]) requires hours per scene, while real-time methods (e.g., 3D Gaussian Splatting (3DGS) [4])
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lack semantic detection; (2) Occlusion handling: Moving objects frequently block critical traffic elements;
(3) Scalability: Large-scale scenes (>1 km2) require efficient memory usage.

Dynamic urban perception requires not only real-time reconstruction and rendering but also reliable
object detection and robustness under occlusion. However, street-scale Gaussian methods such as Street
Gaussians and 4D Gaussian Splatting largely optimize for view synthesis, lacking detection-aware training
and cross-sensor fusion. To close this gap, we propose Street Detection Gaussian (SDG), which integrates
detection supervision into the Gaussian pipeline, fuses millimeter-wave (mmWave) radar for depth reliabil-
ity, and models movers with time-conditioned Gaussians while keeping static backgrounds in 3DGS. SDG
further leverages large multi-modal models [5] for frame-level semantics, yielding a perception-oriented,
real-time solution for dynamic urban scenes.

Compared with existing Gaussian- and NeRF-based approaches, Street Detection Gaussians (SDG)
introduces several fundamental differences. Unlike traditional 3DGS and Street Gaussians that rely solely
on image features for static reconstruction, SDG incorporates object-level semantics from Grounded-SAM
to guide Gaussian placement and density. In contrast to dynamic NeRF variants such as D-NeRF and
4DGS, SDG performs confidence-aware radar-camera fusion to enhance geometric accuracy and temporal
stability. Furthermore, SDG employs detection-aware pruning and tile-based rendering to sustain real-time
performance on city-scale scenes. Our key contributions are:

1. Hybrid static-dynamic Gaussian representation: Models static backgrounds with 3DGS and dynamic
objects with time-dependent parameters, achieving 135 FPS while improving mAP@0.5 by 15.8%,
addressing the speed-semantic fidelity trade-off.

2. Radar-guided depth refinement: Fuses sparse radar with monocular depth (MiDaS [6]), enhancing
depth estimation and reducing occlusion errors by 22%.

3. Detection-aware splatting optimization: Jointly optimizes Gaussian parameters and detection to prune
redundant Gaussians, reducing memory use while maintaining quality for large-scale (>1 km2) scenes.

These advances enable photorealistic, interactive urban traffic scene synthesis with significantly reduced
complexity—fromO(N3) in NeRF toO(N)—while maintaining high fidelity. On Waymo dataset [7] KITTI
and KITTI-360 datasets [8], other benchmarks, SDG outperforms state-of-the-art methods in rendering
speed, adaptability, and detection accuracy, demonstrating its potential for large-scale autonomous driving
and urban perception applications.

2 Related Work

2.1 Semantic Perception for Street-Scale Scene Understanding
In recent years, there has been continuous innovation in modeling and rendering dynamic urban envi-

ronments, showing great potential in domains such as computer vision and computer graphics, particularly
for traffic applications. This section reviews key developments in neural scene reconstruction, point cloud-
based modeling, scalable hybrid approaches, and radar-vision fusion, highlighting their contributions and
limitations in large-scale, real-world applications.

Neural scene representation techniques have revolutionized 3D modeling by leveraging implicit
volumetric representations. Neural Radiance Field (NeRF, [1]) introduced a framework for synthesizing
photorealistic views of static scenes, and extensions such as Block-NeRF and NeRF++ [9] improved scalabil-
ity by partitioning scenes or modeling unbounded depth. However, these methods struggle with temporal
dynamics and are computationally prohibitive for real-time use. Dynamic extensions like D-NeRF [10] and
Neural Scene Flow Field(NSFF [11]) incorporate motion under steady background assumptions, while Multi-
Camera Neural Radiance Fields(MC-NeRF [12]) adapts NeRF for multi-camera outdoor setups to address
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pose inaccuracies and color inconsistencies. Although effective, they still require long training times and
incur high computational costs, limiting applicability to large-scale dynamic environments.

Point clouds provide efficient and interpretable 3D representations. Methods such as PointNet [13]
and PointNet++ [14] pioneered learning-based segmentation and classification from point-based input, but
remain primarily static and lack temporal modeling. More recent approaches like 3DGS employ Gaussian
representations for photorealistic rendering with high computational efficiency, while dynamic variants [15]
extend this concept to motion modeling with local rigidity constraints. Although promising for long-term
tracking and dense reconstruction, such approaches remain underexplored in large-scale urban contexts.

Scaling scene representations to large, dynamic environments poses additional challenges. Hybrid
solutions such as K-Planes [16] factorize geometry into learnable spatial and temporal planes for improved
interpretability and memory efficiency, and StreetSurf [17] introduces multi-shell neural fields for near-
and far-view modeling at the urban scale. While techniques like hash grids and cuboid warping enhance
rendering quality and speed, integration with dynamic object tracking and sparse sensor data, such as radar,
remains largely unresolved.

Radar sensing is increasingly leveraged for robust perception under occlusion and adverse weather.
Traditional methods rely on handcrafted features, while newer systems fuse radar and vision for improved
object tracking and scene understanding [18]. Despite progress, most focus on specific perception tasks
rather than full-scene reconstruction. Attempts to integrate sparse radar data into neural representations
for automatic annotation and dynamic reconstruction show potential, but real-time performance at the
city scale has yet to be achieved. RCMixer [19] introduces a vision-guided end-to-end radar-camera fusion
network, enhancing multi-modal feature alignment for object detection. A dual-view framework combining
Perspective View and Bird’s Eye View representations [20] enables complementary fusion across spatial
domains, improving detection in adverse conditions. Similarly, Enhanced Radar Perception (ERP) [21]
leverages multi-task learning to infer radar point height and refine fusion features, while the 2024 survey
by Wei et al. [22] summarizes deep-learning-based radar-vision fusion strategies, highlighting that most
existing works remain detection-focused and lack full-scene reconstruction. In contrast, our SDG framework
integrates radar priors directly into 3D Gaussian scene representations, bridging real-time reconstruction,
semantic segmentation, and multi-sensor consistency within a unified architecture.

To further clarify the limitations of existing methods and highlight the novelty of our work, Table 1
systematically compares representative approaches with our SDG across key performance metrics.

Table 1: Comparison of key indicators between existing scene modeling methods and our SDG

Method
Real-time

performance
(FPS)

Dynamic object
handling Occlusion robustness

Multi-modal
fusion

(Radar/Vision)
NeRF [1] 0.002 × Weak (static scene assumption) Vision-only

3DGS [4] 63 × (no semantic
detection) Weak Vision-only

Block-NeRF [2] 0.005 × Weak (occlusion unsolved) Vision-only
MARS [23] 0.030 ✓ (basic tracking) Moderate (no radar) Vision-only

RCMixer [19] 15 ✓ (detection only) Moderate Radar-vision
SDG (Ours) 135 ✓ Strong Radar-vision

Note: FPS values are tested on the Waymo dataset (1066 × 1600 resolution). Occlusion robustness is measured by
“detection error rate in occluded regions”. Multi-modal fusion is determined by “whether non-visual sensors (e.g.,
radar) are integrated”.
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As illustrated in Table 1, three core gaps exist in current dynamic urban scene modeling methods:
Trade-off between real-time performance and dynamic handling: 3DGS achieves real-time rendering at
63 FPS but lacks dynamic object detection capabilities; Modular and Realistic Simulator(MARS) supports
basic dynamic tracking, yet its reliance on complex volumetric modeling limits the frame rate to only 0.030
FPS—far below the real-time requirements of autonomous driving. Insufficient occlusion robustness: Static
methods like NeRF and Block-NeRF cannot handle dynamic occlusions due to their static scene assumptions;
vision-only methods (3DGS, MARS) suffer from excessively large detection errors in occluded areas. Lack
of multi-modal fusion: All compared methods rely solely on visual data (images/LiDAR) and fail to leverage
radar’s depth stability in adverse conditions, leading to significant depth estimation errors under varying
illumination or occlusion.

Traffic scene reconstruction remains challenging due to the complex interplay between static infrastruc-
ture and dynamic objects. Traditional multi-view geometry and structure-from-motion methods struggle
with temporal inconsistency, while neural approaches such as MARS [23] and StreetSurf incorporate motion
disentanglement but still face trade-offs between accuracy and efficiency.

Building upon these advances, our work extends 3DGS toward real-time, radar-guided modeling
of dynamic urban environments. By integrating tracked poses, sparse radar depth, and detection-aware
optimization, SDGs achieve efficient, high-fidelity reconstruction and semantic perception simultane-
ously. In contrast to Street Gaussians, which focus on static street rendering, and 4D Gaussian Splatting,
which models temporal dynamics for view synthesis, our framework uniquely unifies time-conditioned
Gaussians, radar-guided refinement, and detection supervision. This design transforms Gaussian splatting
from a rendering-oriented paradigm into a perception-centered framework for real-time urban scene
understanding.

2.2 Geometric–Semantic Inference for 3D Scene Understanding
Scenario-oriented comparison. We now relate classical geometry, geo-semantic inference, and neural

fields to four canonical outdoor layouts—curved corridors, alleyways, winding pathways, and deck/platform
scenes—highlighting assumptions, strengths, weaknesses, and suitability, with citations to representative
algorithms in each category. Structure-from-Motion (SfM)/Multi-View Stereo (MVS) and factor-graph
Simultaneous Localization and Mapping (SLAM) reconstruct geometry from calibrated views, often regu-
larized by piecewise-planar or layout priors such as Manhattan/Atlanta worlds [24]. Volumetric Truncated
Signed Distance Function (TSDF)/voxel or surfel fusion improves closure and scale consistency for dense
mapping [25]. These pipelines are interpretable and controllable, with clear error sources, but can be
sensitive to scene assumptions (orthogonality/planarity), struggle with dynamics/occlusions, and may incur
memory/time costs at the urban scale.

Semantic cues are coupled with geometry via Conditional Random Field(CRF)/Markov Random
Field(MRF), Bayesian updates, or graph optimization to enforce layout/object consistency (ground–wall–
opening; lane–curb; facade–aperture) across space and time [26]. This family is especially effective when
functional structure is clear, or appearance is weak/variable, reducing drift and ambiguity. Limitations
include dependence on annotation/generalization and the need for robust conflict resolution when semantics
and geometry disagree.

NeRF and 3D Gaussian Splatting (3DGS) provide continuous or Gaussian field representations for
photorealistic rendering; their dynamic and large-scale variants (incl. 4D formulations) improve temporal
modeling and scalability [1,2,4]. However, many works remain view-synthesis-centric, with less integrated
supervision for detection/segmentation, and may be brittle under heavy occlusion, adverse weather, or
depth instability.
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Our SDG-based framework complements the above by routing detection-aware losses through the
reconstruction pathway and explicitly fusing mmWave radar with vision, which improves depth/occlusion
robustness while unifying reconstruction, segmentation, and detection under real-time constraints. This
design targets dynamic street scenes where purely visual neural reconstructions or purely geometric pipelines
often degrade.

Curved corridors: spline/centerline smoothness and relaxed Manhattan → Atlanta priors stabilize
normals and boundaries in non-orthogonal segments [27,28]; semantic layout (wall/floor/doorway) reduces
ambiguity in weak textures. Alleyways: strong perspective and facade–ground decomposition help, with
CRF/MRF encouraging facade continuity and curb/step priors; narrow spaces and moving pedestrians can
violate static assumptions [29]. Winding pathways: clothoid/spline centerline priors maintain long-range
consistency [30,31]; slope changes and frequent occlusion challenge vision-only depth, where radar/LiDAR
constraints reduce drift. Deck/platform scenes: multi-plane and guardrail/boundary-line priors converge
quickly for repetitive structures [32,33]; specular surfaces/repetitive textures may confuse matching, calling
for semantics or multimodal cues.

These comparisons motivate the SDG design choices in Section 3, where we combine time-conditioned
Gaussians, radar-guided refinement, and detection-aware supervision to address dynamics, occlusions, and
weak textures across the above scenarios.

3 Street Detection Gaussians Based Real-Time 3D Scene Representation
In this section, we are going to present our framework that integrates 3DGS for static scene reconstruc-

tion, and object detection and segmentation using Grounded Segment Anything (Grounded-SAM, [34,35]).
This combined approach reconstructs urban environments and detects dynamic objects using only image-
based inputs from the Waymo in real-time.

To address the computational inefficiencies and limited real-time capabilities of the previous
approaches, we introduce SDG, a novel network designed to efficiently reconstruct and render dynamic
urban environments while detecting traffic participants with basic recognition capabilities. This design
bridges the gap between existing static reconstruction methods, such as NeRF, and dynamic detection
challenges, by combining 3DGS for efficient representation with Grounded-SAM for accurate dynamic
segmentation, as depicted in Fig. 1.

This framework efficiently integrates scene reconstruction and object detection into a unified pipeline
suitable for real-time applications in urban environments. The notation used throughout the paper is
summarized in Table 2. A schematic of the approach is provided in Fig. 2, and the algorithm proceeds
as follows.

1. Multimodal Data Input and Preprocessing: Acquire raw data from cameras, LiDAR, and radar. Perform
spatiotemporal alignment and convert the data into a unified format, stored as D = {Iimg, Plidar , Rtext}.

2. Static-Dynamic Dual Gaussian Representation
(a) Static Gaussian Modeling: Segment static regions, initialize 3D Gaussians via K-means++, and

optimize by minimizing the pixel loss Lrgb through gradient descent.
(b) Dynamic Gaussian Modeling: Detect dynamic objects, initialize 3D Gaussians, and update them

with temporal tracking using optical flow and Kalman filtering.
3. Radar Guidance Fusion and Semantic Detection: Extract radar features, fuse them with the data

represented by Gaussians, and use a pre-trained model to identify entity relationships and extract
contextual information.
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4. Semantic-Aware Optimization and Real-Time Rendering: Introduce the semantic loss Lsem for joint
optimization with Lrgb, eliminate noise with an adaptive algorithm, and perform real-time rendering
using a differentiable renderer and GPU parallel computing.

Text Prompt

“ A photo of driving scene.”

Reference Images

Reference Depth

Image Backbone

Text Backbone
Text lmage Alignment + Grounded-SAM-SD

Background Model and Object Model

Dataset Resolution Key features Purpose
Waymo High Multi-view, dynamic objects Depth and dynamic tracking
KITTI Medium Sparse, static and dynamic objects Benchmarking accuracy

KITTI-360 Medium Urban-scale, 360-degree view Full-scale scene testing

Figure 1: (Top) Overview of the proposed Gaussian reconstruction and detection framework. The structure integrates
3DGS for static scene reconstruction and uses Grounded-SAM for object detection and segmentation, enabling real-
time modeling of dynamic urban environments. (Bottom) Summary of datasets used in this study

Table 2: Notations and symbols for equations

Notation Meaning
μi 3D position of the i-th static Gaussian, μi ∈ R3

Lre g Frobenius regularization loss (controlling Gaussian spread to avoid overfitting)
Ft Set of time-dependent 3D Gaussians for dynamic objects (e.g., vehicles, pedestrians)

at time t
μ j(t) 3D position of the j-th dynamic Gaussian at time t, μ j(t) ∈ R3

dl id ar/dLi DAR Ground truth depth value collected by LiDAR sensor
λsem Weight coefficient of semantic loss (determined as 1.2 via Bayesian optimization)

L(mask)
sem Semantic mask loss (enforcing pixel-level alignment between Grounded-SAM

masks and Gaussians)

(Continued)
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Table 2 (continued)

Notation Meaning

M(p)
S AM Semantic mask value at pixel p generated by Grounded-SAM (applying hard

constraints on object boundaries)
N (p∣x j ,∑ j) Gaussian distribution at pixel p (mean = x j, covariance matrix = ∑ j)

p(G , M) Joint probability of scene representation (G) and object detection (M)
p(M∣G) Conditional probability of object detection (M) given scene representation (G)

G(q; μi ,∑i) Gaussian kernel at 2D coordinate q (center = μi , covariance matrix = ∑i)
wi(q) Normalized weight of the i-th Gaussian at 2D coordinate q (sum of weights = 1)
ϕi(I) Feature map of original image I extracted from the i-th layer of pre-trained network
ϕi(K) Feature map of reconstructed image K extracted from the i-th layer of pre-trained

network
∇i Gradient-related parameter of the i-th Gaussian (ensuring spatial regularity in

regularization)

Figure 2: Schematic diagram of the SDG framework

3.1 Static Background Representation and Reconstruction
To achieve efficient and high-fidelity environmental reconstruction, static background elements, such

as roads and buildings, are modeled using a set of 3D Gaussian distribution, where each Gaussian is
parameterized as follows:

B = {(μi , Σ i , Ii)}N
i=1 (1)

where μi ∈ R3 represents the 3D position of Gaussian i, Σ i ∈ R3×3 defines the covariance matrix, modeling
spatial uncertainty, and Ii ∈ R denotes the intensity (appearance) of the Gaussian.

The depth D(u, v) and radiance R(u, v) at each pixel (u, v) are estimated through multi-view stereo
reconstruction by aggregating contributions from all 3D Gaussians projected onto the image plane. Each
Gaussian is parameterized by a mean μn and a covariance matrix Σn , which jointly determine its influence
on nearby pixels via a spatial Gaussian kernel.
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Specifically, D(u, v) represents the expected depth at pixel (u, v), computed as a Gaussian-weighted
average over the individual depths zn of each component. Similarly, R(u, v) represents the radiance (or inten-
sity), aggregated from the per-Gaussian intensity values In using the same weighting. This approach enables
smooth and differentiable rendering by softly blending the contributions of overlapping 3D Gaussians.

Our implementation follows the differentiable splatting mechanism described by Kerbl et al. [4], which
supports real-time rendering while maintaining photometric and geometric consistency across views.

To further enhance the reconstruction efficiency, we apply a Frobenius-norm regularization term to
control the Gaussian spread and prevent overfitting:

Lreg =
N
∑
i=1
∥Σ i∥2

F (2)

The regularization loss Lreg = ∑N
i=1 ∥Σ i∥2

F constrains the spread of each Gaussian by penalizing the
Frobenius norm of its covariance matrix Σ i , where ∥Σ i∥F =

√
∑k , l σ 2

k l measures the spatial dispersion.
This regularization encourages compact Gaussians, thereby improving static scene fidelity and maintaining
computational efficiency for real-time rendering.

3.2 Dynamic Object Detection and Segmentation
Dynamic objects, such as vehicles and pedestrians, are detected using Grounded-SAM. The process

begins with input from the reconstructed depth maps D and radiance fields R. The steps are as follows:

1. Depth-Based Proposals: Object proposals are generated by clustering regions in D where depth
gradients exceed a threshold [36]. This step is important for segmenting regions of the scene that exhibit
noticeable changes in depth, as these typically correspond to objects of interest, such as vehicles or
pedestrians. Depth-gradient thresholding focuses on the most prominent structures in the scene. Here
Pi represents the proposed regions, δ is the gradient threshold, and∇D is computed using Sobel filtering,
as detailed in [37].

2. Grounded-SAM Detection: The radiance field R and object proposals P are passed to Grounded-SAM
for object detection and segmentation. This method utilizes a text-driven approach to detect and segment
objects based on the object proposals, generating bounding boxesB and segmentation masksM for each
detected object. This step helps to localize and segment moving objects, which is crucial for subsequent
tracking. The detection and segmentation process follows the framework of Grounded-SAM as described
in [34,35].

3. Depth Association: Detected objects are associated with their 3D positions using the depth map D.
For each object j, we estimate its spatial centroid μ j by minimizing the difference between its projected
position and local depth values. This depth-guided association improves localization accuracy and
provides contextual alignment for downstream tracking [38].

4. Monocular Depth Refinement: Depth is further refined using a monocular depth model [6] such as
MiDaS. The initial depth estimation can often be imprecise due to the complexity of the scene or sensor
limitations. By using a monocular depth model, we improve the accuracy of the depth information,
which is crucial for better object tracking and segmentation in dynamic urban environments. Refining
the depth estimates with monocular cues helps to align the 3D models more accurately with the actual
scene, especially in cases where stereo or LiDAR data may be sparse or noisy.
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3.3 Dynamic Object Representation and Tracking
To model and track moving objects within the urban environment, we represent dynamic entities using

time-dependent 3D Gaussian distributions. Each detected object is parameterized as follows:

Ft = {(μ j(t),∑
j
(t), I j(t))}M

j=1 (3)

where μ j(t) ∈ R3 represents the 3D position of the object j at time t, ∑ j(t) ∈ R3×3 defines the uncertainty
of the shape of the covariance matrix modeling the object, I j(t) ∈ R denotes the intensity (appearance) of
object j, and M is the total number of dynamic objects detected.

To track dynamic objects across frames, we adopt a feature-based optical flow method combined with
Kalman filtering. Specifically, we estimate the displacement vector Fj(t, t + 1) ∈ R3 using optical flow, and
then apply Kalman filtering to smooth the predicted trajectories and suppress noise, yielding the refined
motion estimate u j(t + 1).

We integrate depth-based association to enhance the temporal consistency between frames. For each
object j at time t, we calculate a match cost with the candidates at t+1 based on the spatial displacement
between the centroids and the covariance differences. A weighting factor λ balances these two terms, enabling
a robust association of dynamic objects across frames.

To manage occlusions in dense traffic environments, we implement an adaptive re-initialization strategy.
The predicted position μpred

j (t+1) of an occluded object is calculated as a weighted combination of its last
reliable observation μprev

j (t) and its current estimate μ j(t), using a confidence factor α to balance temporal
consistency. If an object remains undetected for more than Nframes, it is removed from the tracking pool.

To ensure smooth object trajectories over time, we introduce a temporal regularization loss that
penalizes inconsistent motion estimates between consecutive frames. Specifically, for each object j, the
predicted position μ j(t + 1) at time t + 1 is encouraged to follow the expected displacement Fj(t, t + 1)
from the previous position μ j(t). The discrepancy between the predicted and expected position changes
is measured and accumulated over the entire sequence length T. This regularization discourages abrupt
deviations in the trajectory and promotes temporal coherence, which is particularly important for robust
tracking in dynamic urban environments.

3.4 Semantic-Aware Optimization of Reconstruction & Detection
We propose a unified loss framework that balances photorealism, geometric accuracy, and semantic

consistency through three complementary objectives:

L = ∣∣Irend − Igt∣∣1
���������������������������
���������������������������

Lrgb

+λdepth ∣∣drend − dlidar∣∣2
��������������������������������������
��������������������������������������

Ldepth

+λsem L(mask)
sem
�������
��������
Lsem

(4)

where λdepth = 0.8, λsem = 1.2 which was determined via Bayesian optimization over 500 iterations.
The core innovation lies in L(mask)

sem , which enforces pixel-wise mask-Gaussian alignment through:

L(mask)
sem = − ∑

p∈Ω
M(p)

SAM log
⎛
⎝ ∑j∈V(p)

α jN (p∣x j , Σ j)
⎞
⎠

(5)
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where V(p) denotes Gaussians visible in the pixel p. The depth loss Ldepth uses LiDAR measurements:

Ldepth =
1
∣Ω∣ ∑p∈Ω

smoothL1(d(p)
rend − d(p)

LiDAR) (6)

This term ensures that only Gaussians visible in pixel p contribute to the rendering, while the M(p)
SAM

term imposes hard constraints on the boundaries of the object.
To handle dynamic objects, we implement two critical optimizations:

1. Mask propagation: When a Gaussian is occluded (α j < 0.05), its mask is inherited by the neighboring
Gaussians with similarity score ≥ 0.75 (computed via the Chamfer distance).

2. Temporal smoothing: Apply a 3-frame moving average to SAM masks to reduce detection jitter.

Table 3 shows the impact of each loss component:

Table 3: Ablation study on loss components

Configuration PSNR mAP FPS
No semantic loss 33.1 58.3 89

With semantic loss 34.9 67.2 82

Note: Bold results indicate the best perfor-
mance in each category.

Removing the semantic term causes:

• 14.8% reduction in Mean Average Precision (mAP)@0.5 (from 67.2 to 56.4)
• 2.3% Peak Signal-to-Noise Ratio (PSNR) (PSNR) drop (34.9 to 32.6)
• Enables 7 FPS speedup by disabling mask constraints.

The proposed loss can be viewed as a variational lower bound on the joint probability of scene
representation and object detection:

p(G , M) = p(G)p(M∣G) ∝ exp(−Lrgb −Ldepth −Lsem) (7)

here, p(G) is the probability of the scene representation (3D Gaussian distribution), p(M∣G) is the condi-
tional probability of object detection given the scene representation, and the terms Lrgb, Ldepth, and Lsem
represent the photometric, depth, and semantic losses, respectively. By maximizing this posterior, we achieve
both accurate reconstruction and consistent detection.

To enhance depth accuracy and robustness in complex urban scenes, we adopt a radar-guided refine-
ment strategy. Radar measurements provide sparse but geometrically reliable depth cues, which are projected
to the image domain and used to guide the refinement of visual depth predictions. During feature fusion,
radar and visual features are aligned according to their geometric correspondence, and a lightweight gating
mechanism adaptively balances the two sources. When visual cues are degraded by lighting or motion, radar
information dominates; otherwise, visual details are preserved. This simple yet effective design improves
geometric consistency without adding extra modules.

3.5 Scene Rendering and Visualization
The final reconstructed urban scene is rendered by projecting both static and dynamic 3D Gaussians

onto the 2D image plane. This process involves transforming each Gaussian’s 3D position into screen space
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using the camera intrinsic matrix K, rotation matrix R, and translation vector t through the transformation
equation:

q = K ⋅ R ⋅ μ + t (8)

where μ represents the 3D position of the Gaussian and q denotes the projected 2D coordinate. Each
Gaussian’s contribution to the rendered intensity is computed based on its spatial distribution and opacity
as follows:

I(q) = ∑
i

G(q; μi , Σ i) ⋅ Ii (9)

where G(q; μi , Σ i) represents the Gaussian kernel centered at μi with covariance Σ i , and Ii is the corre-
sponding intensity value. To enhance depth perception and realism, a depth-weighted blending function is
applied during rendering, ensuring that closer objects occlude further ones:

Ifinal(q) = ∑
i

wi(q)Ii , wi(q) =
G(q; μi , Σ i)
∑ j G(q; μ j , Σ j)

(10)

where wi(q) denotes the normalized weight of each Gaussian at pixel q. Additionally, dynamic objects are
separately composited using motion-aware temporal filtering, which smooths rapid movements by applying
a temporal exponential decay to the previous frame: Ismooth(q, t) = βIfinal(q, t) + (1 − β)Ifinal(q, t−1), where
β is a smoothing factor that controls frame-to-frame consistency. This ensures that objects retain motion
blur while preserving sharpness.

To further improve rendering efficiency, adaptive resolution upsampling is employed, leveraging multi-
scale Gaussian sampling to dynamically refine high-detail areas while reducing computational overhead
in less critical regions. The final rendered frames are then visualized with overlaid segmentation masks,
derived from Grounded-SAM detection, allowing for real-time interaction with the reconstructed scene and
facilitating urban traffic analysis.

3.6 Gaussian Parameter Optimization with Dual Loss
The parameters of both static and dynamic Gaussians are optimized jointly using a combination of

photometric loss and regularization [39]. The total loss function is defined as:

L = ∣∣Irendered − Igt∣∣2
���������������������������������������
����������������������������������������

Photometric

+λ ( 1
N ∑∣∣Σ i ∣∣F)
����������������������������������
����������������������������������

Regularization

(11)

The total loss function combines a photometric term and a spatial regularization term: L = Î − Igt
2
2 +

λ∑i Σ i
2
F , where Î is the rendered image, Igt is the ground truth, and Σ i denotes the covariance matrix of

Gaussian i. The photometric loss enforces pixel-level consistency with the target image, while the regulariza-
tion term constrains the spatial spread of Gaussians, encouraging compact and stable representations. The
trade-off is controlled by a weighting factor λ, which balances visual fidelity and smoothness. This design
follows best practices in differentiable Gaussian rendering [4].

Explanation of λ: The hyperparameter λ must be tuned based on the specific application and dataset.
For example, in scenarios with noisy input data, a larger λ helps reduce noise by prioritizing smoothness.
Conversely, for highly detailed reconstructions, a smaller λ is preferable to emphasize photometric accuracy.
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4 Experimental Evaluation
Understanding our approach’s performance in real-world scenarios is crucial for validating its effective-

ness. In this section, we present a comprehensive evaluation of our method, comparing it against existing
techniques using publicly available datasets. We assess key aspects such as reconstruction accuracy, object
detection performance, computational efficiency, and scalability in large-scale urban environments.

4.1 Dataset Description
For this study, we use datasets suitable for reconstructing and analyzing dynamic urban environments.

Therefore we utilize the Waymo Open Dataset, which provides large-scale multi-view imagery and LiDAR
data, enabling both high-fidelity 3D reconstruction and accurate object detection. This dataset is chosen
for its diverse urban scenarios, including varying lighting conditions, traffic densities, and occlusions. The
datasets provide synchronized camera and LiDAR data, enabling the generation of depth maps and radiance
fields for static and dynamic object modeling.

These datasets enable the evaluation of our method’s performance under various scenarios, including
traffic reconstruction and dynamic object tracking.

We assess our model’s performance using several key metrics. For 3D scene reconstruction, we measure
PSNR and Structural Similarity Index Measure (SSIM, [40]) to quantify rendering fidelity. Additionally, the
perceptual loss based on a pre-trained Visual Geometry Group (VGG network [41]) is computed to capture
high-level feature consistency. For dynamic object detection, we report mAP with an Intersection over Union
(IoU) threshold of 0.5, as well as IoU scores to evaluate object localization accuracy. Finally, we analyze
computational efficiency, comparing the frames per second (FPS) across multiple baselines, ensuring the
real-time feasibility of our approach.

The Waymo Open Dataset is a comprehensive collection of autonomous driving data, featuring
synchronized high-resolution camera and LiDAR data from self-driving vehicles. It includes 3D point cloud
sequences that support object detection, shape reconstruction, and tracking. For our experiments, we use
sequences containing dynamic traffic scenarios with multiple moving vehicles and pedestrians. The KITTI
and KITTI-360 datasets [8] are additionally employed for broader validation.

4.1.1 Reconstruction Metrics
Structural Similarity Index Measure (SSIM, [40]): Measures the similarity between two images by

comparing luminance, contrast, and structure. SSIM values range from −1 to 1, with higher values indicating
greater similarity.

PSNR: Quantifies the reconstruction quality by measuring the ratio between the maximum pixel value
and the mean squared error (MSE):

PSNR = 10 ⋅ log10 (
MAX2

MSE
) (12)

Higher PSNR values indicate better quality.
Perceptual Loss: Compares high-level features extracted from a pre-trained neural network, such as

VGG, to evaluate perceptual similarity between original and reconstructed images:

Lperceptual = ∑
i
∣∣ϕi(I) − ϕi(K)∣∣22 (13)
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where ϕi represents feature maps of the i-th network layer. I is the original image, and K is the reconstructed
image. These images are compared by extracting their high-level features through a pre-trained neural
network, such as VGG, to evaluate the perceptual similarity between them.

4.1.2 Detection Metrics
Mean Average Precision (mAP): Measures object detection accuracy by averaging precision-recall

across all classes. Higher mAP values indicate better detection performance. Intersection over Union
(IoU): Evaluates localization accuracy by calculating the overlap between predicted and ground truth
bounding boxes.

4.2 Experimental Setup
Preprocessing. We preprocess the Waymo dataset by synchronizing LiDAR and camera data to

derive depth maps and sparse 3D point clouds. Additional refinement steps include applying monocular
depth estimation (via MiDaS) to improve depth consistency and aligning camera poses for accurate
Gaussian initialization.

Baseline and Framework. Our method builds upon the Street Gaussians framework for 3D reconstruc-
tion and introduces the following enhancements:

• Radar-assisted annotation for dynamic object association.
• Temporal smoothing to enhance frame consistency.
• Cubemap-based sky modeling to refine static scene representation.
• Optimized Gaussian parameters using the loss function:

L = Lphoto + λLreg (14)

where Lphoto = ∥Î − Igt∥2
2 evaluates photometric consistency and Lreg = ∑N

i=1∥Σ i∥2
F ensures spatial regularity.

Object Detection and Segmentation. We integrate Grounded-SAM for object detection, which utilizes
text-based prompts (“car”, “pedestrian”) to generate bounding boxes and segmentation masks. These masks
are associated with 3D positions derived from depth maps for accurate dynamic object tracking.

Comparison Methods. Baselines include 3DGS, MARS, and Street Gaussians, covering both static
reconstruction and dynamic detection benchmarks.

Implementation. To measure the performance of proposed approach and benchmarks, we used a device
setup based on NVIDIA A100 GPUs with 40 GB memory. Rendering resolutions are set to 1066 × 1600
(Waymo) and 375 × 1242 KITTI, while FPS is measured under real-time constraints.

4.3 Results
We compare our method against state-of-the-art baselines, including NeRF, 3DGS, and Street Gaus-

sians. Table 4 summarizes the rendering speed, demonstrating that our method achieves a significant
performance boost while maintaining high rendering quality.

Our approach outperforms previous methods in both rendering quality and speed. Notably, our model
achieves 2.14× faster inference than Street Gaussians while maintaining higher PSNR and SSIM values.
Additionally, for dynamic object detection, our method surpasses 3DGS by 25% in mAP, indicating improved
tracking and segmentation capabilities.
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Table 4: Comparison of rendering speed and quality across different methods

Method PSNR SSIM FPS
NeRF 27.3 0.841 0.002
3DGS 30.1 0.892 63.0

Street Gaussians 34.6 0.938 125.0
Ours 34.9 0.940 135.0

Note: Bold results indicate the best perfor-
mance in each category.

Table 5 compares the FPS across datasets, demonstrating our method’s real-time rendering capabilities.
Our method outperforms others in reconstruction quality, as shown in Table 6. Fig. 3 visually illustrates
our approach’s capability to retain structural details and achieve lower perceptual loss. This highlights the
robustness of our enhanced Gaussian representation in static background reconstruction.

Table 5: Rendering speed comparison across datasets (FPS)

Method Waymo KITTI KITTI-360
MC-NeRF 0.0014 0.0075 –

3DGS 63.0 125.0 –
MARS 0.030 0.31 0.25
Ours 135.0 59.0 50.0

Table 6: Reconstruction quality comparison across datasets. Metrics include PSNR, SSIM, and Learned Perceptual
Image Patch Similarity (LPIPS)

Dataset Waymo KITTI KITTI-360
Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3DGS 27.99 0.866 0.293 21.02 0.811 0.202 22.78 0.793 0.176
NSG [13] 24.08 0.656 0.441 26.66 0.876 0.185 – – –

MARS 28.83 0.681 0.430 27.96 0.900 0.185 23.09 0.857 0.174
Street

Gaussians [42] 34.61 0.938 0.079 31.54 0.927 0.083 23.81 0.832 0.155

Hugs [43] – – – 28.78 0.928 0.023 23.38 0.870 0.121
Evolsplat [44] 24.43 0.786 0.202 – – – 23.26 0.797 0.179

Vegs [45] – – – 24.77 0.845 0.113 23.71 0.812 0.106

Ours 34.92 0.940 0.078 31.76 0.929 0.080 23.83 0.834 0.153
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Figure 3: Qualitative results of reconstruction across different datasets. Visualization shows the effectiveness of our
method in retaining structural details and reducing perceptual loss

Our results, as shown in Tables 5 and 6, highlight the robustness of our method. Specifically, our method
achieves a PSNR of 34.92 dB and SSIM of 0.940 on Waymo, surpassing Street Gaussians by 0.31 dB and
0.002, respectively. Additionally, the rendering speed of 135 FPS on waymo dataset is more than twice that of
Street Gaussians (63 FPS), demonstrating the efficiency of our optimized Gaussian parameterization. These
metrics validate the scalability and the real-time capability of our framework in dynamic urban scenarios.
Furthermore, our experiments on the KITTI-360 dataset cover a continuous city-scale trajectory exceeding
80 km across Karlsruhe, corresponding to an urban area of over 5 km2, which is substantially larger than
conventional KITTI odometry sequences (<1 km2). This large-scale evaluation further demonstrates the
effectiveness and scalability of our method in realistic urban environments.

Although Grounded-SAM is a general-purpose segmentation model, it performs reliably in structured
urban scenes after adaptation. In our framework, it is prompted with traffic-related categories (vehicles,
pedestrians, traffic signs, etc.) to focus on road-relevant objects. The grounding module supports text-
guided detection, while the SAM backbone ensures accurate masks under illumination changes and partial
occlusions. To improve stability, temporal filtering and geometric consistency checks between consecutive
frames are applied to suppress spurious detections. Preliminary observations show that the model maintains
stable segmentation quality across different viewpoint conditions, indicating its robustness and potential
generalization to dynamic traffic environments. Representative qualitative detection and segmentation
results are shown in Fig. 4, where our approach produces tighter and more consistent masks than the baseline
under challenging urban conditions.
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(a) Object detection and segmentation results of the reference model

(b) Object detection and segmentation results of our approach

Figure 4: Qualitative results of object detection and segmentation of the reference model vs. our approach. Demon-
strating precise bounding box generation and segmentation

5 Conclusion and Future Work
Our approach relies on synchronized radar and camera data, and its performance may degrade under

adverse weather or poor sensor calibration. Real-time rendering currently requires high-end GPUs, which
limits deployment on resource-constrained platforms. In addition, the effectiveness of Grounded-SAM
depends on its pre-trained weights and prompt design, while radar data acquisition and calibration remain
costly, posing challenges for large-scale deployment. Despite these limitations, experiments on the Waymo
dataset—covering diverse lighting, occlusion, and dynamic traffic—demonstrate strong robustness and
generalization to other urban datasets such as KITTI-360.

Future work will focus on three directions: improving 3D–2D spatial consistency through hybrid
loss functions and stronger multi-view alignment; integrating 3D Gaussians with lightweight implicit
representations to reduce computational load; and extending the framework to larger-scale urban scenes
and challenging sensing conditions such as rain, night, and sparse radar setups. These efforts aim to further
enhance the scalability, efficiency, and robustness of SDG for real-world autonomous driving and smart
city applications.
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