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ABSTRACT: This survey presents a comprehensive examination of sensor fusion research spanning four decades,
tracing the methodological evolution, application domains, and alignment with classical hierarchical models. Building
on this long-term trajectory, the foundational approaches such as probabilistic inference, early neural networks, rule-
based methods, and feature-level fusion established the principles of uncertainty handling and multi-sensor integration
in the 1990s. The fusion methods of 2000s marked the consolidation of these ideas through advanced Kalman
and particle filtering, Bayesian–Dempster–Shafer hybrids, distributed consensus algorithms, and machine learning
ensembles for more robust and domain-specific implementations. From 2011 to 2020, the widespread adoption of
deep learning transformed the field driving some major breakthroughs in the autonomous vehicles domain. A key
contribution of this work is the assessment of contemporary methods against the JDL model, revealing gaps at higher
levels- especially in situation and impact assessment. Contemporary methods offer only limited implementation of
higher-level fusion. The survey also reviews the benchmark multi-sensor datasets, noting their role in advancing the
field while identifying major shortcomings like the lack of domain diversity and hierarchical coverage. By synthesizing
developments across decades and paradigms, this survey provides both a historical narrative and a forward-looking
perspective. It highlights unresolved challenges in transparency, scalability, robustness, and trustworthiness, while
identifying emerging paradigms such as neuromorphic fusion and explainable AI as promising directions. This paves
the way forward for advancing sensor fusion towards transparent and adaptive next-generation autonomous systems.

KEYWORDS: Sensor fusion; autonomous systems; artificial intelligence; machine learning; sensor data integration;
intelligent systems

1 Introduction
Sensor fusion represents one of the most transformative technologies in modern autonomous systems,

enabling machines to perceive and interpret their environment with unprecedented accuracy and reliability.
The fundamental principle underlying sensor fusion is the combination of data from multiple sensors to
create a more comprehensive understanding than would be possible using individual sensors alone [1].
This technological paradigm has evolved from simple data combination techniques to applications of
classical mathematical models to sophisticated Artificial Intelligence-driven approaches capable of real-time
decision-making in complex, dynamic environments. The historical development of sensor fusion can be
traced back to the 1950s, when military applications first demonstrated the potential of combining multiple
radar systems for enhanced target detection [2]. The concept gained significant momentum in the 1960s when
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mathematicians developed algorithmic frameworks for multi-sensor data integration, laying the groundwork
for modern fusion architectures. The establishment of the Joint Directors of Laboratories (JDL) Data Fusion
Subpanel in 1986 marked a pivotal moment in the field, introducing standardized models and terminology
that continue to influence contemporary research [3].

Modern autonomous systems in diverse domains such as autonomous vehicles and unmanned aerial
systems, healthcare monitoring, and defense applications rely heavily on sensor fusion to achieve reliable
operation in real-world environments [4,5]. These systems rely on a multitude of sensors to perceive their
environment and make informed decisions. The integration of sensors such as LiDAR, cameras, radar,
Inertial Measurement Units (IMUs), and GPS enables these systems to overcome the inherent limitations
of individual sensors while capitalizing on their complementary strengths [6,7] Sensor data fusion is
essential for these systems to integrate heterogeneous, high-volume, real-time data and derive a coherent
understanding of surroundings [8,9]. However, an interesting finding is that the rise of powerful AI methods
has overshadowed the original spirit of hierarchical fusion, with little substantive advancement occurring at
the higher fusion levels.

The emergence of Explainable AI (XAI) to address the black-box nature of deep learning systems
by providing interpretable insights into fusion decisions has benefitted sensor fusion for reliable decision-
making. Visual explanations are being developed for autonomous systems [10,11]. This development is
particularly significant for autonomous vehicles and medical applications, where understanding the rea-
soning behind system decisions is essential. However, the complexity of explainability methods needs to
be reduced for producing explanations in real-time [10,12]. Contemporary research trends also emphasize
edge AI deployment and neuromorphic computing as promising directions to achieve ultra-efficient sensor
fusion with minimal latency. These approaches enable real-time processing directly on the sensor nodes,
reducing communication overhead and improving the responsiveness of the system while maintaining low
power consumption [13,14].

This review paper has been written with the objective of putting into context the evolution of sensor
fusion methods. It seeks to trace how foundational models developed at a time when computational and
sensing resources were limited have set the stage for contemporary approaches. The paper highlights the
evolution in the design philosophies, techniques and application domains of sensor fusion. The study
revealed that the probabilistic and rule-based models are largely being replaced by machine learning
approaches. Due to this, sensor fusion research has now moved from concept-driven formulations to
data-driven, adaptive, and context-aware systems.

Unlike prior reviews, this work offers a multi-era synthesis that traces the evolution of sensor fusion
from early probabilistic and rule-based frameworks to modern AI/ML-based architectures. Explicitly, the
fusion layers of traditional models are applied to contemporary AI/ML pipelines, exposing gaps at higher
fusion levels where implementation remains limited. Furthermore, this survey provides broad coverage
across domains that include transportation, healthcare, defense, agriculture, industry, and smart cities, far
beyond the narrower focus of earlier surveys. Finally, the emerging paradigms such as neuromorphic com-
puting, edge AI, and explainable AI are also positioned as promising directions for next-generation sensor
fusion systems. These contributions distinguish our review from existing literature and are useful both for
researchers and practitioners. This survey spans four decades of sensor-fusion research—from probabilistic
and rule-based methods in the 1980s–1990s, through Bayesian and filtering approaches of the 2000s, to
deep-learning and transformer approaches of the 2010s–post-2021, and neuromorphic paradigms in recent
times. The classical data-fusion frameworks have been integrated to adopt a unified reference hierarchical
sensor-fusion framework with following levels: Level 0—signal preprocessing; Level 1—object refinement,
Level 2—situation assessment, Level 3—impact/threat assessment, and Level 4—process refinement. A key
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contribution of this survey is to situate fusion methods within their historical foundations, highlighting
existing challenges and future opportunities.

This discussion has been organized in the remainder of the paper as follows. The research method
adopted for the review is presented in Section 2. It also outlines the limitations of existing reviews in this area.
In Section 3, the types of sensors used in various application areas of autonomous systems has been explained,
and the characteristics of the sensor data has been described, leading to challenges in sensor fusion. The four-
decade evolution of sensor fusion from the early 1980s to the current day has been described in Section 4.
This section reviews the evolution of sensor fusion models, analyzes their effectiveness, and charts the way
forward. Section 5 describes the development of layered fusion models and details the methods mapped
to each level. Section 6 discusses the future research directions within this field. The paper is concluded
in Section 7.

2 Research Method
In line with systematic review practices [15], the search and selection process followed a structured

PRISMA-style workflow. Publications spanning from the early 1980s through May 2025 were retrieved from
major scientific databases, including IEEE Xplore, Scopus, Web of Science, ScienceDirect, SpringerLink, and
arXiv. Seminal surveys and foundational works on classical sensor fusion were used as anchors to expand
the search, ensuring both breadth and depth of coverage.

Identification. A total of 135 records were initially identified through database searches. These
encompassed peer-reviewed journals, highly cited conference proceedings, authoritative book chapters, and
selected arXiv preprints. Benchmark surveys and seminal contributions were also incorporated to establish
the initial reference base.

Screening. Following the removal of 15 duplicates, 120 records were screened at the title and abstract
level. At this stage, priority was given to studies addressing sensor fusion in autonomous system domains
such as transportation, healthcare, defense, robotics, agriculture, and smart cities. Thirty-six records were
excluded as irrelevant, leaving 84 studies for full-text assessment.

Eligibility. Full-text evaluation was then performed on these 84 studies to ensure that each (a)
proposed, applied, or critically reviewed sensor fusion models or techniques; (b) documented applications
in autonomous domains; and (c) addressed either classical (model-driven) or contemporary (AI/ML-based)
approaches. Studies lacking methodological rigor, technical clarity, or empirical results were excluded. This
led to the removal of 3 articles that failed to meet eligibility criteria.

Inclusion. A final set of 81 studies was included in the review corpus. These works collectively support
a multi-era synthesis mapping classical models to modern AI/ML pipelines and incorporating emerging
paradigms such as neuromorphic and quantum-inspired fusion. Extracted content was consolidated into
thematic tables covering chronological and technological milestones, application-specific deployments and
challenges, and comparative insights across classical and modern approaches.

The overall workflow is summarized in Table 1.
While every effort was made to ensure comprehensiveness, limitations remain. The review is constrained

by the availability of published results only, without inclusion of unpublished industrial reports, internal
datasets, or simulations. Given the vastness of the field, some subdomains may not have been fully
represented. Despite these constraints, the structured and transparent approach adopted here ensures both
analytical rigor and reproducibility, offering a panoramic yet critical view of the sensor fusion landscape. This
foundation informs researchers, practitioners, and policymakers by situating contemporary developments
within their historical and methodological contexts.
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Table 1: Summary of the search and selection process (PRISMA-style)

Stage Number of records
Identified through databases 135

Duplicates removed 15
Records screened (titles/abstracts) 120

Records excluded (domains with lesser scope of multisensor fusion) 32
Full-text articles studied 88

Full-text articles excluded (lack of rigor/duplication) 3
Total Studies finally included in review 85

Table 2 summarizes salient features of recent state-of-the-art surveys and demonstrates how the present
review advances the literature through a unique multi-era synthesis, explicit mapping from fusion layers to
AI/ML pipelines, and broad cross-domain coverage.

Table 2: Comparison of recent review papers on sensor fusion in autonomous systems and the present study

Paper and year Main focus Contribution highlights

Zhao et al.,
2024 [16]

Review of 3D object detection
methods for multi-sensor
fusion with emphasis on

LiDAR–camera integration

Detailed taxonomy of fusion strategies
(early, feature, and late fusion);
analysis of datasets and metrics;

focused on 3D perception in
autonomous vehicles

Wang et al.,
2024 [17]

Survey of sensor fusion and
localization methods, spanning
Kalman filters, particle filters,

and ML-based approaches

Proposes hybrid ML–classical
frameworks; addresses challenges in

GPS-denied and noisy environments;
emphasizes scalability for real-world

deployment

Mehta et al.,
2025 [18]

Comprehensive overview of
sensor fusion in autonomous
vehicles, UAVs, and robotics

across fusion levels

Provides systematic classification
across data-, feature-, and

decision-level fusion; highlights safety,
reliability, and integration of diverse

sensing modalities

Yeong et al.,
2025 [10]

Structured review of
multi-sensor fusion with focus
on deep learning methods in

autonomous driving

Presents formal mathematical
formulations; incorporates

vision–language models and large
language models into fusion; discusses

emerging AI-driven trends

(Continued)
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Table 2 (continued)

Paper and year Main focus Contribution highlights

Present review

Evolution of sensor fusion in
autonomous systems, bridging

classical models and
AI/ML-driven architectures

across domains

Advances beyond prior surveys by
integrating neuromorphic computing,

edge AI, and explainable AI; offers
multi-era synthesis, explicit

layer-to-pipeline mapping, and broad
cross-domain coverage

(transportation, healthcare, defense,
agriculture, industry, and smart cities)

3 Characteristics of Sensor Data
Sensor data in autonomous systems tends to be multi-modal (originating from different sensor types),

high-dimensional, voluminous, and generated in real time. These data often contain noise and uncertainties
specific to each sensor. Moreover, the data rates can be extremely high, reaching gigabytes per second. Thus,
efficient pre-processing (filtering, calibration, compression) is needed prior to fusion. Data may also be
heterogeneous in format and scale, requiring transformation into common representations or extraction of
intermediate features.

Another important aspect is the context-dependence and non-stationarity of sensor data. Sensors
operate under varying conditions (day/night, clear/rainy, highway/city), which directly affect data quality.
Fusion systems must be robust to such variations, for example by dynamically weighting sensor contributions
(e.g., relying more on radar in heavy rain). Synchronization among sensors is equally critical, as misaligned
timestamps can propagate into significant fusion errors.

To illustrate the diversity of sensor data used in autonomous systems, Table 3 provides examples of
benchmark datasets across domains such as autonomous driving, wearable computing, and remote sensing.
These datasets exemplify the modalities and scenarios available to researchers for developing and evaluating
fusion methods.

Table 3: Some publicly available multi-modal sensor datasets and application domains

Dataset name Key characteristics Sensor modalities Application domain

WISDM
(2023) [19]

Motion sensor data from
smartphones for activity

classification

Smartphone
accelerometer and

gyroscope

Human activity
recognition

Argoverse 2
(2021) [20]

Large-scale multi-sensor
driving dataset with 3D tracking

annotations

LiDAR, multiple
cameras, GPS Autonomous driving

RarePlanes
(2021) [21]

Aerial imagery combining real
and synthetic data for object

detection

Satellite RGB imagery
(real + synthetic)

Remote sensing and
surveillance

UrbanLoco
(2020) [22]

Urban localization dataset in
challenging environments

LiDAR, IMU, GPS,
Cameras

Autonomous
navigation

(Continued)
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Table 3 (continued)

Dataset name Key characteristics Sensor modalities Application domain

nuScenes
(2019) [23]

360○ sensor coverage with
multimodal annotations for

detection and tracking

LiDAR, cameras,
radar, GPS, IMU Autonomous driving

A9 Highway
Dataset

(2018) [24]

Multi-modal dataset of highway
driving scenarios

Cameras, LiDAR,
radar, GPS Autonomous driving

ExtraSensory
(2016) [25]

Crowd-sourced multi-modal
recordings for activity

recognition

Smartphone and
smartwatch sensors

(accelerometer,
gyroscope, audio,

GPS)

Wearable IoT and
computing

OPPORTUNITY
(2011) [26]

Sensor recordings in a home
environment for activity

recognition

Body-worn inertial,
object, and ambient

environmental sensors

Human activity
recognition

The datasets included in Table 3 were chosen because they represent widely recognized benchmarks
within their respective domains and are frequently cited in state-of-the-art sensor fusion studies. Their
inclusion ensures that the survey reflects the most commonly used testbeds against which fusion methods
are evaluated, while also highlighting their limitations in representativeness and domain coverage.

While these benchmark datasets provide valuable testbeds, their utility varies significantly depending
on the target application. For instance, large-scale autonomous driving datasets such as Argoverse 2 [20],
nuScenes [23], and the A9 Highway dataset [24] are rich in multimodal coverage and support complex
perception tasks, but they are often biased toward urban traffic conditions in developed regions. This limits
their generalizability to rural or less-structured environments. Similarly, UrbanLoco [22] offers challenging
urban localization scenarios but is geographically constrained and may not fully capture cross-regional
variations such as GPS multipath in dense high-rise cities. In contrast, human activity and mobile health
benchmarks such as WISDM [19], OPPORTUNITY [26], and ExtraSensory [25] demonstrate strong utility
for wearable and IoT-driven fusion research. However, many of these datasets are collected in controlled
or semi-structured environments, which may not reflect the noise and variability encountered in real-
world deployments. They also tend to have limited subject diversity, raising questions about demographic
generalizability in healthcare applications. Remote sensing benchmarks such as RarePlanes [21] highlight
another dimension: the fusion of synthetic and real data for training. While this enables large-scale dataset
generation, it also introduces a domain gap between simulated and operational settings, complicating trans-
ferability of models trained exclusively on such data. Overall, Table 3 underscores both the breadth of sensor
modalities represented and the uneven distribution of benchmarks across domains. Autonomous driving
enjoys abundant and well-annotated datasets, while healthcare, smart cities, and industrial domains remain
comparatively underrepresented. This imbalance constrains cross-domain fusion research and highlights a
critical need for more diverse, standardized, and globally representative datasets. Without such resources,
fusion models risk overfitting to narrow operational conditions and may fail when transferred to new envi-
ronments. Overall, Table 3 underscores both the breadth of sensor modalities represented and the uneven
distribution of benchmarks across domains. Autonomous driving enjoys abundant and well-annotated
datasets, while healthcare, smart cities, and industrial domains remain comparatively underrepresented.
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This imbalance constrains cross-domain fusion research and highlights a critical need for more diverse,
standardized, and globally representative datasets. Without such resources, fusion models risk overfitting to
narrow operational conditions and may fail when transferred to new environments. A further consideration
is the inherent trade-offs among these datasets. Large-scale benchmarks such as nuScenes and Argoverse 2
provide extensive multimodal coverage but sacrifice diversity across geographic and environmental contexts.
Conversely, smaller datasets like OPPORTUNITY and ExtraSensory capture rich multimodal signals in
daily-life settings but lack the scale needed for training data-intensive models. Synthetic-enhanced datasets
such as RarePlanes expand coverage at low cost yet introduce a domain gap that complicates real-world
transferability. These trade-offs between scale, diversity, realism, and generalizability must therefore be
carefully weighed when selecting benchmarks for evaluating sensor fusion methods.

4 Evolution of Sensor Fusion: A Four-Decade Perspective
The evolution of sensor fusion techniques over the past four decades represents a remarkable journey

from basic mathematical algorithms to sophisticated AI-driven systems. Recent proliferation of complex
sensor arrays and the need for real-time and adaptive fusion have driven the adoption of deep learning,
transformer architectures, and energy-efficient neuromorphic computing, enabling autonomous systems to
achieve new levels of perception and autonomy. Over the years, numerous sensor fusion models have been
proposed. In this section, a decade-wise review of the evolution of sensor fusion is given. A hybrid perspective
integrating traditional fusion architectures to a unified hierarchical model is also proposed.

4.1 Some Popular Early Fusion Models and Frameworks
The concept of multisensor data fusion dates back to the 1970s in the context of robotics and defense.

Early work focused on establishing theoretical foundations and lexicons for combining data from multiple
sources within permissible time frames. A widely cited definition by Hall and McMullen described data
fusion as a ’hierarchical transformation of observed data from multiple sources into a form that enables
decision making’ [27]. In practice, many initial fusion systems were deterministic or rule-based aimed at
achieving specific fusion goals under hardware constraints of the time.

One pioneering framework was the Joint Directors of Laboratories (JDL) Data Fusion Model [3].
Developed in the military community in the 1980s, the JDL model defined a taxonomy of fusion across
levels 0 to 4: from raw data alignment, to object refinement (state estimation), situation assessment, impact
assessment, and process refinement. It emphasized combining sensor observations to estimate object identity
and position, originally for surveillance/tracking applications. Steinberg et al. later revised the model in 1999
to refine these levels and generalize it to broader situations [28]. The layered approach of the JDL framework
influenced many subsequent system designs, ensuring that each level of fusion produces outputs at increasing
levels of abstraction. Although conceived for military sensing, the concepts of the JDL model are applicable
to any multisensor system.

Around the same time, reference [29] proposed a simpler three-level architecture for sensor fusion. The
lowest level dealt with raw signal fusion (often requiring training to learn correlations between sensors);
the intermediate “evidence” level fused features or evidence using statistical methods (with spatial/temporal
alignment as a preprocessing step); the highest “dynamics” level fused information in the context of
system dynamics or models. Reference [29] introduced performance indicators such as the quality of fused
information and robustness to uncertainties, which foreshadowed later work on fusion confidence and
uncertainty estimation.

Another influential early framework was by Luo and Kay [30], who distinguished between multi-
sensor integration (using multiple sensors to reach one decision) and multi-sensor fusion. They proposed
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hierarchical structure with distributed fusion centers, highlighting that fusion could occur at different
hierarchy levels of a system. The data collected at the sensor level is integrated at the fusion centers, where
the actual fusion is done. After processing all sensors, domain-specific high-level information of interest is
obtained. The fusion process is supported by relevant databases and libraries. In the process of fusion, raw
signals from individual sensors are abstracted to symbolic information. This idea of performing some fusion
locally (sensor node level) and some globally (central level) is reflected in today’s edge vs. cloud fusion split
in IoT systems.

Harris et al described another example of hierarchical fusion called the waterfall model [31]. The
hierarchical levels are similar in essence as the earlier models with an emphasis on the processing functions
of the lower levels. Sensors pre-processing is done at at level 1 while feature extraction and pattern processing
in level 2. It is followed by situation assessment and decision making being done at level 3. Conceptually, the
processed signal from level 1 are converted to fetaures in level 2 that leads to state description and querying
in Level 3 of the model.

Bedworth and Brien [32] described a hybrid framework called the Omnibus model. This process model
was inspired by conceptual OODA (Observe, Orient, Decide and Act) cycle called Boyd loop and the
waterfall model. Various tasks in data fusion and its functional objectives are realized in different modules.
Three levels of data fusion, that is, data, feature and decision level have been defined. Separate modules
implement various level-wise tasks and meet their functional objectives.

Several foundational frameworks emerged during the 1970s–2000s that established the theoretical and
architectural basis for multisensor data fusion. Table 4 summarizes these early models, highlighting their
central ideas and lasting contributions. The JDL model remains one of the most influential, while subsequent
frameworks such as the three-level architecture, waterfall model, and Omnibus model introduced alternative
perspectives emphasizing hierarchy, distributed processing, and hybrid design. Collectively, these models
shaped the evolution of modern sensor fusion approaches.

Table 4: Early multisensor data fusion frameworks

Framework/Model Key idea Notable features/Contributions

Hall & McMullen
(1970s–1990s) [27]

Formal definition of data
fusion as hierarchical

transformation of
multi-source observations.

Established theoretical foundations and
lexicon; early implementations were
rule-based or deterministic under

hardware constraints.

JDL Model (1980s) [3,28] Taxonomy of fusion across
Levels 0–4.

Levels: raw data alignment, object
refinement, situation assessment, impact
assessment, process refinement. Revised

in 1999 for broader generality; widely
influential in military and civilian

systems.

Thomopoulos three-level
architecture (1990) [29]

Three levels: signal,
evidence, dynamics.

Introduced preprocessing for
spatial/temporal alignment, robustness

and quality measures for fused
information; foreshadowed later work on

uncertainty estimation.

(Continued)
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Table 4 (continued)

Framework/Model Key idea Notable features/Contributions

Luo & Kay hierarchical
model (2002) [30]

Distinguished between
integration and fusion;
proposed distributed

hierarchical fusion centers.

Fusion occurs at both local (sensor) and
global (central) levels; supported by

databases/libraries. Anticipates modern
edge vs. cloud fusion in IoT systems.

Harris waterfall model
(1998) [31]

Hierarchical fusion in
sequential stages.

Level 1: sensor preprocessing; Level 2:
feature extraction/pattern processing;

Level 3: situation assessment and decision
making.

Bedworth & Brien
omnibus model

(2000) [32]

Hybrid model inspired by
OODA loop and waterfall

model.

Defined data, feature, and decision-level
fusion; separate modules implement
level-wise tasks to meet functional

objectives.

A common feature of all models discussed till now is the hierarchical transformation of data. This
higher-level integration of locally processed sensor data at intermediate or final nodes can be suitably applied
to modern autonomous systems also. Interestingly, although these models were proposed more than a decade
apart, they embody the same fundamental principle of hierarchical fusion, where both the level of cognizance
about the system and the granularity of information progressively increase across successive layers. To
systematically map the actual fusion models deployed in autonomous systems, we first developed a unified
architecture that aligns the levels proposed by different frameworks and examined the extent of consensus
among them. The rationale for this integration lies in the observation that, despite differences in terminology
and chronology, all major fusion frameworks embody a common principle of hierarchical refinement: data
is progressively transformed from raw sensor measurements into higher-level situational understanding and
decision support. By aligning these frameworks, we expose the underlying consensus of established fusion
frameworks. The unified model draws upon the Joint Directors of Laboratories (JDL) data fusion model,
which has been briefly introduced earlier, it is elaborated here to provide the rationale for harmonizing
different models. The JDL levels can be summarized as follows:

1. Level 0: Sub-Object Data Assessment (Source Preprocessing)—Deals with raw sensor data (signals,
features, pixels, etc.), encompassing tasks such as noise filtering, feature extraction, registration, and
alignment. Example: Cleaning raw radar or camera data and synchronizing sensing rates before applying
detection algorithms.

2. Level 1: Object Refinement—Integrates features to form objects/entities and estimate their states,
involving tasks such as detection, tracking, identification, and classification. Example: Detecting and
tracking a vehicle using fused radar and camera data.

3. Level 2: Situation Assessment—Develops an understanding of relationships among objects and the
environment, covering tasks such as scene analysis, intent recognition, and context modeling. Example:
Recognizing that multiple vehicles are forming a traffic jam.

4. Level 3: Impact (Threat) Assessment—Focuses on predicting the future state and potential conse-
quences of the situation, including threat assessment, risk prediction, and decision support. Example:
Predicting that a speeding car may cause a collision.
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5. Level 4: Process Refinement (Resource Management)—Controls and improves the fusion process
itself, with tasks such as sensor management, adaptive fusion strategies, and feedback optimization.
Example: Directing a drone to collect additional data in regions of high uncertainty.

6. Level 5: User/Cognitive Refinement (extension)—Accounts for human–machine interaction, includ-
ing visualization, operator decision support, and incorporating human feedback.

By aligning the JDL model with other popular frameworks, an integrated multisensor fusion model has
been shown in Fig. 1.

Figure 1: A hierarchical unified multisensor fusion model

Traditional models established the architectural blueprints and terminology for sensor fusion. These can
also be related to modern autonomous systems, as raw data from multiple sensors of autonomous systems
must undergo several processing stages to become actionable information. In the next sections, we will
discuss the historical trajectory of sensor fusion over the past four decades, examining how each decade
introduced new sensors, fusion strategies, and application domains that collectively shaped the current
state-of-the-art.

4.2 Foundational Fusion Approaches of the 1990s
The 1990s marked a decisive transition in sensor fusion research, moving from conceptual dis-

cussions to increasingly concrete algorithmic implementations. Researchers explored a broad range of
strategies to address uncertainty, adaptability, and system integration, with varying degrees of success. Key
categories included probabilistic inference methods, neural network–based approaches, rule-based and
evidence-theoretic reasoning, feature-level integration, and modular hybrid architectures. Collectively, these
approaches laid important foundations, though they were frequently constrained by computational power
and often tailored to narrow application contexts.
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Probabilistic Fusion Methods: Probabilistic inference emerged as a rigorous framework for handling
uncertainty. Cox et al. (1992) applied Bayesian inference to stereo vision, showing that probabilistic depth
estimation could outperform deterministic triangulation by integrating evidence from stereo pairs [33].
Larkin (1998) used Bayesian networks to classify acoustic signals, explicitly capturing dependencies among
features [34]. Shahbazian et al. (1993) introduced multi-hypothesis tracking, allowing radar and sonar
to jointly maintain competing target hypotheses [35]. While these approaches formalized uncertainty
propagation, their computational cost scaled poorly with the number of sensors, preventing real-time
deployment in dynamic environments.

Neural Network-Based Methods: The growing availability of computational resources encouraged early
use of neural networks for adaptive fusion. Perlovsky and McManus (1991) presented a maximum-likelihood
neural network that adaptively classified sensor inputs, blending statistical estimation with learning [36].
Davis and Stentz (1995) demonstrated neural networks for autonomous outdoor navigation, where fused
vision and range inputs were mapped to obstacle recognition in unstructured terrains [37]. Similarly, Cao and
Hall (1998) applied neural networks to autonomous guided vehicles (AGVs) for vision-based navigation [38].
These methods demonstrated adaptability and the ability to capture nonlinear inter-sensor dependencies,
but were shallow by modern standards, trained on limited data, and lacked interpretability, restricting their
robustness in diverse conditions.

Table 5: Representative sensor fusion works (1991–2000)

Reference
(Year) Fusion strategy Application

domain Representative contribution Limitations

Perlovsky &
McManus
(1991) [36]

Neural network
(maximum
likelihood)

Classification
(general)

Hybrid neural-probabilistic
model enabling adaptive

classification of sensor inputs

Computationally expensive;
shallow network with limited

scalability

Cox et al.
(1992) [33] Bayesian inference Computer vision

(stereo)

Bayesian fusion improved
stereo depth estimation by
integrating multiple cues

Assumed static scenes; not
scalable to large sensor sets

Tang & Lee
(1992) [39]

Geometric feature
relation graph

Computer vision
(multi-camera)

Ensured spatial consistency in
multi-camera fusion through

feature graphs

Relied on structured
environments; sensitive to
occlusion and dynamics

Shahbazian
et al. (1993) [35]

Multi-hypothesis
tracking (Bayesian)

Radar/sonar
tracking

Maintained competing
hypotheses across

heterogeneous sensors for
robust tracking

Very high computation; lacked
real-time demonstration

McKee
(1993) [40]

Conceptual
taxonomy

Computer vision
(general)

Systematic taxonomy outlining
“what can be fused” in vision

pipelines

Conceptual; lacked
experimental implementation

Alag, Goebel &
Agogino

(1995) [41]

Rule-based +
supervisory control

Intelligent vehicles
(IVHS)

Framework for sensor
validation and supervisory

fusion enhancing safety and
redundancy

Knowledge engineering
complexity; limited handling of
drift and long-term variability

Davis & Stentz
(1995) [37]

Neural network
fusion

Autonomous
navigation

Neural networks fused sensor
streams for obstacle

recognition in unstructured
terrain

Limited training data;
interpretability issues

Kam, Zhu &
Kalata

(1997) [42]

Modular fusion
architecture Mobile robotics

Integrated sonar, vision, and
dead-reckoning in a cohesive

multi-sensor framework

Lacked principled uncertainty
modeling; performance tuned

to specific sensors

Cao & Hall
(1998) [38] Neural networks Autonomous

guided vehicles

Neural fusion applied to visual
navigation in AGVs; early

application to vehicles

Black-box model; limited
generalization beyond

controlled tests

(Continued)
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Table 5 (continued)

Reference
(Year) Fusion strategy Application

domain Representative contribution Limitations

Larkin
(1998) [34] Bayesian networks Acoustic

classification

Bayesian network captured
dependencies in acoustic

feature classification

Computationally heavy; not
demonstrated in real-time

systems

Blasch & Hong
(1999) [43]

Dempster–Shafer
(belief filtering) Target tracking

Applied evidence theory for
uncertainty reasoning in

multi-sensor target tracking

Performance degraded with
ambiguous/conflicting

evidence

Peli et al.
(1999) [44] Feature-level fusion Multisensor vision

Unified features across sensors
before classification, improving

recognition performance

Dependent on calibration;
fragile under sensor faults

Rule-Based and Evidence-Theoretic Approaches: Rule-driven frameworks also played an important role.
McKee (1993) proposed a taxonomy of “what can be fused” for vision systems, providing systematic guidance
for constructing integration pipelines [40]. Blasch and Hong (1999) implemented Dempster–Shafer evidence
theory in a “belief filtering” mechanism for target tracking [43]. This enabled reasoning under partial or
conflicting evidence without requiring strict prior probabilities. Rule-based systems were transparent and
interpretable, but generalization was limited, and belief combination rules were difficult to tune when
ambiguity was high.

Feature-Level Fusion: Several works moved beyond raw data integration to focus on fusing interme-
diate representations. Tang and Lee (1992) proposed geometric feature relation graphs to preserve spatial
consistency across multi-camera vision sensors [39]. Peli et al. (1999) introduced unified feature-level
fusion before classification, improving recognition accuracy in multisensor vision systems [44]. These
approaches demonstrated the utility of fusing more compact representations rather than raw data, reducing
computational demands. However, they relied on precise calibration and were sensitive to occlusion, noise,
and sensor failures.

Application-Specific Architectures: The decade also produced domain-tailored modular architectures.
Kam, Zhu, and Kalata (1997) developed one of the earliest multi-sensor frameworks for mobile robots,
integrating sonar, vision, and dead-reckoning [42]. Alag, Goebel, and Agogino (1995) proposed a supervisory
fusion framework for Intelligent Vehicle Highway Systems (IVHS), emphasizing fault detection, redun-
dancy, and supervisory control [41]. Beyond robotics, Mandenius et al. (1997) applied fusion in industrial
bioprocessing, combining chemical and process sensors for real-time monitoring [45]. These architectures
highlighted the feasibility of embedding fusion into control pipelines, but remained tightly coupled to specific
sensor suites, limiting scalability and cross-domain applicability.

Overall, the 1990s advanced sensor fusion by formalizing uncertainty modeling, exploring adaptive
neural approaches, and embedding fusion into practical systems. As summarized in Table 5, most methods
remained constrained by high computational demands, narrow scope, and lack of real-time generalizabil-
ity. Yet, they established enduring design principles—probabilistic rigor, adaptive learning, interpretable
reasoning, and modular integration—that continue to influence sensor fusion research today.

By the end of the decade, sensor fusion had matured from theoretical constructs to operational
prototypes in vision, robotics, defense, and industrial applications. However, most systems were specialized,
computationally demanding, and lacked generalizable frameworks. The subsequent decade (2000–2010)
witnessed increasing convergence and the emergence of machine learning as a unifying tool for sensor fusion
across domains.
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4.3 Contemporary Models: 2001–2010—Early Machine Learning Era
Building upon the foundational probabilistic, neural, and rule-based strategies of the 1990s, sensor

fusion research in the 2000s advanced toward greater methodological rigor and broader applicability. Several
developments characterized this decade: the extension of probabilistic filters for nonlinear and non-Gaussian
systems, the integration of Bayesian and evidence-theoretic reasoning, the rise of distributed consensus
schemes for multi-agent settings, and the early adoption of machine learning techniques to learn fusion
mappings from data rather than relying solely on handcrafted rules. Collectively, these advances established
many of the algorithmic templates that would later be scaled and generalized in the deep learning era.

Probabilistic Filtering and Bayesian Extensions: Kalman filter variants dominated this period, partic-
ularly in navigation and tracking tasks. The Extended Kalman Filter (EKF) and Unscented Kalman Filter
(UKF) were widely adopted for fusing inertial measurement units (IMUs) with GPS data, enabling more
reliable state estimation under nonlinear dynamics [46]. Coué et al. (2002) applied Bayesian programming
to automotive state estimation, demonstrating how Bayes filters could flexibly combine sonar, odometry,
and other modalities under uncertainty [47]. Particle filters emerged as an important alternative, addressing
limitations of Kalman-based methods by accommodating non-Gaussian noise and multimodal posterior
distributions. These probabilistic methods significantly improved robustness in early autonomous robots and
vehicles, although they remained computationally demanding for high-dimensional state spaces.

Rule-Based Evolution and Evidence-Theoretic Integration: Rule-based fusion was refined into more
mathematically grounded frameworks. Koks and Challa (2003) proposed combining Bayesian methods with
Dempster–Shafer (D–S) evidence theory, providing a hybrid reasoning scheme capable of fusing probabilistic
estimates with uncertain or incomplete evidence [48]. This integration allowed richer representations of
belief states but incurred high computational cost as sensor sets scaled. Distributed consensus algorithms also
gained prominence in this era. Xiao et al. (2005) introduced a consensus-based scheme that enabled sensor
networks or multi-robot systems to achieve agreement on global state estimates despite each node holding
only partial information [49]. These approaches were particularly important for wireless sensor networks
(WSNs), where centralized fusion was often infeasible.

Machine Learning for Fusion Mappings: A key innovation was the move toward learning fusion
rules directly from data. Faceli et al. (2004) proposed a hybrid intelligent framework combining neural
networks, fuzzy inference, and decision trees, allowing the system to adaptively determine fusion weights and
mappings [50]. While deep learning was not yet viable, simpler models such as multilayer perceptrons and
fuzzy systems demonstrated the feasibility of training adaptive fusion models. These early machine learning–
driven systems reduced reliance on handcrafted rules, though their learning capacity was limited by data
availability and computational constraints.

Decision-Level and Classifier Fusion: Decision-level fusion became increasingly popular for classification
tasks. Instead of integrating raw signals, systems combined outputs of independent classifiers trained on
individual sensor modalities. For instance, in wearable human activity recognition (HAR), classifiers based
on accelerometers and gyroscopes could be fused via voting or weighted averaging to yield more robust
predictions. This ensemble approach improved resilience to sensor failures and noise. While Chavez-Garcia
and Aycard (2015) [51] formally studied multisensor decision fusion slightly after 2010, their work synthesized
principles already established in the late 2000s, particularly in intelligent vehicle perception.

Application-Specific Advances: The decade also saw growing application diversity. Choi et al. (2011)
applied hierarchical fusion of RFID and odometry for indoor robot localization, building on techniques
developed in the late 2000s [52]. Lu and Michaels (2009) fused ultrasonic sensor data for structural health
monitoring under varying conditions, addressing robustness challenges in safety-critical applications [53].
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In agriculture, Huang et al. (2007) integrated multiple sensing modalities for precision farming, reflecting
the growing role of sensor fusion in environmental and industrial domains [54]. Each domain imposed
distinct requirements—low power consumption for wearable devices, high accuracy for aircraft navigation,
or resilience to noise and environmental variation for outdoor robotics—driving tailored fusion solutions.

The representative works summarized in Table 6 illustrate how this decade broadened the method-
ological toolkit. Unlike the 1990s, where most systems were rigidly rule-based or narrowly probabilistic,
the 2000s emphasized flexibility through probabilistic generalizations, distributed consensus, and adaptive
machine learning. While these advances greatly expanded the scope of sensor fusion, limitations remained,
particularly in computational scalability, dependence on expert tuning, and restricted ability to automatically
learn complex feature hierarchies. These constraints would soon motivate the adoption of deep learning
approaches in the following decade.

Table 6: Representative sensor fusion studies (2001–2010)

Reference
(Year)

Fusion
strategy

Sensor
modalities

Application
domain Representative contribution Limitations

Coué et al.
(2002) [47]

Bayesian
programming

Sonar,
odometry,
automotive

sensors

Automotive
state estimation

Demonstrated Bayesian filters
for robust vehicle state

estimation under uncertainty

Computationally
intensive; limited

real-time deployment

Koks &
Challa

(2003) [48]

Bayesian +
Dempster–

Shafer
integration

Heterogeneous
multi-sensor

inputs

General
multi-sensor

fusion

Hybridized probabilistic and
evidence-based reasoning for

uncertainty management

High computational
complexity; scalability

issues

Faceli et al.
(2004) [50]

Hybrid AI
(NNs + fuzzy

logic + decision
trees)

Simulated
sensors

General sensor
fusion

Introduced adaptive
ensemble-based fusion learned

from data

Limited by shallow
models and lack of
real-world datasets

Tan
(2004) [55]

Cognitive
architecture
(FALCON)

Simulated
neural agents

Cognitive
/adaptive
systems

Demonstrated adaptive
learning in fusion within
cognitive architectures

Proof-of-concept;
evaluated only on

simple tasks

Xiao et al.
(2005) [49]

Distributed
consensus

Networked
sensors (WSN)

Wireless sensor
networks/multi-

robot
systems

Consensus algorithm enabling
distributed nodes to agree on

state estimates

Dependent on reliable
communication links;

latency under large
networks

Upcroft
et al.

(2005) [56]

Decentralized
probabilistic

fusion

Acoustic, radar
(UAV sensors)

UAV
perception

Applied probabilistic fusion for
UAV navigation with

heterogeneous sensors

Assumed reliable
inter-agent data

exchange;
computationally heavy

Huang
et al.

(2007) [54]

Feature/data-
level

fusion

Soil, crop,
agricultural

sensors

Precision
farming

Improved agricultural
decision-making via

multi-sensor integration

Sensitive to calibration;
limited to structured
farming conditions

Klausner
et al.

(2007) [57]

Feature +
decision fusion Smart cameras Intelligent

traffic systems

Demonstrated distributed
vehicle classification with fused

smart-camera inputs

Required reliable
inter-camera

synchronization;
narrow domain

Seraji &
Serrano

(2009) [58]

Rule-based
decision fusion

Terrain safety
sensors

Planetary rover
navigation

Combined multiple
terrain-safety detectors for

robust rover navigation

Rule-based; lacked
adaptability to

unforeseen conditions

Lu &
Michaels

(2009) [53]

Feature-level
fusion under
environment

variability

Ultrasonic
sensors

Structural
health

monitoring

Developed fusion for damage
detection robust to

environmental changes

Limited sensor types;
application-specific

framework

(Continued)
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Table 6 (continued)

Reference
(Year)

Fusion
strategy

Sensor
modalities

Application
domain Representative contribution Limitations

Gross et al.
(2010) [59]

Comparative
filtering (EKF,

UKF, PF)
GPS, INS Navigation

systems

Provided comparative
evaluation of probabilistic

filters under navigation
uncertainty

Trade-offs: particle
filters accurate but

computationally costly;
EKF efficient but less

robust

In summary, the early 2000s represented an era of methodological consolidation and gradual transition
from handcrafted fusion rules toward data-driven adaptability. Probabilistic frameworks were extended
to handle nonlinearities and non-Gaussian noise, distributed consensus schemes emerged for networked
systems, and hybrid AI methods showcased the potential of learned fusion. While the computational
and data limitations of the period constrained progress, this decade equipped the field with versatile
building blocks—Kalman filter variants, Bayesian/evidence hybrids, consensus protocols, and ensemble
learning—that directly informed the deep learning–driven breakthroughs of the 2010s. These advances thus
represent the logical evolution of the 1990s prototypes into more flexible, scalable, and domain-diverse
fusion frameworks.

4.4 Contemporary Models: 2011–2020—Transformative Fusion Works
Building upon the probabilistic, rule-based, and early machine learning approaches of the 2000s,

the period from 2011 to 2020 marked a decisive transformation in sensor fusion. This shift was driven
by three converging factors: the availability of large-scale multimodal datasets, rapid advances in deep
learning, and growing deployment of autonomous systems in safety-critical contexts. Fusion models moved
from handcrafted pipelines and shallow learners toward end-to-end trainable architectures capable of
learning cross-modal representations directly from data. Research during this decade spanned autonomous
vehicles, UAVs, precision agriculture, infrastructure monitoring, and wearable human activity recognition,
demonstrating both methodological diversity and domain-specific innovation.

Deep Learning–Based Fusion Architectures: One of the most transformative advances was the adoption
of deep neural networks for multi-sensor fusion. In autonomous driving, vision and LiDAR fusion evolved
from late fusion of independent detections to early and mid-level feature fusion within deep networks.
Approaches such as PointNet++ and multimodal convolutional fusion architectures enabled learned feature
representations across modalities, significantly improving detection and localization accuracy [60,61]. Unlike
handcrafted pipelines, these models could discover optimal cross-modal mappings, albeit at the cost of
requiring large annotated datasets and high computational resources.

Distributed and Cooperative Fusion: Another major development was the emergence of cooperative
and distributed fusion frameworks, especially for connected autonomous vehicles and IoT-driven systems.
Cooperative perception (V2X) allowed vehicles to exchange sensor data, extending situational awareness
beyond line-of-sight occlusions. Liu et al. (2023) [62] reviewed this paradigm, which was conceptually
established in the late 2010s through simulation-based studies. These works emphasized the need for
synchronization, low-latency communication, and consensus protocols, anticipating real-world multi-agent
fusion systems.

Domain Diversification and Application-Specific Fusion: Fusion research extended into healthcare,
agriculture, and infrastructure. In wearable HAR, Banos et al. (2012) combined accelerometer, gyroscope, and
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contextual sensors to mitigate noise sensitivity and improve recognition reliability [63]. In precision agricul-
ture, Maimaitijiang et al. (2020) fused UAV imagery, satellite data, and ground-based sensors using machine
learning for crop monitoring, enabling multiscale environmental insights [64]. Infrastructure monitoring
adopted sensor fusion of accelerometers, strain gauges, and vibration sensors to detect anomalies in bridges
and civil structures. These application-specific systems demonstrated that the core fusion principles—robust
uncertainty handling, redundancy, and adaptive learning—could generalize across domains.

Reliability, Explainability, and Adversarial Concerns: By the late 2010s, researchers recognized that fusion
systems in safety-critical domains required not only empirical accuracy but also transparency and robustness.
Explainable AI (XAI) techniques were explored to interpret multimodal fusion decisions, particularly in
healthcare and autonomous driving. Simultaneously, adversarial studies revealed vulnerabilities, such as
perturbations or physical artifacts that could mislead fused perception systems. This highlighted the need
for redundancy-driven architectures, formal verification of fusion pipelines, and design of fail-operational
strategies for safety-critical deployments.

Representative studies from this decade are summarized in Table 7, which highlights the methodologies,
fusion granularity, application domains, and technical contributions.

Table 7: Representative sensor fusion studies (2011–2020)

Reference
(Year)

Fusion
methodology

Fusion
granularity

Application
domain

Representative
contribution

Choi et al.
(2011) [52]

Hierarchical
fusion (RFID +

odometry)
Feature-level Indoor mobile

robots

Improved indoor
localization by

combining absolute
and relative sensors

Banos et al.
(2012) [63]

Multisensor
fusion for noise

reduction
Feature-level Human Activity

Recognition

Enhanced HAR
robustness by

integrating inertial
and contextual signals

Fagiano et al.
(2013) [65]

Kalman filter
extensions Data-level Airborne wind

energy systems

Real-time estimation
of wind states using
fused sensor streams

Chavez-Garcia
& Aycard
(2015) [51]

Ensemble of
classifiers

Decision/feature-
level

Autonomous
driving

Combined multiple
classifiers for robust
object detection and

tracking

Chen et al.
(2016) [66]

Multimodal
sensor network

with custom
fusion

hardware

Feature-level Road surface
monitoring

Low-cost, multimodal
fusion for pothole

detection

Guo et al.
(2017) [67]

Fault-tolerant
fusion scheme Data-level UAV navigation

Airspeed sensor fault
detection through
redundancy and

fusion

(Continued)
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Table 7 (continued)

Reference
(Year)

Fusion
methodology

Fusion
granularity

Application
domain

Representative
contribution

Tsinganos &
Skodras

(2018) [68]

Classifier fusion
(comparative

study)

Decision-
level

Wearable fall
detection

Empirical comparison
of sensor-specific vs.

fused classifiers

Barbier et al.
(2019) [69]

Statistical
model checking

Decision-
level

Autonomous
driving

Validation of fused
decision outputs

against formal safety
criteria

Maimaitijiang
et al.

(2020) [64]

Multiscale data
fusion with ML Feature-level Precision

agriculture

Crop monitoring by
integrating UAV,

satellite, and ground
sensors

To complement these representative studies, Table 8 presents a focused technical comparison of widely
used classical approaches—Extended Kalman Filters (EKF), Particle Filters (PF), Dempster–Shafer (D–S)
theory, and Bayesian inference—under challenging conditions such as non-Gaussian noise and conflicting
sensor evidence. This highlights the continued relevance of classical filters alongside modern learning-
based approaches.

Table 8: Comparative analysis of classical fusion approaches under challenging conditions

Aspect EKF vs. Particle Filter (PF) in
non-Gaussian noise

D–S Theory vs. Bayesian Inference
under sensor conflict

Model
assumptions

EKF assumes Gaussian noise and local
linearization; diverges in multimodal

distributions. PF models arbitrary
distributions through sampling.

Bayesian inference requires priors;
D–S assigns belief without precise

priors.

Noise handling
PF accommodates heavy-tailed and

multimodal noise; EKF fragile under
outliers.

Bayesian inference may overweight
conflicting likelihoods; D–S can
represent ignorance explicitly.

Robustness
PF robust under strong nonlinearities

if sufficient particles are used; EKF
brittle under nonlinearity.

D–S maintains robustness under
conflicting evidence; Bayesian updates
may yield counterintuitive posteriors.

Computation
EKF computationally efficient; PF

scales poorly with high-dimensional
states.

Bayesian inference efficient in
structured models; D–S expensive in

large frames of discernment.

Uncertainty
representation

EKF outputs covariance estimates; PF
yields posterior distributions (richer).

D–S distinguishes belief, plausibility,
and ignorance; Bayesian yields single

posterior.

(Continued)
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Table 8 (continued)

Aspect EKF vs. Particle Filter (PF) in
non-Gaussian noise

D–S Theory vs. Bayesian Inference
under sensor conflict

Best-Suited
applications

EKF: real-time navigation (SLAM,
GPS–INS) under Gaussian noise. PF:
UAV/UGV localization in cluttered,

uncertain environments.

D–S: heterogeneous, fault-tolerant
fusion (e.g., radar–camera–LiDAR).
Bayesian: structured domains with

reliable priors (e.g., GNSS–IMU
integration).

In summary, the 2011–2020 decade marked the transition from handcrafted, model-driven fusion
toward data-driven and learned fusion paradigms. Deep learning architectures enabled joint feature rep-
resentations across heterogeneous modalities, cooperative fusion expanded to multi-agent systems, and
application domains diversified beyond vehicles and robots to healthcare, agriculture, and infrastructure.
Despite these advances, classical methods such as Kalman filtering and Bayesian inference remained essen-
tial, particularly in constrained environments or where formal guarantees were required. The coexistence of
classical and AI-driven approaches underscores the versatility of sensor fusion, while ongoing challenges in
scalability, robustness, and verifiability continue to motivate research in the current decade.

4.5 Recent Advances: 2021–2025—Toward Robust and Scalable Fusion
Extending the deep learning–driven breakthroughs of the 2010s, sensor fusion research from 2021

onward has accelerated toward tackling real-world deployment challenges. Models are no longer expected
to perform well only in controlled datasets but must generalize across environments, sensor suites, and
tasks with minimal reconfiguration. This decade has also been marked by the emergence of transformer-
based architectures, context-aware dynamic fusion, and practical demonstrations of cooperative perception
in multi-agent systems. Fusion has become increasingly pervasive, appearing in domains as varied as
autonomous firefighting robots, UAV-based wildlife monitoring, intelligent transportation infrastructure,
and healthcare wearables.

Generalizability and Cross-Domain Adaptation: A central focus of this era is improving the robustness
and scalability of fusion models. Systems trained on one platform (e.g., a specific vehicle type or city) are
increasingly adapted to new conditions with minimal retraining, using transfer learning, domain adaptation,
and synthetic-to-real approaches. High-fidelity simulators are leveraged to generate rare or safety-critical
scenarios, with adaptation methods ensuring real-world applicability. Physics-informed neural networks
emerged as a hybrid approach, embedding sensor physics into learning pipelines to reduce data requirements
and enforce physical consistency.

Transformer-Based and Attention Mechanisms: Transformers and attention-based architectures became
central to fusion pipelines. Chitta et al. (2022) proposed TransFuser, a transformer-based model that
jointly encodes LiDAR and camera streams for autonomous driving [70]. These architectures enable
multi-task and cross-modal learning, allowing a single network to perform detection, segmentation, and
tracking simultaneously. However, they remain computationally heavy and require large training datasets.
HydraFusion (Malawade et al., 2022) extended this by incorporating attention-driven context selection,
dynamically weighting sensors depending on environmental conditions [71]. Such adaptive mechanisms
improve resilience but increase training complexity.
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Edge–Cloud Hybrid Fusion Architectures: The push toward deployment in connected and resource-
constrained environments led to hybrid strategies. Edge devices handle low-latency, safety-critical decisions
(e.g., obstacle avoidance), while cloud or roadside servers manage computationally intensive tasks such as
global route planning or cooperative perception. This split addresses both responsiveness and scalability,
though it introduces latency-management and bandwidth-allocation challenges.

Self-Calibration and Fault Tolerance: Autonomous systems now integrate self-diagnostic routines to
detect and respond to sensor degradation (e.g., blocked LiDARs, degraded cameras). Multi-sensor redun-
dancy allows systems to isolate and exclude faulty sensors or re-calibrate them dynamically. Tommingas et al.
(2025) demonstrated fusion of UWB and GNSS with ML-based uncertainty modeling, highlighting the need
for adaptable frameworks capable of self-healing in diverse environments [72].

In the domain of robust navigation, a GNSS/IMU/VO fusion framework with multipath inflation factor
has been proposed to explicitly mitigate the challenges of urban multipath interference. By leveraging real-
time IMU and VO inputs, the system dynamically adjusts GNSS weighting and adaptively updates VO
velocity variance within a robust extended Kalman filter. Field tests in dense urban areas demonstrated 63.4%
and 56.1% improvements in horizontal and 3D positioning accuracy, respectively, over conventional fusion
schemes [73]. This work highlights the importance of incorporating environment-aware weighting models
for next-generation positioning, navigation, and timing (PNT) systems. Beyond terrestrial navigation, recent
work has demonstrated the value of multi-sensor association for high-precision space target localization. By
fusing visible light and infrared detection with laser ranging under a Gaussian mixture TPHD framework,
this approach achieves great accuracy, outperforming binary star angular-only methods [74]. This highlights
how sensor fusion enables unprecedented precision in space situational awareness and orbital tracking.

Diversified Applications: Healthcare, smart cities, and environmental monitoring benefited significantly.
Rashid et al. (2023) developed SELF-CARE, a wearable fusion framework for stress detection, combining
multiple biosignals with context identification [75]. Hasanujjaman et al. (2023) fused autonomous vehicle
and CCTV camera data for smart traffic management [76]. In addition, advances in embedded ultra-
precision sensing have expanded the scope of sensor fusion to metrology and industrial domains. A
recent study introduced a fiber microprobe interference-based displacement measurement system capable
of measuring ranges up to 700 mm with subnanometer accuracy. Unlike conventional interferometers,
this approach enables compact, embedded measurements in confined spaces, supporting applications in
high-end equipment manufacturing and biomedical robotics [77]. Aguilar-Lazcano et al. (2023) surveyed
sensor fusion in wildlife monitoring, highlighting challenges of sparse data and field deployment [78]. These
illustrate how the principles of redundancy, adaptability, and interpretability are increasingly tailored to
domain-specific constraints. In intelligent transportation and scene understanding, multi-modal remote
perception learning frameworks have been introduced to integrate object detection with contextual scene
semantics. For example, a Deep Fused Network (DFN) combines multi-object detection and semantic
analysis, yielding improvement on SUN-RGB-D and on NYU-Dv2 compared to existing approaches [79].
These results underline the growing role of context-aware multimodal fusion for complex environments in
autonomous driving and robotics. Industrial monitoring and predictive maintenance are also benefiting from
self-supervised representation learning. A recently proposed multihead attention self-supervised (MAS)
model learns robust features from multidimensional industrial sensor data using contrastive augmentation
strategies. Applied to a real-world water circulation system, MAS improved anomaly detection performance
without reliance on large labeled datasets [80]. Such approaches demonstrate the promise of representation
learning in industrial sensor fusion for fault detection and equipment health monitoring.

Representative works from this period are summarized in Table 9, capturing the methodologies, AI/ML
integration, fusion granularity, application domains, and limitations.
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Table 9: Representative sensor fusion studies (2021–2025)

Reference
(Year) Fusion strategy AI/ML

integration
Fusion

granularity
Application

domain Limitations

Malawade
et al.

(2022) [71]

Context-aware
selective fusion

Attention-
based deep

learning

Feature
/Decision

Autonomous
driving

Training
complexity;

context detector
tuning

Zhang et al.
(2022) [81]

Hybrid
rule-based +

ML

Rules trigger
ML control Feature-level Robotics

(firefighting)

Limited
adaptability; false
alarm sensitivity

Chitta et al.
(2022) [70]

Transformer-
based
fusion

Transformer
networks

Deep feature
fusion

Autonomous
driving

Extremely data-
and

compute-intensive

Xiang et al.
(2023) [82]

Cooperative
multi-agent

fusion
N/A (survey) Multi-agent Connected

vehicles

Lack of datasets;
absence of unified

benchmarks
Ignatious

et al.
(2023) [83]

Multi-level
fusion pipeline

CNN-based
detection + rule

logic

Sensor
/Decision

Autonomous
driving

Static fusion
strategy; limited

adaptability

Rashid et al.
(2023) [75]

Context-aware
wearable fusion
(SELF-CARE)

Ensemble
models +

context ID
Feature-level

Healthcare
(stress

detection)

Requires
personalized
calibration;

context-labeling
overhead

Hasanujjaman
et al.

(2023) [76]

AV–CCTV
multi-source

fusion
Deep learning Feature-level Smart city

traffic

Bandwidth
overhead; privacy
risks with video

data
Aguilar-
Lazcano

et al.
(2023) [78]

ML-based
survey of

sensor fusion
N/A (review)

Feature
/Decision
(review)

Wildlife
monitoring

Sparse datasets;
limited annotated

field data

Liu et al.
(2024) [84]

Bird’s-eye-view
(BEV)

multi-task
fusion

Transformer-
based
ML

Multi-
task/multi-level

Autonomous
driving

BEV
transformation
errors at range;

flat-terrain
assumption

Tommingas
et al.

(2025) [72]

UWB + GNSS
with ML-based

uncertainty

Probabilistic
ML Sensor-level High-precision

positioning

Retraining
required for new

sen-
sors/environments

Key Trends and Challenges: The works in Table 9 reflect several defining directions. Transformer-
based models and attention mechanisms (e.g., TransFuser, HydraFusion) dominate high-performance fusion
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pipelines but remain resource-intensive. Context-aware frameworks demonstrate adaptability but raise
challenges in calibration and scalability. Application diversification is notable—ranging from autonomous
driving to stress detection and wildlife monitoring—yet many domains suffer from data scarcity and lack of
standardized benchmarks. Cooperative perception moved from conceptual discussions to initial real-world
demonstrations, though interoperability and evaluation metrics remain unresolved.

Another important theme is hybridization: combining learning-based adaptability with model-driven
rigor. Physics-informed neural networks, domain adaptation, and simulation-based training address limi-
tations of purely data-driven methods. Similarly, hybrid edge–cloud fusion architectures balance real-time
responsiveness with global situational analysis, though at the cost of latency management and secure
communication. Finally, fault tolerance and self-calibration have become indispensable, marking a shift
toward self-healing, resilient fusion pipelines capable of long-term deployment.

In summary, the 2021–2025 period marks the consolidation of deep learning and transformer-based
architectures, the practical emergence of cooperative fusion, and the diversification of sensor fusion into new
domains. The emphasis has shifted from achieving accuracy in benchmark datasets to ensuring robustness,
scalability, and adaptability in highly dynamic real-world conditions. These trends set the stage for future
research on verifiable, resource-efficient, and generalizable sensor fusion frameworks.

5 Mapping the Hierarchical Integrated Model with Contemporary Fusion Methods
Classical sensor fusion frameworks were remarkably forward-looking, often articulating layered capa-

bilities that exceeded the computational and sensing resources available at their time of conception. These
models established a conceptual hierarchy—signal acquisition, feature extraction, state estimation, decision-
making, and refinement—that continues to underpin modern multi-sensor fusion architectures. To assess
how contemporary systems align with these expectations, we map representative works in autonomous
navigation onto a level-wise framework, spanning three decades of research.

The mapping process involved systematic extraction of the operational pipeline from each selected
study. For each work, the sensor inputs, the fusion operations, and the resulting outputs were identified
and aligned with a hierarchical integrated model (see Fig. 1). In this model, Level 0 corresponds to
preprocessing and signal conditioning (e.g., filtering, synchronization, calibration); Level 1 captures per-
sensor or object-level estimation; Level 2 concerns scene-level integration (data association, global context,
or unified representations); Level 3 involves decision-making and control outputs; and Level 4 corresponds
to refinement and adaptivity.

The mapping in Table 10 consolidates representative studies across three decades to show how fusion
practices in the autonomous navigation domain have progressively aligned with the layered structure
of the JDL framework. At Level 0, early works employed handcrafted preprocessing pipelines, while
recent methods rely on modality-specific neural encoders for denoising and synchronization. At Level 1,
probabilistic inference and classical classifiers gave way to deep architectures such as BEVFusion, which
directly learn object-level representations from multimodal inputs. Level 2 has similarly evolved from rule-
based association and evidential reasoning toward unified spatial embeddings, such as occupancy grids and
bird’s-eye view projections, that support multi-task perception.
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Table 10: Mapping of JDL fusion levels to AI, ML, and DL-based approaches

JDL level AI-based methods ML-based methods Deep learning methods

Level 0—
Sensors/Preprocessing

Rule-based filtering,
calibration [41]

Feature selection,
statistical weighting [57]

CNN/autoencoder
preprocessing, modality

encoders [71]

Level 1—Object/Feature
refinement

Bayesian inference, D–S
reasoning [33,35]

SVMs, decision trees,
fuzzy logic,

RFID+ultrasonic
fusion [52]

Camera–LiDAR joint
detection, Transfuser,

BEVFusion [70,84]

Level 2—Situation
assessment

Rule-based scene
reasoning, evidential

fusion [43]

Consensus algorithms in
WSN, ensemble

tracking [49]

Learned scene
embeddings, occupancy

grids, BEV(Bird’s Eye
View) maps [69,84]

Level 3—Threat/Decision
Assessment

Supervisory control
(IVHS) [41]

Ensemble decision fusion
(HAR, fall detection) [68]

End-to-end decision
pipelines only

(HydraFusion, driving
intent), not implemented

through deep
learning [71]

Level 4—Process
refinement and control

Adaptive weighting,
supervisory

recalibration [47]
Online learning [51]

Rely on Statistical
methods for Uncertainty

prediction,
self-calibration [62,72]

In contrast, Levels 3 and 4 remain largely underdeveloped in deep learning pipelines. Whereas classical
and machine learning approaches introduced decision-level fusion, supervisory control, and adaptive relia-
bility discounting, contemporary deep networks typically collapse decision-making and process refinement
into end-to-end models without explicit reasoning layers. As a result, deep learning systems are effective at
perception but do not yet provide interpretable situation assessment or proactive impact evaluation. This
diagnostic gap highlights a structural divergence: while empirical accuracy has improved dramatically, the
modularity and transparency of classical models have been lost.

Three principal inferences follow from this mapping. First, there is a clear methodological progres-
sion: handcrafted features and Bayesian estimators in the 1990s and 2000s gave way to evidential and
hierarchical reasoning in the 2010s, and most recently to representation-centric deep fusion pipelines
such as HydraFusion and BEVFusion. Second, representational practice has shifted from object-centric
and feature-centric fusion toward spatially unified forms that directly support downstream tasks such as
detection, segmentation, and planning. Third, uncertainty modeling and validation have re-emerged as
central concerns, either through explicit probabilistic frameworks or through hybrid ML–classical pipelines
where learned uncertainty predictors feed adaptive filters.

A key implication is that while deep learning has advanced perception-oriented levels of fusion, it has
not extended the hierarchy upward into situation assessment or impact evaluation. This finding directly
motivates the discussion in the following section to reconcile the performance of modern end-to-end fusion
with the interpretability and rigor of classical frameworks. For better understanding, a corpus was drawn
from autonomous navigation, a domain where multisensor fusion has been both intensively researched
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and practically deployed. Early works focused on indoor mobile robots and Automated Guided Vehicles,
where modular sensor suites and structured environments enabled interpretable designs [38,52]. Over
time, emphasis shifted toward high-speed, safety-critical vehicular contexts requiring robustness to adverse
weather, dynamic traffic, and uncertain environments. Representative works include [47,51,69,71,84]. These
works exemplify the progressive alignment of practical implementations with the layered classical models.
The level-wise mapping is summarized in Table 11.

Table 11: Evolution of layer-wise fusion in the autonomous navigation domain

Paper (Year) Level 0—Sensors
/Preprocessing

Level 1—
Object/Feature

refinement

Level 2—Situation
assessment

Level 3—
Threat/Decision

assessment

Level 4—Process
refinement and

control

Cao & Hall
(1998) [38]

Sonar→ distances;
camera→ centroids;
encoder→ ΔS , Δθ
(with noise model).

Concatenated
state vector

from multiple
sensors

—

Neural network
outputs

steering and
wheel velocities

No explicit
uncertainty
modeling or

adaptive
refinement.

Coué et al.
(2002) [47]

Odometry→
displacement;

gyroscope→ angular
rate; vision→

landmarks.

Bayesian pose
estimation

fusing GPS,
odometry, and

gyroscope

Digital map priors
fused with

vision-derived
landmarks

—
Adaptive weighting

for unreliable
sensors.

Klausner et al.
(2007) [57]

Audio→ spectral
features; images→

Haar-like gradients.

Per-sensor
classifiers using

LS-SVM

Feature fusion via
Genetic

Algorithms;
cross-modal

selection

Decision fusion
via Dempster–

Shafer
theory

Adaptive switching
between feature-

and decision-level
fusion.

Choi et al.
(2011) [52]

RFID decoding→
coordinates;

ultrasonics→
time-of-flight ranges.

Global Pose
Estimation

(RFID) + Local
Environment

Cognition
(ultrasonics)

Hierarchical
matching aligns
local ultrasonic

maps to
RFID-based global

pose

Refined pose
used for robot

navigation

Iterative feedback
between global and

local estimators.

Chavez-Garcia
& Aycard
(2016) [51]

LiDAR→ point clouds;
radar→ velocity

targets; camera→
HOG features.

Decision fusion
using

Mahalanobis
distance

Multi-object
tracking via

MCMC association
—

Online belief
updates and

reliability
discounting.

Barbier et al.
(2019) [69]

Sensor data→ per-cell
occupancy

probabilities.

Monte Carlo
(particle)

tracking of
occupancy over

time

Bayesian per-cell
fusion for future
occupancy maps

Risk thresholds
for collision
avoidance
decisions

KPI checks with
statistical model

validation.

HydraFusion
(2022) [71]

CNN encoders for each
modality

Intermediate
feature fusion

at decision
layers

Driving context
inferred from
multimodal

representations

Planning and
tracking tasks

conditioned on
context

—

(Continued)
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Table 11 (continued)

Paper (Year)
Level 0 —

Preprocessing / Signal
Conditioning

Level 1 —
Object-Level
Estimation

Level 2 —
Scene-Level
Integration

Level 3 —
Decision and

Control

Level 4 —
Refinement and

Adaptivity

BEVFusion
(2022) [84]

Camera and LiDAR
encoders produce

feature maps

Features
projected into

Bird’s-Eye View
(BEV) grids

Concatenated BEV
representation for

unified scene
understanding

Multi-task
heads for

detection and
segmentation

—

Xiang et al.
(2022) [82]

YOLOv5 generates
semantic regions

Semantic point
cloud from
fused labels

DBSCAN
clustering for 3D
bounding boxes

and classes

Broadcast
blind-spot

warnings to
other vehicles

—

Tommingas
et al.

(2025) [72]

UWB multilateration;
GNSS→ ENU

coordinates

Per-sensor
position

estimates with
diagnostics

Extreme Gradient
Boosting

regression for
integrated position

Adaptive KF
produces final

fused state
—

Three principal inferences emerge from this mapping. First, a methodological progression is evident:
early systems emphasized handcrafted features and direct neural control [33] or structured Bayesian
inference [47] while mid-era work incorporated evidential and hierarchical reasoning [57,52] and recent
contributions prioritize deep, representation-centric pipelines such as BEVFusion [84]and HydraFusion [71]
or hybrid ML–classical models like [72]. Second, representational practice has shifted away from object
and feature-centric fusion and towards spatially unified forms like dynamic occupancy grids and Bird’s-
Eye Views that support simultaneous detection, segmentation, and planning. Third, uncertainty modeling
and validation have re-emerged as central concerns: either through explicit probabilistic and evidential
frameworks [51,69] or through learned uncertainty predictors feeding classical estimators [72].

Another diagnostic gap exposed by this mapping is that many deep fusion architectures collapse
classical Level 0–Level 4 distinctions into monolithic networks. These systems interleave preprocessing,
per-sensor encoding, scene integration, and decision heads, making it difficult to isolate errors or provide
component-level guarantees. While empirically effective, this consolidation impairs explainability and makes
fault localization harder. Moreover, comparability and certifiability also become limited as safety-critical
validation requires modular evidence. To reconcile the empirical power of modern end-to-end fusion
with the interpretability and rigor of classical frameworks, we propose adopting level-aware practices: (1)
Publish per-level diagnostics and artifacts alongside end-to-end metrics. For instance, Level 0 signal quality
measures, Level 1 covariances, Level 2 association maps, Level 3 decision triggers (2) Design explicit interfaces
within learned pipelines like exposing calibrated per-sensor estimates and uncertainty tensors (3) Develop
benchmark suites stressing level-specific degradations of sensor noise, occlusion and association ambiguity
(4) Pursue hybrid architectures where learned models provide uncertainty estimates or feature embeddings
to principled filters and planners, as demonstrated in recent UWB–GNSS fusion with ML-informed adaptive
Kalman filtering.

These practices offer a pathway to preserve the accuracy and adaptability of modern learning-based
fusion while restoring the modular transparency, comparability, and verifiability envisioned in the original
hierarchical models. This synthesis illustrates that the conceptual clarity of classical architectures remains
essential, even as fusion methods evolve into highly integrated deep networks.
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6 Future Research Directions: The Way Forward for Sensor Fusion
The preceding mapping highlights a persistent gap in sensor fusion research: while Levels 0–2 of

the JDL framework involving signal conditioning, object estimation, and scene-level integration are well
represented in modern methods, higher-level reasoning of Levels 3 and 4, remains underdeveloped. Current
deep learning pipelines excel at perception but provide limited support for situation assessment like inter-
object relationships, intent prediction. and impact/threat assessment. The lack of this involves risk analysis
and proactive decision-making. This limitation is exacerbated by the scarcity of hierarchical datasets
encompassing all JDL levels, preventing systematic training and benchmarking of higher-level inference.
Consequently, although deep fusion models achieve high empirical accuracy, their opacity and lack of causal
reasoning hinder deployment in safety-critical contexts.

6.1 Explainability and Trustworthiness
To address this limitation, explainable AI (XAI) has become central to sensor fusion research. By

exposing how models approximate higher-level reasoning, XAI can bridge the trust gap between opaque
neural fusion and stakeholder accountability. In autonomous driving, trustworthy deployment hinges on
transparent fusion pipelines with interpretable decision-making at multiple abstraction levels [11]. Similarly,
in medical contexts, opaque multi-modal fusion undermines clinical reliability; interpretable frameworks
are increasingly recognized as prerequisites for adoption [12]. The absence of hierarchical, explainable fusion
is therefore both a technical and socio-ethical barrier. Recent surveys [10] underscore that progress remains
incremental, and much work is needed before interpretable and certifiable fusion frameworks can be reliably
deployed in safety-critical environments.

6.2 Future Research Priorities
Several research priorities emerge for bridging this gap:

• Unified evaluation frameworks and context-aware benchmarks are needed to standardize interpretabil-
ity metrics in autonomous domains.

• Computationally efficient real-time XAI methods must be developed to ensure safety-critical explain-
ability without introducing decision delays.

• Causal reasoning integration should illuminate cause–effect relations in multimodal fusion, improving
transparency and prediction of rare events.

• Scalable fusion algorithms are required to process heterogeneous, high-volume sensor data streams
while maintaining robustness and interpretability.

• Ethical and regulatory compliance must be embedded into design aligning with global frameworks.
• Large Language Models (LLMs) may serve as adaptive explanation translators to generate stakeholder-

specific justifications of fusion outputs.
• Adversarial robustness and security must be prioritized to guard against spoofing, sensor jamming,

and multimodal adversarial attacks.
• Human–AI collaboration and training will be critical to build trust, requiring education of engineers,

regulators, and end-users in interpreting sensor fusion pipelines. Collectively, these directions define a
roadmap toward transparent, resilient, and standardized sensor fusion for autonomous systems.

6.3 Neuromorphic Fusion as a Future Paradigm
Beyond deep learning, neuromorphic sensor fusion offers a promising path toward energy-efficient and

inherently interpretable models. Ceolini et al. (2020) introduced one of the first multimodal neuromorphic
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benchmarks, integrating event-based vision (DVS) with electromyography (EMG) signals [85]. Using delta
modulation, continuous EMG signals were converted into spike trains compatible with spiking neural
networks (SNNs), while DVS provided native event-driven input. Fusion was achieved via late concatenation
in the penultimate layer, followed by retraining of the output classifier across neuromorphic hardware
platforms (Intel Loihi, ODIN+MorphIC). The released dataset comprised 15,750 samples from 21 subjects
performing five static hand gestures, making it a pioneering benchmark for multimodal neuromorphic
fusion. Results showed accuracy comparable to GPU baselines, while achieving energy-delay product (EDP)
improvements of up to 600× on MorphIC and 30–50× on Loihi. Although inference latency increased
modestly, the efficiency gains highlight the feasibility of neuromorphic fusion for embedded, low-power
autonomous platforms.

This study opens several technical directions for neuromorphic fusion. First, encoding fidelity remains
an open challenge: spike conversion from continuous signals risks discarding fine-grained information,
motivating adaptive or learned encoding schemes co-designed with SNN architectures. Second, hardware–
algorithm co-design is critical: current neuromorphic platforms face constraints such as limited neuron
counts, fixed precision, and inefficient crossbar operations. Progress will require sparsity-aware SNN topolo-
gies and novel hardware primitives capable of handling dense multimodal streams. Third, standardized
benchmarks are urgently needed. While Ceolini’s dataset is valuable, broader benchmarks reflecting dynamic
driving, UAV navigation, or healthcare monitoring are necessary for systematic evaluation across modalities
and platforms.

Explainability and Security in Neuromorphic Fusion: Neuromorphic systems also offer opportunities
for explainability and robustness. The temporal and event-driven nature of SNNs makes causal reasoning
more tractable, as spike timing and event sequences can be directly linked to decision outcomes. Developing
XAI tailored for neuromorphic pipelines could deliver transparent reasoning for safety-critical systems such
as AV perception or prosthetic control. Security is equally pressing: while neuromorphic fusion may resist
conventional adversarial perturbations, it introduces new vulnerabilities such as spoofed event streams,
requiring adversary-aware design and validation.

Generalization Across Domains: A key long-term challenge is extending neuromorphic fusion
beyond static benchmarks to dynamic, heterogeneous domains. Late-fusion architectures demonstrated
for DVS+EMG can be generalized to LiDAR, radar, inertial, and acoustic signals, supporting low-latency,
always-on fusion in energy-constrained platforms. Hybrid pipelines—where neuromorphic encoders
perform low-level, energy-efficient fusion before passing to deep learning or symbolic reasoning modules—
could combine efficiency with semantic richness. Such hybridization points toward a future in which
neuromorphic front-ends complement AI-driven back-ends, delivering scalable, interpretable, and trust-
worthy sensor fusion for autonomous systems.

In summary, future research must simultaneously advance the explainability of classical deep learn-
ing fusion systems and explore emerging paradigms such as neuromorphic computing. Together, these
trajectories aim to reconcile the empirical success of modern AI with the interpretability, efficiency, and
trustworthiness demanded by safety-critical autonomous deployments.

7 Conclusions
This survey set out to provide a critical and structured examination of sensor fusion research spanning

more than three decades, with the dual objectives of tracing the methodological evolution of fusion
techniques and assessing their alignment with classical hierarchical models. These objectives have been met
by systematically reviewing representative studies across different periods, analyzing their methodologies,
applications, and limitations, and mapping them to the JDL framework.
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The survey has documented how early work in the 1990s established the foundational principles of
probabilistic inference, neural network–based fusion, rule-based systems, and application-specific frame-
works. These studies demonstrated the feasibility of multi-sensor integration under uncertainty, albeit within
constrained computational and application settings. The review of the 2000s highlighted the maturation
of probabilistic filters, the emergence of distributed consensus schemes, and the first uses of machine
learning ensembles for fusion, marking a shift from theoretical constructs to robust, domain-specific
implementations.

In analyzing the period from 2011 to 2020, the survey has shown how deep learning fundamentally
transformed sensor fusion by enabling scalable, feature-level integration of high-dimensional multimodal
data. Benchmarks such as nuScenes, Argoverse, and OPPORTUNITY were shown to play a pivotal role in
standardizing evaluation and accelerating progress, particularly in autonomous driving and human activity
recognition. The discussion also emphasized how decision-level ensembles, cooperative fusion concepts, and
robustness studies broadened the applicability of fusion beyond narrowly engineered pipelines.

For the most recent period, from 2021 onward, the survey has demonstrated how research is moving
toward real-world deployment and scalability. Contributions such as transformer-based fusion models,
physics-informed learning, hybrid edge–cloud architectures, and cooperative vehicle–infrastructure systems
reflect an emphasis on adaptability, fault tolerance, and generalization. By including representative studies
across emerging application domains such as healthcare, smart cities, and environmental monitoring, the
survey has highlighted the growing breadth of sensor fusion research.

The mapping exercise comparing classical hierarchical models to contemporary methods has achieved
the objective of clarifying both continuity and divergence. It showed how classical pipelines, with explicit
level-wise structure, anticipated many capabilities that are now realized in modern deep fusion systems, while
also exposing critical gaps at higher JDL levels where reasoning, intent prediction, and impact assessment
remain underdeveloped.

Through this systematic review, the survey has achieved its intended goals. It has established a
coherent historical narrative, provided a comparative analysis of methods and benchmarks, and identified
both strengths and limitations across decades of research. It has also articulated the open challenges of
explainability, robustness, and trustworthiness, thereby framing the agenda for future research. In doing so,
this work contributes not only a consolidation of prior knowledge but also a roadmap for advancing sensor
fusion toward transparent, scalable, and safety-critical deployment in autonomous systems.
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