@ gon}puters, Materials & Tech Science Press
ontinua ;/

Do0i:10.32604/cmc.2026.071469

ARTICLE Check for

updates

Syntactic and Socially Responsible Machine Translation: A POS and DEP
Integrated Framework for English-Tamil

Rama Sugavanam” and Mythili Ramu

Department of Information Technology, School of Computer Science and Engineering, SRM Institute of Science and Technology,
Ramapuram Campus, Chennai, India

*Corresponding Author: Rama Sugavanam. Email: rama.sugavanam@gmail.com

Received: 06 August 2025; Accepted: 06 January 2026; Published: 10 February 2026

ABSTRACT: When performing English-to-Tamil Neural Machine Translation (NMT), end users face several
challenges due to Tamil’s rich morphology, free word order, and limited annotated corpora. Although available
transformer-based models offer strong baselines, they compromise syntactic awareness and the detection and man-
agement of offensive content in cluttered, noisy, and informal text. In this paper, we present POSDEP-Offense-Trans,
a multi-task NMT framework that combines Part-of-Speech (POS) and Dependency Parsing (DEP) methods with
a robust offensive language classification module. Our architecture enriches the Transformer encoder with syntax-
aware embeddings and provides syntax-guided attention mechanisms. The architecture incorporates a structure-aware
contrastive loss that reinforces syntactic consistency and deploys auxiliary classification heads for POS tagging,
dependency parsing, and multi-class offensive detection. The classifier for offensive words operates at both sentence and
token levels and obtains guidance from syntactic features and formal finite automata rules that model offensive language
structures-hate speech, profanity, sarcasm, and threats. Using this architecture, we construct a syntactically enriched,
socially annotated corpus. Experimental results show improvements in translation quality, with a BLEU score of 33.5,
UAS/LAS parsing accuracies of 92.4% and 90%, and a 4.5% F1-score gain in offensive content detection compared with
baseline POS + DEP + Offense models. Also, the proposed model achieved 92.3% in offensive content neutralization,
as confirmed by ablation studies. This comprehensive English-Tamil NMT model that unifies syntactic modelling
and ethical filtering—laying the groundwork for applications in social media moderation, hate speech mitigation, and
policy-compliant multilingual content generation.

KEYWORDS: POS-aware NMT; dependency parsing; syntax-guided attention; multi-task learning; offensive language
detection; offensive language neutralization; English-Tamil neural machine translation

1 Introduction

The emergence of multilingual digital platforms and user-generated content has accelerated the demand
for reliable and culturally sensitive machine translation (MT) systems. India is a linguistically diverse nation
that encounters several language-related challenges. Although the country’s linguistic landscape is vast, it
also encompasses numerous low-resource languages and dialects. Among these languages, Tamil, one of the
foremost classical South Indian languages, with complex morphology and rich syntactic structure, presents
one of the most difficult cases for precise NMT. English-Tamil translation is challenging due to the contrast-
ing linguistic typology: English follows a subject-verb-object (SVO) word order and exhibits low inflection,
whereas Tamil employs a subject-object-verb (SOV) order, high inflection, and agglutinative morphology.

® Copyright © 2026 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2026.071469
https://www.techscience.com/doi/10.32604/cmc.2026.071469
mailto:rama.sugavanam@gmail.com

2 Comput Mater Contin. 2026;87(1):97

State-of-the-art NMT systems, such as Transformer-based models [1], mBART [2], and mT5 [3], demon-
strate remarkable improvements in high-resource language pairs. However, their reliability significantly
degrades for English—Tamil translation, particularly when processing social media content that is often code-
mixed (e.g., Tanglish), cluttered, noisy, or offensive. Due to differences in syntactic structure, these models
find it difficult to translate into divergent language pairs.

Another prominent emerging issue is identifying highly offensive toxic content, and NMT systems
trained on large web-scale datasets often translate harmful content without adherence. While some prior
work has attempted post hoc filtering or adversarial training, these methods lack linguistic granularity and
fail to identify implicit, structure-dependent offensive content. For example, the sentence: “You people are
a disease” may be grammatically correct, yet it is contextually toxic. To overcome such challenges, there is
a need for a model that integrates offensive language detection and rewrites directly into the translation
pipeline—with a syntactically grounded mechanism for ethical filtering.

In this paper, we propose PoOSDEP-Offense-Trans, a novel syntax-aware, ethically informed, multi-
tasking NMT framework tailored for English-Tamil translation. The architecture enriches the input
representation with PoS and dependency parsing features and jointly trains the model on translation,
syntactic tagging, and fine-grained offensive-language classification. During translation, it detects offensive
content at both the sentence and token levels. Based on the detection, where applicable, it rewrites the
sentence using a masked language model to preserve semantic meaning while reducing toxicity. To optimize
this multi-objective training paradigm, we employ gradient normalization (GradNorm) to balance task
losses dynamically.

The rest of this paper is organized as follows: Section 2 discusses related work; Section 3 describes the
proposed model and methodology; Section 4 explains the dataset and annotation strategy; Section 5 presents
the experimental results; and Section 6 concludes with future research directions.

2 Related Works

NMT for English-Tamil presents challenges due to Tamil's morphological richness and syntactic
divergence. Traditional statistical and phrase-based systems are limited in modeling agglutinative struc-
tures. Recent neural models, such as Transformer-based architectures [1] and BPE-enhanced NMT [2],
have improved translation quality; AI4Bharat’s IndicTrans [3] advanced translation for Indian languages,
including Tamil, through multilingual training. Meta’s NLLB model [4] extended to support multilingual
zero-shot translation for more than 200 languages, including Tamil.

Neuro-symbolic methods have been introduced to address semantic fidelity in low-resource settings,
particularly in sensitive domains, such as child-oriented content [5]. EnTam v2.0 (Charles Univer-
sity/UFAL) [6], an English-Tamil parallel corpus annotated across multiple domains-Bible, cinema, and
news. These methods fail to consider syntactic guidance.

Linguistic features are incorporated into the encoder input [7] to improve translation. Applying
Graph Convolutional Networks (GCNs) to dependency trees improves translation in morphologically rich
languages [8]. Later, Syntax-aware attention with structural bias was proposed [9] to improve transla-
tion quality.

Recent studies have extended syntax integration using tree-based and hierarchical models, employing
a tree encoder [10] with attention-head-aware translations. Following tree encoders, hierarchical syntax
modules [11] were suggested for morphologically complex languages. Despite these variations, English-Tamil
translation remains underexplored. The proposed model addresses this gap by embedding syntactic features
in both the encoder and decoder components.
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Offensive language detection in culturally sensitive regions is crucial to address the proliferation of toxic
discourse on digital platforms. The HASOC 2019 shared task [12] and DravidianCodeMix 2021 [13] have
contributed annotated datasets for offensive language classification. YouTube comments are annotated for
English, Tamil [14,15], and mixed-code texts [16], and they are classified as containing hate and profanity.

Toxicity based on religion, caste, and gender-based hate abuses is benchmarked by [17] for region-based
offense detection. ANSR@DravidianLangTech 2025 [18] achieved macro-F1 scores over 0.73 using cost-
sensitive learning. Keyword-level filtering methods [19] and post-editing strategies have been attempted,
but lack deep syntactic or semantic integration, and various offenses require attention. The proposed model
uniquely performs multi-class offensive classification within the NMT framework. Table 1 highlights existing
syntax- and toxicity-aware MT approaches, whereas the proposed POSDEP-Offense-Trans unifies syntactic
biasing and offensive-content handling within a single multitask MT framework.

Table 1: Comparison of existing approaches with the proposed POSDEP-Offense-Trans Model

Toxici
Syntax modeling Attention bias . ty Integration
Approach . .. mitigation .
mechanism application with MT
strategy
Uses constituency ~ No explicit bias term; _
Tree-to- . Syntactic
parse tree on the structural encoding
Sequence 1. , . None enhancement
source side via the influences attention
NMT [20] i only
tree encoder internally
Dynamically re-learns ~ Adjusts attention _
, , . Inference-time
No syntax attention weights to during inference .
ReSeTOX [19] ) . . adaptation on
modelling suppress toxicity when toxicity is
) top of base MT
signals flagged
Pipeline to detect Post-processin
_ No syntax No explicit syntactic ~ and mitigate added P 5
MinTox [21] ) . . without
modelling bias toxicity at .
. . retraining
inference time
pushes the model to
POS + focus more on _ _ Fully
. Joint offensive .
Proposed dependency- grammatically related . integrated—
. _ . classification +
POSDEP- guided bias terms words using L syntax and
) . neutralization head A
Offense-Trans  introduced into part-of-speech and . . toxicity handled
. ) during training T
attention dependency parsing inside MT
information

Multi-task learning (MTL) enables shared representations across tasks, such as translation, tagging,

and classification [22] showed improvements through joint learning of syntax and translation. Adapter-
based multitask training further generalized across benchmarks [23]. Loss-balancing techniques, such as
GradNorm [24] and uncertainty weighting [25], stabilized convergence in multi-head architectures.
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3 Architecture and Methodology

In this paper, we propose PoSDEP-Offense-Trans, a unified multi-tasking Transformer-based architec-
ture designed to improve English-to-Tamil neural machine translation through syntactic supervision and
offensive content understanding. The model jointly performs:

«  English-to-Tamil translation

o PoS tagging

« Dependency parsing

«  Offensive content classification

This multi-tasking structure improves generalization and robustness, especially in morphologically rich
and socially sensitive contexts.

3.1 Overview of the Proposed System

At its core, the architecture is built on the multilingual IndicTrans2 Transformer model, which supports
multiple Indian languages, including Tamil. We enhance the base model with syntactic and semantic signals
derived from PoS tags and dependency (DEP) relations. Further, we introduce an auxiliary task of multi-
class offensive content classification, thereby allowing the model to avoid or appropriately translate ethically
sensitive content.

Each input token is a combination of four distinct embeddings:

i = Eqok[i] + Epos [i] + Edep [i] + Eposition [i] v
where:

o Eik [i] is the token embedding obtained via a SentencePiece tokenizer trained with 32 K merge
operations.

o Ey [i] is a learned embedding corresponding to the POS tag assigned to the token (from spaCy for
English and ThamizhiUD for Tamil).

+  Egep [i] corresponds to the dependency relation of the token.

»  Eyosition [i] is a standard sinusoidal positional encoding used in Transformer architectures.

This architecture enables joint optimization of linguistic accuracy and social appropriateness, as shown
in Fig. L.

This enriched representation enables the encoder to process both the sentence’s surface form and its
underlying syntactic structure. The encoder comprises 12 Transformer layers, each containing self-attention
and feed-forward sublayers, augmented with syntax-guided bias terms. The decoder structure is similar and
includes masked self-attention and cross-attention to the encoder outputs, enabling Tamil translation with
teacher forcing during training and the sequential production of translated tokens.

Three additional output heads are introduced:

o A PoS tag predictor trained using cross-entropy loss on PoS annotations.
o A dependency parser using biaffine classifiers to predict head-dependent relations.
o A multi-class classifier for offensive content categories: hate-speech, profanity, sarcasm, and threats.

The scope here has been restricted to four categories based on the high-prevalence corpora and the
availability of annotated data. Although offensive language can vary in intensity (e.g., mild vs. strong
profanity, implicit vs. explicit hate), these four categories ensure both data quality and balanced coverage,
supporting a stable baseline and enabling more fine-grained taxonomies in future work.
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Figure 1: Overall architecture

3.1.1 Syntax-Guided Attention

This component further empowers the conventional Transformer self-attention mechanism by integrat-
ing syntactic knowledge, specifically PoS and dependency relations, guiding attention toward linguistically
significant tokens. The Transformer encoder-decoder framework utilizes stacked self-attention and feed-
forward layers to model long-range dependencies without recurrence [10]. For an input sequence X = {x,
... X7}, token embeddings are first augmented with sinusoidal positional encodings to yield the final
embeddings. The scaled dot-product self-attention is then computed as:

Attention (Q, K, V') = softmax ( QKT) Vv (2)
> b \/Ek

In Eq. (2), Q, K, and V are linear projections of the hidden states, and di is the key dimension.
When stacking multi-head variants of this operation, the model attends to information from multiple
representation sub-spaces.

To ensure the attention is syntax-aware, two bias terms are derived from PoS tag relationships and
dependency arcs. Then the attention is modified as:

QK™ + aB s

Attention (Q, K, V) =so max(—
( ) = soft 7.

+ Bpos (i ) +Bdep(i,j)) 3)

where:
Byos(i, j) is a learned scalar bias depending on the pair of PoS tags for tokens i and j.
Bgep(i, j) is higher for syntactic head-dependent or sibling pairs based on the dependency tree.
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These biases guide the model to align syntactically related tokens far more strongly by preserving
grammatical structure across source and target languages.

3.1.2 Syntax-Aware Contrastive Learning with Offense Classification

For each input, representations from context-aware attention are aligned with their PoS/DEP tags and
scored, enabling the model to differentiate between classes. For example, the model can distinguish between
an insult as an object and the same word as a part of figurative or general speech.

Given a sentence z and a syntactic variant z/, we require that their embeddings should be closer
in representation space than unrelated sentences. This contrastive learning encourages the encoder to
generalize across syntactic variations while discriminating against irrelevant content, thereby improving
robustness to stylistic shifts and offensive language. The loss function for this contrastive learning is defined
in Eq. (4).

exp(sim(z,2') /7
X exp(sim(z1, 2) [7)

Lcp = -log (4)
Z: Syntactic variant of x, e.g., with clause reordering or passive conversion.

zi: Distractor sentence (negative sample).

7: Temperature hyperparameter.

This loss improves structural robustness in encoder representations.

3.1.3 Multi-Task Objective

The total training loss combines translation and auxiliary objectives that are jointly minimized as
follows:

Lrotar = MLyt + A2 Lpos + A3 Lpep + AaLoffense + As Lcontrast (5)

where,

o Lyr—is the standard cross-entropy loss for token-level translation.

o Lpos—is the loss for POS tag prediction.

o Lppp—includes head arc prediction and label classification using a biaffine attention-based parser.
o Lofense—is the categorical cross-entropy loss over offensive labels.

o Lcontrast—1is the syntax-aware contrastive loss described above.

Dynamic weight tuning is implemented using GradNorm [24]. To maintain equal gradient norms, the
weights are adjusted during training. This strategy enables the model to learn context, translate fluently given
the syntax, and detect offensiveness without sacrificing accuracy on any individual task.

Our multi-task setup is trained on a mixed dataset combining parallel corpora with syntactic anno-
tations and offensive labels. The learning rate is scheduled using an inverse-square-root decay schedule,
and dropout is applied at each sublayer. Training is conducted on 4x A100 GPUs with mixed precision for
20 epochs.

When combined and implemented, these enhancements position the model to outperform traditional
NMT systems in low-resource, syntactically flexible, and socially nuanced translation tasks, such as English-
to-Tamil with offense mitigation.
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In our setup, we train five tasks: translation, PoS tagging, dependency parsing, offensive classification,
and contrastive learning. Each of these tasks differs in scale and difficulty.

When we apply GradNorm:

o The translation task remains the primary task (highest A, = 1.0).

o The PoS and dependency tasks are computed and weighted to capture the syntax efficiently without
impacting the model.

o The offensive classification head, while important, is down-weighted at an acceptable level to reduce
noise and overfitting on sparsely labelled data.

» The contrastive learning head is lightly weighted but still contributes to semantic stability and robustness.

This automatic balancing leads to stable training and better convergence across all tasks, ultimately
improving generalization to syntactically varied and socially sensitive English-Tamil inputs. Table 2 presents
the relative gradient values for the translation task, the normalized loss, and the final learned weight values.

Table 2: Learned task gradients, losses, and weights (1)

Task Gradient Relativeloss Final A value
Translation (NMT) 1.00 1.00 1.00
POS tagging 0.68 0.94 0.75
Dependency parsing 0.55 0.88 0.60
Offensive classification 0.92 0.70 0.50

So, final recommended A values using GradNorm: A, = 1.0, A, = 0.75, A3 = 0.60, A4 = 0.50, A5 = 0.45.

3.2 Offensive Language Classification Head

The offensive language classification component of the POSDEP-Offense-Trans model is designed to
identify and categorize offensive content during English-to-Tamil translations. In contrast to traditional
binary detection approaches that invariably classify content as offensive or non-offensive, our model adopts
a multi-class framework, enabling differentiation among categories of offensive language. This framework
includes:

o Hate Speech (racist, ethnic, and communal slurs)

»  Profanity (vulgar, explicit language)

« Sarcasm (indirect, mocking tone with offensive implications)
o  Threats (direct or implied harm, violence)

This multi-class approach is essential in multilingual and multicultural contexts for languages like Tamil.
For example, Tamil is a language in which offensive expressions vary widely across categories and require
careful handling to maintain the ethical integrity of machine-translated output.
Architecture of the Classification Head

The offensive classification head is attached to the Transformer encoder and operates on the sentence-
level representation produced by the final encoder layer. The architecture comprises the following layers:
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o Pooled Encoder Representation: A mean-pooling operation is applied across the encoder tokens. Its
embeddings are defined as:

h = h; (6)

|~

n
i=1
where F; is the token embedding for token i in the sentence of length .

«  Feedforward Network: The pooled vector / is passed through a fully connected layer followed by a ReLU

activation:
h' = ReLU(Wy.h + by,) (7)
« Softmax Output Layer: The output is fed into a softmax classifier to predict one of the predefined offensive
classes:
9 = softmax(Wo - h’ + bo) (8)

» Loss Function
The model is trained using categorical cross-entropy loss:

C
LOffense == Z Ye log()?) (9)

c=1

where by

C: number of offensive categories

¥c: one-hot encoded ground truth label
y: predicted probability for class ¢

Offensive classification is trained jointly with translation and syntactic tasks using multi-task learning.
The corresponding task weight, A4, in the composite loss function is dynamically tuned via GradNorm. The
offensive head learns class-discriminative syntactic and semantic features, allowing the model to distinguish
between various racist, ethnic, and communal slurs, hate terms, vulgar language, implicit sarcasm, and
explicit threats.

3.3 Finite-State Modelling of Offense Classes

To further enhance interpretability and rule-based validation in offensive content classification, we have
defined a grammar-based structure for each offensive language category within our model—namely, Hate
Speech, Profanity, Sarcasm, and Threats. These aid in identifying syntactic and semantic structures associated
with each type of offensive expression and support training supervision, contrastive loss alignment, and post-
inference interpretability. Representation of these grammar rules is defined using automata theory in Table 3.
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Table 3: Finite automata state transitions and grammar rules for offensive language categories

Example

Category Transitions (Input triggers Grammar pattern
gory (Inp ggers) p sentence

Why offensive

S0 — SI: Group noun (e.g.,

“People from that POS: “people”
“people”) S1 — S2: Hate verb ~ Demonstrative NP + copre from tha peop'e as

Hat back d bject; DEP:
B A el s
p Metaphor/slur or harmful Metaphor/Slur. o . Y
. . nation. intent.
intensifier.
Strong
S0 — SI: Subject pronoun (“I”) Imperative + “I'will beat the  nouns/adjectives,
Profanity = S1 — S2: Curse verb S2—»ST:  Destination + Noun  hell out of you, curse words
Target noun (“idiot”). insult. idiot” detected via PoS
tagging.
DEP indi
S0—S1: Compliment or “Really, only a '1nd1cates a
, . L mismatch
exaggeration S1 — S2: Irony or Compliment + genius like you
Sarcasm L . . between tone and
contradiction S2 — ST: Negation/Irony + Cue.  can think such content (e
Emotive cue or tag question. ways.” a
sarcasm).
S0—S1: Modal verb (“will”) « . Conditionals +
. We will see L
S1-S2: Threatening verb Pronoun + Modal + verbs indicate
Threats « . L whether you
(“survive tonight”) S2 — ST:  Threat Verb + Target. . o harm; DEP
survive tonight” . ,
Target or context. identifies threat.

These grammars function as structured representations of syntactic patterns typical of offensive expres-
sions, enabling the neural model to capture nuanced linguistic signals. Based on parts of speech (e.g., nouns,
verbs, modals) and dependency relations (e.g., subjects, objects), a rule-based approach is used to identify
hate speech, profanity, sarcasm, and threats. During training, these formal structures enhance supervision
and guidance for contrastive learning and for aligning offensive classes with specific syntactic templates.
These general grammar rules for the classifications are represented as finite automata, as shown in Fig. 2.

The grammar rule for offensive classification is defined as
(i) Hate Speech

S0 — S1 (SUBJECT N/PRO) — S2 (PREDICATE NEGATION) — S3 (TARGET GROUP/ADJ_
PHRASE) — ST

Slstate is defined as SUBJ, the speaker is referring to a subject that’s either a noun phrase (NP_SUBJECT)
or a pronoun (PRON_SUBJECT). S2 transition is marked as NEGATED_VERB—The predicate (verb
phrase) has a negation marker such as don’t, can't, shouldn't, or explicitly negative verbs like ban, exclude.
S3 is defined as TARGET_GROUP — A social group, ethnicity, gender, religion, or similar group noun,
sometimes modified by an adjective phrase.
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e Subject Predicate Target e Hate e
—_—
; Group/ (Noun,
N/PRO / Negat S eech /
. Adj Phrase) v
a Sub Noun Profane Profane a
D ——
Adj/ Noun Accept
Excl In Congruent
Posntlve Structure
a Cond Implied Threat e Jarget 9
B ——
Pron Sub Verb Threat

Figure 2: Grammar rules and transitions

(ii)  Profanity
S0 — SI (Sub: Noun/PRO) — ST (PROFANE_AD]J/NOUN)

In S1, the PRONOUN directly addresses someone (you, he, she, they), and the identification of
PROFANE_TERM, which has an Adjective Insult (stupid, dumb) or a noun insult (idiot, moron), leads to
the state target.

(iii)  Sarcasm

S0 — S1 (EXCL) — S2 (POSITIVE_ADJ) — ST (INCONGRUENT_STRUCTURE)

This grammar captures tone reversal, in which the state begins with an exclamation that functions as
a positive adjective tag for the subsequent state. Then it transitions to NEG_CONTEXT in the next state,
thereby contradicting the positive tone.

(iv)  Threat

SO0 — S1 (COND PRON) — S2 (IMPLIED_SUBJECT) — S3 (THREAT_VERB) — ST (TARGET)

State change in S1 begins with grammar CONDITIONAL_PRON (if you or when you) and then
follows IMPLIED_SUBJECT, which is the explicit or implied subject of the threat for the next state, and
THREAT_VERB indicating a harm or danger (hurt, kill, ruin, destroy, regret).

The use of a classification head ensures ethical alignment and helps prevent the propagation of toxic
content in machine-translated output. It complements the syntactic modules by leveraging grammatical
structure to detect nuanced offenses, such as sarcastic intent or implicit threats, particularly challenging in
English-Tamil code-mixed and dialect-sensitive contexts. The overall offensive head operation, along with
the PoS alignment, is represented in Fig. 3.
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3.4 Rule-Based Neutralization

Upon identifying an offensive word, the model searches for the offensive segment in the text and
neutralizes it with equivalent Tamil synonyms, producing a clean translation. This is achieved by using a
simple equivalent dictionary lookup synonym, which then extracts the equivalents and provides ethically
translated text. Table 4 provides the unfiltered offensive Tamil-translated text and the neutralized clean Tamil
translation. A simple dictionary lookup achieves these translations. For the identified spans, equivalent
replacements are sought and substituted according to the offensive class.

Table 4: Offensive language translation strategies

Offensive Translation . Tamil Refined tamil
English source . .
class strategy translation translation
Reframe to remove
. . . «
discriminatory People from that o ' it S
Hate language while background are the A e eranfed 2o onasjai erial
2_GITETeU TS 6T 61/%I% 6T BTL_19 6V
speech keeping factual scum of our B g6 @LieLima. TBDIG Qs mereTLiLL_afle)
(301208
meaning. Avoid nation”
group slurs.
Lexical
. Substltutlon “I Wlll beat the hell ENG&;-L@TWW tprtmai BITGHT 2_GRIGW G 9L HHLY.
Profanity .. e 28! , neving LIGLIGH
replaces explicit out of you idiot PLP551906 G
terms.
Literal
neutl‘alilation— “Really, Only 2 awwranLown? o GHenaL
. . . Qunaip L$@emedsmer o arenarLi Gunerpeur
Sarcasm remove sarcastic  genius like you can = guinyg Guidis @uitig. Gurgglerents
gy

cues, translate for think such a way”
factual meaning.

(Continued)
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Table 4 (continued)

Offensive Translation ] Tamil Refined tamil
English source . .
class strategy translation translation
De-escalation—
translate without We will see @it @ror £ B o @i @roy 2 i
Threats violent language, whether you QosGprun ez pebB1S GOIGLD T
umiiGumb.” BLOLS B et

or convey warning  survive tonight?”
without harm.

4 Dataset and Annotation Strategy

4.1 Source Data: English-Tamil Parallel Corpora

We have used the publicly available and curated parallel corpora:

Al4Bharat IndicCorp v2.0 [26] and Samanantar datasets [27]: These datasets provide a high-quality par-
allel corpus aligned for English-Tamil, extracted from various domains including news, entertainment,
government, health, and education.

OPUS GlobalVoices [28] is a free, open-source project that enhances diversity in sentence structure,
style, and lexical variety.

We supplement all these with manually aligned code-mixed (Tanglish) [14,29] samples obtained from
social media comment threads, online forums, and YouTube subtitles.

Dravidian Codemix dataset [30], which contains Tamil-English code-mixed YouTube comments anno-
tated for offensive language and hate speech. This dataset consists of real, noisy user-generated text in
which code-switching and offensive language are frequent.

The resulting corpus contains:

~1.8 million sentence pairs for parallel English-Tamil translation
~60,000 code-mixed Tanglish sentences

~200,000 Tamil-only monolingual sentences for back-translation

4.2 Offensive Language Annotation

To enable the detection and classification of offensive language, we design a multi-class offensive

annotation protocol.

Offensive sentences are tagged into the following mutually exclusive categories:

Hate Speech—Targeted discrimination based on religion, nationality, language, caste, ethnicity, or
gender.

Profanity—Explicit language or swearing.

Sarcasm—Polite phrasing used with mockery or ridicule.

Threats—Statements implying or suggesting harm.

Additionally, non-offensive content is included to maintain class balance.

Annotation Process—Initial sentence filtering using a keyword lexicon and pretrained toxicity detection

models. Where about 50K offensive and 100K non-offensive samples were labelled.
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Initial filtering employed a keyword lexicon and pretrained toxicity detection models. The corpus is
divided into 80%, 10% and 10% for training, validation, and testing, respectively. Final labels were validated
by bilingual annotators, with intercoder agreement assessed using Cohen’s « (x > 0.82).

4.3 Syntactic Annotation (POS and Dependency Tags)

We have used the Universal POS (e.g., NOUN, VERB, AD]J), dependency relations (e.g., nsubj, root, obj,
acl) for English annotation and ThamizhiUD—a Tamil Universal Dependencies-compliant parser, which is
Unicode normalized, along with a Universal dependency parser for handling code-mixed languages. These
are aligned with the SentencePiece tokenizer using offset mapping.

All textual data underwent automated preprocessing:

o  Text Normalization: Automated Unicode normalization and punctuation standardization

« Language Identification: Using langid.py for language filtering

 Transliteration: Rule-based engine for Romanized Tamil to Unicode conversion

+ Tokenization: SentencePiece model with 32K merge operations

« Syntactic Annotation: Automated POS and dependency tagging using Universal PoS for English and
ThamizhiUD for Tamil, with automatic alignment to subword tokens

The syntactic parsers demonstrated robust performance on their standard test sets:

Labelled Attachment Score (LAS) of 91.5% on Universal Dependencies. Tamil (ThamizhiUD): LAS
of 89.0% on its benchmark test set. Additionally, we evaluated transliteration to Romanized Tamil Text,
yielding a Character Error Rate (CER) of 3.2% and a Word Error Rate (WER) of 7.8%, indicating high-fidelity
conversion suitable for model training. Language identification is performed using langid.py, which achieves
96.5% accuracy and minimizes noise.

4.4 Data Preprocessing

Before training, rigorous preprocessing is applied to all textual data to ensure consistency, syntactic
alignment, and robustness to noise. First, all English and Tamil texts are normalized—removing extraneous
characters, correcting Unicode inconsistencies, and standardizing punctuation. The SentencePiece model
is trained with 32K merge operations and then tokenizes sentences. This tokenization ensures subword
segmentation suitable for morphologically rich languages like Tamil. For syntactic supervision, PoS and
dependency relations are annotated using spaCy (for English) and ThamizhiUD (for Tamil), with mappings
aligned to tokenized subword units. Code-mixed (Tanglish) data are transliterated from Romanized Tamil
into Unicode Tamil using a rule-based engine, and language identification (via langid.py) filters out non-
Tamil sequences. All offensive training samples are labelled and integrated into the corpus, ensuring that
offensive content is categorized as hate speech, profanity, sarcasm, or threats. The final output is a fully tagged
dataset, suitable for multi-task training involving translation, syntax modelling, and ethical content filtering.

4.5 Evaluation Setup

Models are evaluated across all tasks using domain-appropriate metrics. For the English-to-Tamil
translation task, we used BLEU, TER (Translation Edit Rate), and chrF++ scores, calculated using the
standardized BLEU toolkit to ensure reproducibility. For the PoS tagging task, accuracy is measured at the
token level. In contrast, dependency parsing performance is assessed using the Unlabelled Attachment Score
(UAS) and the Labelled Attachment Score (LAS), which respectively capture the correctness of syntactic head
selection and dependency label assignment. The evaluation of offensive language detection was performed
using standard classification metrics—precision, recall, and Fl-score—on a balanced held-out test set. To
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maintain consistency and avoid domain bias, all datasets were split into training, development, and test sets
in an 80:10:10 ratio, with stratification by domain (e.g., formal [news and literature] versus informal [social
media] text). This evaluation setup ensures a comprehensive assessment of the model’s linguistic competence
and real-world adaptability.

5 Experiments and Results

To evaluate the effectiveness of the proposed PoSDEP-Offense-Trans model, we conduct extensive
experiments across translation quality, syntactic accuracy, and offensive language detection. We compare
against several strong baselines and ablation variants to validate the impact of multi-task learning and
syntactic supervision.

5.1 Experimental Setup

To thoroughly evaluate the proposed PoOSDEP-Offense-Trans model, we designed an extensive exper-
imental framework comprising translation performance, syntactic generalization, and offensive language
classification. Our enhancements were integrated into five Transformer-based neural machine translation
(NMT) backbones: (i) Transformer-Base—a standard 6-layer encoder-decoder model, (ii) mBART-large—a
multilingual sequence-to-sequence model pretrained via denoising objectives, (iii) mT5-base—a multilin-
gual text-to-text Transformer trained on the mC4 corpus, (iv) IndicTrans2—a Transformer optimized for
Indian languages, and (v) XLM-RoBERTa (XLM-R)—a pretrained cross-lingual encoder trained on 100
languages using RoBERTa objectives. For encoder-only models like XLM-R, we used a shallow Transformer
decoder for generation and added the same syntactic and classification heads. All models were enhanced
with our proposed modules: token-level POS and DEP embeddings, syntax-guided attention, syntax-aware
contrastive learning, and a multi-class offensive classification head.

The transformer models are trained using 4 x A100 NVIDIA GPUs with 40 GB memory each, utilizing
mixed-precision training for efficiency and trained for 20 epochs with a batch size of 1024 tokens, having
an Adam optimizer with f8; = 0.9, ;, = 0.98, and an inverse square root learning rate schedule with 4K
warm-up steps.

We used SentencePiece tokenization with 32K merge operations for both English and Tamil. PoS and
DEP annotations were aligned with subword tokens using offset tracking and expansion strategies. The
GradNorm method dynamically balances our multi-task loss function, which includes translation, PoS
tagging, dependency parsing, offensive language classification, and contrastive objectives, thereby balancing
across tasks. Additionally, we evaluate two ablation variants of our model.

5.2 Evaluation Metrics

To evaluate the proposed PoOSDEP-Offense model, we used a set of metrics that are aligned with its
multi-task objectives. The evaluation set here has been classified into four broad categories as follows:

o Machine translation quality metrics

« Syntactic evaluation metrics

»  Offensive language classification metric
»  Offensive language neutralization metric

5.2.1 Machine Translation Quality Metrics

These metrics assess the minimization of the primary translation loss Lyit, which is the cross-entropy
between the predicted sequence and the ground truth.
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(i) BLEU (Bilingual Evaluation Understudy)—Measures n-gram overlap between predicted Y and refer-
ence Y sequences.

N
BLEU = BP - exp (Z w, log p,,) (10)

n=1
where:
e pn: Modified n-gram precision,
» W, Weight for each n-gram order,
o  BP: Brevity Penalty.
Interpretation: Higher BLEU indicates improved learning from Lyr.

(ii) TER (Translation Edit Rate)

Measures alignment cost not captured by n-gram overlap, reflecting edit distance between output. ¥
and reference Y.
Number of edits

TER = x 100 11
Average reference length a

Lower TER indicates reduced translation errors via alignment-aware decoding and syntactic reordering.
(iii)  chrF++ (Character F-score)

Measures the character-level precision and recall that minimize character loss via:

:LMT—Char = _Zlogp(yihmb/i}tmr’x) (12)
t
and
P-R
Fscore chrFﬁ = (1 + [32) : /32P—+R (13)
where: P: n-gram precision, R: n-gram recall, 8 = 2 gives more weight to recall.
This is particularly useful in morphological alignment.

5.2.2 Syntactic Evaluation Metrics
(iv)  POS Tagging Accuracy: Percentage of correctly predicted part-of-speech tags at the token-level.

Accuracy = Number of correctly tagged tokens < 100 (14)

Total tokens

High POS accuracy indicates strong grammatical modeling, supporting more accurate syntax-
aware translation.

) UAS (Unlabelled Attachment Score) measures the percentage of words that are correctly assigned
their syntactic head in the dependency tree, ignoring the label. This score captures the structural
correctness of the parse tree.

UAS < Correct head assignments 100 (15)

n
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(vi)  LAS (Labelled Attachment Score) measures the percentage of words that are correctly assigned both
the syntactic head and the correct dependency label.
Correct heads + correct labels

LAS = x 100 (16)
n

(vii) Hallucination Rate (HR) measures the proportion of tokens in the translated output that have no
alignment to any token in the source sentence, with a lower HR indicating more faithful translations.

5.2.3 Offensive Language Detection Metrics
These correspond to the classification loss Lyfrense Optimized via cross-entropy on binary labels.
(viii)  Macro F1 score.

The Macro F1 Score is the arithmetic mean of the F1 scores computed independently for each class in
a multi-class classification task. This score treats all classes equally, regardless of the number of samples per
class.

1 N
Macro - Fl = — Z F1; (17)
N i3

where:
N is the number of classes (e.g., hate, sarcasm, threat, profanity, non-offensive),

F1; is the F1 score for class i, calculated as:

Precision - Recall
F1;,=2- — (18)
Precision + Recall

(ix) ROC-AUC (Receiver Operating Characteristic—Area Under Curve).

A model’s ability to distinguish between classes is measured by its ROC-AUC. At different threshold
levels, the model plots the True Positive Rate (Recall) against the False Positive Rate (1-Specificity). The One-
vs-Rest (OVR) technique is commonly used to average across classes in multi-class problems.

5.2.4 Offensive Language Neutralization Metric

It is the ratio of offensive tokens successfully replaced with neutral Tamil synonyms to the total number
of detected offensive tokens.

OTNA = Nreplaced

(19)
Ndetected

5.3 Main Results

Our model, PoSDEP-Offense-Trans, integrates architectural and training-level variations for Syntax-
Guided Attention, PoS and Dependency Parsing Heads, and Offensive Language Detection tasks. The result
metrics define feature performance across various tasks.

5.3.1 Translation Results across Architectures

The proposed model, POSDEP-Offense-Trans, is evaluated across five Transformer-based NMT archi-
tectures to assess its performance on English-to-Tamil translation. As shown in the table, integrating syntactic
supervision (POS and DEP embeddings), syntax-guided attention, contrastive learning, and a multi-class
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offensive classification head significantly improved translation quality across all architectures. The complete
translation evaluation results are summarized in Table 5, and the comparison of these values is shown

in Fig. 4.

Table 5: Translation results across architectures

Model Configuration BLEU?t chrF++1 TER)]
Transformer Base 25.2 51 45.8
Base + PoS + DEP + Offense 28.9 54.5 42
large 29.4 55.1 40.4
BART
mBAR POS + DEP + Offense 32.6 58 36.8
oT5 Base 30.1 56 39.3
POS + DEP + Offense 33.2 58.8 359
Base 28.2 54.1 41.7
XLM-R
POS + DEP + Offense 30.9 56.5 38.6
IndicTrans? Baseline 27.8 53.2 431
POSDEP-Offense (proposed) 33.5 59.1 34.2
Translation Quality Metrics PR —
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Figure 4: Translation quality metrics for translation across various model variants

For the standard Transformer-Base model, adding our enhancements improved BLEU from 25.2 to 28.9
and reduced TER from 45.8 to 42.0, confirming the value of even shallow syntactic signals in low-resource
settings. On pretrained encoder-decoder architectures such as mBART and mT5, our model outperformed
their vanilla baselines by +3.2 BLEU and +3.1 BLEU, respectively, while also improving chrF++ and reducing
TER. Similarly, the encoder-only XLM-R model, when extended with a Transformer decoder, benefited from
our enhancements, achieving 30.9 BLEU and 56.5 chrF++, indicating that syntactic features are beneficial

even in pretrained multilingual setups.
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Our proposed POSDEP-Offense-Trans model achieves better results, with BLEU 33.5, chrF++ 59.1, and
TER 34.2. This indicates that the multitask model helps in increasing performance.

5.3.2 Syntactic Understanding

The syntactic understanding performance across various Transformer-based architectures—both in
their baseline and enhanced forms—validates the inclusion of Part-of-Speech (PoS) tags and Dependency
(DEP) relations. The baseline model achieves 90.3% UAS, 81.6% UAS, and 78% LAS, whereas PosDEP +
Offense improves performance to 93.5% POS accuracy, with 85.2% and 81.7% UAS and LAS, respectively.
This indicates that syntactic augmentation in the base model has significantly improved performance.

mBART improved from 92.7% POS accuracy and 81.2% LAS to 94.8% and 84.3%, respectively, after
enhancement, as it had already been trained multilingually. Similarly, mT5’s PoS tagging accuracy increased
from 94.1% to 95.2%, and LAS from 84.1% to 86.1% with the addition of syntax-aware inputs. This clearly
indicates that syntax alignment helps even advanced models improve. The scores improved from a baseline
LAS of 82.5% to 84.7%, indicating suitability for syntactic tasks when appropriately extended. XLM-R, which
helps align offensive classification, showed considerable improvement by leveraging syntactic structures.

Notably, the proposed PoOSDEP-Offense-Trans model achieved the highest syntactic performance across
all metrics: 97.0% PoS accuracy, 92.4% UAS, and 90.1% LAS. These results were made possible by its
architecture that combines syntax-guided attention, multitask learning with PoS and DEP heads, contrastive
learning for structural generalization, and balanced optimization with GradNorm. These metric values are
presented in Table 6 and Fig. 5.

Table 6: Syntactic understanding metrics across language

Model Configuration POS accuracy (%)t UAS (%)t LAS (%) 1
Transformer Base 90.3 81.6 78
Base + PoS + DEP + Offense 93.5 85.2 81.7
large 92.7 85 81.2
BART
m POS + DEP + Offense 94.8 87.9 84.3
Base 94.1 874 84.1
mT5
POS + DEP + Offense 95.2 89 86.1
Base 93.2 86 82.5
XLM-R POS + DEP + Offense 94.5 88.1 84.7
IndicTrans? Baseline 95.4 89.2 86.7
POSDEP-Oftense (proposed) 97 924 90.1

The significant improvements over baselines indicate that synaptic awareness can be included in models,
even multilingual, for reaching contextual awareness that is always difficult in low-resource language pairs
like English-Tamil.

While BLEU gains over the baseline are modest, the proposed model demonstrates consistent improve-
ments in hallucination control. Specifically, the baseline system exhibited a Hallucination Rate (HR) of
14.8%, meaning that nearly one in seven output tokens did not correspond to any source token. In contrast,
POSDEP-Offense-Trans reduced this to 13.0%, a relative reduction of about 9%.
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Figure 5: Syntactic understanding performance evaluation across various models

5.3.3 Offensive Language Classification

F1 scores for offensive language classification across four categories—Hate Speech, Profanity, Sarcasm,
and Threats are evaluated using the models—Base Transformer, mBART, mT5, XLM-R, and the IndicTrans2
included with the proposed PoSDEP-Offense-Trans.

The proposed PoOSDEP-Offense-Trans configuration achieves the highest performance across all offen-
sive classes, reaching 0.87 in Hate Speech, 0.90 in Profanity, 0.81 in Sarcasm, and 0.83 in Threats. These results
indicate that the proposed model can detect abuse, toxicity, sarcasm, and other threats. Compared with
the baseline model, the proposed model delivers consistent improvements across all classes. The mT5 and
mBART models are improved by the proposed PosDep-Offense-Trans. However, IndicTrans2 consistently
outperforms other models because of its language-specific optimization for Tamil.

Significantly, sarcasm and threats—traditionally the most challenging categories—benefit substantially
from the syntax-guided attention mechanism and contrastive learning, which help the model focus on
discourse structure rather than surface word cues alone. Additionally, profane content, which is typically
easier to detect via lexical patterns, achieves the highest scores across all models; however, IndicTrans2
still achieves a notable 0.90 F1 score, reflecting its superior generalization. Offensive language metrics are
summarized in Tables 7 and 8 and graphically shown in Fig. 6.

Table 7: Offensive classification across models—F1 score

Offensive classification Hate speech  Profanity Sarcasm  Threats
Model Configuration F1 F1 F1 F1
Transformer Base 0.76 0.79 0.7 0.72
Base + PoS + DEP + Offense 0.8 0.82 0.74 0.75
Large 0.78 0.8 0.72 0.74
mBART PoS + DEP + Offense 0.83 0.85 0.76 0.78

(Continued)
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Table 7 (continued)

TS Base 0.8 0.82 0.74 0.75
PoS + DEP + Offense 0.85 0.88 0.79 0.8
Base 0.77 0.81 0.71 0.73
XLM-
R PoS + DEP + Offense 0.82 0.84 0.75 0.77
IndicTrans Baseline 0.81 0.85 0.76 0.78
PoSDEP-Offense (proposed) 0.87 0.9 0.81 0.83
Table 8: Offensive classification across model —ROC-AUC score
Offensive classification Hate speech  Profanity =~ Sarcasm Threats
Model Configuration ROC-AUC ROC-AUC ROC-AUC ROC-AUC
Transformer Base 0.76 0.83 0.78 0.8
Base + PoS + DEP + Offense 0.85 0.86 0.81 0.83
Large 0.83 0.85 0.8 0.81
mBART PoS + DEP + Offense 0.88 0.89 0.84 0.86
T Base 0.84 0.86 0.82 0.83
PoS + DEP + Offense 0.9 0.91 0.86 0.88
Base 0.83 0.85 0.8 0.82
XLM-
R PoS + DEP + Offense 0.87 0.88 0.83 0.85
IndicTrans2 Baseline 0.86 0.88 0.84 0.86
PoSDEP-Offense (proposed) 0.9 0.93 0.87 0.89

The enhanced models across all architectures show improved performance when enriched with PoS
and Dependency features along with a dedicated offensive classification head. These results confirm the
effectiveness of syntactic understanding and task-aware training in improving offensive content detection,
particularly for morphologically rich, code-mixed Tamil.

For hate speech detection, performance improves with the addition of syntactic modelling, particularly
on IndicTrans2 and mT5. The proposed POSDEP-Offense-Trans model achieves the highest F1 score (0.87)
and ROC-AUC (0.90) in this class.

Similarly, for the Profanity class, all models performed well due to strong lexical cues, and the proposed
model achieved the best F1(0.90) and ROC-AUC (0.93). For the Sarcasm class, the proposed model achieves
an F1 of 0.81 and an ROC-AUC of 0.87, which appears to be challenging due to the abstract nature. On
the threat classification task, the proposed model achieves an F1 score of 0.83 and an ROC-AUC of 0.89,
indicating its ability to capture both explicit and subtle forms of threatening language.

In summary, the proposed POSDEP-Offense-Trans model consistently outperforms all offensive
categories across both F1 and ROC-AUC metrics, validating the integration of syntax-aware features and
multi-class offensive classification within a low-resource English-Tamil NMT pipeline.

The offensive language is evaluated based on two key metrics, the Macro F1 score and ROC-AUC, across
various transformer models.
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(b) ROC-AUC score for offensive classes across model variants

Figure 6: Offensive classification across models

Macro F1 Score reflects the model’s balanced performance across the offensive classes: hate speech,
profanity, sarcasm, and threats. The improved models with PoS/DEP and offensive heads consistently
outperform their baselines. The proposed POSDEP-Offense-Trans model achieves a Macro F1 Score of 0.91,
indicating high generalization across four offensive categories. A high ROC-AUC score suggests the model’s
ability to distinguish between offensive and non-offensive content. The proposed configuration outperforms
all the models.

All models show clear improvements with the inclusion of syntactic features and dedicated offense-
classification heads. The results support the hypothesis that syntactic structure facilitates semantic
disambiguation, particularly when translating offensive or culturally sensitive English content into Tamil.
Also, we have conducted a small pilot study by dividing the profanity class into mild and strong, and the
results are presented in Appendix A—Table Al.

5.3.4 Offensive Neutralization

Table 9 presents the metric used to evaluate offensive neutralization across various models. Again, the
proposed model provides better neutralization accuracy.
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Table 9: Offensive statement neutralization across models

Model OTNA (%) 1
Transformer-Base 78.6
Base + POS + DEP + Offense 84.2
mBART-Large 80.4
mBART + POS + DEP + Offense 86.7
mT5-Base 81.9
mT5 + POS + DEP + Offense 88.5
XLM-R-Base 79.5
XLM-R + POS + DEP + Offense 85.9
IndicTrans2 (baseline) 82.4
PoSDEP-Offense-Trans (proposed) 92.3

With the inclusion of any Dravidian Code-Mixed Offensive dataset, offensive neutralization accuracy
has improved by around 3 percent.

5.4 Ablation Study

We conducted an extensive ablation study with three seeds, isolating each component. Syntax compo-
nents show strong statistical significance (p < 0.001); a multitask approach to toxicity control significantly
outperforms adapter-only fine-tuning; and post-translation neutralization is more effective than pre-filtering
training. All improvements over the baseline are statistically significant (p < 0.001), as defined in Table 10.
The synergy between syntactic modelling and ethical filtering demonstrates that these components mutually
reinforce one another rather than operate independently.

Table 10: Offensive statement neutralization across models

Model version BLEU Translation quality Offense detection
Baseline 27.8 431 81.0
Adapter-Only+ 28.1 42.7 82.5
Pre/Post-Filter+ 28.9 41.9 83.8
Syntax (POS + DEP)+  31.2 375 85.1
Syntax Attention+ 321 35.8 86.3
Contrast Learning+ 32.8 35.1 87.0
Proposed model 33.5 34.2 89.2

This result confirms that grammar is more important for accuracy, and integrating all provides
reliability.

6 Conclusion and Future Work

In this paper, we propose POSDEP-Offense-Trans, a multitask neural machine translation (NMT)
model for English-to-Tamil translations; by integrating auxiliary tasks—part-of-speech tagging, dependency
parsing, and offensive language classification, our model not only improves translation fluency and accuracy
but also ensures grammatical correctness and cultural sensitivity in generated outputs. Experimental results
across multiple metrics, including BLEU, TER, chrF++, POS accuracy, UAS, LAS, and Fl-score, demonstrate
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consistent and significant improvements over strong baselines such as mBART50 and vanilla IndicTrans2.
Notably, our model achieves a BLEU score of 33.5 and an F1 Score of 89.2 for offensive detection, demon-
strating its ability to balance linguistic accuracy with ethical filtering. The model reduces the hallucination
rate and generates trustworthy translations.

From an architectural perspective, the inclusion of a syntax-guided attention mechanism and a con-
trastive loss objective for syntax consistency contributes to stronger encoder representations. Additionally,
our multitask learning framework enables more effective feature sharing and generalization across resource-
scarce language pairs, particularly benefiting low-resource languages such as Tamil. We further explored
context-aware synonym replacement and deeper semantic analysis to improve the context and cultural
fluency in neutralized outputs.

Acknowledgement: Not applicable.
Funding Statement: The authors received no specific funding for this study.

Author Contributions: Rama Sugavanam contributed to the research idea, designed the methodology, conducted the
experimental analysis, and drafted the initial manuscript. Mythili Ramu contributed to system development and assisted
with manuscript revisions. All authors reviewed and approved the final version of the manuscript.

Availability of Data and Materials: Data and materials of this paper can be accessed at https://github.com/rama-cs/
PoS-DEP-Offense.git.

Ethics Approval: This research does not involve human subjects directly or indirectly. Also, it includes an analysis of
text data that may contain offensive or harmful language. No personal or sensitive human information was collected.
Therefore, institutional ethical approval was not required.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A Pilot Study on Fine-Grained Offensive Classes

We performed a preliminary experiment by dividing the profanity category into mild and strong levels.
Accuracy has decreased slightly due to data imbal ance; however, the model achieved finer distinctions,
with an F1 score of 83.1. This validates that our architecture can be directly extended to multi-level offensive
taxonomies as richer annotated resources become available.

Table Al: Results of pilot study subdividing the Profanity class into Mild and Strong categories

Model variant Classes Fl1(%) Neutralization rate (%) Description

Hate, Profanity, Sarcasm,
Threats
Accuracy drops due to

Baseline (4-class) 4 84.6 78.1

Fine-grained (Profanity s 812 775

— Mild/Strong) data imbalance
Fine-grained + Data 5 831 78.0 Synthetlc sam}.)l.es
Augmentation improved stability

The initial investigation indicates that sub-categorization may lead to data imbalance, yet the framework
performs well for fine-grained distinctions, as shown in Table Al. The minimal drop in accuracy indicates
the system requires larger annotated corpora. However, the performance has improved with synthetic
augmentation, suggesting that the architecture is capable of handling multi-level offensive taxonomies.
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