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ABSTRACT: When performing English-to-Tamil Neural Machine Translation (NMT), end users face several
challenges due to Tamil’s rich morphology, free word order, and limited annotated corpora. Although available
transformer-based models o�er strong baselines, they compromise syntactic awareness and the detection and man-
agement of o�ensive content in cluttered, noisy, and informal text. In this paper, we present POSDEP-O�ense-Trans,
a multi-task NMT framework that combines Part-of-Speech (POS) and Dependency Parsing (DEP) methods with
a robust o�ensive language classi�cation module. Our architecture enriches the Transformer encoder with syntax-
aware embeddings and provides syntax-guided attention mechanisms.�e architecture incorporates a structure-aware
contrastive loss that reinforces syntactic consistency and deploys auxiliary classi�cation heads for POS tagging,
dependency parsing, andmulti-class o�ensive detection.�e classi�er for o�ensive words operates at both sentence and
token levels and obtains guidance from syntactic features and formal �nite automata rules thatmodel o�ensive language
structures-hate speech, profanity, sarcasm, and threats. Using this architecture, we construct a syntactically enriched,
socially annotated corpus. Experimental results show improvements in translation quality, with a BLEU score of 33.5,
UAS/LAS parsing accuracies of 92.4% and 90%, and a 4.5% F1-score gain in o�ensive content detection compared with
baseline POS + DEP + O�ense models. Also, the proposed model achieved 92.3% in o�ensive content neutralization,
as con�rmed by ablation studies. �is comprehensive English–Tamil NMT model that uni�es syntactic modelling
and ethical �ltering—laying the groundwork for applications in social media moderation, hate speech mitigation, and
policy-compliant multilingual content generation.

KEYWORDS: POS-aware NMT; dependency parsing; syntax-guided attention; multi-task learning; o�ensive language
detection; o�ensive language neutralization; English–Tamil neural machine translation

1 Introduction

�eemergence ofmultilingual digital platforms and user-generated content has accelerated the demand
for reliable and culturally sensitive machine translation (MT) systems. India is a linguistically diverse nation
that encounters several language-related challenges. Although the country’s linguistic landscape is vast, it
also encompasses numerous low-resource languages and dialects. Among these languages, Tamil, one of the
foremost classical South Indian languages, with complex morphology and rich syntactic structure, presents
one of the most di�cult cases for precise NMT. English–Tamil translation is challenging due to the contrast-
ing linguistic typology: English follows a subject-verb-object (SVO) word order and exhibits low in�ection,
whereas Tamil employs a subject-object-verb (SOV) order, high in�ection, and agglutinative morphology.

Copyright © 2026�e Authors. Published by Tech Science Press.
�is work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
https://doi.org/10.32604/cmc.2026.071469
https://www.techscience.com/doi/10.32604/cmc.2026.071469
mailto:rama.sugavanam@gmail.com


2 Comput Mater Contin. 2026;87(1):97

State-of-the-artNMTsystems, such asTransformer-basedmodels [1],mBART [2], andmT5 [3], demon-
strate remarkable improvements in high-resource language pairs. However, their reliability signi�cantly
degrades for English–Tamil translation, particularly when processing socialmedia content that is o�en code-
mixed (e.g., Tanglish), cluttered, noisy, or o�ensive. Due to di�erences in syntactic structure, these models
�nd it di�cult to translate into divergent language pairs.

Another prominent emerging issue is identifying highly o�ensive toxic content, and NMT systems
trained on large web-scale datasets o�en translate harmful content without adherence. While some prior
work has attempted post hoc �ltering or adversarial training, these methods lack linguistic granularity and
fail to identify implicit, structure-dependent o�ensive content. For example, the sentence: “You people are
a disease” may be grammatically correct, yet it is contextually toxic. To overcome such challenges, there is
a need for a model that integrates o�ensive language detection and rewrites directly into the translation
pipeline—with a syntactically grounded mechanism for ethical �ltering.

In this paper, we propose PoSDEP-O�ense-Trans, a novel syntax-aware, ethically informed, multi-
tasking NMT framework tailored for English–Tamil translation. �e architecture enriches the input
representation with PoS and dependency parsing features and jointly trains the model on translation,
syntactic tagging, and �ne-grained o�ensive-language classi�cation. During translation, it detects o�ensive
content at both the sentence and token levels. Based on the detection, where applicable, it rewrites the
sentence using a masked language model to preserve semantic meaning while reducing toxicity. To optimize
this multi-objective training paradigm, we employ gradient normalization (GradNorm) to balance task
losses dynamically.

�e rest of this paper is organized as follows: Section 2 discusses related work; Section 3 describes the
proposedmodel andmethodology; Section 4 explains the dataset and annotation strategy; Section 5 presents
the experimental results; and Section 6 concludes with future research directions.

2 RelatedWorks

NMT for English–Tamil presents challenges due to Tamil’s morphological richness and syntactic
divergence. Traditional statistical and phrase-based systems are limited in modeling agglutinative struc-
tures. Recent neural models, such as Transformer-based architectures [1] and BPE-enhanced NMT [2],
have improved translation quality; AI4Bharat’s IndicTrans [3] advanced translation for Indian languages,
including Tamil, through multilingual training. Meta’s NLLB model [4] extended to support multilingual
zero-shot translation for more than 200 languages, including Tamil.

Neuro-symbolic methods have been introduced to address semantic �delity in low-resource settings,
particularly in sensitive domains, such as child-oriented content [5]. EnTam v2.0 (Charles Univer-
sity/UFAL) [6], an English–Tamil parallel corpus annotated across multiple domains-Bible, cinema, and
news. �ese methods fail to consider syntactic guidance.

Linguistic features are incorporated into the encoder input [7] to improve translation. Applying
Graph Convolutional Networks (GCNs) to dependency trees improves translation in morphologically rich
languages [8]. Later, Syntax-aware attention with structural bias was proposed [9] to improve transla-
tion quality.

Recent studies have extended syntax integration using tree-based and hierarchical models, employing
a tree encoder [10] with attention-head-aware translations. Following tree encoders, hierarchical syntax
modules [11] were suggested formorphologically complex languages. Despite these variations, English-Tamil
translation remains underexplored.�e proposed model addresses this gap by embedding syntactic features
in both the encoder and decoder components.
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O�ensive language detection in culturally sensitive regions is crucial to address the proliferation of toxic
discourse on digital platforms. �e HASOC 2019 shared task [12] and DravidianCodeMix 2021 [13] have
contributed annotated datasets for o�ensive language classi�cation. YouTube comments are annotated for
English, Tamil [14,15], and mixed-code texts [16], and they are classi�ed as containing hate and profanity.

Toxicity based on religion, caste, and gender-based hate abuses is benchmarked by [17] for region-based
o�ense detection. ANSR@DravidianLangTech 2025 [18] achieved macro-F1 scores over 0.73 using cost-
sensitive learning. Keyword-level �ltering methods [19] and post-editing strategies have been attempted,
but lack deep syntactic or semantic integration, and various o�enses require attention. �e proposed model
uniquely performsmulti-class o�ensive classi�cationwithin theNMT framework. Table 1 highlights existing
syntax- and toxicity-aware MT approaches, whereas the proposed POSDEP-O�ense-Trans uni�es syntactic
biasing and o�ensive-content handling within a single multitask MT framework.

Table 1: Comparison of existing approaches with the proposed POSDEP-O�ense-Trans Model

Approach
Syntax modeling

mechanism

Attention bias

application

Toxicity

mitigation

strategy

Integration

with MT

Tree-to-
Sequence
NMT [20]

Uses constituency
parse tree on the
source side via the

tree encoder

No explicit bias term;
structural encoding
in�uences attention

internally

None
Syntactic

enhancement
only

ReSeTOX [19]
No syntax
modelling

Dynamically re-learns
attention weights to
suppress toxicity

signals

Adjusts attention
during inference
when toxicity is

�agged

Inference-time
adaptation on
top of base MT

MinTox [21]
No syntax
modelling

No explicit syntactic
bias

Pipeline to detect
and mitigate added

toxicity at
inference time

Post-processing
without
retraining

Proposed
POSDEP-

O�ense-Trans

POS +
dependency-

guided bias terms
introduced into

attention

pushes the model to
focus more on

grammatically related
words using

part-of-speech and
dependency parsing

information

Joint o�ensive
classi�cation +

neutralization head
during training

Fully
integrated—
syntax and

toxicity handled
inside MT

Multi-task learning (MTL) enables shared representations across tasks, such as translation, tagging,
and classi�cation [22] showed improvements through joint learning of syntax and translation. Adapter-
based multitask training further generalized across benchmarks [23]. Loss-balancing techniques, such as
GradNorm [24] and uncertainty weighting [25], stabilized convergence in multi-head architectures.
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3 Architecture and Methodology

In this paper, we propose PoSDEP-O�ense-Trans, a uni�ed multi-tasking Transformer-based architec-
ture designed to improve English-to-Tamil neural machine translation through syntactic supervision and
o�ensive content understanding. �e model jointly performs:

• English-to-Tamil translation
• PoS tagging
• Dependency parsing
• O�ensive content classi�cation

�ismulti-tasking structure improves generalization and robustness, especially inmorphologically rich
and socially sensitive contexts.

3.1 Overview of the Proposed System

At its core, the architecture is built on themultilingual IndicTrans2 Transformermodel, which supports
multiple Indian languages, including Tamil. We enhance the base model with syntactic and semantic signals
derived from PoS tags and dependency (DEP) relations. Further, we introduce an auxiliary task of multi-
class o�ensive content classi�cation, thereby allowing the model to avoid or appropriately translate ethically
sensitive content.

Each input token is a combination of four distinct embeddings:

xi = Etok[i] + Epos[i] + Edep[i] + Eposition [i] (1)

where:

• Etok [i] is the token embedding obtained via a SentencePiece tokenizer trained with 32 K merge
operations.

• Epos [i] is a learned embedding corresponding to the POS tag assigned to the token (from spaCy for
English and�amizhiUD for Tamil).

• Edep [i] corresponds to the dependency relation of the token.
• Eposition [i] is a standard sinusoidal positional encoding used in Transformer architectures.

�is architecture enables joint optimization of linguistic accuracy and social appropriateness, as shown
in Fig. 1.

�is enriched representation enables the encoder to process both the sentence’s surface form and its
underlying syntactic structure. �e encoder comprises 12 Transformer layers, each containing self-attention
and feed-forward sublayers, augmented with syntax-guided bias terms.�e decoder structure is similar and
includes masked self-attention and cross-attention to the encoder outputs, enabling Tamil translation with
teacher forcing during training and the sequential production of translated tokens.

�ree additional output heads are introduced:

• A PoS tag predictor trained using cross-entropy loss on PoS annotations.
• A dependency parser using bia�ne classi�ers to predict head-dependent relations.
• A multi-class classi�er for o�ensive content categories: hate-speech, profanity, sarcasm, and threats.

�e scope here has been restricted to four categories based on the high-prevalence corpora and the
availability of annotated data. Although o�ensive language can vary in intensity (e.g., mild vs. strong
profanity, implicit vs. explicit hate), these four categories ensure both data quality and balanced coverage,
supporting a stable baseline and enabling more �ne-grained taxonomies in future work.
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Figure 1: Overall architecture

3.1.1 Syntax-Guided Attention

�is component further empowers the conventional Transformer self-attentionmechanism by integrat-
ing syntactic knowledge, speci�cally PoS and dependency relations, guiding attention toward linguistically
signi�cant tokens. �e Transformer encoder–decoder framework utilizes stacked self-attention and feed-
forward layers to model long-range dependencies without recurrence [10]. For an input sequence X = {x1,
. . ., xT}, token embeddings are �rst augmented with sinusoidal positional encodings to yield the �nal
embeddings. �e scaled dot-product self-attention is then computed as:

Attention (Q ,K ,V) = so�max(QKT√
dk

)V (2)

In Eq. (2), Q, K, and V are linear projections of the hidden states, and dk is the key dimension.
When stacking multi-head variants of this operation, the model attends to information from multiple
representation sub-spaces.

To ensure the attention is syntax-aware, two bias terms are derived from PoS tag relationships and
dependency arcs. �en the attention is modi�ed as:

Attention (Q ,K ,V) = so�max(QKT + αBpos√
dk

+ Bpos(i , j) + Bde p(i , j)) (3)

where:

Bpos(i , j) is a learned scalar bias depending on the pair of PoS tags for tokens i and j.

Bde p(i , j) is higher for syntactic head-dependent or sibling pairs based on the dependency tree.
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�ese biases guide the model to align syntactically related tokens far more strongly by preserving
grammatical structure across source and target languages.

3.1.2 Syntax-Aware Contrastive Learning with O�ense Classi�cation

For each input, representations from context-aware attention are aligned with their PoS/DEP tags and
scored, enabling the model to di�erentiate between classes. For example, the model can distinguish between
an insult as an object and the same word as a part of �gurative or general speech.

Given a sentence z and a syntactic variant z′, we require that their embeddings should be closer
in representation space than unrelated sentences. �is contrastive learning encourages the encoder to
generalize across syntactic variations while discriminating against irrelevant content, thereby improving
robustness to stylistic shi�s and o�ensive language. �e loss function for this contrastive learning is de�ned
in Eq. (4).

LCL = − log
exp(sim(z, z′)/τ

∑k exp(sim(z1 , zk)/τ) (4)

z′: Syntactic variant of x, e.g., with clause reordering or passive conversion.

zk: Distractor sentence (negative sample).

τ: Temperature hyperparameter.

�is loss improves structural robustness in encoder representations.

3.1.3 Multi-Task Objective

�e total training loss combines translation and auxiliary objectives that are jointly minimized as
follows:

LTotal = λ1LMT + λ2LPOS + λ3LDEP + λ4LOffense + λ5LContrast (5)

where,

• LMT—is the standard cross-entropy loss for token-level translation.
• LPOS—is the loss for POS tag prediction.
• LDEP—includes head arc prediction and label classi�cation using a bia�ne attention-based parser.
• LOffense—is the categorical cross-entropy loss over o�ensive labels.
• LContrast—is the syntax-aware contrastive loss described above.

Dynamic weight tuning is implemented using GradNorm [24]. To maintain equal gradient norms, the
weights are adjusted during training.�is strategy enables themodel to learn context, translate �uently given
the syntax, and detect o�ensiveness without sacri�cing accuracy on any individual task.

Our multi-task setup is trained on a mixed dataset combining parallel corpora with syntactic anno-
tations and o�ensive labels. �e learning rate is scheduled using an inverse-square-root decay schedule,
and dropout is applied at each sublayer. Training is conducted on 4× A100 GPUs with mixed precision for
20 epochs.

When combined and implemented, these enhancements position the model to outperform traditional
NMT systems in low-resource, syntactically �exible, and socially nuanced translation tasks, such as English-
to-Tamil with o�ense mitigation.
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In our setup, we train �ve tasks: translation, PoS tagging, dependency parsing, o�ensive classi�cation,
and contrastive learning. Each of these tasks di�ers in scale and di�culty.

When we apply GradNorm:

• �e translation task remains the primary task (highest λ1 = 1.0).
• �e PoS and dependency tasks are computed and weighted to capture the syntax e�ciently without

impacting the model.
• �e o�ensive classi�cation head, while important, is down-weighted at an acceptable level to reduce

noise and over�tting on sparsely labelled data.
• �e contrastive learning head is lightlyweighted but still contributes to semantic stability and robustness.

�is automatic balancing leads to stable training and better convergence across all tasks, ultimately
improving generalization to syntactically varied and socially sensitive English–Tamil inputs. Table 2 presents
the relative gradient values for the translation task, the normalized loss, and the �nal learned weight values.

Table 2: Learned task gradients, losses, and weights (λ)

Task Gradient Relative loss Final λ value

Translation (NMT) 1.00 1.00 1.00
POS tagging 0.68 0.94 0.75

Dependency parsing 0.55 0.88 0.60
O�ensive classi�cation 0.92 0.70 0.50

So, �nal recommended λ values using GradNorm: λ1 = 1.0, λ2 = 0.75, λ3 = 0.60, λ4 = 0.50, λ5 = 0.45.

3.2 O�ensive Language Classi�cation Head

�e o�ensive language classi�cation component of the POSDEP-O�ense-Trans model is designed to
identify and categorize o�ensive content during English-to-Tamil translations. In contrast to traditional
binary detection approaches that invariably classify content as o�ensive or non-o�ensive, our model adopts
a multi-class framework, enabling di�erentiation among categories of o�ensive language. �is framework
includes:

• Hate Speech (racist, ethnic, and communal slurs)
• Profanity (vulgar, explicit language)
• Sarcasm (indirect, mocking tone with o�ensive implications)
• �reats (direct or implied harm, violence)

�ismulti-class approach is essential inmultilingual andmulticultural contexts for languages like Tamil.
For example, Tamil is a language in which o�ensive expressions vary widely across categories and require
careful handling to maintain the ethical integrity of machine-translated output.

Architecture of the Classi�cation Head

�e o�ensive classi�cation head is attached to the Transformer encoder and operates on the sentence-
level representation produced by the �nal encoder layer. �e architecture comprises the following layers:
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• Pooled Encoder Representation: A mean-pooling operation is applied across the encoder tokens. Its
embeddings are de�ned as:

h =
1

n

n

∑
i=1

h i (6)

where hi is the token embedding for token i in the sentence of length n.

• FeedforwardNetwork:�e pooled vector h is passed through a fully connected layer followed by a ReLU
activation:

h′ = ReLU(Wh .h̄ + bh) (7)

• So�maxOutput Layer:�eoutput is fed into a so�max classi�er to predict one of the prede�nedo�ensive
classes:

ŷ = so�max(Wo ⋅ h′ + bo) (8)

• Loss Function
�e model is trained using categorical cross-entropy loss:

LOffense = −
C

∑
c=1

yc log( ŷ) (9)

where by

C: number of o�ensive categories

yc: one-hot encoded ground truth label

ŷ: predicted probability for class c

O�ensive classi�cation is trained jointly with translation and syntactic tasks using multi-task learning.
�e corresponding task weight, λ4, in the composite loss function is dynamically tuned via GradNorm. �e
o�ensive head learns class-discriminative syntactic and semantic features, allowing the model to distinguish
between various racist, ethnic, and communal slurs, hate terms, vulgar language, implicit sarcasm, and
explicit threats.

3.3 Finite-State Modelling of O�ense Classes

To further enhance interpretability and rule-based validation in o�ensive content classi�cation, we have
de�ned a grammar-based structure for each o�ensive language category within our model—namely, Hate
Speech, Profanity, Sarcasm, and�reats.�ese aid in identifying syntactic and semantic structures associated
with each type of o�ensive expression and support training supervision, contrastive loss alignment, and post-
inference interpretability. Representation of these grammar rules is de�ned using automata theory in Table 3.
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Table 3: Finite automata state transitions and grammar rules for o�ensive language categories

Category Transitions (Input triggers) Grammar pattern
Example

sentence
Why o�ensive

Hate
speech

S0→ S1: Group noun (e.g.,
“people”) S1→ S2: Hate verb
(“are the scum”) S2→ qF:
Metaphor/slur or harmful

intensi�er.

Demonstrative NP +
Copula +

Metaphor/Slur.

“People from that
background are
the scum of our

nation.”

POS: “people” as
subject; DEP:
exclusionary

intent.

Profanity
S0→ S1: Subject pronoun (“I”)
S1→ S2: Curse verb S2→ST:

Target noun (“idiot”).

Imperative +
Destination + Noun

insult.

“I will beat the
hell out of you,

idiot.”

Strong
nouns/adjectives,

curse words
detected via PoS

tagging.

Sarcasm

S0→S1: Compliment or
exaggeration S1→ S2: Irony or

contradiction S2→ ST:
Emotive cue or tag question.

Compliment +
Negation/Irony + Cue.

“Really, only a
genius like you
can think such

ways.”

DEP indicates a
mismatch

between tone and
content (e.g.,
sarcasm).

�reats

S0→S1: Modal verb (“will”)
S1→S2: �reatening verb

(“survive tonight”) S2→ ST:
Target or context.

Pronoun +Modal +
�reat Verb + Target.

“We will see
whether you

survive tonight.”

Conditionals +
verbs indicate
harm; DEP

identi�es threat.

�ese grammars function as structured representations of syntactic patterns typical of o�ensive expres-
sions, enabling the neural model to capture nuanced linguistic signals. Based on parts of speech (e.g., nouns,
verbs, modals) and dependency relations (e.g., subjects, objects), a rule-based approach is used to identify
hate speech, profanity, sarcasm, and threats. During training, these formal structures enhance supervision
and guidance for contrastive learning and for aligning o�ensive classes with speci�c syntactic templates.
�ese general grammar rules for the classi�cations are represented as �nite automata, as shown in Fig. 2.

�e grammar rule for o�ensive classi�cation is de�ned as

(i) Hate Speech

S0 → S1 (SUBJECT N/PRO) → S2 (PREDICATE NEGATION) → S3 (TARGET GROUP/ADJ_
PHRASE)→ ST

S1 state is de�ned as SUBJ, the speaker is referring to a subject that’s either a nounphrase (NP_SUBJECT)
or a pronoun (PRON_SUBJECT). S2 transition is marked as NEGATED_VERB—�e predicate (verb
phrase) has a negation marker such as don’t, can’t, shouldn’t, or explicitly negative verbs like ban, exclude.
S3 is de�ned as TARGET_GROUP → A social group, ethnicity, gender, religion, or similar group noun,
sometimes modi�ed by an adjective phrase.
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Figure 2: Grammar rules and transitions

(ii) Profanity

S0→ S1 (Sub: Noun/PRO)→ ST (PROFANE_ADJ/NOUN)

In S1, the PRONOUN directly addresses someone (you, he, she, they), and the identi�cation of
PROFANE_TERM, which has an Adjective Insult (stupid, dumb) or a noun insult (idiot, moron), leads to
the state target.

(iii) Sarcasm

S0→ S1 (EXCL)→ S2 (POSITIVE_ADJ)→ ST (INCONGRUENT_STRUCTURE)

�is grammar captures tone reversal, in which the state begins with an exclamation that functions as
a positive adjective tag for the subsequent state. �en it transitions to NEG_CONTEXT in the next state,
thereby contradicting the positive tone.

(iv) �reat

S0→ S1 (COND PRON)→ S2 (IMPLIED_SUBJECT)→ S3 (THREAT_VERB)→ ST (TARGET)

State change in S1 begins with grammar CONDITIONAL_PRON (if you or when you) and then
follows IMPLIED_SUBJECT, which is the explicit or implied subject of the threat for the next state, and
THREAT_VERB indicating a harm or danger (hurt, kill, ruin, destroy, regret).

�e use of a classi�cation head ensures ethical alignment and helps prevent the propagation of toxic
content in machine-translated output. It complements the syntactic modules by leveraging grammatical
structure to detect nuanced o�enses, such as sarcastic intent or implicit threats, particularly challenging in
English–Tamil code-mixed and dialect-sensitive contexts. �e overall o�ensive head operation, along with
the PoS alignment, is represented in Fig. 3.
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Figure 3: PoSDEP-o�ense head operation

3.4 Rule-Based Neutralization

Upon identifying an o�ensive word, the model searches for the o�ensive segment in the text and
neutralizes it with equivalent Tamil synonyms, producing a clean translation. �is is achieved by using a
simple equivalent dictionary lookup synonym, which then extracts the equivalents and provides ethically
translated text. Table 4 provides the un�ltered o�ensive Tamil-translated text and the neutralized clean Tamil
translation. A simple dictionary lookup achieves these translations. For the identi�ed spans, equivalent
replacements are sought and substituted according to the o�ensive class.

Table 4:O�ensive language translation strategies

O�ensive

class

Translation

strategy
English source

Tamil

translation

Re�ned tamil

translation

Hate
speech

Reframe to remove
discriminatory
language while
keeping factual
meaning. Avoid
group slurs.

“People from that
background are the

scum of our
nation”

Profanity

Lexical
substitution

replaces explicit
terms.

“I will beat the hell
out of you idiot”

Sarcasm

Literal
neutralization—
remove sarcastic
cues, translate for
factual meaning.

“Really, only
genius like you can
think such a way”

(Continued)
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Table 4 (continued)

O�ensive

class

Translation

strategy
English source

Tamil

translation

Re�ned tamil

translation

�reats

De-escalation—
translate without
violent language,
or convey warning
without harm.

“We will see
whether you

survive tonight?”

4 Dataset and Annotation Strategy

4.1 Source Data: English–Tamil Parallel Corpora

We have used the publicly available and curated parallel corpora:

• AI4Bharat IndicCorp v2.0 [26] and Samanantar datasets [27]:�ese datasets provide a high-quality par-
allel corpus aligned for English–Tamil, extracted from various domains including news, entertainment,
government, health, and education.

• OPUS GlobalVoices [28] is a free, open-source project that enhances diversity in sentence structure,
style, and lexical variety.

• We supplement all these with manually aligned code-mixed (Tanglish) [14,29] samples obtained from
social media comment threads, online forums, and YouTube subtitles.

• Dravidian Codemix dataset [30], which contains Tamil-English code-mixed YouTube comments anno-
tated for o�ensive language and hate speech. �is dataset consists of real, noisy user-generated text in
which code-switching and o�ensive language are frequent.

• �e resulting corpus contains:

~1.8 million sentence pairs for parallel English–Tamil translation

~60,000 code-mixed Tanglish sentences

~200,000 Tamil-only monolingual sentences for back-translation

4.2 O�ensive Language Annotation

To enable the detection and classi�cation of o�ensive language, we design a multi-class o�ensive
annotation protocol.

O�ensive sentences are tagged into the following mutually exclusive categories:

• Hate Speech—Targeted discrimination based on religion, nationality, language, caste, ethnicity, or
gender.

• Profanity—Explicit language or swearing.
• Sarcasm—Polite phrasing used with mockery or ridicule.
• �reats—Statements implying or suggesting harm.

Additionally, non-o�ensive content is included to maintain class balance.

Annotation Process—Initial sentence �ltering using a keyword lexicon and pretrained toxicity detection
models. Where about 50K o�ensive and 100K non-o�ensive samples were labelled.
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Initial �ltering employed a keyword lexicon and pretrained toxicity detection models. �e corpus is
divided into 80%, 10% and 10% for training, validation, and testing, respectively. Final labels were validated
by bilingual annotators, with intercoder agreement assessed using Cohen’s κ (κ > 0.82).

4.3 Syntactic Annotation (POS and Dependency Tags)

Wehave used the Universal POS (e.g., NOUN, VERB, ADJ), dependency relations (e.g., nsubj, root, obj,
acl) for English annotation and�amizhiUD—a Tamil Universal Dependencies-compliant parser, which is
Unicode normalized, along with a Universal dependency parser for handling code-mixed languages. �ese
are aligned with the SentencePiece tokenizer using o�set mapping.

All textual data underwent automated preprocessing:

• Text Normalization: Automated Unicode normalization and punctuation standardization
• Language Identi�cation: Using langid.py for language �ltering
• Transliteration: Rule-based engine for Romanized Tamil to Unicode conversion
• Tokenization: SentencePiece model with 32K merge operations
• Syntactic Annotation: Automated POS and dependency tagging using Universal PoS for English and

�amizhiUD for Tamil, with automatic alignment to subword tokens

�e syntactic parsers demonstrated robust performance on their standard test sets:

Labelled Attachment Score (LAS) of 91.5% on Universal Dependencies. Tamil (�amizhiUD): LAS
of 89.0% on its benchmark test set. Additionally, we evaluated transliteration to Romanized Tamil Text,
yielding a Character Error Rate (CER) of 3.2% and aWord Error Rate (WER) of 7.8%, indicating high-�delity
conversion suitable formodel training. Language identi�cation is performed using langid.py, which achieves
96.5% accuracy and minimizes noise.

4.4 Data Preprocessing

Before training, rigorous preprocessing is applied to all textual data to ensure consistency, syntactic
alignment, and robustness to noise. First, all English and Tamil texts are normalized—removing extraneous
characters, correcting Unicode inconsistencies, and standardizing punctuation. �e SentencePiece model
is trained with 32K merge operations and then tokenizes sentences. �is tokenization ensures subword
segmentation suitable for morphologically rich languages like Tamil. For syntactic supervision, PoS and
dependency relations are annotated using spaCy (for English) and�amizhiUD (for Tamil), with mappings
aligned to tokenized subword units. Code-mixed (Tanglish) data are transliterated from Romanized Tamil
into Unicode Tamil using a rule-based engine, and language identi�cation (via langid.py) �lters out non-
Tamil sequences. All o�ensive training samples are labelled and integrated into the corpus, ensuring that
o�ensive content is categorized as hate speech, profanity, sarcasm, or threats.�e �nal output is a fully tagged
dataset, suitable for multi-task training involving translation, syntax modelling, and ethical content �ltering.

4.5 Evaluation Setup

Models are evaluated across all tasks using domain-appropriate metrics. For the English-to-Tamil
translation task, we used BLEU, TER (Translation Edit Rate), and chrF++ scores, calculated using the
standardized BLEU toolkit to ensure reproducibility. For the PoS tagging task, accuracy is measured at the
token level. In contrast, dependency parsing performance is assessed using the Unlabelled Attachment Score
(UAS) and the LabelledAttachment Score (LAS), which respectively capture the correctness of syntactic head
selection and dependency label assignment. �e evaluation of o�ensive language detection was performed
using standard classi�cation metrics—precision, recall, and F1-score—on a balanced held-out test set. To
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maintain consistency and avoid domain bias, all datasets were split into training, development, and test sets
in an 80:10:10 ratio, with strati�cation by domain (e.g., formal [news and literature] versus informal [social
media] text).�is evaluation setup ensures a comprehensive assessment of themodel’s linguistic competence
and real-world adaptability.

5 Experiments and Results

To evaluate the e�ectiveness of the proposed PoSDEP-O�ense-Trans model, we conduct extensive
experiments across translation quality, syntactic accuracy, and o�ensive language detection. We compare
against several strong baselines and ablation variants to validate the impact of multi-task learning and
syntactic supervision.

5.1 Experimental Setup

To thoroughly evaluate the proposed PoSDEP-O�ense-Trans model, we designed an extensive exper-
imental framework comprising translation performance, syntactic generalization, and o�ensive language
classi�cation. Our enhancements were integrated into �ve Transformer-based neural machine translation
(NMT) backbones: (i) Transformer-Base—a standard 6-layer encoder-decoder model, (ii) mBART-large—a
multilingual sequence-to-sequence model pretrained via denoising objectives, (iii) mT5-base—a multilin-
gual text-to-text Transformer trained on the mC4 corpus, (iv) IndicTrans2—a Transformer optimized for
Indian languages, and (v) XLM-RoBERTa (XLM-R)—a pretrained cross-lingual encoder trained on 100
languages using RoBERTa objectives. For encoder-only models like XLM-R, we used a shallow Transformer
decoder for generation and added the same syntactic and classi�cation heads. All models were enhanced
with our proposed modules: token-level POS and DEP embeddings, syntax-guided attention, syntax-aware
contrastive learning, and a multi-class o�ensive classi�cation head.

�e transformer models are trained using 4 × A100 NVIDIA GPUs with 40 GB memory each, utilizing
mixed-precision training for e�ciency and trained for 20 epochs with a batch size of 1024 tokens, having
an Adam optimizer with β1 = 0.9, β2 = 0.98, and an inverse square root learning rate schedule with 4K
warm-up steps.

We used SentencePiece tokenization with 32K merge operations for both English and Tamil. PoS and
DEP annotations were aligned with subword tokens using o�set tracking and expansion strategies. �e
GradNorm method dynamically balances our multi-task loss function, which includes translation, PoS
tagging, dependency parsing, o�ensive language classi�cation, and contrastive objectives, thereby balancing
across tasks. Additionally, we evaluate two ablation variants of our model.

5.2 Evaluation Metrics

To evaluate the proposed PoSDEP-O�ense model, we used a set of metrics that are aligned with its
multi-task objectives. �e evaluation set here has been classi�ed into four broad categories as follows:

• Machine translation quality metrics
• Syntactic evaluation metrics
• O�ensive language classi�cation metric
• O�ensive language neutralization metric

5.2.1 Machine Translation Quality Metrics

�ese metrics assess the minimization of the primary translation loss LMT, which is the cross-entropy
between the predicted sequence and the ground truth.
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(i) BLEU (Bilingual Evaluation Understudy)—Measures n-gram overlap between predicted Ŷ and refer-
ence Y sequences.

BLEU = BP ⋅ exp( N

∑
n=1

wn log pn) (10)

where:

• pn: Modi�ed n-gram precision,
• wn: Weight for each n-gram order,
• BP: Brevity Penalty.

Interpretation: Higher BLEU indicates improved learning from LMT.

(ii) TER (Translation Edit Rate)

Measures alignment cost not captured by n-gram overlap, re�ecting edit distance between output. Ŷ
and reference Y.

TER =
Number of edits

Average reference length
× 100 (11)

Lower TER indicates reduced translation errors via alignment-aware decoding and syntactic reordering.

(iii) chrF++ (Character F-score)

Measures the character-level precision and recall that minimize character loss via:

LMT−Char = −∑
t

log P (ychart ∣ychar
<t , X) (12)

and

Fscore chrFβ = (1 + β2) ⋅ P ⋅ R

β2P + R
(13)

where: P: n-gram precision, R: n-gram recall, β = 2 gives more weight to recall.

�is is particularly useful in morphological alignment.

5.2.2 Syntactic Evaluation Metrics

(iv) POS Tagging Accuracy: Percentage of correctly predicted part-of-speech tags at the token-level.

Accuracy =
Number of correctly tagged tokens

Total tokens
× 100 (14)

High POS accuracy indicates strong grammatical modeling, supporting more accurate syntax-
aware translation.

(v) UAS (Unlabelled Attachment Score) measures the percentage of words that are correctly assigned
their syntactic head in the dependency tree, ignoring the label. �is score captures the structural
correctness of the parse tree.

UAS =
Correct head assignments

n
× 100 (15)
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(vi) LAS (Labelled Attachment Score) measures the percentage of words that are correctly assigned both
the syntactic head and the correct dependency label.

LAS =
Correct heads + correct label s

n
× 100 (16)

(vii) Hallucination Rate (HR) measures the proportion of tokens in the translated output that have no
alignment to any token in the source sentence, with a lower HR indicating more faithful translations.

5.2.3 O�ensive Language Detection Metrics

�ese correspond to the classi�cation loss Loffense optimized via cross-entropy on binary labels.

(viii) Macro F1 score.

�e Macro F1 Score is the arithmetic mean of the F1 scores computed independently for each class in
a multi-class classi�cation task. �is score treats all classes equally, regardless of the number of samples per
class.

Macro − F1 =
1

N

N

∑
i=1

F1i (17)

where:

N is the number of classes (e.g., hate, sarcasm, threat, profanity, non-o�ensive),

F1i is the F1 score for class i, calculated as:

F1I = 2 ⋅
Precision ⋅ Recal l

Precision + Recal l
(18)

(ix) ROC-AUC (Receiver Operating Characteristic—Area Under Curve).

A model’s ability to distinguish between classes is measured by its ROC-AUC. At di�erent threshold
levels, the model plots the True Positive Rate (Recall) against the False Positive Rate (1-Speci�city).�eOne-
vs-Rest (OvR) technique is commonly used to average across classes in multi-class problems.

5.2.4 O�ensive Language Neutralization Metric

It is the ratio of o�ensive tokens successfully replaced with neutral Tamil synonyms to the total number
of detected o�ensive tokens.

OTNA =
Nre pl aced

Ndetec ted

(19)

5.3 Main Results

Our model, PoSDEP-O�ense-Trans, integrates architectural and training-level variations for Syntax-
Guided Attention, PoS and Dependency Parsing Heads, and O�ensive Language Detection tasks. �e result
metrics de�ne feature performance across various tasks.

5.3.1 Translation Results across Architectures

�e proposed model, POSDEP-O�ense-Trans, is evaluated across �ve Transformer-based NMT archi-
tectures to assess its performance onEnglish-to-Tamil translation.As shown in the table, integrating syntactic
supervision (POS and DEP embeddings), syntax-guided attention, contrastive learning, and a multi-class
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o�ensive classi�cation head signi�cantly improved translation quality across all architectures. �e complete
translation evaluation results are summarized in Table 5, and the comparison of these values is shown
in Fig. 4.

Table 5: Translation results across architectures

Model Con�guration BLEU ↑ chrF++ ↑ TER ↓

Transformer
Base 25.2 51 45.8

Base + PoS + DEP + O�ense 28.9 54.5 42

mBART
large 29.4 55.1 40.4

POS + DEP + O�ense 32.6 58 36.8

mT5
Base 30.1 56 39.3

POS + DEP + O�ense 33.2 58.8 35.9

XLM-R
Base 28.2 54.1 41.7

POS + DEP + O�ense 30.9 56.5 38.6

IndicTrans2
Baseline 27.8 53.2 43.1

POSDEP-O�ense (proposed) 33.5 59.1 34.2

Figure 4: Translation quality metrics for translation across various model variants

For the standard Transformer-Basemodel, adding our enhancements improved BLEU from 25.2 to 28.9
and reduced TER from 45.8 to 42.0, con�rming the value of even shallow syntactic signals in low-resource
settings. On pretrained encoder-decoder architectures such as mBART and mT5, our model outperformed
their vanilla baselines by +3.2 BLEU and +3.1 BLEU, respectively, while also improving chrF++ and reducing
TER. Similarly, the encoder-only XLM-Rmodel, when extendedwith a Transformer decoder, bene�ted from
our enhancements, achieving 30.9 BLEU and 56.5 chrF++, indicating that syntactic features are bene�cial
even in pretrained multilingual setups.
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Our proposed POSDEP-O�ense-Trans model achieves better results, with BLEU 33.5, chrF++ 59.1, and
TER 34.2. �is indicates that the multitask model helps in increasing performance.

5.3.2 Syntactic Understanding

�e syntactic understanding performance across various Transformer-based architectures—both in
their baseline and enhanced forms—validates the inclusion of Part-of-Speech (PoS) tags and Dependency
(DEP) relations. �e baseline model achieves 90.3% UAS, 81.6% UAS, and 78% LAS, whereas PosDEP +
O�ense improves performance to 93.5% POS accuracy, with 85.2% and 81.7% UAS and LAS, respectively.
�is indicates that syntactic augmentation in the base model has signi�cantly improved performance.

mBART improved from 92.7% POS accuracy and 81.2% LAS to 94.8% and 84.3%, respectively, a�er
enhancement, as it had already been trained multilingually. Similarly, mT5’s PoS tagging accuracy increased
from 94.1% to 95.2%, and LAS from 84.1% to 86.1% with the addition of syntax-aware inputs. �is clearly
indicates that syntax alignment helps even advanced models improve. �e scores improved from a baseline
LAS of 82.5% to 84.7%, indicating suitability for syntactic tasks when appropriately extended. XLM-R, which
helps align o�ensive classi�cation, showed considerable improvement by leveraging syntactic structures.

Notably, the proposed PoSDEP-O�ense-Transmodel achieved the highest syntactic performance across
all metrics: 97.0% PoS accuracy, 92.4% UAS, and 90.1% LAS. �ese results were made possible by its
architecture that combines syntax-guided attention, multitask learning with PoS and DEP heads, contrastive
learning for structural generalization, and balanced optimization with GradNorm. �ese metric values are
presented in Table 6 and Fig. 5.

Table 6: Syntactic understanding metrics across language

Model Con�guration POS accuracy (%) ↑ UAS (%) ↑ LAS (%) ↑

Transformer
Base 90.3 81.6 78

Base + PoS + DEP + O�ense 93.5 85.2 81.7

mBART
large 92.7 85 81.2

POS + DEP + O�ense 94.8 87.9 84.3

mT5
Base 94.1 87.4 84.1

POS + DEP + O�ense 95.2 89 86.1

XLM-R
Base 93.2 86 82.5

POS + DEP + O�ense 94.5 88.1 84.7

IndicTrans2
Baseline 95.4 89.2 86.7

POSDEP-O�ense (proposed) 97 92.4 90.1

�e signi�cant improvements over baselines indicate that synaptic awareness can be included inmodels,
even multilingual, for reaching contextual awareness that is always di�cult in low-resource language pairs
like English-Tamil.

While BLEU gains over the baseline are modest, the proposed model demonstrates consistent improve-
ments in hallucination control. Speci�cally, the baseline system exhibited a Hallucination Rate (HR) of
14.8%, meaning that nearly one in seven output tokens did not correspond to any source token. In contrast,
POSDEP-O�ense-Trans reduced this to 13.0%, a relative reduction of about 9%.
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Figure 5: Syntactic understanding performance evaluation across various models

5.3.3 O�ensive Language Classi�cation

F1 scores for o�ensive language classi�cation across four categories—Hate Speech, Profanity, Sarcasm,
and�reats are evaluated using the models—Base Transformer, mBART, mT5, XLM-R, and the IndicTrans2
included with the proposed PoSDEP-O�ense-Trans.

�e proposed PoSDEP-O�ense-Trans con�guration achieves the highest performance across all o�en-
sive classes, reaching 0.87 inHate Speech, 0.90 in Profanity, 0.81 in Sarcasm, and 0.83 in�reats.�ese results
indicate that the proposed model can detect abuse, toxicity, sarcasm, and other threats. Compared with
the baseline model, the proposed model delivers consistent improvements across all classes. �e mT5 and
mBART models are improved by the proposed PosDep-O�ense-Trans. However, IndicTrans2 consistently
outperforms other models because of its language-speci�c optimization for Tamil.

Signi�cantly, sarcasm and threats—traditionally the most challenging categories—bene�t substantially
from the syntax-guided attention mechanism and contrastive learning, which help the model focus on
discourse structure rather than surface word cues alone. Additionally, profane content, which is typically
easier to detect via lexical patterns, achieves the highest scores across all models; however, IndicTrans2
still achieves a notable 0.90 F1 score, re�ecting its superior generalization. O�ensive language metrics are
summarized in Tables 7 and 8 and graphically shown in Fig. 6.

Table 7:O�ensive classi�cation across models—F1 score

O�ensive classi�cation Hate speech Profanity Sarcasm �reats

Model Con�guration F1 F1 F1 F1

Transformer
Base 0.76 0.79 0.7 0.72

Base + PoS + DEP + O�ense 0.8 0.82 0.74 0.75

mBART
Large 0.78 0.8 0.72 0.74

PoS + DEP + O�ense 0.83 0.85 0.76 0.78

(Continued)
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Table 7 (continued)

mT5
Base 0.8 0.82 0.74 0.75

PoS + DEP + O�ense 0.85 0.88 0.79 0.8

XLM-R
Base 0.77 0.81 0.71 0.73

PoS + DEP + O�ense 0.82 0.84 0.75 0.77

IndicTrans2
Baseline 0.81 0.85 0.76 0.78

PoSDEP-O�ense (proposed) 0.87 0.9 0.81 0.83

Table 8: O�ensive classi�cation across model—ROC-AUC score

O�ensive classi�cation Hate speech Profanity Sarcasm �reats

Model Con�guration ROC-AUC ROC-AUC ROC-AUC ROC-AUC

Transformer
Base 0.76 0.83 0.78 0.8

Base + PoS + DEP + O�ense 0.85 0.86 0.81 0.83

mBART
Large 0.83 0.85 0.8 0.81

PoS + DEP + O�ense 0.88 0.89 0.84 0.86

mT5
Base 0.84 0.86 0.82 0.83

PoS + DEP + O�ense 0.9 0.91 0.86 0.88

XLM-R
Base 0.83 0.85 0.8 0.82

PoS + DEP + O�ense 0.87 0.88 0.83 0.85

IndicTrans2
Baseline 0.86 0.88 0.84 0.86

PoSDEP-O�ense (proposed) 0.9 0.93 0.87 0.89

�e enhanced models across all architectures show improved performance when enriched with PoS
and Dependency features along with a dedicated o�ensive classi�cation head. �ese results con�rm the
e�ectiveness of syntactic understanding and task-aware training in improving o�ensive content detection,
particularly for morphologically rich, code-mixed Tamil.

For hate speech detection, performance improves with the addition of syntactic modelling, particularly
on IndicTrans2 and mT5. �e proposed POSDEP-O�ense-Trans model achieves the highest F1 score (0.87)
and ROC-AUC (0.90) in this class.

Similarly, for the Profanity class, all models performed well due to strong lexical cues, and the proposed
model achieved the best F1 (0.90) and ROC-AUC (0.93). For the Sarcasm class, the proposedmodel achieves
an F1 of 0.81 and an ROC-AUC of 0.87, which appears to be challenging due to the abstract nature. On
the threat classi�cation task, the proposed model achieves an F1 score of 0.83 and an ROC-AUC of 0.89,
indicating its ability to capture both explicit and subtle forms of threatening language.

In summary, the proposed POSDEP-O�ense-Trans model consistently outperforms all o�ensive
categories across both F1 and ROC-AUC metrics, validating the integration of syntax-aware features and
multi-class o�ensive classi�cation within a low-resource English–Tamil NMT pipeline.

�e o�ensive language is evaluated based on two keymetrics, theMacro F1 score and ROC-AUC, across
various transformer models.
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Figure 6: O�ensive classi�cation across models

Macro F1 Score re�ects the model’s balanced performance across the o�ensive classes: hate speech,
profanity, sarcasm, and threats. �e improved models with PoS/DEP and o�ensive heads consistently
outperform their baselines. �e proposed POSDEP-O�ense-Trans model achieves a Macro F1 Score of 0.91,
indicating high generalization across four o�ensive categories. A high ROC-AUC score suggests the model’s
ability to distinguish between o�ensive and non-o�ensive content.�e proposed con�guration outperforms
all the models.

All models show clear improvements with the inclusion of syntactic features and dedicated o�ense-
classi�cation heads. �e results support the hypothesis that syntactic structure facilitates semantic
disambiguation, particularly when translating o�ensive or culturally sensitive English content into Tamil.
Also, we have conducted a small pilot study by dividing the profanity class into mild and strong, and the
results are presented in Appendix A—Table A1.

5.3.4 O�ensive Neutralization

Table 9 presents the metric used to evaluate o�ensive neutralization across various models. Again, the
proposed model provides better neutralization accuracy.
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Table 9: O�ensive statement neutralization across models

Model OTNA (%) ↑

Transformer-Base 78.6
Base + POS + DEP + O�ense 84.2

mBART-Large 80.4
mBART + POS + DEP + O�ense 86.7

mT5-Base 81.9
mT5 + POS + DEP + O�ense 88.5

XLM-R-Base 79.5
XLM-R + POS + DEP + O�ense 85.9

IndicTrans2 (baseline) 82.4
PoSDEP-O�ense-Trans (proposed) 92.3

With the inclusion of any Dravidian Code-Mixed O�ensive dataset, o�ensive neutralization accuracy
has improved by around 3 percent.

5.4 Ablation Study

We conducted an extensive ablation study with three seeds, isolating each component. Syntax compo-
nents show strong statistical signi�cance (p < 0.001); a multitask approach to toxicity control signi�cantly
outperforms adapter-only �ne-tuning; and post-translation neutralization ismore e�ective than pre-�ltering
training. All improvements over the baseline are statistically signi�cant (p < 0.001), as de�ned in Table 10.
�e synergy between syntactic modelling and ethical �ltering demonstrates that these components mutually
reinforce one another rather than operate independently.

Table 10: O�ensive statement neutralization across models

Model version BLEU Translation quality O�ense detection

Baseline 27.8 43.1 81.0
Adapter-Only+ 28.1 42.7 82.5
Pre/Post-Filter+ 28.9 41.9 83.8

Syntax (POS + DEP)+ 31.2 37.5 85.1
Syntax Attention+ 32.1 35.8 86.3
Contrast Learning+ 32.8 35.1 87.0
Proposed model 33.5 34.2 89.2

�is result con�rms that grammar is more important for accuracy, and integrating all provides
reliability.

6 Conclusion and Future Work

In this paper, we propose POSDEP-O�ense-Trans, a multitask neural machine translation (NMT)
model for English-to-Tamil translations; by integrating auxiliary tasks—part-of-speech tagging, dependency
parsing, and o�ensive language classi�cation, our model not only improves translation �uency and accuracy
but also ensures grammatical correctness and cultural sensitivity in generated outputs. Experimental results
across multiple metrics, including BLEU, TER, chrF++, POS accuracy, UAS, LAS, and F1-score, demonstrate
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consistent and signi�cant improvements over strong baselines such as mBART50 and vanilla IndicTrans2.
Notably, our model achieves a BLEU score of 33.5 and an F1 Score of 89.2 for o�ensive detection, demon-
strating its ability to balance linguistic accuracy with ethical �ltering. �e model reduces the hallucination
rate and generates trustworthy translations.

From an architectural perspective, the inclusion of a syntax-guided attention mechanism and a con-
trastive loss objective for syntax consistency contributes to stronger encoder representations. Additionally,
our multitask learning framework enables more e�ective feature sharing and generalization across resource-
scarce language pairs, particularly bene�ting low-resource languages such as Tamil. We further explored
context-aware synonym replacement and deeper semantic analysis to improve the context and cultural
�uency in neutralized outputs.
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Appendix A Pilot Study on Fine-Grained O�ensive Classes

We performed a preliminary experiment by dividing the profanity category intomild and strong levels.
Accuracy has decreased slightly due to data imbal ance; however, the model achieved �ner distinctions,
with an F1 score of 83.1. �is validates that our architecture can be directly extended to multi-level o�ensive
taxonomies as richer annotated resources become available.

Table A1: Results of pilot study subdividing the Profanity class intoMild and Strong categories

Model variant Classes F1 (%) Neutralization rate (%) Description

Baseline (4-class) 4 84.6 78.1
Hate, Profanity, Sarcasm,

�reats
Fine-grained (Profanity
→Mild/Strong)

5 81.2 77.5
Accuracy drops due to

data imbalance
Fine-grained + Data

Augmentation
5 83.1 78.0

Synthetic samples
improved stability

�e initial investigation indicates that sub-categorizationmay lead to data imbalance, yet the framework
performs well for �ne-grained distinctions, as shown in Table A1. �e minimal drop in accuracy indicates
the system requires larger annotated corpora. However, the performance has improved with synthetic
augmentation, suggesting that the architecture is capable of handling multi-level o�ensive taxonomies.

https://github.com/rama-cs/PoS-DEP-Offense.git.
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