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ABSTRACT: Split Learning (SL) has been promoted as a promising collaborative machine learning technique designed
to address data privacy and resource efficiency. Specifically, neural networks are divided into client and server sub-
networks in order to mitigate the exposure of sensitive data and reduce the overhead on client devices, thereby
making SL particularly suitable for resource-constrained devices. Although SL prevents the direct transmission of
raw data, it does not alleviate entirely the risk of privacy breaches. In fact, the data intermediately transmitted to
the server sub-model may include patterns or information that could reveal sensitive data. Moreover, achieving a
balance between model utility and data privacy has emerged as a challenging problem. In this article, we propose
a novel defense approach that combines: (i) Adversarial learning, and (ii) Network channel pruning. In particular,
the proposed adversarial learning approach is specifically designed to reduce the risk of private data exposure while
maintaining high performance for the utility task. On the other hand, the suggested channel pruning enables the model
to adaptively adjust and reactivate pruned channels while conducting adversarial training. The integration of these two
techniques reduces the informativeness of the intermediate data transmitted by the client sub-model, thereby enhancing
its robustness against attribute inference attacks without adding significant computational overhead, making it well-
suited for IoT devices, mobile platforms, and Internet of Vehicles (IoV) scenarios. The proposed defense approach was
evaluated using EfficientNet-B0, a widely adopted compact model, along with three benchmark datasets. The obtained
results showcased its superior defense capability against attribute inference attacks compared to existing state-of-the-art
methods. This research’s findings demonstrated the effectiveness of the proposed channel pruning-based adversarial
training approach in achieving the intended compromise between utility and privacy within SL frameworks. In fact,
the classification accuracy attained by the attackers witnessed a drastic decrease of 70%.

KEYWORDS: Split learning; privacy-preserving split learning; distributed collaborative machine learning; channel
pruning; adversarial learning; resource-constrained devices

1 Introduction

Distributed Collaborative Machine Learning (DCML) represents a promising approach that allows
training machine learning models collaboratively across multiple data sources [1,2]. Specifically, such
collaboration reduces significantly computational overhead and the resource demands for training large
ML models [3]. Furthermore, DCML outperforms traditional methods by ensuring that the original data
remains private and undisclosed [2]. In particular, Split Learning (SL) [4] has emerged as an innovative
DCML technique that has attracted considerable attention. SL has been applied in various domains, including
autonomous vehicles in 6G networks [5], smart grid load forecasting [6], traffic flow prediction [7],
Unmanned Aerial Vehicle (UAV) [8], and sequential/satellite data processing [9]. In SL, the machine learning
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model is divided into client and server sub-models. Specifically, the client side is dedicated to training the
initial layers of the model using its local private data. Subsequently, the extracted features are transmitted
to the server, which resumes the training process. Such model split reduces the computational load on the
client side. This makes SL particularly advantageous for resource-limited devices such as IoT devices, mobile
phones, and Internet of Vehicles (IoV) [10-12]. Even though SL prevents the need to transmit raw data, the
extracted features can still pose a security risk. In fact, they may be exploited by adversaries to infer sensitive
attributes, or reconstruct the original data [13,14].

Various defense methods have been proposed to improve data privacy in the SL framework [I5].
Particularly, cryptographic techniques [16-19] were introduced to enable computations on encrypted data.
This allows the server to perform forward and backward propagation without accessing the original data.
However, such methods involve considerable computational overhead and latency, which exceed the capa-
bilities of tiny devices deployed in IoT or IoV networks [20]. Additionally, Differential Privacy (DP) has been
suggested to mitigate potential private information leakage by adding controlled Gaussian or Laplacian noise
to the model parameters or the intermediate data [21-23]. Even though DP provides a quantifiable privacy
guarantee, it affects the model’s performance [24]. More recently, Adversarial Representation Learning
(ARL) [25-27] has been developed to enhance data privacy using two networks. The first one is the primary
network used to optimize the model of the utility task while reducing the risk of private data exposure. On the
other hand, the second network represents a proxy-adversary model designed to infer sensitive information.
Notably, the objective functions in ARL aim at balancing high accuracy for the target task with effective
protection of sensitive information.

Notably, most of the existing ARL-based methods for SL framework are not tailored for resource-
constrained client devices, such as edge devices within the IoV ecosystem. Conversely, techniques like
knowledge distillation, network pruning, and quantization focus on compressing ML models in order to
reduce their size without impacting the task accuracy [28,29]. In addition to their primary purpose of
optimizing neural networks, network pruning also aims to mitigate the risk of private data leakage during
DCML inference phase [26,30].

Considering the existing literature, many privacy-preserving approaches in DCML, particularly in
split learning, exhibit a lack of balance between privacy and accuracy on resource-constrained devices.
For instance, some methods offer strong resistance to privacy attacks but suffer from significant drops in
accuracy. Conversely, other methods maintain acceptable performance but are impractical for deployment
on devices with limited computational resources. To address these challenges, this paper introduces a novel
defense approach designed to shield against attribute inference attacks. Specifically, adversarial training and
network channel pruning are coupled to achieve an improved utility-privacy tradeoff for SL frameworks.
More specifically, the proposed Channel Pruning-based Adversarial Training (CPAT) approach consists
of two main phases. The first one is held offline for joint adversarial training and channel pruning. The
association of these two techniques enables the deep learning model to adaptively adjust and reactivate
the channels pruned throughout the training process. This reduces the informativeness of the intermediate
data transmitted by the client model, making it more robust against attribute inference attacks. The
second CPAT phase consists of the online inference task. In contrast to existing defense methods, like
homomorphic encryption, which increase significantly the computational overhead on client devices, this
research introduces an efficient and lightweight defense approach against attribute inference attacks on SL
frameworks. The primary contributions of this study can be outlined as follows:

« Design and implement a privacy-preserving split learning framework that integrates: (i) adversarial
training and (ii) channel pruning. Combining these two techniques during training helps minimize the
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mutual information between the raw input data and the intermediate features exchanged within the split
learning architecture.

«  Evaluate the proposed CPAT framework in terms of both utility and privacy by conducting experiments
on three benchmark datasets: FairFac [31], CelebA [32], and CIFAR-10 [33].

o Conduct a comparative analysis of CPAT’s performance against state-of-the-art privacy-preserving
approaches to demonstrate its effectiveness.

o Couple CPAT with a lightweight model, namely EfficientNet [34] in order to showcase its deployment
on resource-constrained platforms, such as Internet of Vehicles (IoV).

The remainder of the article is structured as follows: Section 2 reviews privacy-preserving approaches
in SL framework. The proposed Channel Pruning-based Adversarial Training (CPAT) approach is detailed
in Section 3. The experiments conducted to assess the CPAT approach as well as the obtained results are
discussed in Section 4. Finally, Section 5 concludes the study and summarizes the key findings. Moreover, it
highlights the potential future directions for this research.

2 Literature Review

State-of-the-art privacy-preserving techniques in split learning can be broadly classified into three main
approaches, namely, Cryptographic techniques, Differential Privacy (DP), and Adversarial Representation
Learning (ARL). This section provides a comprehensive overview of these defense approaches and identifies
their advantages, limitations, and key research gaps.

In [16,19], the authors introduced a Homomorphic Encryption (HE)-based approach where the client
encrypts intermediate data before transmitting them to the server sub-model. Consequently, the server was
unable to reconstruct the client’s input data given the intermediate representations or gradients computed
during forward and backward propagations. Moreover, Khan et al. [35] integrated Secure Multi-Party
Computation (SMPC) with a random masking mechanism to enhance privacy within the SL framework.
Specifically, the client applied a random mask to the intermediate representations before transmitting them
to two non-colluding servers. These servers employed Function Secret Sharing (FSS), which enabled each to
operate on its privately shared function. The primary objective of this approach was to ensure that no single
server could reconstruct the client’s data or independently manipulate the feature space. Furthermore, the
study in [36] introduced a hybrid method that integrated HE and SMPC to enhance the privacy of data and
model parameters in a multi-server hierarchical setting. In particular, the HE ensured the confidentiality
of user inputs during both forward and backward propagation, while the SMPC granted robustness by
safeguarding the system even when most servers acted dishonestly. Although cryptographic techniques
exhibit significant privacy benefits, several drawbacks make them unsuitable for resource-constrained client
devices and real-world applications. These challenges include substantial computational and communication
overhead, high latency, and complex key management.

The researchers in [23] utilized a DP defense technique to introduce a new activation function
called R’eLU. The key idea was to incorporate randomness in the intermediate data in order to prevent
reconstructing raw data or inferring private attributes by the attackers. The work in [23] extended the
Rectified Linear Unit (ReLU) activation function, which typically assigns zero to negative inputs while
keeping positive values unchanged, and introduced R*eLU instead. The latter activation function randomizes
the negative inputs using randomized responses and Laplacian noise during the activation computation
(instead of zeroing them). Even though DP can provide a verifiable privacy guarantee, its implementation
often results in a noticeable degradation in model performance [24].
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Alternative defense approaches using noise injections have been explored [21,37]. In particular, the
authors in [37] outlined a method to learn additive Laplace noise distributions intended to reduce consid-
erably the informative content of the raw data. Specifically, the method relied on two phases; The first one
represents an offline stage where additive noise distributions are calculated as part of a disjoint learning
process. In addition, the loss function was designed to balance privacy and accuracy. This was achieved
through decreasing the mutual information between the original and intermediate data. On the other hand,
during the second online phase (inference phase), the client selects a random distribution from the collection
of noise distributions generated in the first phase and applies it to the intermediate activation. Furthermore,
the authors in [21] depicted a method that injects dynamically noise into intermediate data based on the
input features, leveraging a self-attention mechanism. This enables the model to selectively focus on different
feature regions to determine the optimal noise levels. In other words, less noise is added to the sensitive
image regions in order to preserve the accuracy of the target task. Conversely, more noise is applied to the
less sensitive areas to enhance privacy. One should note that adding noise to the intermediate data during
the inference phase may introduce slight computational and latency overheads. This would be inconvenient
for real-time applications and/or resource-constrained environments.

In [38,39], the researchers proposed an adversarial training technique by incorporating a proxy
adversary model throughout the training phase. In particular, the study [38] demonstrated that defending
against data reconstruction attacks does not inherently prevent attribute inference attacks, and vice versa.
Therefore, they developed a framework including two distinct proxy adversaries: The adversary classifier
and the adversary reconstructor. Besides, the client’s objective function was designed to minimize the cross-
entropy loss of the main task, reduce the mutual information between the original and reconstructed data,
and maximize the cross-entropy loss of private attributes. Conversely, the server model’s objective function
aims at minimizing the cross-entropy loss of the main task. Meanwhile, the adversary classifier relies on
the cross-entropy loss between the ground truth labels for the private attribute and the corresponding
predictions. Moreover, the authors in [39] highlighted the effectiveness of employing a related, but not
identical metric in the optimization function used for adversarial training. Specifically, the client model was
trained to enhance the likelihood of the target utility while simultaneously maximizing the entropy of the
private attribute. The key benefit of this approach lies in its ability to preserve privacy. Notably, the use of
entropy during training eliminates the need for private labels, thereby enhancing data privacy. Moreover,
recent studies examined adversarial training defense approaches handling different data modalities [40,41].
Specifically, the research in [40] used a text dataset for a text classification task, while the researchers in [41]
employed video datasets in their analytics application. Although both studies reported satisfactory outcomes,
further comparisons with other privacy-preserving approaches are necessary to prove their effectiveness.
The study in [26] highlighted the susceptibility of adversarial learning methods to data reconstruction and
attribute inference attacks. To mitigate these vulnerabilities, DISCO [26] introduced a Filter Generating
Network (FGN) on the client side, which generates dynamic filters to selectively prune the channels that
are prone to reveal private attributes. These dynamic filters output either Zero or One; Zeros deactivate
the channels associated with the private attributes, while Ones activate the channels relevant to the task
attribute. FGN was trained to minimize the cross-entropy loss for the target task while maximizing the private
attribute’s cross-entropy loss. Although combining channel pruning with adversarial learning improves data
privacy by mitigating certain attacks, incorporating FGN increased drastically the overhead on the client
side. This limitation is even more significant in resource-constrained environments, such as IoT devices.

Additionally, the authors in [42] combined Class Activation Maps (CAMs) and Autoencoders (AEs)

to selectively mask sensitive regions in the input data. Specifically, CAMs were used to identify which parts
of the image were important for the primary task and which parts might reveal sensitive attributes. These
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sensitive regions were then either blurred or blacked out to create a protected version of the input. An
autoencoder was trained to learn the mapping from the original feature map to this protected version,
enabling it to automatically transform feature maps during inference without modifying the original model.
One limitation of this approach is the additional computational overhead, as training and deploying an extra
autoencoder increases complexity and may restrict its applicability on resource-constrained devices.

Table 1 summarizes the reviewed defense methods in SL framework, detailing the architecture used, the
datasets involved, and the considered targeted privacy attacks. As it can be noticed, the review highlights
the promising potential exhibited by the adversarial learning techniques to enhance data privacy within split
learning frameworks. However, a significant challenge lies in balancing data privacy, task accuracy, and the
computational load on edge devices. To address this challenge, this research depicts a novel defense approach
that combines channel pruning with adversarial training to shield against attribute inference attacks.

Table 1: Overview of the privacy-preserving approaches in SL framework

Privacy-
Article preserving Model type Dataset Privacy attack
approach
Khan et al. [19] HE CNN MIT-BIH, PTB-XL Data Reconstruction
Model i
Pereteanu et al. [18] HE CNN CIFARIO0 ode e?(tr'actlon
Membership inference
Khan et al. [35] SMPC an.d Data CNN MNIST Feature-Space Hijacking
masking attack
Chen and . .
. MPC and HE CNN N/A Model inversion attack
Khisti [36]
MovieLens, Attribute inference
Maoetal. [23] DP_RRand DP_L CNN BookCrossing, Data Reconstruction
MNIST, CIFAR100 Feature hijacking
Gao etal. [21] Noise-based CNN VOC2012, VGGFace2 Attribute inference
) MNIST, CIFARI10, . .
Mireshghallah Noise_based CNN SVHN, CelebA, 20 Attribute 1nferenFe
etal. [22] Data Reconstruction
Newsgroup
Lietal. [38] ARL CNN CelebA, LFW Data Reconstruction
Attribute inference
MNIST, CIFAR-10, Reconstruction
Liu et al. [25] ARL CNN, MLP  ImageNet, Ubisound, . i
Attribute inference
Har, SataeFarm
Roy and Extended Yale B, . .
ARL CNN Attribute inf
Boddeti [39] CIFARI0, CIFAR100 ribute inferefice
Alnasser ARL Transformers TrustPilot Attribute inference
etal. [40]
Du et al. [41] ARL CNN AM-FED+, pEVip ~ Data Reconstruction

Attribute inference

(Continued)
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Table 1 (continued)

Privacy-
Article preserving Model type Dataset Privacy attack
approach
Singh et al. [26] ARL and Channel FairFace, CelebA, Data Reconstruction
& S pruning CIFAR-10 Attribute inference
Data R tructi
Higgins et al. [42] DM CNN CelebA ata Reconstruction

Attribute inference

Note: HE = Homomorphic Encryption; SMPC = Secure Multi-Party Computation; DP_RR = Differential Privacy
(Randomized Response); ARL = Adversarial Representation Learning; DP_L = Differential Privacy (Laplacian Noise);
DM = Data Masking.

3 Proposed Channel Pruning Based Adversarial Training

Prior to initiating the training and testing processes, the proposed Channel Pruning-based Adversarial
Training (CPAT) approach partitions the machine learning model into client and server sub-models. Con-
sistently, CPAT consists of two main phases; (i) An offline phase which performs simultaneous adversarial
training and channel pruning, and (ii) An online phase that consists of the inference stage. Fig. | illustrates
the adversarial training phase along with the three considered models. Namely, it presents the client model
(M,), the server model (M), and the proxy-adversary model (M,4,). One should mention that these models
are trained jointly using their respective objective functions. This supports the key contribution of this
work which applies adversarial training on the client, server, and proxy-adversary models. In particular,
the proposed approach aims at maximizing the adversary’s classification error, while minimizing the
classification error of the server model. Besides, the scaling factor (y) associated with the batch normalization
layer is jointly optimized during the training phase to identify the least significant network channels without
degrading the overall model performance.

-
amm
wmm
wm
7
wmm

Classification
result of task
attribute

Edge device D

Input image
(x) Client model
Classification
> result of private
attribute

Proxy-adversary model

Figure 1: Adversarial training in SL framework

Initially, the optimization of the client sub-model parameters is defined as follows:
0. =argp, minL (M;) — ML(Ma4y), €))

where 0, represents the client model parameters, and A, serves as the tradeoff parameter. In addition, L(M;)
refers to the cross-entropy loss function calculated using the ground truth labels of the task attribute and
the predictions obtained using the server model. Besides, L(M,4,) represents the cross-entropy loss function
derived using the ground truth labels of the private attribute and the corresponding predictions generated
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by the proxy-adversary model. In fact, the client objective function in (1) is formulated to minimize the task
attribute loss while maximizing the private attribute loss of the proxy-adversary model.

In order to obfuscate the private attribute transmitted by the client, channel pruning is integrated into
the proposed adversarial training process. Specifically, the channels that provide minimal contribution to
the model’s target task are pruned. To avoid imposing additional overhead on the client model, the scaling
factor, y, of each channel in the Batch Normalization (BN) layer is utilized as an importance score. In fact,
applying LI regularization to the scaling factor (y) induces sparsity by penalizing its magnitude during
training, enabling the identification of the least significant channels. Consequently, the optimization of the
client model’s parameters is represented as follows:

0. =argp, minL (M;) — ML(Mya,) + A2f (y), @

where f(y) =|y|, is the L1 regularization term used to achieve sparsity, while A, serves as the tradeoff parameter.
Additionally, a sub-gradient descent approach [28] is employed as the optimization technique for the non-
smooth L1 penalty term.

Moreover, the server model is collaboratively trained alongside the client model in an end-to-end
fashion. A cross-entropy loss, quantified using the predicted probability distribution and the ground truth
labels, is adopted to assess the performance of the server model. In alignment with the objective function
of the client sub-model, an L1 regularization is incorporated into the server’s objective function to achieve
sparsity and identify the least significant channels. The server’s objective function is defined as follows:

L(M;) = CCE(y,7) + 12 (y) 3)

where CCE represents the categorical cross-entropy which measures the difference between the ground-truth
labels y and the corresponding prediction .

On the other hand, the proxy adversary model obtains the intermediate data, Z, with the intent of
inferring the private attribute p. Specifically, the proxy adversary network proceeds as a classifier module
optimized through the minimization of the considered CEE loss. In particular, the loss function of the
proxy-adversary model is formulated as follows:

L (Madv) = CCE(p) f)) (4)

where p is the ground-truth label of the private attribute, while p represents the corresponding prediction
generated by the proxy adversary model.

Furthermore, channel pruning is conducted jointly during the training process. As illustrated in Fig. 2
the least significant channels in the BN layers are pruned after P; epochs. This process begins by traversing
the client and server sub-models obtained from the previous adversarial training phase to identify all BN;
layers. For each sub-model, an importance score is assigned to each channel, chj, based on the absolute value
of its corresponding scaling factor, y;;. The channels with smaller y values contribute less to the output and are
therefore considered less important. Accordingly, the importance scores are sorted, and the channel pruning
is executed according to the predefined pruning ratios.

One should note that performing the channel pruning during the training process enables the model
to dynamically adjust and reactivate the pruned channels. Consequently, the intermediate data exchanged
between the client and the server sub-models becomes less informative and more resistant to attribute
inference attacks. In fact, it reduces the mutual information between the intermediate data and the original
data within the SL framework. The training process of the proposed CPAT is outlined in Algorithm 1.
Moreover, during the online inference phase, the original data X is processed by the client model M,” which
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produces the intermediate activation Z. This intermediate representation is subsequently transmitted to the
server model, M’, which predicts the class value for the task attribute. Finally, the server handles the resulting
outputs and, if needed, forwards them back to the client’s side.

Identify batch normalization (BN)

layers

!

Calculate the importance score (y)

<+ --

for each channel Pyepochs

v

Rank the importance scores

v

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
1
Prune the least important ==

channels

Figure 2: Pruning the least significant channels according to the scaling factors associated with batch normalization
layers

In this research, we adopted the architecture considered in the server side for the threat model.
Particularly, the adversary attempts to extract the private attribute using the intermediate data transmitted by
the client during the inference process. Additionally, we assume that the attackers have access to the original
test set. This enables them to use it for training and testing their own model. Such attacks are practically
feasible in case the adversary obtains limited access to the intermediate activations, Z, and the corresponding
ground-truth labels of their private attribute (p). Such restricted access might be granted through a malicious
or colluding client in SL framework. Furthermore, two scenarios were implemented to examine varying levels
of adversarial capabilities. Namely, Attack-1 assumes that the attacker possesses relevant knowledge on the
client model’s architecture. On the other hand, Attack-2 presumes that the attacker knows both; the client
model’s architecture as well as some hyperparameters such as the learning rate. This additional knowledge
of a key hyperparameter presents an elevated threat level.

Algorithm 1: Channel pruning-based adversarial training (CPAT)

Input: Dataset: D, Training epochs: E, Client model: M. with parameter 0., Server model: M; with
parameter 0;, Proxy-adversary model: M4, with parameter 0,4,, Pruning rate of client model: P,, Pruning
rate of server model: P;, Pruning interval: P;
Output: Pruned models M., M,
for epoch e=1 ... E do
for each batch (x,y)e D do
#Clinet model
Forward propagation to generate smashed data Z «— M, (6, x)
Send Z to M, and My,

#Server model

Forward propagation to generate prediction label y «— M; (6;; Z)

Compute loss function L (M;) «— CCE (y,9) + A.f(y)

(Continued)
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Algorithm 1 (continued)

Calculate the gradients VL (M) and update the parameter 6;
#Proxy-adversary model
Forward propagation to generate prediction label of the private attribute p «— M4, (6aav; Z)
Compute loss function L( M,4,) «— CCE (p, p)
Calculate the gradients VL (M,4,) and update the parameter 6,4,
#Clinet model
Receive the gradients VL (M;), VL (Ma4,)
Update the parameters 6. «— argg, minL (M;) — M\L(Maa,) + A2f(y)

end for

# Channel pruning for client and server models

if epoch e% P; ==0:

for each M, and M; models do

Collect {y11, y125 - - - y,j} for each channel ch; in batch normalization layer BN;
Sort the importance scores = Sort ({|yul, [y2]> ... [yijl})
Prune P,.%, P;% of the least important channels
end for
end if

end for
return M., M,

4 Experiments

In the experiments outlined below, three image datasets were considered to validate and analyze the
performance of the proposed CPAT approach. In particular, we used the FairFace [31] dataset which includes
a collection of 108,501 facial images of resolution of 128 x 128 pixels. It also encloses the race, the gender,
and the age group as attributes associated with each image. One should note that in this research, the
“gender” was selected as task attribute, while the “race” was considered as the private attribute. Moreover, the
CelebA [32] dataset, which encloses 202,599 celebrities’ images of resolution 178 x 218 pixels, was utilized
to assess the proposed approach. In fact. CelebA images represent 10,177 unique identities, annotated using
40 attributes. In the subsequent experiments, we chose “smiling” and “male” as task attribute, and private
attribute, respectively. Lastly, the CIFAR-10 [33] dataset consists of 60,000 color images, each with a resolution
of 32 x 32 pixels, categorized into 10 distinct classes. Each image is manually labelled as either living or
non-living. In our experiments, the “class” was used as the task attribute, while the “living/non-living” was
considered as the private attribute.

Besides, two Deep Learning (DL) models, namely ResNetl8 [43] and EfficientNet-BO [34] were
investigated in this study. In fact, ResNetl8 is an 18 layers convolutional neural network structured using
eight residual blocks. Each block comprises two convolutional layers, ReLU activation functions, and batch
normalization. The key feature of ResNetl8 consists in the use of residual, or skip connections, which
link earlier layers directly to later ones. This mitigates the vanishing gradient issue during the training
process. Table 2 presents the detailed architecture of the considered ResNet18 model.

For the split learning framework setup, we divided ResNetl8 network into two halves. The first one
includes stages 1 to 3, constituting the client sub-network. The second half enfolds stages 4 to 7, forming the
server sub-network. Since the goal of the attribute inference attacks is to classify the private attribute, we
adopted the same architecture for both; the server sub-model and the proxy-adversary model.
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Table 2: Architecture of the considered ResNetl8

Stage Layer name Output size ResNetl8
1 convl 112 x 112 x 64 7 x 7,64, stride 2
) I, stride 2
5 conv2 x 56 x 56 x 64 3 x 3, max pool, stride
3x3,64
x 2
[3 x 3,64 :|
3x3,128]
3 COHV3_X 28 x 28 x 128 _3 x 3, 128 ]
3 x3,256 |
4 conv4_x 14 x 14 x 256 33,256 | 2
[3x3,512]
5 conv5_x 7 x 7 x 512 -3 % 3,512 | x 2
6 Average pool Ix1x512 7 x 7 average pool
7 Fully connected 2 512 x 2 fully connections

As one of the main objectives of split learning consists in reducing the computational burden on the
client side, we also deployed the proposed CPAT approach using the lightweight model EfficientNet which
employs Mobile Inverted Bottleneck (MBConv) layers that associate depth-wise separable convolutions
with inverted residual blocks. Additionally, it incorporates the Squeeze-and-Excitation (SE) optimization
to further improve performance. One should mention that in this research, we utilized the baseline model
EfficientNet-B0 [34]. The lightweight design of EfficientNet-B0 makes it particularly suitable for deployment
in environments with constrained resources, including IoT and IoV environments. In the split learning
architecture, we divided the EfficientNet-B0 model into two sub-models: the client model includes stages 1
through 8, whereas the server model comprises the final stage. The detailed architecture of the considered
EfficientNet-B0 is depicted in Table 3.

Table 3: Architecture of the considered EfficientNet-B0

Stage Operator Resolution H x W #Channels #Layers
1 Conv3x3 224 x 224 32 1
2 MBConvl, k3x3 112 x 112 16 1
3 MBConv6, k3x3 112 x 112 24 2
4 MBConv6, k5x5 56 x 56 40 2
5 MBConvé, k3x3 28 x 28 80 3
6 MBConv6, k5x5 14 x 14 112 3
7 MBConv6, k5x5 14 x 14 192 4
8 MBConv6, k3x3 7 x7 320 1
9 Convlxl & Pooling & FC 7x7 1280 1

Moreover, different statistical metrics were used to assess the classification performance of the proposed
CPAT model, and the attribute inference attacks model. Specifically, these performance metrics include the
accuracy, the precision, the recall, and the Fl-score [44].
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This research experiments were conducted using an Intel® Core™ i9-14900F CPU running at 2.00 GHz,
64 GB RAM, and NVIDIA GeForce RTX 4080 SUPER machine. The proposed approach, along with all
state-of-the-art methods, were implemented using PyTorch framework [45].

The training of the considered ResNetl8 [43] and EfficientNet-B0 [34] models was conducted using a
learning rate of 0.0003 and the Adam optimizer across all datasets. The number of epochs was set to 25 for
FairFace [31] with both models, while for the CelebA [32] dataset, the number of epochs was set to 15 and 8 for
the ResNet18 and EfficientNet-B0 models, respectively. In the case of the CIFAR-10 [33] dataset, the ResNet18
model was trained for 150 epochs, while the EfficientNet-B0O model was trained for 100 epochs. Moreover,
the adversarial training tradeoff parameter, A;, was evaluated using three values: 0.3, 0.5 and 0.7. Based on
the experimental results, 0.5 was identified as the optimal value in most cases, achieving an effective balance
between accuracy and privacy. Similarly, the channel pruning tradeoff parameter, A,, was tested with four
values: 0.01, 0.001, 0.0001, and 0.00001. Consequently, 0.0001, and 0.001 were chosen for ResNet18 model and
EfficientNet-B0 model, respectively, providing the best utility-privacy tradeoff across both datasets.

The attribute inference attack model was trained and tested using the original test subsets of FairFace,
CelebA, and CIFAR-10. Specifically, 70% of each dataset was designated for training, while the remaining
30% was utilized for testing. Table 4 provides an outline of the hyperparameter configurations applied to
both the proposed CPAT approach and the attack model.

Table 4: Hyperparameters of CPAT and attack models

CPAT
Hyperparameters Dataset EfficientNet- Attack model
ResNetl8 [43]
B0 [34]
FairFace 25 25 100
# Epochs CelebA 15 8
CIFAR-10 150 100
FairFace 256 256
Batch size CelebA 256 256 128
CIFAR-10 128 128
Learning rate 0.0003 0.0003 0.0003/0.01
FairFace 0.5 ~
A CelebA 0.5 0.3
CIFAR-10 ’
Az 0.0001 0.001 -
FairFace 5 5 ~
p, CelebA 1 1
CIFAR-10 25 25
FairFace 50%, 50% 50% ~
P.%, P.% CelebA 70%, 70% 70%

CIFAR-10 60%, 40% 60%
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In the following, we present the empirical findings that showcased CPAT effectiveness in obfuscating
sensitive data within a typical split learning framework. In particular, we conducted a thorough analysis
of the privacy and utility implications of the proposed channel pruning-based adversarial training using
benchmark datasets. Moreover, we compared the results obtained using CPAT with those achieved by
relevant state-of-the-art techniques. Furthermore, we investigated various factors that affect the model’s
performance including the position of the split point, the pruning ratio, the correlation between task and
private attributes, and the architecture of the considered attacks. Finally, we evaluated the testing time
performance of various defense approaches, as well as the computational cost and model size of the proposed
CPAT approach. Further details on all experiments are provided in the following subsections.

4.1 Robustness against Attribute Inference Attacks

This experiment investigates the model’s performance and the robustness of three different approaches
against attribute inference attacks. Namely, these approaches are split learning, adversarial training, and
adversarial training with channel pruning. The main objective of these use cases is to demonstrate the
effectiveness and privacy implications of integrating two defense techniques within the SL framework.
Specifically, a proxy-adversary model was initially employed to perform adversarial training throughout the
training process. Then, the channel pruning was incorporated into this adversarial training process. Table 5
shows the task performance achieved by the three approaches using ResNetl8 [43] model along with
FairFac [31], CelebA [32], and CIFAR-10 [33] datasets.

Table 5: Task performance achieved using two defense approaches along with ResNet18 [43] model for FairFac [31],
CelebA [32], and CIFAR-10 [33] datasets

Dataset Method Task Accuracy
Accuracy Precision Recall  Fl-Score

Split learning 0.8450 0.8649 0.7943 0.8252

FairFace [31] Adversarial training 0.8169 0.8244  0.7753 0.7962
CPAT 0.8183 0.8428 0.7560 0.7968

Split learning 0.9158 0.9138  0.9181 0.9154

CelebA [32] Adversarial training 0.9056 0.9357  0.8707 0.9014
CPAT 0.9124 0.9428 0.8780 0.9086

Split learning 0.8597 0.8620  0.8586 0.8602

CIFAR-10 [33]  Adversarial training 0.8143 0.8315 0.8119 0.8214
CPAT 0.8121 0.8165 0.8104 0.8134

As it can be seen, the baseline split learning approach yielded high scores across all metrics using
FairFace [31]. Precisely, it achieved an accuracy of 84%, a precision of 86%, a recall of 79%, and an Fl-score
of 82%. On the other hand, the performance of adversarial training and CPAT slightly declined, achieving
an accuracy of approximately 81% and an Fl-score of around 80%. Similarly, as reported in Table 5, the split
learning approach achieved consistently high scores, of approximately 91%, for CelebA [32] dataset with
respect to all metrics. Moreover, both adversarial training and CPAT maintained the accuracy level at 91%,
with an increase in precision which attained 94%. For the CIFAR-10 [33] dataset, split learning achieved an
accuracy of 85%, while adversarial training and CPAT observed a minor decline of about 4%. Overall, the
proposed CPAT preserved the task performance at acceptable levels for all datasets.
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Moreover, Table 6 depicts the accuracy of the attribute inference attacks (Attack-1) in classifying the
private attribute given the intermediate data transmitted by the client during the inference process. As one
can see, for split learning, the attacker was able to infer the private attribute with remarkably high accuracy,
exceeding 90% for all datasets. This result highlights the vulnerability of the transmitted intermediate
data to attribute inference attacks, underscoring the critical need for implementing privacy-preservation
techniques within split learning frameworks. Besides, the adversarial training enhanced slightly the privacy
of intermediate data in such a framework. Specifically, the privacy accuracy decreased by 7% and 1% for
FairFace [31] and CelebA [32] datasets, respectively. On the other hand, the proposed CPAT approach yielded
significantly better privacy. For FairFace [31] dataset, the privacy accuracy decreased by approximately 70%,
while it dropped by around 37% for the CelebA [32] and CIFAR-10 [33] datasets.

Table 6: Privacy achieved by Attack-1 using ResNet18 model on FairFace [31], CelebA [32], and CIFARIO [33] datasets

Dataset Split learning  Adversarial training CPAT
FairFace [31] 0.910 0.834 0.196
CelebA [32] 0.986 0.974 0.612

CIFAR-10 [33] 0.951 0.960 0.586

This demonstrates that optimizing the scale factor during CPAT training phase leads to an effective
identification of the least significant channels. Furthermore, combining adversarial training with channel
pruning during the training process reinforces privacy by obfuscating the private attribute in the intermediate
data without impacting the model’s overall performance. Accordingly, one can claim that the proposed
approach improves resilience to attribute inference attacks and exhibits a better privacy-utility trade-off.

In the next experiment, we investigated the integration of the lightweight EfficientNet-B0 [34] model
into CPAT. This experiment was conducted on both attack scenarios using FairFac [31], CelebA [32],
and CIFAR-10 [33] datasets. As detailed in Table 7, CPAT task performance decreased slightly, by 2% for
FairFace [27] dataset. Despite this minor reduction, CPAT achieved significantly better privacy compared
with the baseline approach. Notably, for FairFace [31] dataset, the privacy accuracy decreased by 70% for
both Attack-1 and Attack-2 scenarios. One should note that for the Attack-2 scenario, the attacker gains
an advantage by leveraging knowledge of the client model’s learning rate, which enhances considerably
its ability to infer the private attribute. In fact, the privacy accuracy for Attack-2 reached 98% using the
baseline split learning approach. Consistently, the proposed CPAT demonstrated substantial resilience
against attribute inference attacks on the CelebA [32] dataset. Specifically, the privacy accuracy dropped by
37% for both attack scenarios without compromising the model’s performance. Similarly, when applying the
CPAT approach to the CIFAR-10 [33] dataset, the privacy accuracy decreased by 38% and 11% for Attack-1
and Attack-2, respectively.

These results highlight the effectiveness of the CPAT approach, even when the adversary has access to
the client model’s learning rate. The identification and removal of the least significant channels resulted in
strong obfuscation of private data. Furthermore, integrating lightweight models with CPAT proved effective,
successfully defending against attribute inference attacks while maintaining task accuracy.
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Table 7: Task and privacy performances achieved by CPAT using EfficientNet-BO model along with FairFac [31],
CelebA [32], and CIFAR-10 [33] datasets

Dataset Method Task Accuracy 1 Prlva‘aftAclflirfcy Prlva;:rt A(l:(a;rfcy
Accuracy Precision  Recall F1-Score ac ac

FairFace [31] Split learning 0.845 0.864 0.794 0.825 0.910 0.986
CPAT 0.827 0.856 0.758 0.801 0.196 0.196

Split learning 0.915 0.913 0.918 0.915 0.989 0.997

CelebA [32] CPAT 0.913 0.901 0.928 0.913 0.612 0.612
Split learning 0.859 0.862 0.858 0.860 0.951 0.993

-10 [33

CIFAR-10 [33] CPAT 0.814 0.822 0.8134 0.817 0.586 0.880

4.2 Comparison with Relevant State-of-the-Art Methods

In this section, we compare the performance of the proposed CPAT approach with four relevant
defense methods. Namely, PAN [25], Noise-based [46], DISCO [26], and Nopeek [47] were used in this
experiment. One should note that these defense methods are also based on ResNet18 [43] model. This ensures
a fair and objective comparison of the different approaches. As presented in the previous section, the task
accuracy of the baseline-split learning-approach reached 84%, 91%, and 85% for FairFac [31], CelebA [32],
and CIFAR-10 [33] datasets, respectively. Fig. 3 demonstrates that PAN [25], DISCO [26], Nopeek [47], and
CPAT maintained the task performance at satisfactory levels for all datasets. Specifically, in Fig. 3a, the task
accuracy ranged between 81%-83%, while the Fl-score was approximately 80% for FairFace [31] dataset. For
the CIFAR-10 [33] dataset, the accuracy and Fl-score ranged between 81% and 85%. On the other hand,
both accuracy and Fl-score were maintained at around 90% for CelebA [32] dataset. Conversely, the Noise-
based [46] technique yielded a considerable reduction in task performance for all datasets. For instance,
the task accuracy decreased to 69% for FairFace [31] dataset, 81% for CelebA [32] dataset, and 46% for
CIFAR-10 [29] dataset. Moreover, the Fl-score dropped to 62%, 80%, and 48% for FairFac [31], CelebA [32],
and CIFAR-10 [33] datasets, respectively.
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Figure 3: Task performance achieved by the considered defense approaches using (a) FairFace [31], (b) CelebA [32],
and (c¢) CIFAR-10 [33] datasets

Furthermore, we assessed the effectiveness of all defense approaches in obfuscating the private attribute
during the inference phase of the split learning framework. The evaluation was conducted for both attribute
inference attack scenarios: Attack-1 and Attack-2. As illustrated in Fig. 4a, PAN [25] and Nopeek [47]
moderately improved data privacy against Attack-1 on the FairFace [31] dataset, reducing the privacy
accuracy to 83% and 62%, respectively. In contrast, the Noise-based [46] approach, DISCO [26], and the
proposed CPAT enhanced significantly data privacy which dropped to approximately 20%. One should
note that although the Noise-based [46] approach succeeded in obfuscating the private attribute in the
intermediate data, its task accuracy was drastically affected. For Attack-2 scenario, all defense approaches,
except CPAT, exhibited high vulnerability to attribute inference attacks, with an accuracy exceeding 90%.
In contrast, the proposed approach with EffiecientNet-BO model demonstrated superior resistance to such
attacks. In fact, it maintained the privacy score at approximately 20%, even when attackers had access to the
learning rate of the client model.

Besides, Fig. 4b depicts the privacy accuracy results obtained by attribute inference attacks on the
CelebA [32] dataset. As it can be seen, both attacks were able to infer easily private attributes from
intermediate data generated by PAN [25] and DISCO [26] approaches. Additionally, the Noise-based
approach [46] and Nopeek [47] considerably perturbed the intermediate data transmitted by the client model
in the Attack-1 scenario. However, under more advanced attacks, such as Attack-2, both approaches were
unable to obfuscate the private attribute. Particularly, privacy accuracy reached approximately 95% and 88%
for Noise-based [46] and Nopeek [47] approaches, respectively. In contrast, the proposed CPAT approach
using EffiecientNet-B0 model yielded superior privacy preservation, even when the attacker had access to
the client model’s learning rate. Specifically, the classification accuracy for the private attribute in Attack-1
and Attack-2 scenarios dropped to 61%.

For the CIFAR-10 [33] dataset, both the PAN [25] and DISCO [26] defense strategies showed that
the attacker could infer the private attribute with high accuracy, reaching 99% for both attack scenarios.
On the other hand, the Noise-based [46] defense improved privacy by reducing the privacy accuracy
to 58% when defending against Attack-1 as illustrated in Fig. 4c. However, when the attacker knew the
learning rate of the client model, the accuracy reached 99%, demonstrating the vulnerability of the Noise-
based strategy to Attack-2. In contrast, the Nopeek [47] defense successfully prevented the inference of
the private attribute, with privacy accuracy values of 40% and 58% for Attack-1 and Attack-2, respectively.
Additionally, the CPAT approach using ResNetl18 and EfficientNet-B0 models reduced the privacy accuracy
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to 58% for Attack-1. However, for Attack-2, the privacy accuracy dropped to 95% and 88% for ResNet18 and
EfficientNet-B0, respectively.
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Figure 4: Privacy accuracy recorded for the attribute inference attacks using five defense approaches on: (a) Fair-
Face [31], (b) CelebA [32], and (c) CIFARIO0 [33] datasets

These findings indicate that by integrating adversarial training with channel pruning throughout the
training process, CPAT reduced the informativeness of intermediate data transmitted between client and
server sub-models. This made the model less vulnerable to attribute inference attacks, thereby strengthening
privacy within the considered split learning framework.

4.3 Ablation Study

In this experiment, we investigated four different split points for the considered EfficientNet-B0 [34]
model. As illustrated in Fig. 5, the network was partitioned at distinct levels to study the impact of each
candidate split point. The obtained results are presented in Table 8. As it can be seen, the proposed CPAT
approach maintained an acceptable task performance using different split points for FairFac [31], CelebA [32],
and CIFAR-10 [33] datasets. The key idea of preserving the task performance lies in selecting appropriate
channel pruning ratios for the client and server sub-models. Additionally, for Attack-1 scenario, CPAT
yielded superior and consistent resistance to attribute inference attacks. In particular, the attacker accuracy
in inferring the private attribute at different split points did not exceed 20% and 60% for FairFace [27] and
CelebA [28] datasets, respectively.
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Figure 5: Split points associated with EfficientNet-B0O architecture. Adapted from reference [48]. Copyright 2022,
Springer Nature. Licensed under CC BY 4.0

Table 8: Task performance and privacy achieved by CPAT using different split points

Dataset Evaluation metrics Split point (SP)
SP1 SP2 SP3 SP 4
Accuracy 0.812 0.815 0.818 0.827
Task performance Precision 0.827 0.856 0.790 0.856
FairFace [31] P Recall 0.758 0.729 0.832 0.758
Fl-score 0.787 0.785 0.808 0.801
Privacy accuracy—Attack-1 0.196 0.196 0.196 0.196
Privacy accuracy—Attack-2 0.739 0.668 0.260 0.196
Accuracy 0.907 0.909 0.908 0.913
Task performance Precision 0.929 0.908 0.953 0.901
CelebA [3] P Recall 0.881 0.910 0.859 0.928
Fl-score 0.904 0.909 0.903 0.913
Privacy accuracy—Attack-1 0.612 0.612 0.612 0.612
Privacy accuracy—Attack-2 0.917 0.830 0.710 0.612
Accuracy 0.802 0.813 0.802 0.814
Task performance Precision 0.818 0.829 0.811 0.822
CIFAR-10 [33] P Recall 0.802 0.811 0.802 0.813
. Fl-score 0.810 0.820 0.806 0.817
Privacy accuracy—Attack-1 0.971 0986 0.965 0.587
Privacy accuracy—Attack-2 0.988 0.991 0.973 0.880

Conversely, defending against a stronger attack where the attacker knows the client’s learning rate,

such as Attack-2, proved to be more challenging. The results demonstrate that the privacy accuracy of

attribute inference attacks decreased significantly when deeper split points were employed. Specifically,

for FairFace [31] dataset, the attacker inferred the private attribute with an accuracy of 73% when Split 1
configuration was adopted. On the other hand, the accuracy dropped to 20% for the Split 4 scenario. Similarly,
the privacy accuracy reached 91% when CelebA [32] dataset was associated with Split 1 setting. However,
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it decreased to 61% for Split 4 with the same dataset. Moreover, for the CIFAR-10 [33] dataset, the attacker
achieved 98% accuracy under Split 1, while declined to 88% in the Split 4 setting. This is attributed to the
nature of machine learning models; as the layers become deeper, the relationship between input and output
becomes increasingly complex.

In addition, for Split point Split 1, we first set the pruning ratio to 50% for the server sub-model and
evaluated various pruning ratios for the client sub-model. Specifically, we varied the ratio from 50% to 90%.
As shown in Fig. 6, the pruning ratio of 50% yielded stable task accuracy. The recorded value remained
around 81%. However, the attribute inference attack was able to classify the private attribute with an accuracy
of 83%. Furthermore, the aggressive pruning ratio of 90% resulted in a significant decline in terms of task
accuracy. It drastically decreased to approximately 50%. In contrast, applying a pruning ratio of 70% yielded
the optimal balance between privacy and accuracy. The task accuracy remained at 81%, while the privacy
accuracy dropped to 73%.

—————— Baseline Task Accuracy BN Task accuracy
rrrrrr Baseline Privacy Accuracy (Attack-2) ¥ Privacy accuracy (Attack-2)

Accuracy

(50%, 50%) (70%, 30%) (70%, 50%) (70%, 70%) (90%, 50%)
Pruning ratio

Figure 6: Task and privacy accuracies achieved by the proposed EfficientNet-B0-based approach using different
pruning ratios (P.%, P;%) and FairFace [31] dataset

Next, we fixed the pruning ratio of the client sub-model to 70% because it yielded the best results.
Moreover, we investigated different pruning ratios for the server sub-model, ranging from 30% to 70%. As it
can be seen, using a pruning ratio of 70% to both sub-models, or a high pruning ratio to only one sub-model
(70% vs. 30%), affected the model’s performance. Specifically, the task accuracy decreased from 84% to 76%.
Consequently, setting the pruning ratios to 70% and 50% for both models mitigate the attribute inference
without compromising the task performance.

In the following, we consider two attributes spatially correlated when they depend on the same region
of interest. For instance, “Smiling” and “Wearing Lipstick” are highly correlated attributes in CelebA [32]
dataset. Fig. 7 demonstrates that the task performance achieved by CPAT remains consistently high across
all models whether the task and privacy attributes are correlated or not. On the other hand, Split Learn-
ing exhibits significant privacy vulnerabilities, with both Attack-1 and Attack-2 with accuracy reaching
approximately 100%. In contrast, combining the proposed CPAT with ResNetl8 [43] model reduced the
privacy accuracy from 99% to less than 80% while maintaining high task accuracy. Furthermore, associating
EfficientNet-B0-based CPAT with Split 4 showcased an even better privacy protection, reducing the attack
accuracies by 30% to 40%.
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Figure 7: Task performance and privacy evaluation of: (a) Uncorrelated attributes; task attribute = Smiling, and private
attribute = Male. (b) Correlated attributes; task attribute = Smiling, and private attribute = Wearing lipstick

Consistently, CPAT obfuscated effectively private attributes regardless of the selected task and private
attributes. As shown in Fig. 8a, the task and private attributes were “Attractive” and “High cheekbones”,
respectively. On the other hand, Fig. 8b sets the task attribute to “High cheekbones”, and the private
attribute to “Male”. As it can be seen, the use of ResNet18 [43] model reduced notably the privacy accuracy,
particularly in the Attack-1 scenario. Furthermore, deploying EfficientNet-B0 [34] model along with Split
4 configuration reduced the privacy accuracy to less than 60% for both attacks without compromising the
model’s performance.
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Figure 8: Task performance and privacy achieved when (a) The task attribute is “Attractive’, and the private attribute
is “High cheekbones”. (b) The task attribute is “High cheekbones”, and the private attribute is “Male”

As further investigation, two architectures were selected for the attribute inference attacks. As detailed
in Table 9, Architecture-1 corresponds to the second half of ResNetl8 [43] model, while Architecture-2
corresponds to the second half of ResNet34 [43] model. One should note that Architecture-1 is the same
architecture used as the proxy-adversary model for CPAT training. As one can see, even when the architecture
for private inference attacks differs from the one used during training, the intermediate data transmitted
by the client effectively obfuscates the private attribute. Specifically, the privacy accuracy of the attribute
inference attacks using both architectures remained around 60% using CelebA [32] dataset.
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Table 9: Privacy accuracy obtained using two ResNet model architectures-based attribute inference attacks

Layer name Output size Architecture-1 Architecture-2
3x3 256]
3 x 3,256 ’
4 14 x 14 x 25 ’ 2 x 6
conv4_x x 14 x 256 [3 o 3,256] x [3 x 3,256
3 x 3,512 3 x 3,512
conv5_x 7 x 7 x 512 [3 X3, 512:| x 2 [3 <3, 512] x 3
Average pool 1x1x512 7 x 7 average pool 7 x 7 average pool
12 x 2 full 12 x 2 full
Fully connected o1 oy 212 x -
connections connections
Privacy accuracy—Attack-1 0.612 0.612

The computational efficiency of the defense approach is crucial for real-time applications and/or
resource-constrained environments. Fig. 9 depicts the test time achieved by the baseline approach. Namely,
Split Learning achieved a test time of 0.0025 s. Among the four defense approaches, DISCO [26] yielded
the highest test time with an increase of 28%. This overhead is attributed to the additional Filter-Generating
Network (FGN), which introduces extra forward computations during inference and consequently increases
overall latency. Additionally, PAN [25] and Noise-based [46] approaches increased slightly the test time by
less than 10%. Nopeek [47] maintained the baseline time of 0.0025 s. In contrast, CPAT significantly reduced
the test time, achieving the lowest value at approximately 0.0020 s. This improvement can be attributed to
the lightweight model, namely Efficient-Net-B0 [34] adopted in the proposed architecture.
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Figure 9: Test time recorded for various defense techniques

In the following, we compare the computational cost and model size between the baseline Split
Learning model and the proposed CPAT approach, using the FairFace [31] dataset with ResNet18 [43], and
EfficientNet-B0 [34] models. In particular, three key metrics were considered for this experiment. Namely, we
used the total number of parameters measured in Millions (M), the parameter size measured in Megabytes
(MB), and the computational cost quantified in Giga Floating Point Operations Per Second (GFLOPs) to
assess the computational cost and size of the different models.

ResNet18 [43] contains a high number of parameters and computational operations, which can pose
challenges for deployment in resource-constrained devices. Specifically, the Split Learning approach results
in 11.17 million parameters and 2.08 GFLOPs, as shown in Fig. 10. In contrast, the CPAT approach achieves
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a significant reduction in both memory and computational demands. It reduces the number of param-
eters by approximately 49.8% (from 11.17 to 5.6M), the parameter size by around 49.0% (from 42.64 to
21.74 MB), and the FLOPs by about 48.3% (from 1.18 to 0.61 GFLOPs). Moreover, the CPAT approach
was integrated with the lightweight EfficientNet-BO [34] model, which contains 4M parameters, has a
parameter size of 15.29 MB, and requires 0.38 GFLOPs for computation. These results highlight the
efficiency of CPAT in terms of computation and memory usage, making it highly suitable for deployment in
resource-constrained environments.
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Figure 10: Number of parameters and FLOPs for Split Learning and CPAT

In summary, choosing an adequate split point and pruning ratio is essential for balancing data privacy,
task accuracy, and computational workload on the client side. Additionally, the findings of the experiments
showcased CPAT’s generalization capability. In other words, CPAT succeeded in protecting intermediate
data, regardless of the selected task and private attributes. In fact, the proposed adversarial learning approach,
which relies particularly on channel pruning to eliminate the least significant channels, enhances the
obfuscation of the private attributes while maintaining the model’s overall performance. Furthermore, CPAT
demonstrated remarkable computational efficiency and suitability for resource-constrained environments.

5 Conclusion

Data privacy has become a critical concern for state-of-the-art Machine Learning (ML) approaches, as
sensitive and private data is often involved in training the intended models. Recently, Split Learning (SL) has
emerged as a promising solution by partitioning neural networks into client and server sub-nets. Despite
its potential, SL remains vulnerable to various privacy threats, such as attribute inference attacks. In these
attacks, adversaries attempt to infer sensitive attributes from the intermediate representations transmitted
by the client sub-model. Existing defense approaches that address privacy concerns in SL face significant
challenges, such as maintaining an effective tradeoff between utility and privacy, and minimizing compu-
tational overhead on resource-constrained edge devices. In order to tackle these challenges, we proposed
the CPAT approach, which integrates adversarial training with channel pruning. The primary objective
of this association was to reduce the informativeness of the intermediate data transmitted by the client,
thereby limiting the adversary’s ability to infer private attributes. Particularly, adversarial learning reduced
the risk of private data exposure while maintaining high performance on the utility task. Additionally, the
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proposed channel pruning conducted alongside the adversarial training, enabled the model to adaptively
adjust and reactivate the pruned channels. The results demonstrated that the proposed approach succeeded
in balancing privacy and utility for the considered SL framework. Furthermore, the proposed CPAT approach
outperformed relevant state-of-the-art techniques by enhancing resilience against attribute inference attacks
without compromising the model’s performance.

Future research could focus on developing a comprehensive CPAT framework capable of addressing
multiple types of privacy attacks. In particular, extending this work to defend against data reconstruction,
attribute inference, and feature hijacking attacks represents a promising direction for further study. This
can be achieved by incorporating various proxy-adversary models and designing novel objective functions.
Moreover, various architectures can be investigated for the proxy-adversary model to further evaluate the
robustness of the CPAT approach across different machine learning models.

Acknowledgement: This research is supported by a grant (No. CRPG-25-2054) under the Cybersecurity Research
and Innovation Pioneers Initiative, provided by the National Cybersecurity Authority (NCA) in the Kingdom of
Saudi Arabia.

Funding Statement: This research is supported by a grant (No. CRPG-25-2054) under the Cybersecurity Research
and Innovation Pioneers Initiative, provided by the National Cybersecurity Authority (NCA) in the Kingdom of
Saudi Arabia.

Author Contributions: conceptualization: Afnan Alhindi, Saad Al-Ahmadi and Mohamed Maher Ben Ismail; method-
ology: Afnan Alhindi, Saad Al-Ahmadi and Mohamed Maher Ben Ismail; software: Afnan Alhindi; validation: Afnan
Alhindi, Saad Al-Ahmadi and Mohamed Maher Ben Ismail; formal analysis: Afnan Alhindi, Saad Al-Ahmadi and
Mohamed Maher Ben Ismail; investigation: Afnan Alhindi, Saad Al-Ahmadi and Mohamed Maher Ben Ismail;
resources: Afnan Alhindi; data curation: Afnan Alhindi; writing and editing: Afnan Alhindi, Saad Al-Ahmadi and
Mohamed Maher Ben Ismail. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: All data generated or analyzed during this study are included in this published
article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Jin D, Kannengiefler N, Rank S, Sunyaev A. Collaborative distributed machine learning. ACM Comput Surv.
2025;57(4):1-36. doi:10.1145/3704807.

2. Liu B, Ding M, Shaham S, Rahayu W, Farokhi F, Lin Z. When machine learning meets privacy: a survey and
outlook. ACM Comput Surv. 2022;54(2):1-36. doi:10.1145/3436755.

3. Madhivanan V, Mathivanan P. An evaluation on the performance of privacy preserving split neural networks using
EMNIST dataset. In: Proceedings of the Deep Sciences for Computing and Communications; 2022 Mar 17-18;
Chennai, India. Cham, Switzerland: Springer Nature Switzerland; 2023. p. 332-44. do0i:10.1007/978-3-031-27622-
4_25.

4. Gupta O, Raskar R. Distributed learning of deep neural network over multiple agents. ] Netw Comput Appl.
2018;116(1):1-8. d0i:10.1016/j.jnca.2018.05.003.

5.  Ali Khowaja S, Khuwaja P, Dev K, Singh K, Nkenyereye L, Kilper D. ZETA: ZEro-trust attack framework with split
learning for autonomous vehicles in 6G networks. In: Proceedings of the 2024 IEEE Wireless Communications
and Networking Conference (WCNC); 2024 Apr 21-24; Dubai, United Arab Emirates. Piscataway, NJ, USA: IEEE;
2024. p. 1-6. doi:10.1109/WCNC57260.2024.10571158.


https://doi.org/10.1145/3704807
https://doi.org/10.1145/3436755
https://doi.org/10.1007/978-3-031-27622-4_25
https://doi.org/10.1007/978-3-031-27622-4_25
https://doi.org/10.1016/j.jnca.2018.05.003
https://doi.org/10.1109/WCNC57260.2024.10571158

Comput Mater Contin. 2026;86(3):62 23

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Igbal A, Gope P, Sikdar B. Privacy-preserving collaborative split learning framework for smart grid load
forecasting. arXiv:2403.01438. 2024.

Tran NP, Dao NN, Do QT, Nguyen TV, Cho S. Privacy-preserving traffic flow prediction: a split learning approach.
In: Proceedings of the 2023 International Conference on Information Networking (ICOIN); 2023 Jan 11-14;
Bangkok, Thailand. Piscataway, NJ, USA: IEEE; 2023. p. 248-50. d0i:10.1109/ICOIN56518.2023.10048996.

Zhang R, QuY, Zhu X, Zheng J, Dong C. Mutil-UAV collaborative split learning for frequency-hopping sequence
prediction. In: Proceedings of the 2025 IEEE International Mediterranean Conference on Communications and
Networking (MeditCom); 2025 Jul 7-10; Nice, France. Piscataway, NJ, USA: IEEE; 2025. p. 53-8. d0i:10.1109/
MeditCom64437.2025.11104461.

Jiang W, Han H, Zhang Y, Mu J. Federated split learning for sequential data in satellite—terrestrial integrated
networks. Inf Fusion. 2024;103(1):102141. doi:10.1016/j.inffus.2023.102141.

Luo M, Luo Y, Wan Y, Wang Z. Secure and efficient access control scheme for wireless sensor networks in the
cross-domain context of the IoT. Secur Commun Netw. 2018;2018(1):1-10. doi:10.1155/2018/6140978.

Ayad A, Renner M, Schmeink A. Improving the communication and computation efficiency of split learning
for IoT applications. In: Proceedings of the 2021 IEEE Global Communications Conference (GLOBECOM); 2021
Dec 7-11; Madrid, Spain. Piscataway, NJ, USA: IEEE; 2022. p. 1-6. d0i:10.1109/GLOBECOM46510.2021.9685493.
Yao J. Split learning for image classification in Internet of drones networks. In: Proceedings of the 2023 IEEE 24th
International Conference on High Performance Switching and Routing (HPSR); 2023 Jun 5-7; Albuquerque, NM,
USA. Piscataway, NJ, USA: IEEE; 2023. p. 52-5. doi:10.1109/HPSR57248.2023.10147979.

Mireshghallah F, Taram M, Vepakomma P, Singh A, Raskar R, Esmaeilzadeh H. Privacy in deep learning: a survey.
arXiv:2004.12254. 2020.

Pasquini D, Ateniese G, Bernaschi M. Unleashing the tiger: inference attacks on split learning. arXiv:2012.02670.
2020.

Alhindi A, Al-Ahmadi S, Ben Ismail MM. Advancements and challenges in privacy-preserving split learning:
experimental findings and future directions. Int J Inf Secur. 2025;24(3):125. doi:10.1007/510207-025-01045-9.
Kokaj A, Mollakuqe E. Mathematical proposal for securing split learning using homomorphic encryption and
zero-knowledge proofs. Appl Sci. 2025;15(6):2913. doi:10.3390/app15062913.

Chen X, Wang F, Li Y, Yao M, Guo Y. The homomorphic encryption scheme combines split learning to
perform privacy protection training on two-dimensional data. Second Int Conf Comput Mach Learn Data Sci.
2025;13730:109-22. doi:10.1117/12.3072380.

Pereteanu GL, Alansary A, Passerat-Palmbach J. Split HE: fast secure inference combining split learning and
homomorphic encryption. arXiv:2202.13351. 2022.

Khan T, Nguyen K, Michalas A, Bakas A. Love or hate? Share or split? Privacy-preserving training using split
learning and homomorphic encryption. In: Proceedings of the 2023 20th Annual International Conference on
Privacy, Security and Trust (PST); 2023 Aug 21-23; Copenhagen, Denmark. Piscataway, NJ, USA: IEEE; 2023.
p. 1-7. d0i:10.1109/PST58708.2023.10320153.

Ali Osia S, Taheri A, Shamsabadi AS, Katevas K, Haddadi H, Rabiee HR. Deep private-feature extraction. IEEE
Trans Knowl Data Eng. 2020;32(1):54-66. d0i:10.1109/tkde.2018.2878698.

Gao R, Yang H, Huang S, Dun M, Li M, Luan Z, et al. PriPro: towards effective privacy protection on edge-cloud
system running DNN inference. In: Proceedings of the 2021 IEEE/ACM 21st International Symposium on Cluster,
Cloud and Internet Computing (CCGrid); 2021 May 10-13; Melbourne, Australia. Piscataway, NJ, USA: IEEE; 2021.
p. 334-43. d0i:10.1109/ccgrid51090.2021.00043.

Mireshghallah F, Taram M, Jalali A, Elthakeb ATT, Tullsen D, Esmaeilzadeh H. Not all features are equal:
discovering essential features for preserving prediction privacy. In: Proceedings of the Web Conference 2021; 2021
Apr 19-23; Ljubljana, Slovenia. New York, NY, USA: ACM; 2021. p. 669-80. doi:10.1145/3442381.3449965.

Mao Y, Xin Z, Li Z, Hong J, Yang Q, Zhong S. Secure split learning against property inference, data reconstruction,
and feature space hijacking attacks. arXiv:2304.09515. 2023.

Abuadbba S, Kim K, Kim M, Thapa C, Camtepe SA, Gao Y, et al. Can we use split learning on 1D CNN models for
privacy preserving training? arXiv. arXiv:2003.12365.


https://doi.org/10.1109/ICOIN56518.2023.10048996
https://doi.org/10.1109/MeditCom64437.2025.11104461
https://doi.org/10.1109/MeditCom64437.2025.11104461
https://doi.org/10.1016/j.inffus.2023.102141
https://doi.org/10.1155/2018/6140978
https://doi.org/10.1109/GLOBECOM46510.2021.9685493
https://doi.org/10.1109/HPSR57248.2023.10147979
https://doi.org/10.1007/s10207-025-01045-9
https://doi.org/10.3390/app15062913
https://doi.org/10.1117/12.3072380
https://doi.org/10.1109/PST58708.2023.10320153
https://doi.org/10.1109/tkde.2018.2878698
https://doi.org/10.1109/ccgrid51090.2021.00043
https://doi.org/10.1145/3442381.3449965

24

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Comput Mater Contin. 2026;86(3):62

Liu S, DuJ, Shrivastava A, Zhong L. Privacy adversarial network: representation learning for mobile data privacy.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019;3(4):1-18. d0i:10.1145/3369816.

Singh A, Chopra A, Garza E, Zhang E, Vepakomma P, Sharma V, et al. DISCO: dynamic and invariant sensitive
channel obfuscation for deep neural networks. In: Proceedings of the 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR); 2021 Jun 20-25; Nashville, TN, USA. Piscataway, NJ, USA: IEEE; 2021.
p- 12120-30. doi:10.1109/CVPR46437.2021.01195.

Jeong J, Cho M, Benz P, Hwang J, Kim J, Lee S, et al. Privacy safe representation learning via frequency filtering
encoder. arXiv:2208.02482. 2022.

LiuZ,Li]J, Shen Z, Huang G, Yan S, Zhang C. Learning efficient convolutional networks through network slimming.
In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV); 2017 Oct 22-29; Venice,
Italy. Piscataway, NJ, USA: IEEE; 2017. p. 2755-63. doi:10.1109/ICCV.2017.298.

McMahan HB, Moore E, Ramage D, Hampson S, Arcas BAY. Communication-efficient learning of deep networks
from decentralized data. arXiv:1602.05629. 2016.

Alhindi A, Al-Ahmadi S, Maher Ben Ismail M. Balancing privacy and utility in split learning: an adversarial
channel pruning-based approach. IEEE Access. 2025;13:10094-110. doi:10.1109/ACCESS.2025.3528575.

FairFace dataset 2024 [Online]. [cited 2025 Jan 1]. Available from: https://github.com/dchen236/FairFace.
Large-scale celebfaces attributes (CelebA) dataset 2024. [cited 2025 Jan 1]. Available from: https://mmlab.ie.cuhk.
edu.hk/projects/CelebA.html.

The CIFAR dataset 2023 [Online]. [cited 2025 Jan 1]. Available from: https://www.cs.toronto.edu/~kriz/cifar.html.
Tan M, Le Q. EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of the
36 th International Conference on Machine Learning; 2019 Jun 9-15; Long Beach, CA, USA. Long Beach, CA,
USA: ICML; 2019. p. 6105-14.

Khan T, Budzys M, Michalas A. Make split, not hijack: preventing feature-space hijacking attacks in split learning.
In: Proceedings of the 29th ACM Symposium on Access Control Models and Technologies; 2024 May 15-17; San
Antonio, TX, USA. Piscataway, NJ, USA: ACM; 2024. p. 19-30. doi:10.1145/3649158.3657039.

Chen S, Khisti A. SECO: secure inference with model splitting across multi-server hierarchy. arXiv:2404.16232.
2024.

Mireshghallah F, Taram M, Ramrakhyani P, Jalali A, Tullsen D, Esmaeilzadeh H. Shredder: learning noise distribu-
tions to protect inference privacy. In: Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems; 2020 Mar 16-20; Lausanne, Switzerland. Piscataway,
NJ, USA: ACM; 2020. p. 3-18. d0i:10.1145/3373376.3378522.

Li A, Guo ], Yang H, Salim FD, Chen Y. DeepObfuscator: obfuscating intermediate representations with
privacy-preserving adversarial learning on smartphones. In: Proceedings of the International Conference on
Internet-of-Things Design and Implementation; 2021 May 18-21; Charlottesvle, VA, USA. doi:10.1145/3450268.
3453519.

Roy PC, Boddeti VN. Mitigating information leakage in image representations: a maximum entropy approach. In:
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2019 Jun
15-20; Long Beach, CA, USA. Piscataway, NJ, USA: IEEE; 2020. p. 2581-9. doi:10.1109/CVPR.2019.00269.
Alnasser W, Beigi G, Mosallanezhad A, Liu H. PPSL: privacy-preserving text classification for split learning. In:
Proceedings of the 2022 4th International Conference on Data Intelligence and Security (ICDIS); 2022 Aug 24-26;
Shenzhen, China. Piscataway, NJ, USA: IEEE; 2022. p. 160-7. doi:10.1109/ICDIS55630.2022.00032.

Du W, Li A, Zhou P, Niu B, Wu D. PrivacyEye: a privacy-preserving and computationally efficient deep learning-
based mobile video analytics system. IEEE Trans Mob Comput. 2022;21(9):3263-79. doi:10.1109/TMC.2021.
3050458.

Higgins G, Razavi-Far R, Zhang X, David A, Ghorbani A, Ge T. Towards privacy-preserving split learning:
destabilizing adversarial inference and reconstruction attacks in the cloud. Internet Things. 2025;31:101558. doi:10.
1016/j.i0t.2025.101558.


https://doi.org/10.1145/3369816
https://doi.org/10.1109/CVPR46437.2021.01195
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ACCESS.2025.3528575
https://github.com/dchen236/FairFace
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://doi.org/10.1145/3649158.3657039
https://doi.org/10.1145/3373376.3378522
https://doi.org/10.1145/3450268.3453519
https://doi.org/10.1145/3450268.3453519
https://doi.org/10.1109/CVPR.2019.00269
https://doi.org/10.1109/ICDIS55630.2022.00032
https://doi.org/10.1109/TMC.2021.3050458
https://doi.org/10.1109/TMC.2021.3050458
https://doi.org/10.1016/j.iot.2025.101558
https://doi.org/10.1016/j.iot.2025.101558

Comput Mater Contin. 2026;86(3):62 25

43.

44,

45.
46.

47.

48.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA.
Piscataway, NJ, USA: IEEE; 2016. p. 770-8. doi:10.1109/CVPR.2016.90.

Rahmani AM, Yousefpoor E, Yousefpoor MS, Mehmood Z, Haider A, Hosseinzadeh M, et al. Machine learning
(ML) in medicine: review, applications, and challenges. Mathematics. 2021;9(22):2970. doi:10.3390/math9222970.
Pytorch framework 2024 [Online]. [cited 2025 Jan 1]. Available from: https://pytorch.org/.

Titcombe T, Hall AJ, Papadopoulos P, Romanini D. Practical defences against model inversion attacks for split
neural networks. arXiv:2104.05743. 2021.

Vepakomma P, Singh A, Gupta O, Raskar R. NoPeek: information leakage reduction to share activations in
distributed deep learning. In: Proceedings of the 2020 International Conference on Data Mining Workshops
(ICDMW); 2020 Nov 17-20; Sorrento, Italy. Piscataway, NJ, USA: IEEE; 2021. p. 933-42. d0i:10.1109/ICDMW51313.
2020.00134.

Zhou A, MaY, Ji W, Zong M, Yang P, Wu M, et al. Multi-head attention-based two-stream EfficientNet for action
recognition. In: Multimedia Systems; Cham, Switzerland: Springer Nature; 2023. p. 487-98. doi:10.1007/s00530-
022-00961-3.


https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3390/math9222970
https://pytorch.org/
https://doi.org/10.1109/ICDMW51313.2020.00134
https://doi.org/10.1109/ICDMW51313.2020.00134
https://doi.org/10.1007/s00530-022-00961-3
https://doi.org/10.1007/s00530-022-00961-3

	Mitigating Attribute Inference in Split Learning via Channel Pruning and Adversarial Training
	1 Introduction
	2 Literature Review
	3 Proposed Channel Pruning Based Adversarial Training
	4 Experiments
	5 Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


