
echT PressScience

Doi:10.32604/cmc.2025.071865

ARTICLE

DRL-Based Task Scheduling and Trajectory Control for UAV-Assisted MEC
Systems

Sai Xu1,*, Jun Liu1,*, Shengyu Huang1 and Zhi Li2

1School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, China
2School of Information Science and Engineering, Shenyang Ligong University, Shenyang, 110159, China
*Corresponding Authors: Sai Xu. Email: iexusai@163.com; Jun Liu. Email: liujun@cse.neu.edu.cn
Received: 13 August 2025; Accepted: 28 October 2025; Published: 12 January 2026

ABSTRACT: In scenarios where ground-based cloud computing infrastructure is unavailable, unmanned aerial
vehicles (UAVs) act as mobile edge computing (MEC) servers to provide on-demand computation services for ground
terminals. To address the challenge of jointly optimizing task scheduling and UAV trajectory under limited resources
and high mobility of UAVs, this paper presents PER-MATD3, a multi-agent deep reinforcement learning algorithm with
prioritized experience replay (PER) into the Centralized Training with Decentralized Execution (CTDE) framework.
Specifically, PER-MATD3 enables each agent to learn a decentralized policy using only local observations during
execution, while leveraging a shared replay buffer with prioritized sampling and centralized critic during training to
accelerate convergence and improve sample efficiency. Simulation results show that PER-MATD3 reduces average task
latency by up to 23%, improves energy efficiency by 21%, and enhances service coverage compared to state-of-the-art
baselines, demonstrating its effectiveness and practicality in scenarios without terrestrial networks.

KEYWORDS: Mobile edge computing; deep reinforcement learning; task offloading; resource allocation; trajectory
control

1 Introduction
In recent years, frequent natural disasters, emergencies, and regional conflicts have severely damaged

terrestrial communication and cloud computing infrastructure, making it difficult for user terminals to
obtain timely and effective processing for their computation-intensive and delay-sensitive tasks [1,2]. Air-
ground integrated networks leverage the high mobility and rapid deployment capabilities of unmanned
aerial vehicles (UAVs), employing UAVs as aerial edge servers to provide ground terminals with low-
latency computing and reliable communication services [3–5]. Owing to its practical relevance and technical
promise, this paradigm has attracted significant attention from both academia and industry [6,7].

In UAV-assisted mobile edge computing (UAV-assisted MEC) systems, several fundamental challenges
remain in achieving efficient and reliable task scheduling. First, UAVs are subject to limited onboard energy,
which constrains their flight time and computational capacity, thereby necessitating a balance between
energy consumption and processing performance. Second, in multi-UAV scenarios, trajectory planning
becomes increasingly complex, as each UAV must coordinate its path while satisfying energy, communica-
tion, and collision-avoidance constraints. Collectively, these challenges highlight the need for task scheduling
mechanism that can adapt to dynamic environmental conditions while maintaining energy efficiency.
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Existing research related to this study primarily focuses on the joint optimization of task latency and
energy consumption, along with unmanned aerial vehicle (UAV) trajectory control, which are predominantly
addressed using deep reinforcement learning (DRL)-based approaches.

To jointly minimize task latency and energy consumption in dynamic environments. Tang et al. [8]
deploy unmanned aerial vehicles (UAVs) as mobile edge computing nodes in an air-ground collaborative
network to deliver AI services, enabling rapid response to ground users’ task requests and reducing overall
system energy consumption. Zhao et al. [9] address dynamic network environments by considering the
mobility of both end devices and UAVs, and propose a PER-DDPG-based task offloading method that jointly
optimizes task offloading success rate and system energy consumption, thereby improving overall system
efficiency. Li et al. [10] present a UAV-assisted MEC model based on MADDPG, which jointly optimizes
task offloading ratios and the UAV’s 3D trajectory to achieve a favorable trade-off among system latency,
energy consumption, and throughput. Paper [11] introduces a fairness-aware optimization framework for a
hybrid dual-layer UAV architecture combining fixed-wing and rotary-wing UAVs, and employs the MATD3
algorithm to minimize system latency while ensuring fair service delivery among users. Ma et al. [12]
develop a blockchain-assisted edge resource allocation framework that combines DRL-based server bidding
with Stackelberg game-driven incentive mechanisms, enabling efficient and cost-aware resource trading in
distributed edge environments.

UAV trajectory control is essential for enhancing computation performance and energy efficiency in
UAV-assisted MEC systems. Seid et al. [13] jointly optimized trajectories and resource allocation using
TD3 to minimize energy and delay, and Yin et al. [14] developed QEMUOT, which leverages MATD3
to co-optimize UAV paths and offloading ratios for improved coverage and efficiency. Gao et al. [15]
propose a multi-objective reinforcement learning algorithm that jointly optimizes task latency and system
energy consumption by controlling UAV trajectories and task offloading decisions. Wu et al. [16] enhanced
coordination efficiency using an attention-based DRL approach for joint offloading and resource allocation.
Zhang et al. [17] propose a multi-agent deep reinforcement learning-based strategy for joint task offloading
and resource allocation in air-to-ground networks, enabling a UAV swarm to provide computation offloading
services for ground IoT devices.

Although significant progress has been made in task scheduling and trajectory control for UAV-
assisted MEC systems, most existing approaches focus primarily on minimizing either task latency or energy
consumption in isolation. To address this challenge, this paper proposes PER-MATD3, a multi-agent deep
reinforcement learning algorithm that jointly optimizes task latency, energy efficiency, and user coverage.
PER-MATD3 adopts the centralized training with decentralized execution (CTDE) paradigm, allowing
agents to learn coordinated policies using global information during training while executing based only
on local observations. It further incorporates prioritized experience replay (PER) to accelerate learning
by focusing on high-impact experiences, thereby improving both multi-agent coordination and training
efficiency. The main contributions are as follows:

(1) We model a UAV-assisted MEC system with randomly distributed user terminals, multiple UAVs,
and a ground base station. Terminals generate delay-sensitive, computation-intensive tasks, which can be
processed by UAVs or offloaded via UAVs to the base station.

(2) We propose PER-MATD3, a joint optimization algorithm based on the Multi-Agent Twin Delayed
Deep Deterministic Policy Gradient (MATD3) with prioritized experience replay, improving stability,
sample efficiency.

(3) Simulation results show that PER-MATD3 achieves fast convergence and effectively reduces task
latency, energy consumption, and user coverage.



Comput Mater Contin. 2026;86(3):56 3

2 System Model and Problem Description
In emergency scenarios such as natural disasters, large-scale accidents, or temporary public events,

terrestrial cloud infrastructure may be damaged or unavailable, leaving ground user terminals unable
to access reliable computational resources. To address this challenge, this paper investigates a UAV-
assisted mobile edge computing (MEC) system, as illustrated in Fig. 1, comprising a set of user terminals
M = {1, 2, ⋅ ⋅ ⋅ , M}, a set of UAVs U = {1, 2, ⋅ ⋅ ⋅ , U}, and a ground base station. User terminals are assumed
to be stationary with limited computational capabilities, making them unable to independently process all
computation-intensive and delay-sensitive tasks. UAVs, deployed at low altitude as edge computing servers,
follow designated trajectories to provide computation offloading services for user terminals within their
coverage. Tasks exceeding the UAVs’ computational capacity are further offloaded to the ground base station
via communication links, enabling a hierarchical end-air-ground computing collaboration.

Figure 1: UAV-assisted MEC system architecture

The system operates over discrete time slots T = {1, 2, . . . , T}, each of duration τ, serving as the basic
unit for state updates and task scheduling. At each time slot t ∈ T , user terminals generate tasks following a
Poisson process. Each task is defined as lm(t) = (dm(t), cm(t), ζm(t)), where dm(t) is the data size (in bits),
cm(t) is the required CPU cycles per bit, and ζm(t) is the delay tolerance. Tasks violating ζm(t) are discarded.

2.1 UAV Motion Model
In this paper, UAVs are assumed to fly at a fixed altitude H, with control focused on horizontal

trajectories. The horizontal position of UAV u at time t is denoted as vu(t) = [xu(t), yu(t)]. UAV motion
in each time slot t ∈ T is governed by heading angle ϕu(t) ∈ [0, 2π] and flight speed δu(t), which jointly
determine its trajectory. The horizontal position at t + 1 is updated as follows:

⎧⎪⎪⎨⎪⎪⎩

xu(t + 1) = xu(t) + δu(t) ⋅ τ ⋅ cos(ϕu(t))
yu(t + 1) = yu(t) + δu(t) ⋅ τ ⋅ sin(ϕu(t))

, ∀u ∈ U , t ∈ T (1)
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To prevent collisions, a minimum safety distance Dsa f e is enforced between UAVs, leading to the
following collision avoidance constraints:

∥vu(t) − vu′(t)∥ =
√

(xu(t) − xu′(t))2 + (yu(t) − yu′(t))2 ≥ Dsa f e , ∀t ∈ T , u ≠ u′ (2)

Each UAV is also constrained to operate within a fixed rectangular area, so its position vu(t) =
[xu(t), yu(t)] must satisfy the constraints in Eq. (3):

⎧⎪⎪⎨⎪⎪⎩

0 ≤ xu(t) ≤ Xmax

0 ≤ yu(t) ≤ Y max , ∀u ∈ U , t ∈ T (3)

2.2 Task Queue Model
Limited computational resources at terminals and UAVs require implementing FIFO task queues to

buffer tasks orderly and ensure sequential execution under high concurrency.
(1) UT queue model
Each user terminal m generates a set of indivisible computation-intensive tasks Am(t) at time slot t,

following a Poisson arrival process. A task queue Qm(t) is maintained with initial state Qm(0) = ∅ to store
pending tasks. The offloading decision is represented by au

m(t) ∈ {0, 1}, where au
m(t) = 1 indicates the task is

offloaded to UAV u, and otherwise it is processed locally. Each terminal operates in a single-threaded mode,
processing one task at a time and connecting to at most one UAV.

Let Tw ait
m , l oc(t) denote the waiting time of task lm(t) in the queue, representing the number of time slots

the terminal must wait before processing begins, with Tw ait
m , l oc(1) = 0. The calculation is as follow:

Tw ait
m , l oc(t) = {⌈ max

t′∈{1,2, ⋅ ⋅ ⋅ ,t−1}
T l oc

m (t′) − t + 1⌉}
+

(4)

where T l oc
m denote the completion time of the task being processed. The start time of a new task is determined

by the maximum completion time among all its preceding tasks in the queue. The operator {e}+ is an
indicator function ensuring the waiting time remains non-negative, as detailed in Eq. (5):

{e}+ =
⎧⎪⎪⎨⎪⎪⎩

e , if e > 0
0, if e ≤ 0

(5)

(2) UAV queue model
When a terminal’s computational capacity is insufficient, tasks are offloaded to UAVs. Each UAV u

maintains a separate queue Quav
m ,u for each associated terminal m, receiving offloading requests within its

coverage at time slot t. The waiting time of task lm(t) in the UAV queue, Tw ait
m ,u (t), counts the time slots

before processing starts, with Tw ait
m ,u (1) = 0. It is calculated as follows:

Tw ait
m ,u (t) = {⌈ max

t′∈{1,2, ⋅ ⋅ ⋅ ,t−1}
Tuav

m ,u (t′) − t + 1⌉}
+

(6)

where Tuav
m ,u is the processing completion time of the task in the UAV u.
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2.3 Communication Model
(1) G2A communication model
The Ground-to-Air (G2A) link may be blocked by buildings. Therefore, the channel model accounts for

both Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS) conditions to better reflect real-world propagation.
The path loss between terminal and UAV is thus given by:

Lossm ,u(t) = 20 log10
⎛
⎝

4π fc
√

d2
m ,u + H2

c
⎞
⎠
+ pLoS

m ,u(t)ηLoS
m ,u(t) + (1 − pLoS

m ,u(t))ηN LoS
m ,u (t) (7)

where dm ,u is the horizontal distance between the terminal and the UAV, fc is the carrier frequency, and c
denotes the speed of light. ηLoS

m ,u and ηN LoS
m ,u represent the additional losses for LoS and NLoS links, respectively.

The probability of a LoS link, pLoS
m ,u , is determined using an empirical statistical model, as follows:

pLoS
m ,u = 1

1 + a exp (−b [ 180
π arctan( H

dmu
) − a])

(8)

where the value of (a, b) is set according to the specific communication environment.
In summary, the data transmission rate between the terminal m and the UAV u can be expressed as:

rm ,u(t) = Bm ,u log2 (1 + Pm

σ 210Lossm ,u(t)/10 ) (9)

where Pm is the transmission power of the terminal device and σ 2 is the noise power. Bm ,u = Bu
Nu(t) denotes

the channel bandwidth allocated to the terminal m, where Bu represents the UAV bandwidth, and Nu(t)
denotes the number of terminals covered by the UAV u at the time of t.

(2) A2B communication model
The Air-to-Base Station (A2B) link may be obstructed by obstacles like high-rise buildings; thus, both

LoS and NLoS conditions are considered to accurately model the channel. The path loss between UAV u and
base station bs is expressed as:

Lossu ,bs(t) = 20 log10

⎛
⎜
⎝

4π fc
√

d2
u ,bs + H2

c

⎞
⎟
⎠
+ pLoS

u ,bs(t)ηLoS
u ,bs(t) + (1 − pLoS

u ,bs(t))ηN LoS
u ,bs (t) (10)

The transmission rate is denoted as:

ru ,bs(t) = Bu ,bs log2 (1 + Pu

σ 210Lossu ,bs(t)/10 ) (11)

where Pu is the transmission power of the UAV and σ 2 is the noise power. Bu ,bs = Bbs
Nbs(t) denotes the channel

bandwidth allocated to the UAV u, Bbs represents the base station bandwidth, and Nbs(t) denotes the
number of UAVs served by the base station at the time of t.
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2.4 Computing Model
(1) Local computing model
When terminal m processes a task locally, the total response delay consists of the local waiting time and

processing time, as calculated by Eq. (12):

T l oc
m (t) = Tw ait

m , l oc(t) + T proc
m , l oc(t) (12)

where T proc
m , l oc(t) indicates the processing time of task lm(t), determined by the terminal’s computing power

and required computation, calculated as:

T proc
m , l oc(t) = ⌈dm(t) ⋅ ζm(t)

fm ⋅ τ
⌉ (13)

f m is the computing resources of the user terminal.
Local task processing consumes energy dependent on the allocated CPU frequency, calculated as:

El oc
m (t) = kl oc ⋅ T proc

m , l oc(t) ⋅ ( fm)3 (14)

where kl oc is the energy consumption factor of the terminal device.
(2) Offloading to the UAV computing model
When a terminal cannot process a task locally, it offloads it to its associated UAV. At time slot t, tthe set of

tasks offloaded from terminal m to UAV u is denoted by Am ,u(t). The total UAV processing latency includes
transmission, queuing, and computation delays. Since UAVs fly at low altitudes near terminals, propagation
delay is neglected. The response delay for UAV-offloaded tasks is calculated as follows:

Tuav
m ,u (t) = T trans

m ,u (t) + Tw ait
m ,u (t) + T proc

m ,u (t) (15)

where T trans
m ,u (t) = ⌈ dm(t)

rm ,u(t)⋅τ ⌉ denotes the number of time slots needed to transmit the task data from the
terminal to the UAV. The UAV’s task processing time is calculated as:

T proc
m ,u (t) = ⌈dm(t) ⋅ ζm(t)

f uav
m ,u (t) ⋅ τ

⌉ (16)

f uav
m ,u (t) denotes the computational resources allocated by the UAV u to task lm(t).

When a task is offloaded to the UAV, the system energy consumption comprises the user terminal’s
transmission energy Etrans

m ,u (t) and the UAV’s computation energy Euav
m ,u(t), which can be calculated as

follows:

Etrans
m ,u (t) = Pm ⋅ dm(t)

rm ,u(t) (17)

Eproc
m ,u (t) = kuav ⋅ Tproc

m ,u (t) ⋅ ( f uav
m ,u)3 (18)

where kuav denotes the UAV energy consumption coefficient. Then the total system energy consumption in
t time slot can be expressed as:

Euav
m ,u(t) = Etrans

m ,u (t) + E proc
m ,u (t) (19)
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(3) Offloading to the base station
When a task’ computational demand exceeds the UAV’s capacity, it is offloaded to the ground base

station. Assuming sufficient base station resources and immediate processing, the total delay includes UAV-
to-base station transmission and base station processing times.

Tbs
m ,u ,bs(t) = T trans

m ,u ,bs(t) + T proc
m ,u ,bs(t) (20)

where T trans
m ,u ,bs(t) = ⌈ dm(t)

ru ,bs(t)⋅τ ⌉ represents the number of time slots required for transmitting task data from
the UAV to the base station is represented accordingly. The processing time at the base station is calculated
as follows:

T proc
m ,u ,bs(t) =

⎡⎢⎢⎢⎢
dm(t) ⋅ ζm(t)
f bs
m ,u ,bs(t) ⋅ τ

⎤⎥⎥⎥⎥
(21)

f bs
m ,u ,bs(t) represents the compute resources assigned by the base station to the task lm(t).

When a task is offloaded to the base station, the system energy consumption consists of the UAV’s
transmission energy Etrans

m ,u ,bs(t) and the base station’s computation energy Ebs
m ,u ,bs(t), which are calculated

as follows:

Etrans
m ,u ,bs(t) = Pu ⋅ dm(t)

ru ,bs(t) (22)

Eproc
m ,u ,bs(t) = kbs ⋅ Tproc

m ,u ,bs(t) ⋅ ( f bs
m ,u ,bs)

3
(23)

where kbs denotes the energy consumption coefficient of the base station. Thus, the total system energy
consumption in time slot t can be expressed as:

Ebs
m ,u ,bs(t) = Etrans

m ,u ,bs(t) + E proc
m ,u ,bs(t) (24)

2.5 Problem Description
To minimize end-to-end task delay and overall energy consumption, this paper proposes a joint

optimization framework integrating UAV trajectory planning, task offloading, and resource allocation. Based
on the offloading decision au

m(t), tasks are processed locally or offloaded to UAVs, which may further offload
them to the base station. The total system delay Ttotal(t) and energy consumption Etotal(t) at time slot t are
formulated as follows:

T total
m (t) = ∑

m∈M
∑
u∈U

[(1 − au
m(t)) ⋅ T l oc

m (t) + au
m(t) ⋅ min (Tuav

m ,u (t), Tbs
m ,u ,bs(t))] (25)

Etotal
m (t) = ∑

m∈M
∑
u∈U

[(1 − au
m(t)) ⋅ El oc

m (t) + au
m(t) ⋅ min (Euav

m ,u(t), Ebs
m ,u ,bs(t))] (26)
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The optimization objective minimizes a weighted sum of delay and energy consumption:

P1 ∶ min
x ,a , f

∑
t∈T

(WT Ttotal(t) + WE Etotal(t))

s.t.
C1 ∶ 0 ≤ ϕu(t) ≤ 2π, ∀t ∈ T , u ∈ U
C2 ∶ 0 ≤ xu(t) ≤ Xmax , 0 ≤ yu(t) ≤ Υmax

C3 ∶ au
m(t) ∈ {0, 1}, abs

u (t) ∈ {0, 1}, ∀m ∈ M
C4 ∶ T total

m (t) ≤ ζm(t)
C5 ∶ f uav

m ,u (t) ≤ fu , f bs
m ,u ,bs(t) ≤ fbs

C6 ∶ ∥vu(t) − vu′(t)∥ ≥ Dsa f e , u ≠ u′

(27)

where x denotes the UAV trajectory control decision, a represents the task offloading decision, and f is the
resource allocation decision. C1 and C2 define the UAVs’ flight direction and range; C3 governs task offloading
decisions at each time slot; C4 ensures task execution time does not exceed its maximum tolerable delay; C5
restricts allocated resources to not exceed the total available at the UAV and base station, and C6 enforces a
minimum safe distance between UAVs to prevent collisions.

P1 is non-convex due to the coupling of hybrid discrete-continuous variables and nonlinear relationships
among task offloading, resource allocation, and UAV trajectory, making it intractable for conventional
optimization methods. To address this challenge, this paper introduces the PER-MATD3 algorithm, which
leverages deep reinforcement learning to efficiently learn near-optimal solutions in dynamic environments.

3 Algorithm Design

3.1 Definition of MDP
The optimization problem (P1) is modeled as a Markov Decision Process (MDP) ⟨S , A, P, r, γ⟩ where S

and A denote the system state and action spaces. P the state transition probabilities, r the immediate reward,
and γ the discount factor.

(1) State space
User terminals observe local task information and the position of the UAV they are currently associated

with, represented as sM(t) = {vu(t), Qm(t), Am(t)}, where vu(t) is the accessed UAV’s position, Qm(t) the
terminal’s task queue, and Am(t) newly generated tasks. UAVs observe their own and other UAVs’ positions,
task queues, and new tasks: sM+U(t) = {vu(t), vu′(t), Quav

m ,u , Am ,u(t)}. The joint state space of the system in
time slot can be denoted as s(t) = sM(t) ∪ sM+U(t).

(2) Action space
Terminals decide task offloading aM(t) = {au

m(t)}. UAV actions include trajectory control, resource
allocation, and offloading: aM+U(t) = {ϕu(t), δu(t), abs

u (t), f uav
m ,u (t), f bs

m ,u ,bs(t)}. Therefore, the joint action
of the system in the time slot can be denoted as a(t) = aM(t) ∪ aM+U(t).

(3) Reward function
The reward guides agents to minimize total system cost under constraints. If all constraints are met, the

reward equals the negative cost; otherwise, a penalty is applied. Formally:

r(t) = {
− (WT Ttotal(t) + WE Etotal(t)) , if all conditions are met
− η1 − η2, otherwise

(28)
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When the flight trajectory of the UAV violates C1∼C3, it will get the penalty η1; if the task is discarded
or exceeds the maximum tolerance time, it will get the penalty η2.

3.2 PER-MATD3 Algorithm
In multi-agent UAV-assisted MEC networks, the high-dimensional continuous action space challenges

traditional RL methods like Q-learning, DQN, and PG. To address this, we propose PER-MATD3, a
prioritized experience replay extension of MATD3. Building on TD3’s twin critics, target policy smoothing,
and delayed updates to reduce overestimation and improve stability, PER-MATD3 prioritizes samples with
high TD errors to accelerate convergence and enhance performance in complex multi-agent settings.

Leveraging centralized training with decentralized execution (CTDE), critics use global information to
overcome partial observability, while actors act on local observations for scalability. Dual-delay updates and
prioritized replay further stabilize training and improve adaptability in high-dimensional, continuous, and
collaborative environments.

The PER-MATD3 framework, illustrated in Fig. 2. Each agent i, where i ∈ M ∪ U , equips with an
Actor network πi(si , ai ; θi), Q 1

i(si , ai ; ϕ1
i) and two Critic networks Q 1′

i (si , ai ; ϕ1′
i ), Q2′

i (si , ai ; ϕ2′
i ), with

corresponding target networks π′i , Q 1′
i , and Q2′

i , where θ and ϕ are the parameters of the Actor and Critic
networks, respectively. During centralized training, the Critic networks utilize global states S(t) and actions
A(t) from all agents to compute rewards, while decentralized execution relies on local observations. The
Actor network for each user terminal receives inputs sm(t) = {vm(t), Qm(t), Am(t)}, ∀m ∈ M, representing
the accessed UAV location, local task queue, and new task information. For UAV agents, the input is su(t) =
{vu(t), vu′(t), Quav

u , Au(t)}, ∀u ∈ U , including its own and neighboring UAV locations, task queue, and
offloaded task information. Each agent outputs an action ai(t) based on its observation. The Critic evaluates
the action ai(t) using local observations, providing Q-values for policy updates.

Figure 2: PER-MATD3 algorithm framework
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Actor networks are optimized via policy gradient methods during centralized training, with the policy
gradient computed as follows:

∇θ J(θ) = 1
L

L
∑
l=1

∇θ πi(sl
i)∇al

i
Q 1

i(sl , al)∣
al

i=πi(s l
i))

(29)

where L denotes the mini-batch size sampled via prioritized experience replay. Each agent’s two Critic
networks independently estimate Q-values, and the minimum is used to enhance stability and accuracy.
Critic training follows the Temporal-Difference (TD) principle, leveraging the same prioritized replay
mechanism as the Actor. The TD target for each sample is computed as:

yl = γ min
k∈{1,2}

{Qk′
i (sl

i , al), Qk′
i (sl

i , ā l} + rl (30)

where rl denotes the immediate reward, γ is the discount factor balancing immediate and long-term
rewards, and Qk′

i (s
′ l
i , ā l) the target Q-value, where the minimum of the two Critic outputs is used to

reduce overestimation. Prioritized experience replay assigns sampling probabilities based on the TD error
magnitude, favoring samples with larger errors to improve learning efficiency and convergence. Each
experience is assigned a priority pl related to its TD error, and importance sampling (IS) is incorporated.
The priority pl is defined as:

pl = ∣yl ∣ + ε (31)

where ε prevents zero priority. Sampling probability is given by:

Pl = (pl)∂

∑D
d (pd)∂

(32)

where D is the replay buffer size, ∂ ∈ [0, 1] controlling sampling randomness and bias. The importance
sampling (IS) weight is:

cl = ( 1
D

⋅ 1
Pl )

ð
(33)

where ð ∈ [0, 1] adjusts IS correction strength. Finally, weights are normalized as:

ĉ l = cl

maxl∈{1,2, . . . ,L} cl (34)

To mitigate value overestimation caused by sharp fluctuations in the Actor’s output for state sl
i , random

noise is added to the action to produce a smoother and more stable target, calculated as:

ā l = π′i(s
′ l
i )+ ε (35)

where π′i(s
′ l
i ) is the action output by the target Actor network in the next state. ε ∼ cl ip(N(0, δ2), −1, 1) is

the added smoothing noise obeying Gaussian distribution.
Critic network parameters are updated using Mean Squared Error (MSE) loss, and the loss function is

defined as follows:

L(ϕk
i ) = 1

L

L
∑
l=1

ĉ i ⋅ [yl − Qk
i (sl

i , al
i)]

2
, k ∈ {1, 2} (36)



Comput Mater Contin. 2026;86(3):56 11

Therefore, the parameters of the Actor and Critic main network of each agenti are updated in the
following way:

⎧⎪⎪⎨⎪⎪⎩

θi ← θi + λ∇θ J(θi)
ϕk

i ← ϕk
i − λ∇ϕk

i
L(ϕk

i ), k ∈ {1, 2}
(37)

where λ denotes the learning rate, controlling the step size of gradient updates to enhance training stability.
PER-MATD3 uses delayed policy updates: Critics update every step for rapid adaptation, while Actors

update every d steps to stabilize policy changes from value bias. Target networks are softly updated to enhance
convergence and robustness, as follows:

⎧⎪⎪⎨⎪⎪⎩

θ′i ← ρθi + (1 − ρ)θ′i
ϕk′

i ← ρϕk
i + (1 − ρ)ϕk′

i , k ∈ {1, 2}
(38)

where ρ denotes the soft update factor of the target network. The algorithm pseudo-code of PER-MATD3 is
shown in Algorithm 1.

Algorithm 1: The training process of PER-MATD3
1: Initialize actor/critic networks πi and Qi with target networks π′i and Q′i
2: Initialize prioritized replay buffer B with priority parameter α.
3: for each episode do
4: Initialize joint state s(0) = {sut , suav}, set t = 1.
5: while t < Tp do
6: UTs select actions aut(t) = πut(sut(t)) + ξ;
7: UAVs select auav(t) = πuav(suav(t)) + ξ;
8: Execute joint action a(t), get reward R(t) and next state s′(t).
9: Compute TD error δ(t), store (s(t), s′(t), a(t),R(t), δ(t)) in B with priority p.
10: s′(t) ← s(t).
11: for agents i ∈ {UT , UAV} do
12: Sample mini-batch from B with probability P ∝ p, compute IS weights w.
13: Update critic networks by minimizing L(ϕi) with weighted MSE Eq. (36).
14: if t mod d then
15: Update actor networks via policy gradient Eq. (30).
16: Soft-update target networks Eq. (38).
17: end if
18: end for
19: t ← t + 1.
20: end while
21: end for

The computational complexity of PER-MATD3 includes two phases: interaction with the environment
and training with prioritized experience replay. The interaction phase with M + N agents over T time
slots costs O((M + N) ⋅ T). Training involves prioritized sampling with complexity O(L ⋅ log ∣D∣) and
actor-critic updates across all agents at costO((M + N) ⋅ L ⋅ N P), where N P is the neural network size. Com-
pared to standard MATD3, which uses uniform replay with O(L), PER-MATD3 introduces an additional
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O(L ⋅ log ∣D∣) overhead due to priority management. Therefore, the total complexity is O((M + N) ⋅ T + L ⋅
log ∣D∣ + (M + N) ⋅ L ⋅ N P).

4 Simulation Experiments and Performance Analysis

4.1 Experimental Setup
In order to verify the effectiveness of the algorithm proposed in this paper, we consider a UAV-assisted

MEC scenario consisting of three UAVs and multiple ground user terminals and an edge base station. Among
them, the UAVs fly in an area of 400 × 400 m2 to provide computational offloading services for the user
terminals in the coverage area, and each user terminal randomly generates delay-sensitive computational
tasks at the beginning of each time slot. Each task is associated with a maximum tolerable delay. If a task
cannot be scheduled for execution before this deadline due to resource constraints, it is deemed infeasible
and discarded. The experimental parameter settings refer to [9,18], and the main experimental parameters
are shown in Table 1.

Table 1: Experimental parameter settings

Parameters description Symbol Values
Data size of task dm(t) [5, 20] MB

Computational resource of task cm(t) [100, 500] cycles/bit
Noise power σ 2 −100 dBm

Transmit power of the terminal and the UAV Pm , Pu 100 mW, 5 W
UAV flight altitude H 80 m
UAV safety distance Dsa f e 15 m

Bandwidth of UAV and Base Station Buav , Bbs 10, 50 MHz
Energy consumption coefficien of UT and UAV kl oc , kuav 1 × 10−26, 1 × 10−27

Computing capability fm , fu , fbs 0.75, [1, 4], 100 GHz
Weight parameter WT , WE 0.7, 0.3

Soft update coefficient ρ 0.01
Learning rate γ 0.96

In this paper, three classical reinforcement learning algorithms—MATD3 [19], MADDPG [20], and
PPO [21]—are used as baseline benchmarks. MATD3 extends TD3 to multi-agent settings, improving
stability and reducing overestimation in continuous action spaces, making it suitable for coordinated UAV
task offloading. MADDPG enables centralized training with decentralized execution, allowing multiple
UAVs to learn cooperative strategies. PPO is a single-agent policy gradient method that provides stable and
efficient updates, serving as a baseline for independent UAV scenarios. We compare these algorithms under
the same simulation settings in terms of convergence speed, training stability, and average system task latency
and energy consumption, providing a comprehensive evaluation of the proposed method.

4.2 Result Analysis
Fig. 3 presents the training convergence curves of the compared algorithms in terms of average

episode reward. PER-MATD3 achieves rapid improvement in the early training phase and stabilizes after
approximately 1000 episodes, demonstrating fast convergence and high policy stability. In contrast, MATD3
converges more slowly, while MADDPG and PPO continue to exhibit significant oscillations beyond 1000
episodes, indicating poorer learning stability. This improved convergence is attributed to the integration



Comput Mater Contin. 2026;86(3):56 13

of prioritized experience replay and the dual-Q network architecture, which together enhance learning
efficiency and mitigate value overestimation.

Figure 3: Algorithm convergence performance comparison

Fig. 4 compares the performance of different algorithms under varying numbers of user termi-
nals. Fig. 4a depicts the average task completion delay of each algorithm as the number of user terminals
increases from 20 to 100. With more terminals generating delay-sensitive tasks, task completion delay rises for
all methods due to limited computational and communication resources. Nevertheless, the proposed PER-
MATD3 consistently achieves the lowest delay, demonstrating superior decision efficiency. Specifically, when
the number of terminals reaches 100, PER-MATD3 reduces the average delay by 22.7% compared to MATD3.
Notably, beyond 60 terminals, PER-MATD3 maintains low and stable latency, while other algorithms exhibit
significant delay spikes, indicating better robustness and scalability under heavy load. Fig. 4b shows the
system’s total energy consumption with increasing user terminals. As the number of user terminals increases
from 20 to 100, the system’s total energy consumption gradually rises due to higher task loads and intensified
resource contention. It can be observed from the results that PER-MATD3 consistently achieves the
lowest energy consumption among all methods, demonstrating its superior resource scheduling and energy
efficiency. Specifically, at 100 terminals, PER-MATD3 reduces energy consumption by 20.8% compared to
MATD3. This improvement is attributed to the enhanced learning efficiency of prioritized experience replay,
which assigns higher sampling priority to more informative transitions, thereby accelerating convergence to
energy-efficient offloading and UAV trajectory policies.
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(a) average task completation delay (b) system energy consumption

Figure 4: Comparison of algorithm performance with different terminal numbers

Fig. 5a depicts the deployment and trajectory planning of three UAVs in a planar coordinate system.
All UAVs are launched from the center of the experimental area, and they fly in different directions to avoid
inter-UAV collisions. Each UAV determines its destination by optimizing its trajectory to cover the maximum
number of user terminals (UTs) within its communication range. Consequently, the UAVs converge to the
centroids of three high-density UT clusters and hover there to provide stable computation offloading services.
This strategy achieves efficient spatial coverage, reduces transmission delay, and improves overall system
performance. Fig. 5b compares the average task delay under varying UAV computing capacities with 50 UTs.
As the UAV computation capacity increases from 1 to 4 GHz, tasks are processed more faster, leading to
shorter queuing delays and less offloading to the base station, which significantly reduces overall latency.
PER-MATD3 consistently achieves the lowest latency. Experimental results show that PER-MATD3 achieves
the best performance overall.

(a) UAV Trajectory Control (b) Comparison of average task latency

Figure 5: UAV trajectory control and task latency under varying computing power

5 Conclusion
This paper addresses the joint optimization of task offloading, resource allocation, and UAV trajectory

control in multi-UAV-assisted MEC networks by proposing PER-MATD3. Leveraging a centralized training
and distributed execution framework, it accelerates policy convergence and improves sample efficiency
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through prioritized replay. Simulations demonstrate that PER-MATD3 outperforms existing methods in
task delay and energy consumption, confirming its robustness in dynamic environments. Future work will
incorporate inter-task dependencies and user mobility to enhance scalability and real-world applicability.
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