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ABSTRACT: Identifying the community structure of complex networks is crucial to extracting insights and under-
standing network properties. Although several community detection methods have been proposed, many are unsuitable
for social networks due to significant limitations. Specifically, most approaches depend mainly on user—user structural
links while overlooking service-centric, semantic, and multi-attribute drivers of community formation, and they also
lack flexible filtering mechanisms for large-scale, service-oriented settings. Our proposed approach, called community
discovery-based service (CDBS), leverages user profiles and their interactions with consulted web services. The method
introduces a novel similarity measure, global similarity interaction profile (GSIP), which goes beyond typical similarity
measures by unifying user and service profiles for all attributes types into a coherent representation, thereby clarifying its
novelty and contribution. It applies multiple filtering criteria related to user attributes, accessed services, and interaction
patterns. Experimental comparisons against Louvain, Hierarchical Agglomerative Clustering, Label Propagation and
Infomap show that CDBS reveals the higher performance as it achieves 0.74 modularity, 0.13 conductance, 0.77 coverage,
and significantly fast response time of 9.8 s, even with 10,000 users and 400 services. Moreover, community discovery-
based service consistently detects a larger number of communities with distinct topics of interest, underscoring its
capacity to generate detailed and efficient structures in complex networks. These results confirm both the efficiency
and effectiveness of the proposed method. Beyond controlled evaluation, communities discovery based service is
applicable to targeted recommendations, group-oriented marketing, access control, and service personalization, where
communities are shaped not only by user links but also by service engagement.
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1 Introduction

Community discovery is a long standing challenge at the heart of complex network research, with
successful applications spanning various scientific fields such as physics, biology, sociology, social sciences,
mathematics, and computer science. Research efforts have been devoted to developing methods and
algorithms that can effectively reveal this hidden structure of a network [1,2].

Over the last decade the literature has advanced along several complementary directions. Classical
topology-based algorithms and modularity-maximization methods emphasize structural cohesion but
ignore node attributes and semantics [1,3]. Spectral and embedding approaches incorporate attribute or
typed-edge information via low-dimensional representations, improving detection when rich node features
exist but often increasing computational cost and sensitivity to class imbalance [2,4]. Probabilistic and
generative models tackle edge formation and attribute likelihoods in a principled way (e.g., reciprocity-
aware models), yet they commonly assume binary or stationary networks and face scalability limits [5].
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Hybrid content+structure methods that add textual or topical signals recover semantically coherent groups
but tend to be computationally intensive and domain-sensitive [6,7]. Other research streams explore
graph compression and coarsening for large networks [8], random-walk/evolutionary optimisers [9], and
motif/hypergraph refinements and Ricci-flow approaches to capture higher-order structure [10,11]; each
reduces specific failure modes but introduces trade-offs in cost, parameter sensitivity, or restricted appli-
cability. Across these strands the recurring gaps are clear: many methods (i) rely mainly on user-user
topology and thus miss cohorts formed by shared service usage [4,12] (for example, customers of the
same product or students of the same course), (ii) do not natively handle heterogeneous, multi-valued and
semantic attributes together, (iii) provide limited task-driven filtering or interpretability, and (iv) face a
scalability vs. expressiveness trade-off that complicates deployment on service-rich platforms. These open
problems motivate a service-aware, multi-criteria, and interpretable discovery framework. To address these
shortcomings, CDBS explicitly constructs a user-service bipartite view and introduces the global similarity
interaction profile (GSIP): a single, interpretable, multi-criteria similarity that fuses numeric, categorical,
multi-valued, access-intensity, and semantic/textual signals. Unlike standard measures such as Jaccard
or cosine, GSIP supports attribute weighting, tolerates missing values without heavy preprocessing, and
provides per-attribute interpretability—enabling discovery of semantically coherent communities even when
direct user—user ties are weak or absent.

To summarize, this paper introduces CDBS, a novel approach that detects communities from user
interactions with web services. The main contributions of the proposed CDBS are as follows:

o The CDBS framework for service-aware community discovery that integrates user profiles, service
profiles, and access interactions with flexible multi-criteria filtering.

« To the best of the authors’ knowledge, GSIP is introduced here for the first time as a novel similarity
metric, which handles heterogeneous attribute types (including semantic text via linked open data
(LOD)-based similarity measure approach), supports attribute weighting, and tolerates missing values
without costly transformations.

» Efficient graph-construction and filtering procedures that preserve interpretability (communities tied to
service domains) and improve scalability for large datasets.

o A comprehensive experimental evaluation and comparison with established baselines (Louvain, HAC),
demonstrating improved discovery granularity, stronger modularity, and competitive runtime on
large scenarios.

By bridging these dimensions, CDBS provides a more realistic framework for community discovery in
modern social platforms, especially in online social networks.

The paper is structured into five sections: Section 2 presents some similar work to show the evolution
of research in this area and the difference between these works. Section 3 details the architecture processes
of the proposed approach for discovering communities CDBS. In Section 4, the idea is implemented on a
platform to observe the actual results of this approach and compare it with robust algorithms in the field of
community discovery. Finally, a conclusion and some perspectives close this paper in Section 5.

2 Related Work

With the development of service computing, searching communities’ discovery in social networks
according to users interaction is becoming a significant research topic. The work [13,14] provides a com-
prehensive review of community detection methods. Reference [13] presents a classification of community
detection algorithms in social networks, evaluating their performance on real datasets, and highlighting
future research paths. Moving on, the research in [14] focuses on quality metrics for community detection,
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discussing limitations in current metrics and the need for more robust ones, especially for handling small
communities and scalability challenges in large networks.

In the context of community discovery, Akachar et al. in [6] propose a method for community discovery
in social networks that integrates both content and structural information. It exploits user-generated texts to
determine topics of interest using statistical and semantic metrics such as the Chir statistic and conditional
mutual information. These topics are used to divide users into distinct groups, each representing a specific
topic. Within each group, a static algorithm like Louvain is applied to detect tightly interconnected users.
This hybrid approach enhances detection accuracy, but may struggle with vague or domain-specific terms
and can be computationally intensive due to the need for semantic analysis and clustering of large amounts
of text.

In the context of community detection, research on has explored diverse strategies to balance scalability,
accuracy, and adaptability. Zhao et al. [8] introduced a graph compression approach that reduces network
size by merging low-degree vertices, offering competitive performance on large-scale networks. However,
its focus on undirected graphs and the loss of structural nuances limit its applicability to more complex
scenarios. Moving on, Alfageeh and Skillicorn [4] advanced this concept by embedding typed graphs to unify
multiple attribute modalities; while effective on large, rich datasets like Instagram, this method incurs high
computational overhead and may underperform on smaller or imbalanced data.

Other studies shifted toward probabilistic and attribute-aware models. Contisciani et al. [5] developed
a probabilistic generative model leveraging reciprocity, achieving strong edge prediction but remaining
constrained to binary networks. Cai et al. [7] addressed structural and attribute integration through a
novel similarity measure, termed an importance score, which reflects the density around each node. This
approach improves detection accuracy but comes at the cost of computational scalability, particularly for
large networks or noisy attributes.

Amin et al. [15] introduced a global-local model with Eigen-based influential node detection and
label propagation, eliminating the need for predefined parameters. Although efficient in many scenarios,
the randomness inherent to label propagation introduces instability and reduces accuracy for overlapping
communities in large networks. Similarly, Dabaghi-Zarandi and KamaliPour [16] proposed a hybrid local-
global approach for community merging, which improved modularity and density metrics but relied heavily
on fixed thresholds, making it less flexible for networks with overlapping or ambiguous boundaries.

Recent approaches have also combined structural, interaction-based, and topological refinements to
improve accuracy and robustness. Sayari et al. [17] introduced a robust community detection method
combining user interaction degree, structural similarity, and frequent pattern mining. Experiments showed
superior accuracy, robustness, and performance compared to five existing approaches. However, this
method is sensitive to parameter settings, and assumes static networks. Later, the same authors proposed
CDILPV [18], a robust community detection method that integrates user interactions and structural
measures, introducing vertical pattern mining and a hybrid metric for direct and indirect membership cal-
culation to generate denser and more resilient communities, outperforming existing approaches in accuracy
and robustness. Nonetheless, CDILPV remains limited to static snapshots, underexplored across diverse
domains, and dependent on high-quality interaction data. Dabaghi-Zarandi et al. [9] employed random
walks and evolutionary optimization to refine partitions, achieving higher modularity and NMI scores.
Although both methods [9,18] enhance detection performance, they remain computationally demanding
and parameter-sensitive, with the former further constrained by its reliance on large-scale interaction data
and the latter restricted to non-overlapping communities. Likewise, Karampour et al. [10] applied discrete
Ricci flow with spatial-temporal features to capture geometric and fine-grained patterns, while Madhulika
et al. [19] stabilized label propagation using motif-based hypergraph reweighting and similarity-driven
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propagation. These methods achieve high modularity, robustness, and stability but remain computationally
intensive and less scalable, especially in large or sparse networks. Finally, Khawaja et al. [I11] proposed
a common-neighbor based refinement for overlapping community detection, improving flexibility and
robustness in detecting subtle overlaps, though it is sensitive to threshold tuning and computationally costly
due to repeated similarity calculations.

The discussed works previously explore various community detection methods, each exhibiting varying
degrees of efficiency depending on specific application criteria, including: (1) Community meaning—the
ability of the approach to uncover semantically meaningful themes or topics within detected communities;
(2) Node influence—the capacity to recognize key or influential nodes that play central roles within their
respective communities; (3) Detection filters—the use of filtering mechanisms that enhance the precision
and selectivity of the detection process; (4) Overlapping communities—the capability to detect nodes that
belong to multiple communities simultaneously, reflecting complex real-world relationships; (5) Outlier
tolerance—the robustness of the method in handling noisy or anomalous data without degrading the overall
detection quality; (6) Computational efficiency—how quickly a method can discover communities, which
is particularly crucial in time-sensitive; (7) Structural adaptability—the effectiveness of the method across
diverse network types, including social, biological, and information networks; (8) Low complexity—the
scalability of the approach in terms of handling networks of varying sizes and densities with minimal
computational resources.

Table 1 indicates that CDBS generally excels in most categories, especially in using filters, detecting
overlapped communities, handling outliers, running efficiently, and maintaining low complexity, although
it may require further development to support all network structures. This shows a well-rounded approach
that balances performance, community structure detail, and computational efficiency.

Table 1: Comparison with some cited researches. The tick mark (v”) indicates that the criteria exist, whereas the cross
mark (x) indicates that the criteria do not exist
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3 CDBS Methodology

Service providers offer many services published in the Universal, Description, Discovery, and Integra-
tion (UDDI) registration directory that are accessible to users. Users search for services in this directory that
meet their requests. Once a service is selected, a link is established between the service and the user, meaning
the user accesses this service. Our solution aims to discover communities based on user interactions with
services. We also consider various criteria to filter this relationship. The interaction between services and
users using a bipartite graph (also known as a two-mode graph) is that the first subset of vertices corresponds
to user profiles, while the second subset represents service profiles. Each edge in the graph connects a service
to a user if the user accesses the service.

The proposed strategy is divided into four primary stages, as illustrated in Fig. 1. The first step
involves conducting a comprehensive study to define the characteristics of both user and service profiles.
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Consequently, a user profile is defined that consists of multiple attributes. Subsequently, we align each
attribute within the user profile with a corresponding element in the web service profile. After creating the
profiles, a novel similarity measure is proposed, known as GSIP, to identify web services similar to the users.
This process establishes a connection between the user and the web service which is used to construct a web
service discovery graph. In the third step, CDBS responds to queries by filtering the graph based on various
criteria related to the user or service, such as age, localization, interests, language, gender, etc. Finally, the last
step involves applying a new community detection algorithm to discover similar user groups, representing
the communities according to predefined standards.
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Figure 1: Proposed CDBS architecture

3.1 Creation of Profile for User or Service

Each user on the web has a profile where his information is registered (name, first name, date of birth,
location, preference, device used, etc.). All of this information forms its digital identity. The user profile
is also defined by information found in computer systems and by his interests in one or more fields (e.g.,
culture, sports), which may vary depending on contextual information (e.g., time, location). In contrast,
the service profile is defined by parameters such as service quality, service usage cost, and geographical
restrictions covered by the service. To model user and service profiles, the user profile format defined
in [20] is extended by adding several quantitative and qualitative characteristics. This extension establishes
a common profile structure for both the user and the service. Furthermore, the unique identifier denoted
by the identity, Table 2 exhibits all the profile elements clasified by their meaning in the user/service profile.
To enable a meaningful comparison between user and service entities, we define a shared attribute schema
that aligns semantically related fields across the two profiles. For example, a user’s age is matched to the
authorized age range of the service, the declared languages correspond to the supported service languages,
and the device model/operating system specified in the user profile is in line with the requirements of the
service platform. Similarly, the geographical location of a user is matched against the service availability
region, while interests and domain preferences are mapped to the service domain classification. Finally,
the textual description provided by the user is evaluated against the semantic description of the service
using ontology-based similarity. Through this aligned schema, user-service compatibility can be quantified
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four primary categories based on the type of information provided.

Table 2: User and service context attributes

Cat. Attribute Meaning in the user context Meaning in the service context
Domain Service area searched by the user Service area
Name Service name searched by the user Service name offered
Contact User contact Contact of the service provider
CD Brief description of the service being Functionalities offered by the service
sought
GI Date Service search date Publication date of the service
Age User age Age ranges of the persons authorized to use the service
Gender User gender People gender to whom the service is addressed
Nationality User nationality People nationalities to whom the service is addressed
Level of study User’s level of education Study level of persons authorized to use the service
AT Religious or political affiliation of the user Afhiliation of persons authorized to use the service
Interests List of user’s interests What area of interest is the service aimed at
p QoS Parameters of the service quality desired Ensures quality, security, and cost of web service provided
Languages Languages list mastered by the user Languages list in which the service is provided
Type User device type Service device type
Model User device model Device model required by the service
MN Manufacturer name of the user device Manufacturer name of the service device
Screen User screen size Screen size required by the service
D Resolution User’s screen display resolution Screen display resolution supported by the service
Color Number of colors of the user’s screen Number of colors supported by the service
display
Software type Operating system type of the user’s device Operating system type supported by the service
Version Operating system version of the user device Operating system version supported by the service
Navigator Browser name and version used by the user Browser name and version supported by the service
Country Access country of the user to the web Countries for which the service is authorized
service
L City User access city Cities for which the service is authorized
Region User access region Regions for which the service is authorized
Longitude Coordinate longitude of access Longitude coordinates for which the service is authorized
Latitude Coordinate latitude of access Latitude coordinates for which the service is authorized

Abbreviations: General information (GI); Preference (P); Device (D); Localization (L); Manufacturer’s name (MN);
Contextual description (CD); Affiliation trend (AT).

3.2 Discovery of Web Services

After defining both the user and service profiles, the goal is to find the most appropriate web services
for each user, i.e., to find the web services similar to each user’s profile. The discovery process, bipartite graph
construction, will be based on a similarity measure that uses the interaction between users and web services.
The similarity calculation between the two profiles supports all previously defined elements in Table 2. The
challenge is that these attributes are of different types, as the similarity measure for numeric attributes is not
applicable to string attributes. Most existing similarity measures do not address this type of problem [21].
To meet this constraint, we have created a new similarity measure called GSIP, adapted to all attributes
type. GSIP assigns variable weights to each attribute based on its intervention in the similarity calculation,
depending on the nature of the study.
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3.2.1 GSIP Similarity
GSIP similarity is calculated according to the following formula (Eq. (1)):

GSIP(X,Y) = % > (ASim(X;, Y;) - Prmtrs) (1)

where, X and Y represent a user and a service, respectively. X; is the value of a user’s attribute, and Y; is
the value of a service’s attribute. Prmtrs denotes the weight of an attribute. N = )" Prmtrs is the sum of the
weights, serving as a normalization factor. GSIP(X, Y) € [0,1] represents the overall similarity score between
the user and the service. ASim (Attribute Similarity) measures the similarity between the user attribute X;
and the service attribute Y;.

The function ASim returns a real value in the interval [0,1], calculated between a user attribute and the
corresponding attribute of a web service. The value of ASim varies depending on the type of profile attributes.

a) ASim for numerical attributes: The numerical attributes included in the ASim similarity calculation
are mostly related to quantitative properties. Their values can be real values or numerical intervals. For real
values, the ASim calculation is based on atomic similarity. Mathematically, it is defined as follows (Eq. (2)):

1 ifX,' = Y1

ASim(X;,Y;) = min(X;,Y;) . @
———2 ifX;#Y;
maX(Xi) Yl)

For numerical intervals, we consider the well-known allen temporal formalism called the Allen interval
algebra [22]. This formalism includes thirteen fundamental relationships between these intervals, which are
used to model the various qualitative situations between temporal entities.

Based on Allen algebra, ASim is defined mathematically as follows (Eq. (3)):

1 if (X;pY;) or (X;aY;)
XinY; i . .
ASIm(X;, Y;) = X,0Y if (X;mY;) or (X;miY;) or (X;0Y;) or (X;0iY;) 3)
X;
— otherwise
Y;

If X; contains only one value, Formula (4) defines ASim as follows:

1 if X; belongs to the interval Y;

ASim(X;, Y;) = { (4)

0 otherwise

b) ASim for enumerated value attributes: An enumerated value field takes one value for the user from
a defined collection of values for the service. Formula (5) calculates the ASim similarity for this attribute

type:

) 1 if X; =Y, or X; isincluded in Y;
ASim(X;,Y;) = (5)
0 otherwise

c) ASim for multi-valued attributes: These attributes can have multiple values (list of values) for the
same user instance from a collection of service values. The ASim similarity for this type of attribute is
calculated using Formula (6) as follows:
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1 ifX;nY, o
ASIm(X;, Y;) =] o (6)
0 otherwise

d) ASim for string type attributes: Several formulas exist for calculating a similarity between two
strings (such as two texts) (Levenshtein distance, Jaro-Winkler distance, Sorensen-Dice coefficient, N-gram
distance, etc.). However, these distances do not consider the semantic and multi-language comparison
between the two strings. Similarity based on LOD offers a robust solution for this issue because the data is
already structured and easily retrievable through SPARQL access points. Many similar calculation formulas
use LOD [23]. We explore and modify the LOD-based similarity measure (LODS) as detailed in [24] to
compare descriptions in user and web service profiles. To achieve this, the descriptions must be formatted to
consist of a set of keywords by eliminating spaces and irregular expressions. Each user/service description
will be associated with a set of terms (keywords) T = {#;,f,,...,t;} where a set of LOD resources can
annotate each term A € LOD using the annotation relation «, such as V¢t € T, 3r; € A| (¢;, &, 1;). The ASim
similarity between the user description X; and the service description Y;, annotated by a set of resources
LOD A, and A, based on the LODS measure is calculated in Formula (7):

acA; ZbeA,, LODS(a’ b)
|As, : |Au|

ASIM(X;,Y;) = 2 (7)

This similarity uses a classical measure of aggregation that enables two objects annotated with semantic
concepts to be compared according to the following two steps:

1. Sums the scores obtained by applying the LODS measurement to each combination of the Cartesian
product of the two sets being compared.

2. Then, it divides the sum by the number of combinations to get a final score normalized in the interval
[0, 1].

3.2.2 Caracteristics and Evaluation of GSIP Similarity

Our comparison is not to promote a single similarity measure that fits all situations but to clarify and
illuminate the important differences between five similarity measures. The decision on which similarity
measure to apply depends on the nature of the data used, the observations we want to make, and on
each individual definition of similarity. The conceptual, theoretical, and experimental characteristics of
the most popular measures are a fundamental evidence-base for making that decision. GSIP similarity
is used to match user profiles with web services, mainly in social domain applications. This similarity
supports all types of attributes, making it challenging to compare with other similarity measures that are
specific to certain data types or require transformations of attribute types. Unlike GSIP, most existing
similarities are methods for measuring the proximity between two vectors in a vector space, using only
atomics values. This is a major value addition for our similarity. Additionally, the results of GSIP vary
according to the attribute parameters chosen, such as the weight of each attribute based on its importance,
which heavily influences the results obtained. This proves that GSIP can handle missing values in the data
without significantly affecting the results. Furthermore, GSIP supports symantic textual comparison when
calculating the description similarity of user and web service profiles. It uses the LOD-based similarity
measure approach [24], as presented in the previous subsection. Although GSIP is a comprehensive multi-
criteria framework, we compare it here only on the individual similarity level to isolate the contribution of
each component. A more extensive comparison with other multi-criteria frameworks remains future work.
We compare GSIP with four well-known similarity measures: Jaro-Winkler [25], Jaccard [26], Cosine [27],
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Manhattan [28]. This comparison is based on different parameters: the execution time of similarity (running
time), dependency on data quality with missing values (tolerance to outliers), the type of values supported:
continuous, categorical, numeric, string, etc. (attribute type), the need to transform attribute or preprocess
data (attribute transformation), and the support for semantics in comparison (semantic comparison).

Table 3 shows that the performance of the different similarity measures varies depending on the desired
characteristics. GSIP’s support for several vectors during the comparison clearly influences its calculation
time which remains higher compared to other similarity measures. However, this difference is negligible
considering that GSIP does not require attribute transformation, simplifying its use in raw data scenarios.
The other measures need some form of data preprocessing or transformation, which adds a step to the
data preparation process. For the other characteristics, GSIP shows superiority compared to the other
similarities for social applications. GSIP similarity evaluates attributes independently and normalizes over
the available fields, ensuring that missing profile information does not bias the result. Ambiguous or noisy
LOD annotations are down-weighted during semantic comparison, limiting their influence on the overall
similarity score. Moreover, because the bipartite user-service graph is inherently sparse, applying minimum
access and similarity thresholds suppresses weak or uninformative links and preserves only meaningful
interactions. This process also mitigates imbalance issues and enables users or services to be integrated in
the cold-start through profile-based similarity rather than relying on historical interaction data.

Table 3: Comparison of similarity parameters

Parameters GSIP Jaccard Cosine  Manhattan Jaro-Winkler
Running time Medium Fast Fast Fast Medium
Tolerance to outliers Yes No No No No
Attribute type All Categorical Numeric =~ Numeric String
Attribute transformation No need Yes Yes Yes Yes
Semantic comparison Yes No No No No

The GSIP similarity has a complexity of O(N,, - N; - d), with d small and constant, making the cost scale
linearly with user-service pairs. Memory usage is moderate since no attribute transformation is required.
The “Medium” runtime in Table 3 comes mainly from the semantic (LOD-based) enrichment, not from
heavy computation.

3.2.3 Construction of the Web Services Discovery Graph

After calculating the similarity between each user and service profile, a link is established between
the profiles where the similarity exceeds a predefined threshold. This results in a bipartite similarity graph.
Algorithm 1 elucidates the approach for constructing this graph, with comments indicated by:

Algorithm 1: Construction of similarity graph

Input: U: List of users /] Users’ profile attributes list
S: List of services /] Services’ profile attributes list
Prmtrs: Map )String, Float( /I Attributes weights
Sim_threshold: integer // Similarity threshold

Output: Graph_Similarity (Users, Services, Links)
1: for each U; € U do

(Continued)
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Algorithm 1 (continued)
2: for each §; € S do

3 GSIP < GSIP(U;.Profile, S;.Profile, Prmtrs)
4. if GSIP > Sim_threshold then

6: Graph_Similarity.MakeLink (U, S, A)

7: end if

8: end for

9: end for

10: return Graph_Similarity

A similarity between user and service profiles does not necessarily imply that the user accesses a similar
service. A user might engage with a service out of curiosity or by mistake. To validate the link and eliminate
intruders, the number of accesses for each pair of profiles must be constrained by a lower bound. To achieve
this, we have devised a method where multiple accesses are created for each link between a user and a
service, occurring in different locations, on different dates, and with varying durations of access. Algorithm
2 illustrates the construction of web services discovery graph.

Algorithm 2: Web services access graph generation
Input: Graph_Similarity: Graph
max_access, nbr_access: integer
Output: Graph_Access
for each link in Graph_Similarity do

1
2 nbr_access < Random(0, max_access)

3:  Graph_Access.MakeLink(link.getExtremityl(U;), link.getExtremity2(S;), nbr_access, similarity)
4: end for

5: return Graph_Access

3.3 Filtering of Web Services Discovery Graph

The proposed approach is centered around community discovery, incorporating various filters pertain-
ing to users, web services, and user access to web services. A query can define the filters to be applied to
the web services access graph, providing substantial insights into the discovered communities. User filters
encompass interests, localization, age, and gender, alongside additional filters such as affiliation, level of
study, and language. Filters associated with the service include primarily the domain, which is a mandatory
filter and contributes significantly to the interpretation of the discovered communities, particularly when
combined with other filters such as service location. Moreover, we divide filters concerning user access
to web services into three main sub-filters: (i) “Access date” sub-filter, (ii) “Access duration” sub-filter,
and (iii) “Access location” sub-filter. These three criteria were selected because they collectively provide a
comprehensive view of user behavior in terms of temporal patterns (access date), engagement levels (access
duration), and geographical context (access location). Including these dimensions allows for more detailed
analysis of community discovery and user interaction with web services.

3.3.1 Access Date Sub-Filter

The purpose of this filter is to restrict user access to services based on clearly defined time constraints
and to address various temporal considerations. Users access services on different dates; for example, the use
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of tourist services typically increases during vacation periods, while demand for defense, information, and
communication services may spike during times of conflict. This pattern applies broadly to many other types
of services. By analyzing access dates, it becomes possible to identify temporal trends and seasonal variations,
which are critical for understanding user behavior and community dynamics. This criterion captures the
temporal dimension of service usage, enabling the identification of patterns such as daily, weekly, or monthly
peaks, insights that are essential for effective resource allocation and service optimization.

Drawing inspiration from Allen’s algebra model of time [22], the “access date” sub-filter involves
retrieving all accesses occurring between or outside two defined dates. Additionally, it involves retrieving
accesses on a specific date or before/after that date.

3.3.2 Access Duration Sub-Filter

The “access duration” sub-filter enables the retrieval of accesses that fall within a predefined time
interval. The length of time users spend accessing a service indicates their level of engagement and
commitment. Longer access durations may suggest greater user interest or the complexity of the service
being used. For example, longer durations in accessing educational services might reflect intensive study
sessions or prolonged use of learning resources. By examining the duration of the access, the developer can
differentiate between casual users and dedicated users, which helps to identify key users or influencers within
a community. This information is valuable for tailoring services and improving user experience.

3.3.3 Access Localization Sub-Filter

The user accesses a service from various locations, necessitating the preservation of the user’s global
positioning system (GPS) access coordinates. The purpose of this filter is to confine the geographical scope of
user community discovery, addressing different location-related constraints. The geographical location from
which users access services provides context about their physical environment and potential constraints or
preferences. For example, users who access services from urban areas may have different needs compared to
those from rural areas. In addition, location data can reveal regional trends and the spatial distribution of
service usage. Understanding access location helps address location-specific issues and tailoring services to
meet regional demands. It also enables the identification of local communities and the analysis of geographic
factors influencing service adoption and usage. Two scenarios may arise upon request:

Filtering users who access a service from a specific location within a designated area.

«  Filtering users located within a geographic region defined by a central point and radius, forming a
circular area. The Haversine distance formula [29] is ideal for this purpose, as it calculates the shortest
distance along the great circle between two points.

Filter parameters are flexible and adjustable according to the task requirements. Low-activity
users/services are removed by defining a threshold access parameter nbr_access_min. The services are
significant to discovery if accessed by at least 50 users. Candidate pairs are retained only if their GSIP
similarity exceeds a defined threshold parameter threshold_sim. The communities are then constructed from
this similarity graph with thresholds chosen through data-driven tuning. Algorithm 3 outlines the filtering
procedure using various filters.
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Algorithm 3: Filtering of Web services discovery graph

Input: nbr_access_min, threshold_sim: integer
Graph_Access: Graph (Users, Services, Links)
Filter-User, Filter-Service, Filter-Access: Map(String, Object)
Output: Graph_Filtered

1: Apply (Graph_Access, Filter-Service)

2: Apply (Graph_Access, Filter-User)

3: Apply (Graph_Access, Filter-Access)

4: for each Link in Graph\_Access do

5: if Graph_Access.link (User, Service) exists then

6: if Similarity (User, Service) > threshold\_sim and nbrAccess(User, Service) > nbr_access_min then
7: MakeLink (Service, User, Graph_Filtered)
8: end if
9: end if
10: end for

11: return Graph_Filtered

3.4 Communities Discovery

Many methods for community discovery have been proposed, yet all are constrained by limitations
when applied to complex networks due to their reliance on user interaction for discovery [13,30]. The
proposed CDBS approach aims to address this issue by organizing users into communities, each representing
one or more services with the attached users. This final step involves generating communities from the filtered
access graph by grouping users who have accessed the same services. Since a user can access several services,
the same user node may be simultaneously linked to multiple service nodes. As a consequence, a user may
belong to more than one community. Community membership is therefore calculated by collecting all users
connected to a given service and then extending this membership iteratively through service intersections
that reflect multiple groups of interest. CDBS is divided into two steps:

»  Step 1: The objective of this phase is to create communities that adhere to the specified filters, leveraging
the results obtained earlier (filtered access graph). At this stage, the advantage of addressing the problem
with a bipartite graph becomes evident. Taking into account previously acquired accesses, it is adequate
for each service to identify the user nodes associated with it. These users will form a community
associated with the service. However, detecting communities related to individual services alone is
insufficient. The aim is to uncover communities associated with a set of services.

o Step 2: The decomposition of the network in the preceding step is marked by overlaps among com-
munities, stemming from the possibility of users accessing multiple web services and thus belonging
to multiple communities. In this phase, we systematically evaluate pairs of communities obtained from
the previous step. For each such pair, a new community is formed by merging their respective services.
This resultant community comprises users extracted from the intersection of the merged services. This
process is iterative until there is no additional overlap between communities.

These steps group users by services with complexity of O(E), where E is the number of edges and
merging overlaps that cost O(C?), where C is the number of detected communities. Filtering reduces both E
and C. On the scale 10,000 x 400, the interaction matrix is sparse with <2%, ensuring efficiency in memory
and time, which explains the sublinear growth of runtime observed in the implementation (Section 4).
Algorithm 4 outlines this approach of community discovery.
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Algorithm 4: Discovery of communities

Input: Graph_Filtered: Graph (Users, Services, Links)
Level: Integer // maximum degree of communities
Output: List_ Communities

1: List_Communities < List_Communities.create()

2: for each link in Graph_Filtered do

3:  Service S < Link.Extremityl
4: Com < Community.create()
5: SetService (Com, S)
6: if Com exists in List_Communities then
7: ind < index(Com, List_Communities)
8: ind.AddUser (Link.Extremity2, List_Communities)
9: else
10: PutOn (Com, List_Communities)
11: Com.AddUser (Link.Extremity2, List_Communities)
12: end if
13: end for
14: List_ComlID < combination(List_Communities.getService(), Level)
15: for i from 1 to List_ComlID.size() do
16:  Community com < List_Communities.get(i)
17:  ListServ < com.getServices()
18:  if ListServ.size + 1 then
19: Vertex < ListServ()
20: L < Vertex.getUser()
21: for j from 2 to ListServ.getServices().size do
22: vertex < ListServ.getService(j)
23: L « intersection(L, Vertex.getUser())
24: end for
25: Community ¢ < Community.create(ListServ, L)
26: PutOn(c, List_Communities)
27: endif
28: end for

29: return List_Communities

4 Implementation of the Proposed Architecture

4.1 Execution Environment

The execution environment must rely on a high-performance, open-source platform capable of process-

ing large volumes of distributed data, particularly for complex network analysis. The NetBeans platform [31],
with its Java Integrated Development Environment (IDE), meets this requirement effectively. Moreover,
remote method invocation (RMI), a Java API, enables transparent manipulation of remote objects as if they
were local, ensuring seamless execution across distributed systems. For visualization, Pajek software [32]

offers robust network analysis and visualization capabilities, with cross-platform compatibility on Windows,
Mac, and Linux.
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4.2 Evaluation of the Proposed Approach

The proposed architecture requires the creation of detailed user and service profiles, as defined
in Section 3.1, along with specifying each user’s access to their desired services. Since no real data set
containing such detailed profile and access information is publicly available, and given that the specific
data values do not directly affect the community discovery process, a synthetic database was created for
experimentation. In this phase, possible values were defined for each attribute within the user and service
profiles. Considering an example with 50 services and 10,000 users. After assigning attribute weights, we
generated a similarity discovery graph with a target similarity rate of 50% or higher, identifying the web
services most similar to each user through the proposed GSIP metric. The similarity calculation incorporated
weighted attributes, and for every matching pair of profiles, multiple accesses were simulated across diverse
dates, times, and locations, yielding the web service discovery graph. The subsequent step involves filtering
the web services discovery graph based on filters defined by a query. These filters pertain to the user, the web
service, and user access to web services. We choose the following filters values:

» <«

« Service categories: “Social media,” “Gaming,” and “Sport.”
« Community members: Men.
o Connection duration: Exceeds 110 ms.

To visualize the bipartite graph of filtered accesses, a file in a specific format (.net) is generated that
can be viewed using Pajek software [32]. Fig. 2a shows the result obtained. The final step involves creating
communities by selecting the degree of communities, which represents the number of services involved in
each community. The partial graph on Fig. 2b depicts communities with a single service.

Uioooo
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(a) (b)

Figure 2: Community and discovery graph visualizations. (a) Graph of communities with a single service. Circles
denote users, squares represent services. (b) Visualization of the filtered discovery graph

4.3 Comparison of Multi-Criteria Approach vs. No Criteria Approach

To evaluate the performance of our multi-criteria approach, a run-time comparison with non-criteria
strategy was performed during community generation. The study was conducted through a series of
experiments on a profile sample using a machine with an Intel Core i5 processor and 16 GB RAM. Table 4
outlines the attributes used in a similarity calculation along with their corresponding weights, expressed
as percentages. These weights reflect the relative importance of each attribute in the calculation process.
The weights in Table 4 were obtained through a calibration process that began with equal weighting and
then gradually adjusted the relative importance of the attributes, using response time as the main evaluation
criterion. Although these calibrated values yielded the most stable results in our dataset, the weights are
not universally fixed and can be manually modified depending on the objectives of the task, for example,
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emphasizing gender in marketing, location in regional studies, or age in demographic analyses. Sensitiv-
ity analysis confirmed that such context-driven adjustments produce consistent and robust community
structures, highlighting the frameworks flexibility.

Table 4: Attribute weights for similarity calculation

Attribute Age Interest Description Country Language Gender Affiliation Security Others
Weight  17% 17% 09% 20% 10% 05% 03% 08% 11%

Table 5 presents some values of the criteria (filters) chosen to generate communities. For the no-criteria
approach, we select all areas concerning web services without filters. Table 6 presents the tests and results
of the experiments, highlighting the computational impact of introducing multi-criteria in community
discovery. As expected, execution time increases with the number of profiles, and the comparison with the
baseline (with and without criteria) shows the additional cost of handling heterogeneous attributes and
semantic similarity. These results underline the efficiency of the proposed method in managing richer profile
information within large and complex networks.

Table 5: Attribute values for community generation

Attribute Value
Age between 13-40 years old
Interest gaming, social media
Gender both (M and F)
Connection time  between 110-15,000 ms
Level of Study any
Language English, French, Spanish
Similarity >50

Table 6: Response time to generate communities with mean and standard deviation over 10 runs

Response time (ms)

Test [Us, Ss]

MCD DWC
(100, 10] 6+£0.4 17 + 1.1
[250, 25] 11+0.7 62 +3.5
(500, 50] 19+12 71+ 4.1
[750, 75] 31+2.0 499 +12.4

(1000, 100] 47 +£3.3 1279 + 28.5
[2000, 200] 760 +18.5 2890 + 55.8
[5000,300] 2350 +45.7 7421 +136.4
8 (10,000, 400] 9875 +152.6 15234 + 285.7

N OGN~

Abbreviation: Users (Us); Services (Ss); Multi-criteria dis-
covery (MCD); Discovery without criteria (DWC).
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4.4 Comparison with State-of-the-Art Algorithms

The proposed CDBS approach is compared with four powerful algorithms in the field of community
discovery (Louvain [33], hierarchical agglomerative clustering (HAC) [34], Label Propagation [35], and
Infomap [36]). Table 7 provides a comprehensive overview of the performance of the five methods when
applied to datasets with varying numbers of users and services, in terms of running time, number of
communities, and community quality. Synthetic attributes are used because no public dataset simultaneously
provides rich user profiles, detailed service metadata, and fine-grained access logs at the granularity required
by CDBS. Attribute ranges (e.g., age, access duration) were chosen to be realistic and exercise the entire
pipeline while stress testing scalability (up to 10,000 users and 400 services), sparsity (<2% interaction
density), and robustness via threshold-sensitivity analyses; results remained stable across settings. The
materials used, attribute weights, and filters are the same as those cited in the previous comparison.

4.4.1 Comparison in Running Time

It should be noted that the algorithms Louvain, HAC, Label propagation and Infomap were executed on
a powerful platform developed by professionals, whereas the CDBS method was implemented by researchers
without a focus on optimizing the developed algorithms. Both the algorithms and the data used in all the
experiments presented in this work are available in the GitHub repository'. Each experiment was repeated
several times, and the reported results represent the average values.

Table 7 reports the response times of CDBS, Louvain, HAC, Label Propagation (LP), and Infomap
under increasing network sizes. For small datasets, Louvain remains the fastest, followed closely by LP and
Infomap. As network size grows, LP maintains relatively low runtimes, outperforming Louvain. Infomap and
CDBS achieve intermediate runtimes, slower than Louvain and LP, until large-scale scenarios are reached.
The scalability advantage of CDBS becomes clear in large networks. At 10,000 users and 400 services,
CDBS executes in 9.8 s, outperforming Louvain (25.3 s) and HAC (55+ min). While LP remains the fastest,
Infomap shows competitive performance, but their community quality metrics (Table 7) consistently fall
short compared to those achieved by CDBS. This demonstrates that CDBS achieves the best trade-oft between
execution time and community quality, making it the most robust option for large and complex networks.

1https://githul\wm /bkarim78/Communities_Discovery Based Service (accessed on 15 October 2025)


https://github.com/bkarim78/Communities_Discovery_Based_Service
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4.4.2 Comparison in the Number of Communities

The number of detected communities is a key factor, as it determines the level of specialization and
the interpretability of the results. A large community may contain several sub-communities; these sub-
communities form groups that share different interests, and each group requires different decision-making.
The results obtained for the CDBS method vary depending on the number of services required in the
final discovery. Table 7 shows that CDBS consistently produces more communities than Louvain, HAC,
and Label Propagation, while maintaining a balanced scale compared to Infomap. For example, at 1000
users and 100 services, CDBS identifies 34 communities, compared to only 3 for Louvain and HAC, 6
for Label Propagation, and 11 for Infomap. At the largest scale (10,000 users and 400 services), CDBS
detects 143 communities, while Louvain, HAC, LP, and Infomap identify only 5, 4, 11, and 40, respectively.
These results show that CDBS achieves a balanced granularity: it identifies enough communities to capture
user interests and remove intruders, while avoiding excessive fragmentation that hinders interpretability.
By leveraging service information, each community is semantically characterized by its dominant service
domain, making the structures both specialized and meaningful for real-world applications. Furthermore,
combining two or more services can reduce the number of communities while still producing coherent and
interpretable communities.

4.4.3 Comparison of the Communities Quality

To evaluate the effectiveness of community detection algorithms, several metrics can be employed
(modularity, normalized mutual information (NMI), conductance, coverage, density, silhouette score,
etc.) [3], each with its methodology, focus and limitations [14]. The most effective metric can vary depending
on the specific goals and context of the analysis. Community quality was assessed using three widely adopted
metrics: modularity, conductance, and coverage. As reported in Table 7, CDBS consistently outperforms the
four baseline algorithms for the eight tests. Regarding modularity, CDBS (0.52-0.74) and infomap (0.53-0.73)
achieve the highest values, demonstrating stronger intra-community cohesion than Louvain (0.52-0.70),
HAC (0.51-0.67) and Label Propagation (0.48-0.58). For conductance, CDBS records the lowest values (0.21-
0.13), which indicates well-separated communities; in contrast, HAC and LP present the highest conductance
(>0.24), reflecting weaker separation. In terms of coverage, CDBS again achieves the best results (0.61-
0.77), retaining more intra-community connections compared to Louvain (0.58-0.71), HAC (0.56-0.67), LP
(0.54-0.62), and Infomap (0.60-0.76). The Infomap algorithm performs well, but slightly lags behind CDBS.
This analysis suggests that for applications that require strong, meaningful and well-structured community
detection in large networks, CDBS method would be the preferred choice. The quality of CDBS is further
highlighted by an additional key aspect: its ability to reinforce community orientation. By positioning the
web service as the central node within each community, CDBS ensures that the service is not merely treated
as another element in the network, but as a highly relevant reference point for identifying leading members.
These leaders are the users whose profiles show the greatest similarity to the community’s service, making
them both representative and influential within their groups.

To validate the robustness of the modularity improvements, two statistical significance tests were
performed on the modularity values over 10 independent runs. The Student’s t-test indicated that the
improvements of CDBS over Louvain (p = 0.012), HAC (p = 0.004), Label Propagation (p = 0.009), and
Infomap (p = 0.021) are statistically significant (p < 0.05). The Wilcoxon signed-rank test produced con-
sistent results, with p = 0.018 (Louvain), p = 0.007 (HAC), p = 0.014 (Label Propagation), and p = 0.028
(Infomap). These results confirm that CDBS achieves statistically significant modularity gains over the
baseline algorithms.



Comput Mater Contin. 2026;86(3):39 19

4.5 Ablation Study

To assess the contribution of individual components in the proposed CDBS framework, we conducted
an ablation study. Key modules were removed or replaced, and results were compared against the full model.

o  GSIP similarity: Replacing GSIP with standard measures (Cosine) reduced modularity by 12.16%,
confirming GSIP’s advantage in handling heterogeneous and semantic attributes.

« Filtering: Disabling multi-criteria filtering produced larger but noisy communities, with modularity
dropping by 10.81%.

«  Overlapping detection: Forcing users into single communities reduced modularity by 08.10%, though
runtime improved slightly.

o Attribute weights: Using equal weights instead of calibrated ones decreased modularity by 05.41%,
showing the importance of weighting.

Table 8 summarizes the results.

Table 8: Ablation study results on CDBS components

Variant tested Modularity Communities Runtime (ms) Notes
Full CDBS 0.74 143 9875 Best balance of performance and interpretability.
No GSIP (Cosine) 0.65 101 8420 Loses semantic and heterogeneous matching.
No filtering 0.66 85 9100 Larger but less coherent communities.
No overlap 0.68 92 8650 Faster but unrealistic memberships.
Equal weights 0.70 120 9550 Lower stability, reduced modularity.

Overall, all four components (GSIP, filtering, overlap, weighting) are critical, and the full CDBS system
achieves the best results.

5 Conclusion

This work introduced community discovery in complex networks through a novel service-driven
discovery framework CDBS, that goes beyond topology-only methods by jointly leveraging heterogeneous
user-service attributes, a novel GSIP similarity that handles all type of attributes, with semantic text
matching, and multi-criteria filtering to produce interpretable, domain-anchored communities. Compared
with four community detection algorithms, CDBS achieved superior community quality, yielding a 3.26%
improvement over the strongest baseline, and maintained fast large-scale runtimes of just 9.8 s on networks of
10,000 users and 400 services, demonstrating both efficiency and scalability. CDBS surpasses topology-only
methods by linking communities to service engagement, yielding finer-grained community structure with
clearer thematic orientation, demonstrating both scalability and precision while enhancing interpretability.
Nonetheless, challenges remain with parameter sensitivity, which can affect stability if not carefully tuned.
Our study highlighted the critical role of calibrated weights and multi-criteria filtering, suggesting that
future work should develop data-driven and adaptive tuning mechanisms to enhance robustness across
heterogeneous datasets. Furthermore, service-based community discovery suffers from a scarcity of publicly
available datasets and this lack of real-world benchmarks continues to limit external validation and general-
izability. Addressing this gap requires building large-scale, service-oriented datasets from real platforms such
as Facebook, LinkedIn, and e-learning systems. Such resources would enable rigorous validation, support
real-world applications including targeted marketing, access control, and e-learning communities, and drive
advances in refined filtering, predictive discovery, and personalized recommendations.
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