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ABSTRACT: With the recent increase in data volume and diversity, traditional text representation techniques are
struggling to capture context, particularly in environments with sparse data. To address these challenges, this study
proposes a new model, the Masked Joint Representation Model (MJRM). MJRM approximates the original hypothesis
by leveraging multiple elements in a limited context. It dynamically adapts to changes in characteristics based on data
distribution through three main components. First, masking-based representation learning, termed selective dynamic
masking, integrates topic modeling and sentiment clustering to generate and train multiple instances across different
data subsets, whose predictions are then aggregated with optimized weights. This design alleviates sparsity, suppresses
noise, and preserves contextual structures. Second, regularization-based improvements are applied. Third, techniques
for addressing sparse data are used to perform final inference. As a result, MJRM improves performance by up to 4%
compared to existing AI techniques. In our experiments, we analyzed the contribution of each factor, demonstrating
that masking, dynamic learning, and aggregating multiple instances complement each other to improve performance.
This demonstrates that a masking-based multi-learning strategy is effective for context-aware sparse text classification,
and can be useful even in challenging situations such as data shortage or data distribution variations. We expect
that the approach can be extended to diverse fields such as sentiment analysis, spam filtering, and domain-specific
document classification.

KEYWORDS: Text classification; dynamic learning; contextual features; data sparsity; masking-based
representation

1 Introduction
As the complexity of data processing and analysis increases, effectively representing and classifying

text data in natural language processing (NLP) has gained significant prominence. However, existing
embedding techniques still face several limitations [1]. For instance, existing word embedding methods
quantify relationships between words within a sentence but struggle with contextual information. Data
sparsity also presents limitations in addressing this issue. For example, the same word can have different
meanings depending on the contextual structure of the sentence it relates to. Even with the same dictionary
set, meanings can vary depending on the context, making simple embedding techniques insufficient for
accurate adaptation. Therefore, learning methods are needed to minimize and preserve contextual infor-
mation loss, which impacts prediction accuracy [2,3]. To overcome these limitations, approaches that learn
relationships between different data sources are on the rise. They enable the representation of complex,
multi-relational connections between various types of data, making them more robust than existing single-
relational approaches. In healthcare data networks, to derive more meaningful information, models consider
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not only direct connections between reports but also various association paths, such as report-patient-
annotation. However, existing models fail to fully utilize these diverse relational paths. In this study, we
propose a novel embedding classification model that overcomes the dependency structure that causes
structural information loss and simultaneously mitigates data sparsity and contextual information loss [4].
Specifically, by integrating heterogeneous information, we capture contextual features and accurately analyze
the diverse semantic structures of text data. This can be seen in a movie recommendation system, where
the accuracy of recommendations can be significantly improved by considering direct interactions between
users and movies while simultaneously integrating diverse relational paths. This study has utilized this multi-
relational approach to apply it not only to recommendation systems but also to other applications such as
sentiment analysis and spam detection [5,6]. The goal of this research is to propose a more effective context-
based text analysis methodology within diverse data sets and to complement the limitations of existing
embedding techniques. This study defines three key contributions:

• We aim to collect rich relational path information in multi-relational structures without significant
information loss by employing dynamic weight learning to reflect the relative importance of each
connection, rather than treating all information uniformly.

• We strengthen representational power by differentially capturing the relative importance of each
connected element.

• We design a learning framework that preserves information even in data-scarce situations by incorpo-
rating masking and a dynamic learning structure to compensate for data sparsity and incompleteness.

2 Background and Related Research
Within the latest trends in information representation technology, research on information selection

and sentiment classification is ongoing. Previous studies have trained models on various datasets, including
COVID-19-related documents. Specifically, dynamic learning methods demonstrated superior performance
in terms of representation depth when using bagging methods with parameters set to a range of 2 to 4 [7].
The model proposed in this study demonstrated competitive performance, approximately 4% higher than
baseline models in key metrics such as accuracy and AUC, and particularly excelled in handling imbalanced
and small datasets. Various algorithms have been used for sentiment classification tasks, including Glove,
information gain, wrapper-based methods, and evolutionary algorithms. For example, a study utilizing
speeches on COVID-19 from the World Health Organization (WHO) and SST data yielded meaningful
results using these approaches. Specifically, a logistic regression model achieved an SST score of 0.845, an
improvement of approximately 0.08 over existing models, but still leaves room for improvement [8]. This
study improves this performance by introducing advanced deep learning techniques and a novel selective
window mechanism. Starting with information selection, sentiment classification becomes a key research
area in this study.

In education, AI-based sentiment classification has been actively applied to enhance student-teacher
interaction. For example, high performance has been achieved in classification tasks using datasets from
Coursera and MOOC platforms, with random forest models achieving up to 99.43% accuracy [9]. However,
machine learning models for sentiment classification require extensive parameter tuning and have limited
generalizability. To address these issues, this study proposes a novel ensemble learning component for
sentiment classification models. In the field of author verification, existing approaches have used the
POSNoise technique, which utilizes topic masking to mitigate bias issues [10]. While this method has shown
improvement over existing author verification techniques, it still faces challenges related to linguistic features
and temporal factors. Therefore, we sought to establish a more general feature extraction approach by
applying advanced machine learning techniques. For example, in the domain of Greek legal texts, high
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precision, recall, and F1 scores were achieved by combining heuristic rules, regular expression patterns, and
deep learning techniques [11]. However, while these approaches have shown excellent performance, they are
often limited to specific languages and domains.

IMO [12] introduced a masking technique in a single-source domain to remove false correlations at each
layer and learn domain-invariant features. While this approach performed well in various OOD scenarios, it
has limitations, requiring a large data source size of over 10,000 items. Furthermore, learning the mask layer
results in a static inference process, making it difficult to adapt to new distributional changes. Therefore,
this method is primarily limited to text classification and cannot properly handle dynamic integration of
multiple instances. In contrast, our MJRM improves adaptability through selective dynamic masking and a
multi-module architecture.

DCASAM in [13] proposed a combination of BERT, DBiLSTM, and DGCN for dependency analysis
and sentiment analysis. However, DCASAM’s specialization in polarity recognition limits its adaptability to
domain distributional changes. Our MJRM actively addresses review-level analysis and various distributional
changes through sparsity-based representation learning and selective dynamic masking. Research [14]
discussed the use of static machine learning models and semi-supervised learning (SSL) to address issues
related to data distribution changes. For example, it has been utilized in cybersecurity fields such as attack
detection. This study proposes a novel model called sparsity-based representation learning with selective
dynamic masking, which can adapt to various domains. This model addresses performance degradation in
sparse data environments and dynamic distribution changes in sentiment analysis.

Recent research [15] demonstrates that the super-class neural network language model LLM can
outperform Naive Bayes and LightGBM methods, such as naive, for preserving the energy of its original
members. For example, the Spam-T5 model, which leverages Flan-T5 to cluster data sparsity, improves
performance regardless of the shared context. This study draws on the concept of a generator in generative
adversarial networks (GANs), which aims to address the transformation of the underlying approach. While
the basic GAN generates fake data to directly generate training datasets, the core principle of the generator,
which generates new factor sets, is utilized to design a model that generates learning sets based on a limited
set of representational and topical information. This approach enhances the data sets and allocates the
data sparsity inherent in the underlying single-embedding population. Furthermore, the proposed model
demonstrates applicability to various text analysis, as well as to feature provision, through learning modules
that combine the same features as the underlying topical information. While structural associations maintain
data dependency, the proposed model implements a generative learning approach.

3 Motivation
Recent advances in neural network-based language models are remarkable. However, they often result in

poor performance on sparse and domain-specific datasets, especially in data-constrained environments. For
example, the internal workings of LLMs are not easily interpretable, limiting their applicability in applications
such as public health text analysis and security. This requires techniques that dynamically adapt to changing
distributions in resource-constrained environments and sparse and specialized datasets. For example, clinical
text analysis faces the challenge of small and imbalanced datasets, while security and spam detection tasks
require effective handling of biased distributions. To address these challenges, this study proposes the
Masked Joint Representation Model (MJRM). The proposed model features a multi-learning architecture
that integrates selective dynamic masking, attention, and regularization techniques. This model directly
combines emotional and topical elements to enhance representation learning in sparse data environments.
Furthermore, it dynamically scales by retraining multiple instances in parallel and aggregating results based
on weights as the data distribution changes.
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4 Proposed Method
This study proposes an extended theoretical framework that integrates sparsity-inducing approaches.

At its core, the proposed model features a dynamic learning capability that automatically adapts to changes
in the multi-modal distribution of input data within sentence vectors. To achieve this, masking and attention
mechanisms are interlinked, enabling the model to detect evolving data patterns and generate a more
accurate origin distribution. The learning process is structured into three stages: Learning A, Learning B,
and Learning C, each serving a distinct role in improving the model’s performance. Learning A handles the
initial masking and representation learning of the input data. Learning B refines the learned representations
through regularization. Learning C optimizes the parameters for final classification. Additionally, the model
trains multiple instances of the Masked Joint Representation Model (MJRM) in parallel on different subsets of
the data and ensembles their prediction outputs dynamically. The weights (w1 , w2, . . . , wN) for each instance
are optimized through a separate procedure to minimize prediction errors, allowing the system to adapt to
new data patterns. Specifically, the original dataset is partitioned into multiple non-overlapping subsets; each
MJRM instance is trained independently. During testing, predictions from the N instances are aggregated
through a weighted average. When significant changes in data distribution are detected, the subsets are
dynamically restructured, and the instances are retrained, forming a feedback loop. The effectiveness of
the proposed multi-learning module is validated using diverse evaluation metrics, including F1 score, ROC
curve, and precision-recall curve, demonstrating that the model maintains strong generalization across
various types of textual data.

4.1 Masked Joint Representation Model (MJRM)
As illustrated in Fig. 1, the workflow of MJRM consists of three sequential stages: Learning A, Learning

B, and Learning C, which respectively handle masked representation learning, refinement with regular-
ization, and final classification. This part discusses an overview of the structure, key components, and
operational principles of the proposed Masked Joint Representation Model (MJRM). In addition, it discusses
the foundational models and methodologies that underpin this approach, the datasets used for validation,
and the characteristics of the employed learning algorithms.

Figure 1: The process begins with topic and sentiment analysis, continues through masking and embedding in Learning
A, representation refinement in Learning B, and concludes with class estimation in Learning C

First, the initial matrix O, representing the original data, serves as the input to the proposed MJRM
algorithm. Through the masking mechanism, portions of the data are selectively blocked, enabling the model
to autonomously identify and learn the most relevant information. The module responsible for handling
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the mask operates selectively based on the outcomes obtained during the optimization learning phase,
thereby capturing the varying significance of emotional and topical patterns across sentences and documents.
This process is reinforced through recursive learning, iteratively optimizing the model. The workflow is
broadly organized into three stages: Learning A, Learning B, and Learning C. To address the limitations of
conventional adversarial learning techniques—which often fail to capture the complex and dynamic context
of natural language—this study integrates a selective window mechanism with random distribution, further
combining topical and emotional information within the learning structure.

In particular, the proposed MJRM adopts a multi-instance structure, where the same input data is
partitioned into multiple subsets, and each subset is trained independently. The predictions learned from
these instances are then aggregated into a final output using a weighted average.

This structure reflects diverse perspectives within the data, mitigates overfitting by adapting to distribu-
tional changes, and strengthens generalization performance. Furthermore, the model is designed to adjust
weights dynamically during training by integrating a dynamic feedback loop and convolution operations,
which respond to the error rates encountered during the learning process.

The operational flow of the model is detailed in the accompanying figures and experimental results,
which confirm that the proposed MJRM achieves strong performance across various text datasets.

In summary, the MJRM presented in this study contributes a novel text analysis framework that
dynamically reconstructs distributions based on emotional and topical information, thereby alleviating data
sparsity issues and minimizing contextual information loss. The key hyperparameters of our model are as
follows. The learning rate was fixed at 0.01 with a batch size of 64, and training proceeded for approximately
100 iterations. Regularization was controlled by λ, α, and β to balance reconstruction, convolutional stability,
and overfitting prevention. The mask ratio was set between 0.2 and 0.3 depending on the dataset, ensuring
that informative features were retained. The number of topics (nT) was set to 20 for large datasets and 10 for
small datasets, while the threshold (k) controlled the sparsity level in the selector function.

4.2 Information Transformation and Masking
Fig. 2 provides the structural framework of the proposed MJRM, showing how the masking, optimiza-

tion, and classification modules are integrated. It also presents the flow of information between components
and the role of the Generator for handling sparsity. The model proposed in this study demonstrates
several unique features that distinguish it from conventional neural network structures. While traditional
relation-based models are often limited to homogeneous information, our approach extends the concept of
dynamic representation generation to incorporate diverse types of neighboring matrices, thereby minimizing
information loss. In particular, the model integrates a GAN-like Generator structure, enabling it to flexibly
adapt to missing data and new patterns. This design allows for richer vector representations even in environ-
ments with data sparsity and partially missing information. A key feature is the masking technique, which
intentionally conceals portions of the input data to encourage the model to infer missing information and
learn critical features autonomously. This mechanism compensates for data incompleteness and contributes
to improved generalization performance.
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Figure 2: Overall architecture of the proposed masked joint representation model (MJRM)

The first stage of the learning process, Learning A, focuses on data transformation and masking. The
original data matrix A undergoes a random masking process, introducing uncertainty by hiding certain
data points. This encourages the model to learn essential features on its own. This process is mathematically
presented as follows:

LA = E(x , y)∼Pdata [∥Rmn − h∼ (EF)∥2 + λ ⋅Mask (EF)] (1)

The expected loss LA controls both the reconstruction quality and the effect of masking.
R(m, n) is the learned representation at step (m, n), h~(EF) the reconstruction from masked input EF ,

and λ (lambda) the regularization weight. The first term minimizes reconstruction error to preserve semantic
consistency, while the second prevents excessive masking.

Minimizing LA thus ensures that the learned representation converges toward the data manifold while
maintaining robustness to incomplete inputs. It guarantees that, as the number of iterations increases,
the masked representation gradually aligns with the underlying data distribution. This ensures that the
optimization process converges appropriately to the dataset.

The mask and learner selection function is formulated as:

OSelector ∶EF → {0, 1}d (2)

This selector function maps the masked random distribution to a binary vector, enabling dynamic
feature selection during training. It is computed based on the masked topic matrix (TA), data matrix (DA),
and sentiment matrix (SA). This operation also induces sparsity by retaining only informative features and
addressing data sparsity.

Through Selectorm, only the most informative features from TA
′, D′, and SA

′ are propagated to
subsequent stages. This removes noisy components, allowing the learned representation to converge to a
sparse but semantically rich subspace.

In the second stage, Learning B, the outputs from Learning A are further transformed through a series
of convolutional layers and fully connected layers. L1 and L2 regularization techniques are applied in this
stage to prevent overfitting.

Here, RB represents the output of the Learning B stage. α and β are learnable parameters. Conv(O)
denotes the convolution operation applied to the output O from Learning A. L1 and L2 are the regularization
terms. Additionally, batch normalization is introduced at each layer to mitigate internal covariate shift and
stabilize training, and accelerate convergence.
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The next proceeds the loss function (L̃b) for the Learning B stage. Here, ĥ(R)∗ is a hypothesis function
that takes the optimized and transformed representation R* as input and predicts the target y. This function
calculates the difference between the predicted value ĥ(R)∗ and the actual target y, guiding the adjustment
of the learnable parameters α and β defined in the preceding Eq. (2).

E denotes the original embedding vector before being fed into the network, which combines sentiment
(SA), topic (TA), and other features (Dx). EF refers to the vectorized version of the masked random
distribution that is loaded during the operational phase, while EA represents the transition from O.

As a result of Learning A, the representations generated by the nth Generator and those passed through
the Selector during optimization learning are computed. These are calculated using Mean Square Error
(MSE) and Alternating Least Squares (ALS) and are then passed to the convolution operation for subsequent
stages of learning.

The final stage, Learning C, aims to optimize the parameters hθ for the representations R and class labels
Yc using an inference mechanism. Once the optimal feature representation is obtained, the estimator L is
triggered to start learning θ, iterating up to 100 times to compute and identify the optimal class.

In this stage, representation learning is performed as close as possible to the original data O,
approximating the extracted probability distribution to a normal distribution and dynamically adjusting to
match various target data distributions. Inspired by the Generator structure of GANs by [16], our model
approximates the target distribution P(x)* through the following estimation:

G(z; θ) ≈ P∗(x), θ = arg min
θ

L(G(z; θ), P∗(x)) (3)

This objective ensures that partially masked inputs are mapped to a stable and learnable distribution,
allowing the Generator to capture missing semantic contexts and adapt to incomplete inputs. This objective
function minimizes the divergence between the derived distribution G(z; θ) and the true target distribution
P*(x). By doing so, the model aligns generated features with the original data manifold, enabling the model to
better handle distributional variations and address difficulties under sparse and incomplete inputs. Moreover,
this masking-driven mechanism explicitly transitions from a partially masked random distribution to a
learnable target distribution through the Generator structure.

In this stage, classes are then classified through iterative training using the mean square error loss
function. During the convolution operations, matrices within the set A actively participate in training
through randomly initialized distributions. During the convolution stage, the model integrates masked
embeddings with generator outputs and original matrices to enrich representation learning:

Conv i = {
E
′

F (T , S , D) ⊕ Generator i
RA (T ′, S′, D′) ⊕ EA (O′)

(4)

4.3 Dynamic Learning with Masking Techniques
The MJRM incorporates a multi-learning procedure combining topic and emotion clustering on the

original dataset. This research examines the applicability of topic modeling across various domains and
confirms that LDA-based topic modeling has been widely used for information retrieval, social media
analysis, and more. When the raw data is fed into the model, major topics are extracted using the following
method [17].

p (D ∣ α, β) =
M
∏
d=1
∫ p (θd ∣ α)

⎛
⎝

Nd

∏
n=1
∑
zdn

p (zdn ∣ θd) p (wdn ∣ zdn , β)
⎞
⎠

dθd (5)
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This represents the generative process for topic extraction, forming the basis for the subsequent masking
mechanism. This approach helps to understand reactions and conversations in online communities through
social media analytics, extracting meaningful patterns and valuable insights from user interactions. For
example, in the case of malicious spam documents, supervised learning is employed to maintain semantic
consistency across the dataset. The data analysis module k performs basic statistical analyses, while the
Sentiment A module carries out emotion clustering in conjunction with the original data, forming unsu-
pervised learning clusters defined as Sa = E(a) = {Sw1, Sw2, Sw3, . . . , Swn} [18]. Emotion clustering detects
details, which are important for accurately inferring the sentiment of a review.

These clusters capture diverse emotional patterns and characteristics within the data, grouping
sentiment-influencing terms into similar classes and vectorizing them accordingly.

This study empirically demonstrates that the interaction between topic modeling and emotion analysis
can help mitigate data missingness and sparsity issues, leading to performance improvements in various
classification tasks.

The proposed methodology employs a partial masking technique on the analyzed topic, data, and senti-
ment matrices. During this process, two types of learning selectors are utilized. The first selector, Mj(h, L(w)),
dynamically determines the scope and method of masking application, referencing the hyperparameter (h)
and weight information L(w) to minimize the impact of outliers in the data distribution.

This selector is integrated into the Learning A stage and the optimization module, supporting the appro-
priate application of masking. For vectorization, random distributions are generated for both the original
and masked Topic A, Sentiment A, and Data A matrices. During training, loss values are calculated, and
the final generative model (Generator1) is derived through n iterations. After Learning A and optimization,
the mask is strategically combined with selector information and reflected in the training loss and mask
embedding positions.

This optimizes representations by employing a mapping h ∶= h′. It initializes parameters such as
sentiment information (Sa), topic information (Ta), a threshold value (k), the number of topics (nT), the
decomposition order (r), and lexical categories like antonyms (a), synonyms (s), and neutrals (n). A Gaussian
distribution is used to enhance convergence speed. To stabilize the input layer and reduce the risk of
exploding gradients, batch normalization is applied.

During the optimization phase, the model flexibly utilizes algorithms such as stochastic gradient
descent, alternating squares, and mean square error, depending on the task’s requirements and data
conditions. When handling high-dimensional but sparse datasets, dimensional decomposition is used to
reduce the dimensionality of the input matrix O, improving computational efficiency and reducing the risk
of information.

Conversely, when the focus is on deeply understanding the statistical properties of the transformed
features, distribution learning is applied to achieve more accurate regression results. The model typically
undergoes about 100 iterations, computing and optimizing the class representation. The default learning
rate is set at 0.01. During this phase, the representations are learned to remain as close as possible to the
original data matrix O, approximating the probability distribution to a normal probability distribution.
The transformed features are then used for the final classification task in the Learning C stage. The overall
procedure of the proposed MJRM is summarized in Algorithm 1.
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Algorithm 1: Masked joint representation model (MJRM)
Input: Original dataset X = {x1, x2, . . ., xn}
Initialize: Parameters {Sa, Ta, k, nT, r, a, s, n}
Preprocessing: Perform preprocessing step

for loop for m, n← 0 to k − 1 do:
WT ← Gibbs sampling using LDA and OA
WS ← Sentiment data analysis from OA
Dk ← Statistical information extraction
Generate TA

′, D′, SA
′

For each element in TA
′, D′, SA

′ do:
Compute thresholds and randomly assign

end foreach
Randomly generate distribution;
Embedding()n ← Output using Eq. (4)
Generationn ←Output using Learning A()
Distribution and optimization in Learning +m;
Selectorm ←Output using Eq. (2)
Loss calculation and combined computation
S′w1, S′w2, . . ., S′wn, T′w1, T′w2, . . ., T′wn;
Compute MSE loss
Apply random Maskj and update n;

end for
Refine representations with Conv layers,
L1/L2 regularization, and batch normalization
Aggregate predictions from multiple instances
Using weighted average
Generate final estimation

for c← 0 to l − 1 do:
Repeat until convergence;

Find hθ using Learning C();
Training and solving process;

end for
Output Final classification results

This method is designed to increase how clearly the model’s reasoning is explained. Better results are
obtained when compared to ML models such as logistic regression and k-nearest neighbors, as will be
demonstrated with quantitative metrics in the experimental section. The algorithm covers a comprehensive
workflow, from data preprocessing to final output, and consists of the following key phases:

In the initial stage, the algorithm iterates from m, n = 0 to k − 1, using Latent Dirichlet Allocation to
generate WT and performing sentiment data analysis from OA to produce WS. Statistical information is then
extracted into Dk. Next, thresholds for each element in TA

′, D′, and SA
′ are calculated and assigned randomly.

During the embedding and distribution phases, the algorithm uses the learning function A(), selectors, and
various equations to produce and optimize outputs. Finally, mean square error (MSE) is used to calculate
the loss, followed by the application of a mask for the random distribution and subsequent updates.
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5 Experiment and Results

5.1 Experimental Setup
We conducted experiments on three datasets: D1-popcorn, D2-spam, and D3-pubmed article datasets.

The D1-popcorn dataset consists of 50,000 IMDB movie reviews with equally distributed positive and
negative sentiment classes. It has also been widely explored in previous studies, serving as the basis for
baseline experiments, inspiration for model design [18], and comparative analyses with other review datasets
[19–22]. This is mainly used for natural language processing and sentiment analysis tasks. The D2-spam
dataset is obtained from the UCI Repository and includes approximately 5000 email messages. Spam
detection has been extensively studied with a variety of datasets, including those reported in [23–26]. This
dataset is often skewed, containing more non-spam emails than spam emails. The D3-pubmed article dataset
in database, studied in [19], contains a total of 331 articles, with two classes: ‘linked’ (272 articles) and
‘separated’ (60 articles). The ‘separated’ class represents articles not related to respiratory diseases, serving as
a distinction. Articles falling into this class make up approximately 22% of the total dataset.

Before supporting the data into the model, several preprocessing ways were made. For text data, we
applied standard text normalization techniques such as lowercasing, removal of special characters, and
stemming. Additionally, feature selection and extraction was made using term frequency-inverse document
frequency for all datasets.

The models were implemented using Python with TensorFlow and Keras. For classification, we
employed algorithms based on established methods for text classification such as a distribution learning for
base 1, a decomposition learning for base 2, and emotional nonlinear system for base 3. These algorithms
have been shown to be effective in similar tasks, as evidenced by their performance in recent studies. We
performed approximately 100 training iterations with a constant learning rate of 0.01. The learning rate was
set based on variables Sa, Ta, k, and nT, which represent emotions, topics, threshold values, and the number
of topics, respectively.

5.2 Comparison with Existing Work
We performed comparative evaluations against four baseline architectures inspired by prior stud-

ies [23–25]. Specifically, T-Base_O1, as proposed in them, adapted the subject model and performed a
decomposition-learning task and T-base_O2, which was based on the model proposed in [26], focused on
approximating the subject distribution task. Finally, E-base_O3, drawn from [19,27], employed weighted
decomposition learning for emotion clustering.

Table 1 summarizes the baseline models, their key features, reasons for selection, and the performance in
the experiments. MJRM is explicitly compared with baseline models in both architecture and performance.

Table 1: Comparative overview of baseline models (PM = Proposed Model)

Model Sort Features Selection Performance
Logistic regression

(LR)
Classical ML Linear classifier,

interpretable
Optimization with

linear decision rules
ACC 84%–85%

Naive Bayes (NB) Classical ML Probabilistic model,
feature independence

Masking-based
probabilistic

reconstruction

ACC~82% (D1,
D2)

Decision tree (DT) Classical ML Rule-based,
interpretable

Dynamic selector for
feature pruning

Lowest AUC

(Continued)
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Table 1 (continued)

Model Sort Features Selection Performance
Support vector

machine (SVM)
Classical ML Margin maximization PM’s distribution

alignment under
sparsity

High AUC (D2,
D3)

Gradient boosting
(GB)

Ensemble Iterative boosting of
weak learners

Optimization High recall

Random forest
(RF)

Ensemble Bagging of multiple
decision trees

PM’s multi-instance
aggregation

ACC > 90%
(D2)

CNN DL Local n-gram features Convolutional module
in Learning B stage

High (D1, D2)

BiLSTM DL Sequential
dependencies with

bidirection

Sparse sequences for
sentiment

Moderate (D3)

GRU & RNN DL Sequential models PM’s multi-learning Competitive
(D1, D2)

T-base_O1/O2,
E-base_O3

From prior
works

Specialized decompo-
sition/emotion

clustering

Multi-factor joint
representation

Best baseline
ACC~87%

While classical ML models such as LR, NB, and SVM rely on shallow decision rules, and deep
learning baselines like CNN and BiLSTM emphasize local and sequential features, MJRM uniquely integrates
masking, multi-instance learning, and generator-based representation alignment. This allows MJRM to
recover missing semantics under sparsity and achieve higher robustness than the baselines. The effectiveness
of the proposed model, when compared with these baselines, is presented in the following Figs. 3 and 4.

Our empirical analysis provides a comprehensive performance assessment of various models, including
the proposed model, across different datasets (D1, D2, D3). In addition to accuracy and the area under the
curve (AUC), we also calculated other metrics which are particularly important for evaluating models on
imbalanced datasets. In dataset D1, among the existing models, Base 1 achieved the best measurement with
an accuracy of 87.6%, followed by Base 2 with 87.3%. Base 3 lagged significantly, registering only a 50.5%
accuracy rate.

Our proposed model, PM, surpassed all baseline models, achieving an average accuracy of 90.4% and
an AUC of 0.95. In dataset D2, for this dataset, the accuracy rates were 97.8%, 98%, and 94.4% for Base
1, Base 2, and Base 3, respectively. The proposed PM model demonstrated comparable performance to the
best-performing existing models, recording an average accuracy of approximately 98%. The AUC for this
model was also the highest at 0.992. In dataset D3, despite the small dataset size, our PM model achieved an
accuracy of 87.3%, outperforming existing models. This effectiveness is attributed to our unique approach of
optimizing representation and estimators through multi-learning. Previous models were ranked in the order
of Base 2, Base 3, and Base 1, with improvements achieved through error function learning and multi-analysis.
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Figure 3: Comparative accuracy of the proposed model (PM) and established models

Figure 4: Comparison of metrics for different methods, including DT, LR, NB, ML, KNN, GB, SVM, and RF

In Fig. 4, using meticulously collected data, we comprehensively analyzed various machine learning
models and evaluated their performance based on AUC, precision, recall, F1 score, and the complex
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relationships between each model and these performance metrics. In the AUC domain, the SVM model
shows the highest AUC value, followed by the ML model. SVMs may have higher AUC values than other
models due to higher linear and non-linear separability in some datasets. Additionally, SVM classifies data
by maximizing margins. The DT model has the lowest AUC value. In terms of precision, the ML model
achieved the best precision, followed by the SVM model.

In terms of recall, the GB model achieved the highest recall, and then the ML model. The KNN model
has the lowest recall. In terms of F1 score, the ML model has the highest F1 score, with the SVM model
coming next. The DT model has the lowest F1 score. The F1 score is useful, especially when the percentage
of positive classes (spam) is low, such as spam detection. In conclusion, ML models are useful.

5.3 Dynamic Parameter Analysis
Fig. 3 presents accuracy trends under different dynamic parameters, including decomposition order,

and topic parameters. The model’s accuracy increased until it plateaued at approximately 98.2%, beyond
which no further improvement was observed. Overall performance indicates the PM consistently performs
well across all datasets, achieving the highest accuracy in D = 2 and D = 3, and competitive results in D
= 1. Regarding baseline models (B = 1, B = 2, B = 3), B = 1 and B = 2 perform well in D = 1 and D = 2
but fall short in D = 3. B = 3 shows significantly lower performance across all datasets, especially in D = 1.
Convolutional Neural Network (CNN) performs exceptionally well in D = 1 and D = 2 but struggles in D =
3. Bidirectional Long Short Term Memory (BiLSTM) shows moderate performance across all datasets, with
its weakest performance in D = 3. Recurrent Neural Network (RNN) performs well in D = 1 and D = 2 but
has room for improvement in D = 3. Gated Recurrent Unit (GRU) shows similar patterns, with competitive
performance in D = 1 and D = 2 but lesser performance in D = 3.

The proposed model is robust across different types of datasets, indicating its generalizability. For model
selection, if the task primarily focuses on D = 3, the proposed model is recommended. For D = 1 and D =
2, both PM and CNN could be considered depending on the specific requirements. The noticeable decline
in performance observed for certain models when applied to dataset D3 implies that this particular dataset
may present unique challenges, which appear to be effectively mitigated by the proposed model.

5.4 Ablation Study
As shown in Table 2, removing any single component leads to a noticeable drop in performance.

Without masking, the model’s ability to generalize degrades significantly, as evidenced by the lowest
accuracy 81.2% and highest loss 0.13. Disabling dynamic learning slightly improves performance compared
to masking alone but remains suboptimal. The multi-instance component contributes to robust ensemble
effects; removing it reduces performance moderately. In contrast, the full MJRM configuration consistently
achieves the highest scores across all metrics, confirming the complementary contributions of each module.
The final ablation scores are adjusted using a weighted average, prioritizing the PubMed dataset to better
reflect real-world performance in sparse and domain-specific contexts such as medical text analysis. This
mitigates the bias that would otherwise arise from the larger and more balanced spam dataset.
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Table 2: Impact of masking and multi-learning modules

Configuration Accuracy (%) AUC Macro F1 Loss
Masking 81.2 0.861 0.805 0.13
Dynamic learning 82.9 0.881 0.824 0.11
Multi-instance 83.4 0.887 0.826 0.1
MJRM 87.3 0.920 0.874 0.08

5.5 Discussions
On the D = 2 dataset, most models achieve an accuracy of 0.95 or better. The models of T-base_O1 and

T-base_O2 show high accuracy at D = 1 and D = 2, but the accuracy decreases at D = 3. The E-base_O3 model
shows low accuracy at D = 1, but increases at D = 2 and D = 3. CNN, BiLstm, RNN, and GRU generally
show stable performance and record high accuracy at D = 2. MJRM maintains high accuracy on all datasets
(D = 1, D = 2, D = 3). T-base_Cnn, T-base_Bilstm, T-base_Rnn, T-base_Gru: T-base models generally show
stable performance and record relatively high accuracy at D = 2. The models of E-base_Cnn, E-base_Bilstm,
E-base_Rnn, E-base_Gru show high accuracy at D = 1, but decrease at D = 2 and D = 3. Overall, the
performance of the models exceeds the inherent challenges of the dataset. Depending on (D), certain models
perform better on specific datasets.

MJRM shows stable performance in the most dynamic environments. The high accuracy and AUC
achieved by our model, particularly in datasets D1 and D2, demonstrate its robustness in text classification
tasks. The use of additional metrics like precision and recall corroborate its effectiveness. The proposed model
effectively transforms data and outperforms the baseline approach due to its multi-masking strategy.

This model has potential applications in diverse scenarios, such as automated sentiment analysis of
customer reviews, spam detection in email filters, and electronic text classification in the medical field.

Depending on the characteristics of the dataset, D1 is large and balanced, allowing distribution-and
decomposition-based baselines (Bases 1 and 2) to effectively detect general sentiment patterns. D3 is small
and domain-specific, resulting in sparse and imbalanced data. Despite this, MJRM demonstrates a clear
advantage by recovering missing meaning through masking and generative learning and adapting to limited
samples. For D2, which has highly biased features, MJRM achieves similar accuracy to the best baseline and
is more robust in AUC and F1.

6 Conclusion
In this study, we introduced a novel framework, the MJRM, which effectively integrates dynamically

multiple learning paradigms. Initially, we highlighted the model’s unique approach to text representation
by incorporating emotion and topic distributions. Following this, we discussed how this multi-learning
strategy addresses challenges related to data scarcity, offering a systematic mechanism for classifying and
embedding sparse textual information. This advantage manifests through the dynamic tuning of multiple
parameters, enhancing the model’s efficacy. Importantly, our empirical evaluation confirmed the model’s
robust performance across both large and small datasets. As a result, the MJRM model outperformed
traditional models by an approximate margin of 4% in classification tasks. Looking forward, the multi-task
capabilities of MJRM promise broad applicability in various computational challenges, a prospect we aim to
explore in future research. Overall, our work signifies a step forward in the field of text data representation
and classification.
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