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ABSTRACT: With the increasing complexity of logistics operations, traditional static vehicle routing models are no
longer sufficient. In practice, customer demands often arise dynamically, and multi-depot systems are commonly used
to improve efficiency. This paper first introduces a vehicle routing problem with the goal of minimizing operating costs
in a multi-depot environment with dynamic demand. New customers appear in the delivery process at any time and are
periodically optimized according to time slices. Then, we propose a scheduling system TS-DPU based on an improved
ant colony algorithm TS-ACO to solve this problem. The classical ant colony algorithm uses spatial distance to select
nodes, while TS-ACO considers the impact of both temporal and spatial distance on node selection. Meanwhile, we
adopt Cordeau’s Multi-Depot Vehicle Routing Problem with Time Windows (MDVRPTW) dataset to evaluate the
performance of our system. According to the experimental results, TS-ACO, which considers spatial and temporal
distance, is more effective than the classical ACO, which only considers spatial distance.

KEYWORDS: Dynamic vehicle routing; multiple depots; ant colony optimization; temporal-spatial distance; time slice

1 Introduction

Logistics is essential to connect trade and business activities worldwide with high efficiency in today’s
society. As the logistics industry moves towards intelligence, digitalization, and automation in the era of
booming technology, companies aim to establish an effective vehicle dispatching system to reduce operating
costs. In this context, the vehicle routing problem has gained significant attention as a crucial aspect of
logistics services. In the classical vehicle routing problem (VRP), a set of vehicles is dispatched from a
central depot to serve a predetermined group of customers. All information about the routing network
and the customer base is known in advance. As the logistics industry continues to evolve, numerous VRP
extensions have been proposed to address more practical constraints. These include the Capacitated VRP
(CVRP) [1,2], the VRP with Time Windows (VRPTW) [3,4], and Multi-Depot VRP (MDVRP) [5], all of
which are categorized as Static VRP (SVRP) [6].

According to [7], a dynamic path problem (DARP) was initially proposed for a single vehicle, in
which dynamic requests occur randomly between the start and end nodes. Psaraftis [8] proposed a periodic
optimization strategy for dynamic demands but only for small-scale data, and he summarized the dynamic
path problems and distinguished them from static path problems. Powell et al. [9] then classified methods
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for solving dynamic demand into two categories. The first category is a priori optimization, where dynamic
demand is fitted based on probabilistic methods before planning begins to create a distribution network
that meets future expectations. The second category is multi-stage optimization, in which the demand is
unpredictable and therefore requires a high dynamic processing capability to cope with unexpected demand.

However, due to the advancement of communication technology, customers can now provide their
demands to logistics companies at any time, leading to the constant submission of orders during the
distribution process. This dynamic customer demand, along with the constraints of the distribution process
caused by the real situation’s special circumstances, gives rise to a dynamic vehicle routing problem (DVRP).
The factors driving the dynamics are broadly classified into two categories [10]: dynamic customer demand
and dynamic environment. Savelsberg and Sol [11] proposed a dynamic routing of independent vehicles
method and a branch-and-price algorithm, which uses real data to simulate dynamic environments for
testing, effectively reducing operating costs. Gendreau et al. [12] proposed a parallel taboo search for solving
dynamic versions of courier service applications, which responds to and processes new customer demand as
soon as it is available. Kilby et al. [13] dividing each workday into time slots and inserting dynamic customer
demand into the appropriate location within each time slot. Montemanni et al. [14] introduced an ant colony-
based approach to handle dynamic customer demand by segmenting the workday into discrete time slices
and using a re-optimization method to solve the whole again. Potvin et al. [15] investigated a dynamic vehicle
routing and scheduling issue incorporating time window constraints and compared the advantages and
disadvantages between different scheduling strategies by considering a DVRP that combines two dynamic
variables: real-time customer requests and dynamic travel times. Azi et al. [16] proposed a heuristic approach
based on adaptive large neighborhood search to address vehicle routing scenarios involving multiple delivery
routes, where customer demands arise dynamically and require immediate response. de Armas and Melian-
Batists [17] introduced a metaheuristic based on variable neighborhood search to tackle dynamic vehicle
routing problems constrained by time windows, and it has been used by a Spanish company. Jia et al. [18]
designed a new scheduling system that combines the PSO algorithm with periodic optimization to address
the dynamic capacitated VRP (DCVRP), using a region partitioning approach to simplify the problem and
solving the subproblems in parallel. Xiang et al. [19] proposed an ant colony algorithm(ACO) based on
pairwise proximity learning, called PPL-ACO, for dealing with the DVRP considering the nodal relationships
during the cycle period in periodic optimization. Pan and Liu [20] propose GENM-A3C, a graph-POMDP-
DRL framework that yields near-optimal routes in milliseconds under dynamic, uncertain, and partially
observable conditions. Sze et al. [21] proposed a two-stage AVNS that embeds critical nodes to overcome
the traditional AVNS’s inability to handle dynamic accidents and impractical diversion constraints, thereby
significantly reducing DVRP delays. Demirbilek [22] introduced Multi-Planning with Acception/Rejection
Policy (MPA) and Multi-Planning with Mandatory Assignment Policy (MPM) for DVRP. Results show that
MPA outperforms under tighter time windows and high-demand settings, while MPM demonstrates robust
performance across broader conditions.

Up to now, most research on the DVRP assumes that service is carried out by a single depot
[19,23-25]. In practice, logistics networks typically rely on multiple depots to optimize operations. A multi-
depot structure enhances demand responsiveness and reduces costs by sharing resources across depots.
Therefore, single-depot VRP models are insufficient for addressing real-world logistics challenges [26].
By combining a multi-depot structure into the DVRP, vehicles can be pre-positioned near real-time
demand hotspots, thereby reducing response times at the same time, shared inventory and pooled fleets
across depots absorb demand surges and mitigate delay risks. In turn, reduced empty-running distances
translate into lower operating costs. Consequently, existing studies on DVRP are not effectively applicable in
current scenarios.
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In this paper, we first introduce a vehicle routing problem with time windows, which combines the
multi-depot environment and dynamic customer demand, named Multi-depot and Dynamic VRP with Time
Windows (MD-DVRP). Fig. 1 depicted a conception of this problem. At the outset of the day’s delivery task,
some accepted orders already exist (non-red circles), including those unfulfilled from the previous day and
those received the day before the delivery task began. As shown in Fig. 1a, by first making arrangements for
these known orders, the routes indicated by the arrows in the figure can satisfy all currently known demands,
where the dashed arrows represent routes already completed at the current moment. Over time, dynamic
orders (red circles) will continue to be received until the delivery time ends. As can be seen in Fig. 1b, the
green, blue, and purple circles represent the current completed orders, the current unfinished orders, and
the current vehicle locations, respectively. Fig. 1c presents the adjusted routes that satisfy dynamic orders.
The goal of the MD-DVRP is to dynamically adjust and optimize vehicle travel routes based on real-time
changes in various information, to achieve efficiency and economy in logistics distribution.

Depot 1 Depot 2 Depot 1 Depot 2
(a) Initial logistics network with known (b) Dynamic demands adding
demands
Depot 1 Depot 2

(c) Final logistics network with known
demands + dynamic demands

Figure 1: The conception of MD-DVRP

Based on the conception of MD-DVRP provided, it can be inferred that MD-DVRP has repeating
elements over time, such as customers and partial routes. Thus, we adopt the ACO algorithm because it
retains memory of what worked well before by the pheromone. It can use pheromones from previous time
slices to guide the route plan when new orders are received in a later time slice, whereas GA must re-initialize
its entire population and TS must completely reset its tabu list, so neither competitor can rapidly reuse prior
experience. Moreover, by constructing routes probabilistically edge-by-edge, ACO is able to insert newly
arrived customers in real time without disrupting the existing route backbone, while GA’s crossover and
mutation operators and TS’s neighborhood moves typically trigger large-scale route reconstructions that
markedly increase computational overhead. So ACO may make finding good delivery plans faster and easier.
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To solve MD-DVRP, we proposed a scheduling system, TS-DPU. It centers on a dynamic processing unit
and addresses the MD-DVRP in the following steps. Initially, it captures dynamic customer demands in real
time. To address dynamic customer demand, we first adopt a time-slicing strategy [13] by partitioning the
entire day into equal intervals. Subsequently, at the end of each time interval, our system obtains the positions
of all vehicles and the completed orders. Then, it combines incomplete orders with current vehicle locations
to form static problems for different depots. An improved ACO algorithm, named TS-ACO, is proposed to
optimize vehicle routes and assign the results to the corresponding vehicles for each static problem. Finally,
we conduct several simulations to evaluate our system. The results showed that our system achieved great
results. By flexibly converting dynamic problems into static ones and solving them efficiently, this system
effectively responds to dynamic distribution scenarios, enhancing the timeliness and adaptability of vehicle
routing optimization.

Our main contributions are summarized as follows.

(I)  We first introduce a vehicle routing problem with time windows, which combines the multi-depot
environment with dynamic customer demand, MD-DVRP. MD-DVRP can better match today’s
complex logistics than DVRP.

(2)  We propose a scheduling system, TS-DPU, which transforms our proposed MD-DVRP into several
static problems. TS-DPU uses proven techniques for low-cost, high-quality solutions.

(3) We propose an improved ACO algorithm with spatio-temporal distances, TS-ACO, and apply it to our
TS-DPU. It achieves better results in the MD-DVRP compared to the classical ACO algorithm.

The remainder of this paper is structured as follows. Section 2 provides a detailed description of the
proposed MD-DVRP, along with its corresponding mathematical formulation. Section 3 outlines the general
procedure and implementation of the scheduling system TS-DPU proposed in this study. Section 4 conducts
a parameter sensitivity analysis of the improved ACO algorithm, TS-ACO, using the Cordeau instance and
compares its performance against the classical ACO algorithm in 19 instances. Section 5 concludes the paper
by summarizing the key findings and contributions, and also discusses the limitations of the study.

2 Problem Definition and Mathematical Modeling
2.1 The Definition of MD-DVRP

The classical VRP is defined on an undirected graph G = (V,E), where the set of nodes V =
Vo, Vi, Va, ..., V,, includes a central depot Vj and customer nodes V; through V,,. TheedgesetE = i,j|i,je V
represents the connections between nodes, each associated with a spatial distance. Every customer node
i is assigned a demand g; and a soft delivery time window denoted by [ET;, LT;]. DVRP turns the static
undirected graph G into a dynamic undirected graph G' = (V*, E"), which means that when a customer
demand is suddenly submitted to the depot or modified, the undirected graph adds this customer node and
all the arcs with this customer node as the end node, and the undirected graph is changed.

MD-DVRP is an extension of the above unique depot V; into multiple depots D = { Dy, D5, ..., D, }, then
MD-DVRP is defined as a dynamic undirected graph G’ = (V*, E"), where V! = {D, V}, V3,..., V,}, E! =
{i,jli,j € V'}. Here in Fig. 2 as an example, the red customer nodes 15, 16, 17, 18 in Fig. 2b indicate the
new demand submitted to the depot from Fig. 2a in the current time slice. If the original route cannot be
modified, logistics enterprises need an additional vehicle to pick up the new route node for additional service.
In other words, Depot 1 and Depot 3 need to add one vehicle to serve the new customer nodes 15 and 16;
Depot 4 further needs two additional vehicles to serve the new customer nodes 17 and 18. This situation will
greatly increase the overall operating costs, as a vehicle to serve a single customer will also make the vehicle
utilization rate low.
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Figure 2: An example of MD-DVRP

Therefore, in order to improve vehicle utilization and reduce operating costs, it is a critical issue to
modify the original route to add new customer nodes to the original route. As shown in Fig. 2¢, adding
node 16 to the original route R = [D,,12,4, D, ], then R’ = [ D,,12, 4,16, D, ], and similarly adding customer
node 17 and customer node 18 to the corresponding routes to get brand new routes [D4,7,3,17, D4] and
[D4,14,18,9, Dy ], respectively, without Additional new routes can serve additional customers, which will
greatly improve the utilization of vehicles, effectively improve operational effectiveness of each depot, greatly
reduce operating cost and significantly improve the profit of the enterprise.

The symbols and parameter definitions employed throughout the paper are provided in Table 1.

Table 1: Parameter description

Parameters Definitions

Nis Number of time slices
D The set of depots

Cn/En All known customers/edges in the n-th

time slice
E" All known edges in the n-th time slice
v All known nodes within the n-th time
slice, V" = Du C".

CIE All known customers/edges in the n,;-th

time slice

(Continued)
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Table 1 (continued)

Parameters Definitions
E All known edges in the #,;-th time slice
v All known nodes in the n;,-th time slice,
V=DuC.
45 7dId Spatial/ Temporal/Temporal-Spatial
A A distance between node i and node j
4t Temporal distance between node i and
4 node j
Temporal-Spatial distance between node i
dl] .
and node j
K Set comprising all vehicles
Q Load-carrying limit of the vehicle
qi Delivery quantity of customer i
[ET;, LT;] Time window for node i

start_timelend_time

The start/end time of the delivery service

end_time Distribution service end time
v Travel speed, in km/h
tf/ tf Time of departure/arrival of node i
tf Time of arrival of node i
t; Service time required for customer i
tij Travel time between node i and node j
Penalty for arriving at a node before/after
Ce/ C] . .
the time window
. Penalty for arriving at a node after the
time window
CdlCfixed Fuel/Fixed cost per kilometer/vehicle
Cfixed Fixed cost per vehicle
Vehicle k drives from node i to node j in
o the n-th time slice. If xl’?j ¢ = L it means
ijk that there exists a path from i to node j.
Otherwise, x?jk =0.
Depot j provides service to customer i. If
Vi yij = 1 means that customer i is served by
ij

a vehicle that departs from Depot j.
Otherwise, yij = 0.

2.2 Mathematical Model

Eq. (1) represents the final solution to this problem, minimizing the total cost including fixed cost, time
window cost, and travel cost. Eq. (2) means that the vehicles used by each depot in all time slices should not
exceed the maximum available vehicles for each depot. Eq. (3) implies that the total demand allocated to
individual vehicles in all time slices should stay under the vehicle’s maximum load constraint. Eq. (4) ensures
that each customer is visited exactly once across all time slices and by only one vehicle. Eq. (5) restricts each
vehicle to having a single departure and return depot. Eq. (6) indicates that each customer’s demand must
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be served by a unique depot and cannot be split. Eq. (7) is used to eliminate subtour constraints. Eq. (8)
implies that all routes leave the repository and return to the repository no later than the final cut-off time
after serving all customer nodes. Eqs. (9) and (10) represent decision variables in the model.

Nis

min C= e Y. Y Y 5l

n=1ieD jeC keK

+cenZ >3 > Ky max {(ET; - t7),0}

=1ieV jeC keK

1)

Z Z Z Z xf’jk max{(t}‘ —LTj),O}

n=1ieV jeC keK

Nis

+Cd2 Z le]kd]

n=1i,jeV keK
s.t.
MNts
>0 DXk <IKl, VieD )
n=1 jeC keK
MNis
>0 L g < Q. VkeK (3)
n=1ieV jeC
Nits Nis
Z le]k ZZZ’CM—I VjEC (4)
n=1ieV keK n=1ieV keK

Z Eéxuk ZZZxﬂkq VkeK (5)
]G
=1

n=1ieD n=1ieC jeD
Yij = VjeC (6)
ieD
S Sl <ISI-1, VkeK, [S|=) S xly, VieD, VkeK (7)
n=1ie§ je§ n=1 jeC
T*ZZZ%%k*ZZth fk<Tp VkeK (8)
n=lieV jeV n=1ieV jeC
Nys
Yoxipe{0,1}, VieV,VjeV,VkeK and {ieD}n{jeD}=0 ©)
)’ij € {0,1}, Vie D, V] eC (10)

By integrating dynamic requirements, multi depots and more comprehensive cost-benefit analysis, MD-
DVRP solves the problems of vehicle scheduling and resource allocation between warehouses in the existing
MDVRP and the insufficient applicability of DVRP under the complex logistics challenges. Therefore, It helps
enterprises reduce logistics costs and improve economic benefits.

Consider any instance of the (single-depot) dynamic VRP (DVRP). Build an instance of MD-DVRP
by setting the number of depots to 1 and copying all other data and dynamic revelation events unchanged.
Any algorithm that solves MD-DVRP in polynomial time would therefore solve the original DVRP instance
in polynomial time. But DVRP is known to be NP-hard [27], so a polynomial-time solver would contradict
these results. Hence MD-DVRP is NP-hard.
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3 Proposed Scheduling System TS-DPU

Our system depicted in Fig. 3 is centered on the dynamic processing unit, which has the functions
of capturing dynamic customer demands, obtaining current distribution progress, creating static problems
and planning optimal routes. Whenever a dynamic requirement is submitted to the depot, the dynamic
processing unit will capture the dynamic order and save it to the unprocessed order set. Assign dynamic
orders to corresponding depots based on the principle of proximity. The dynamic processing unit provides
separate services for each depot. At each time slice end, the dynamic processing unit will obtain the positions
of all vehicles and completed orders. Then, the unplanned order set is combined with the current vehicle
location to form multiple new static vehicle routing problems based on different depots. Finally, to solve each
static problem to obtain the route of vehicles, the results are assigned to the corresponding vehicles.

Stepl (] E
[] dynamic processing unit o ®
dynamic l l l l >
demand Step5 vehicle path

Incomplete customer points l I l l

and vehicle locations
create | Step3
Step2 .
Step4 %

[[1]
[T

) TS-ACO
static problem

Figure 3: The architecture of TS-DPU

To further clarify the operation of the proposed TS-DPU system, a simple example is provided to
illustrate how a dynamic order flows through each stage shown in Fig. 3.

Step 1 (Dynamic demand reception). During each time slice, the dynamic processing unit continuously
receives new customer requests. For example, at t = 2.5 h, a new demand (C_new) arises near Depot A and
is stored in the unprocessed order set.

Step 2 (Status collection). At the end of the time slice (¢ = 3 h), the system gathers real-time information
on all vehicles and unserved customers. Suppose Vehicle 2 from Depot A has just completed a delivery and
is available for new tasks.

Step 3 (Static problem formulation). The dynamic processing unit integrates the new order, current
vehicle locations, and remaining customers to construct a new static MDVRP for the next time slice.

Step 4 (Static optimization). The TS-ACO algorithm solves each static subproblem to obtain optimized
routes. In this case, C_new is assigned to Vehicle 2 due to its spatial proximity and availability.

Step 5 (Route execution). The optimized routes are transmitted to vehicles for execution, and Vehicle 2
immediately proceeds to serve C_new.

This concise example demonstrates how TS-DPU dynamically transforms real-time information into
solvable static problems and maintains system responsiveness to emerging customer demands.
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The MILP formulation in the previous chapter addresses the static vehicle routing problem (VRP)
with time windows in a multi-depot environment. In this paper, the TS-DPU scheduling system adapts this
formulation by converting dynamic problems into a series of static subproblems at each time slice. When
new customer demands arrive, they are treated as new static instances, solved using the TS-ACO algorithm.
This approach allows us to maintain the MILP structure while efficiently incorporating dynamic demands
into the routing plan without disrupting existing routes.

3.1 Temporal-Spatial Distance

In this system, we use a combined distance, which is referred to as the temporal-spatial distance. The
details of the temporal-spatial distance are explained below.

As a critical component of the temporal-spatial distance, the temporal distance is calculated using the
method proposed by Fan et al. [28]. Suppose that there are two nodes i and j with time windows [ET;, LT;]
and [ETj, LT;j], and ET; < ET;. Then at some time t € [ET;, LT;] the time it takes for a vehicle arriving at
node i to arrive at node jis t + t; + d;;/v. Thus, the time ¢’ required to go from node i to node j lies between
the interval [ET; + t; + d;;/v,LT; + t; + d};/v], using [a, b] to represent the above interval. Fig. 4 presents
the relationship between the intervals [a, b] and [ETj, LT;].

a b
o L
ET; LT;
@ @
ET; LT;
@ @
ET; LT;
@ @
ET; LT;
@ @
ET; LT;
@ @

Figure 4: Example chart of interval distance

There are four cases of temporal distance between customer nodes:

«  When there is a duplicated part between [a, b] and [ETj, LT;], then it means that there is an overlapping
part between the moment when the vehicle arrives at node j and the time window of node j. Then the
temporal distance between the customer node i and the customer node j is defined as p;(t;; + t7).

«  Whena > LTj, this indicates that the vehicle’s arrival at node j from node i will be delayed. The temporal
distance between the customer node i and the customer node j is y,(a — LTj).

+  When b < ETj, this implies that the vehicle will arrive at node j from node i earlier than allowed. In this
situation, the temporal distance between the customer node i and the customer node jis u3(ET; - b).

«  When ET; < a < b < LT}, arrival at node j from node i takes place within the valid time window. Thus,
the temporal distance between the customer node i and the customer node jis (t;; + t}).
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Here, we define an equation to describe the above four cases in Eq. (11).

[/ll(tij-l‘tf) a<ETj<b or €l<LTj<b
Ur(a-LT;) LTj<a

dfj = (11)
t,'j+t’; ETj<a<b<LTj
The spatial distance is calculated using the classical Euclidean distance. That is, Eq. (12).
djj Z\/(xi—xj)2+()/i—)/j)2 (12)

Due to the difference between temporal and spatial distances in the representative meaning, they are
summed up as temporal distances after normalization, respectively. As shown in Eq. (13).

di.— min d},
d o 7 m,neC,m#n
ij = .
! max d!,- min d!,
m,neC,m#n m,neC,m#n
dij— min_d,, (13)
+/3 7 m,neC,m=n
max di, - min d$,
m,neC,m#n m,neC,m#n

a+p=1 1i,jeC

To illustrate the computation of the temporal distance in Eq. (11), consider two customers i and j. The
spatial distance between customers i and j is 6, the time distance t; jis constant at 1 hour for all cases, and the
service time at each node is #; = 1 h. The weighting factors for the temporal and spatial distances are a = 0.1
and f3 = 0.9, respectively. Furthermore, the parameters used for the temporal distance calculation are y; = 3,
pa2 =5, and p; = 1. For all customer j nodes, the time window is fixed at [10, 14]. The calculation results of
temporal-spatial distance are shown in Table 2.

Table 2: Temporal-spatial distance calculation for different cases

Case [ET;, ET;] Formula Result
a=ET;+2=9
b=LT;+2=11
ET;<a<LT; [7,9] : dij=6
J J dszﬂl(t1]+tf):3><(l+1):6 g
dij:0.1><6+0.9><6:6
Cl:ET,'+2=15
b=LT;+2=17
LT; 13,15 ! di;i=5.9
azid [ ] di;=p(a~LT;) =5x(15-14) =5 !
dij=01x5+09x6=5.9
a:ET,-+2:7
ET;>b [5,7] b=LT;+2=9 dij=55

di;=pus(ETj-b) =1x (10-9) =1
dij=01x1+0.9%x6=55

(Continued)
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Table 2 (continued)

Case [ET;, ET;] Formula Result
a=ET;+2=11
ETj<a<b< b=LT;+2=13
9,11 d;;=5.6
LT; [9,11] d,?].:t,-j+t§=1+1:2 1

di;j=01x2+09%x6=56

This example shows how overlapping and non-overlapping time windows yield different temporal
distance values. After normalization, these values are combined with spatial distance in Eq. (13) to obtain the
final temporal-spatial distance d;;.

3.2 TS-ACO

In Section 3.1, we explain the temporal-spatial distance, which takes into account the influence of the
time window and the spatial distance between nodes. Here, we propose an improved ACO algorithm, TS-
ACO. It utilizes the temporal-spatial distance to solve the proposed MD-DVRP.

3.2.1 The Proposed TS-ACO

In the classical ACO algorithm, the choice of the next visited node in the construction of the optimal
route is guided by the probability distribution over all feasible nodes. This probability distribution is solved
as shown in Eq. (14).

(7. \P
(”11) (’71]) jeq
> (i) (Min)?
piy =10 14)
0 otherwise

m;j denotes the pheromone generated during the construction of the optimal route by the ants, and
11i; denotes the visibility of the ants to all feasible nodes. Typically, 7;; and #;; use the inverse of the spatial
distance directly, as shown in Eqs. (15)-(17).

T[,'j: (1—p)7T,'j+pA7T,'j (15)
, if (i, j) € best solution
AT[Z']' = Rbest (16)
0, otherwise
1
Nij = =+ (17)
dfj

where p is the rate of evaporation of pheromones, and Ry, is the best routes in this iteration.

However, MD-DVRP involves the time window cost of customers, so it is insufficient to consider only
the spatial distance to the selection of feasible nodes. Therefore, we use the temporal-spatial distance to
represent the relationship between the two nodes, so that the algorithm can comprehensively consider how to
reduce operating cost while meeting customer needs on time when planning routes. A detailed pseudocode
can be found in Algorithm 1.
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Algorithm 1: The improved ACO, TS-ACO

Require: N,,,,: Maximum number of iterations. m: Number of ants. R"~: Travel route of the previous time

slice. V": All known customer nodes for the current time slice. 77"~': Pheromone matrix of the previous
time slice.
Ensure: R": The best route for the current time slice. /*Initialize the pheromone matrix.*/
7 = Pheromone initialization(n" ')
/*Get the current position of the vehicle*/
fori=1- length(R"™') do
L < Get Local(R"™)
end for
/*Building temporal-spatial distance*/
fori=1-length(V") do
for j=1- length(V") do
d; < Calculate~Euclidean~distance(i,j)
di s Calculate~time~window~distance(i,j)
dj;j « Calculate~distance(d;, dfj)
end for
end for
/*Constructing the optimal route*/
fori=1-> N, do
R < Constructe~the~solution(m, d, L, V")
F <« Calculate~the~cost(Ry)
Ryest < Optimal~route(R,F)
7 < Pheromone Update(Ry, R, F)
end for
return Ry,

The differences between TSACO and ACO are shown in Table 3.

Table 3: Comparison between Classic ACO and TS-ACO

Feature Classic ACO TS-ACO
Path construction based on Builds upon Classic ACO by
probabilistic selection using integrating temporal-spatial distance,

Computation steps
P P spatial distance and pheromone  considering both time windows and

levels. spatial distances.
Pheromone update incorporates
Pheromone update is based on temporal-spatial distance, reflecting
Pheromone update 1o . . .
spatial distance. both time window constraints and

spatial distances.

L Node selection includes both spatial
Node selection is based on . :
. o distance and the overlap of time
Node selection spatial distance and pheromone . R
e windows to ensure no violation of

probability distribution. . ]
time constraints.

(Continued)
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Table 3 (continued)

Feature Classic ACO TS-ACO
. Relatively low, mainly Similar to Classic ACO, with minimal
Computational o . .
. dependent on spatial distance additional complexity due to the
complexity . 1 1. .
calculations. temporal-spatial distance calculation.
. . . Suitable for dynamic vehicle routing
Optimizes vehicle routes in . .
_ . problems, effectively optimizing routes
Expected terms of spatial proximity, . . _
. . under time window constraints and
performance suitable for static problems

Application scenarios

Optimization effect

without time windows.

Primarily used for standard
vehicle routing problems
without time windows.

Minimizes vehicle travel
distance.

spatial requirements, minimizing
penalties for early or late arrivals.
Specifically designed for dynamic
vehicle routing problems with time
windows, demonstrating superior
performance in multi-depot and
dynamic demand scenarios.

In addition to minimizing travel
distance, TS-ACO reduces penalties
for early or late arrivals, improving the
timeliness and overall cost efficiency.

3.2.2 The Time Complexity of TS-ACO

A. Single Dynamic Stage.

Ateach stage n € {1,..., ny}, a new instance of the TSACO solver is executed. The computational work

at this stage comprises two main parts:

1.

Initialization: The solver initializes based on the current state of the system. This involves constructing
the spatiotemporal and heuristic information matrices for all V,, known nodes. The complexity of this
step is determined by the pairwise calculations between all nodes.

o(Vy) (18)

Iterative Solving: The core Ant Colony Optimization process runs for NC,,,, iterations to generate
routes for the C, unassigned customers. Within each iteration, the most computationally intensive
task is the solution construction for all m ants, which has a quadratic relationship with the number of
customers to be routed.

O(NCpax -m-C2) (19)

B. Total Dynamic Stages.

The total computational complexity for the entire dynamic simulation is the sum of the complexities

from each individual planning stage.

Total Complexity = Y O(V,} + NCyayx - m - C;.)

(20)

n=1
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We can approximate the overall complexity as:
O(”st : Ncmax m- Ctzotal (21)

4 Experiment

In this section, we compare the evaluation results of TS-ACO, which considers both temporal and
spatial distances, with that of the classical ACO, which only considers spatial distance. The experiments are
implemented in Pycharm2025.1 and executed on a Windows 11 platform, equipped with an Intel Core i5-
14400 (2.50 GHz) and 32 GB RAM. The algorithm was evaluated using the following parameter settings:
p1 =3, g2 =5, pu3 =10, v =80, ¢, =50, ¢; =100, ¢4 =20, and Cfixed = 300.

4.1 Dataset

As there was no available dataset for the problem addressed in this paper, we modified the instances
proposed by Cordeau et al. [29] to obtain the dataset needed for our study. Specifically, assuming that n, = 5,
we divided the first half of the instance into initially known customers in Table 4 and then equally divided
the second half into four datasets of dynamic customers in Tables 5-8. The time window of each customer
was generated randomly from the interval [8,16], with a fixed random seed 42 to ensure the reproducibility
of the experiment.

Table 4: Initial known customers (prl)

Node X y Service Demand ET LT
1 4.352 14.685 0.3300 11 11.5 13.0
2 -29.730 64.136 0.4900 12 10.0 13.0
3 5.243 22.260 0.5000 13 11.5 12.0
4 —40.942 83.209 0.0027 16 12.5 15.5
5 11.877 —-24.933 0.0110 22 12.5 16.0
6 1.294 7349 0.3500 14 12.5 13.0
7 —41.376 50.824 0.1100 25 11.5 13.5
8 ~76.672 99.341 0.0640 9 10.0 13.0
9 -18.927 -23.730 0.0220 24 8.0 16.5
10 23.029 11.639 0.1700 18 11.0 14.0
1 -30.664 5.463 0.2300 8 11.0 16.0
12 42.883 -2.966 0.3500 10 9.5 14.5
13 18.597 96.716 0.2600 3 12.0 16.5
14 —42.615 —-26.392 0.4000 6 9.0 16.0
15 16.229 9.320 0.3000 22 8.5 13.5
16 —46.545 97.974 0.1300 19 8.5 12.0
17 51.642 5.469 0.4600 16 11.0 12.5
18 -38.562 -3.705 0.3800 13 11.0 12.0
19 -35.297 —-24.896 0.3100 19 10.0 11.0
20 —-22.833 -9.814 0.0650 13 12.0 14.5
21 —26.404 29.529 0.2600 10 8.0 16.0
22 —49.329 33.374 0.4100 6 11.5 13.0
23 -16.779 19.537 0.0130 10 8.0 11.5
24 12.268 —55.811 0.0340 19 8.5 10.5
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Table 5: Dynamic customers in the first time slice (prl)

Node X y Service Demand ET LT
1 12.268 -55.811 0.0340 19 8.5 10.5
2 48.907 6.274 0.4500 5 10.0 15.5
3 -91.943 27.588 0.1700 5 8.0 14.0
4 -37.933 -21.613 0.0250 21 8.5 11.5
5 —-65.002 77.234 0.3600 20 10.5 15.0
6 —-65.118 30.212 0.4800 17 8.0 14.0

Table 6: Dynamic customers in the second time slice (prl)

Node X y Service Demand ET LT
1 —-22.754 55.408 0.2200 9 10.5 11.0
2 —54.755 14.368 0.0035 14 12.0 14.5
3 -71.100 -18.616 0.0100 15 12.5 14.5
4 25.482 6.287 0.1600 7 10.5 15.5
5 -11.560 11.615 0.0840 16 8.5 16.5
6 —-67.413 68.323 0.1000 12 11.0 13.5

Table 7: Dynamic customers in the third time slice (prl)

Node X y Service Demand ET LT
1 -11.920 11.755 0.1900 3 11.0 16.5
2 —56.622 73.340 0.2400 20 11.0 15.5
3 -52.039 6.567 0.3700 4 9.5 14.0
4 57.404 23.822 0.3000 16 12.0 15.5
5 23.767 29.083 0.3200 21 12.5 15.5
6 -20.673 57.892 0.4300 9 10.0 12.5

Table 8: Dynamic customers in the fourth time slice (prl)

Node X y Service Demand ET LT
1 -37756  —=33.325 0.3800 25 11.5 16.0
2 —-43.030 20.453 0.2600 14 8.0 9.0
3 29.840 11.633 0.4800 25 10.5 13.0
4 -50.665  -23.126 0.4700 15 10.0 11.0
5 —7.849 32.074 0.0029 8 8.5 14.0
6 —-4.175 -1.569 0.2300 13 11.5 14.0

4.2 Parameter Sensitivity Analysis

15

For an ACO algorithm, the colony size and the iteration count are two very important parameters.
Here, we make a parameter sensitivity analysis to find the best combination of them shown in Fig. 5. The
parameter ranges used in this analysis were selected with reference to previous studies on ACO parameter
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tuning [30], ensuring that the experimental settings are consistent with established practices in the literature.
According to Fig. 5, it is obvious that when the iteration number and the number of ant colonies are 150 and
60, respectively, the solution cost is the lowest.

794
792

790

788

Fitness

780

778

776 L . 1 . 1 . 1 . 1 . 1 . 1 . 1
60 80 100 120 140 160 180 200

NC max
Figure 5: Fitness under different iteration times and ant colony number combinations

Under NC,,,, =150, m = 60, pheromone evaporation rate is equal to 0.7, heuristic factor is equal to 2.2,
pheromone factor is equal to 1.4. We then to find the best «. The results are shown in Fig. 6. Note that « = 0
means that spatial distance is only considered. As can be seen in Fig. 6a, in terms of average fitness, when «
is equal to 0.1 and S is equal to 0.9, the solution effect is optimal. Although the results obtained with different
values of & are very similar and in terms of the minimum fitness value, the result obtained by & = 0.3 is better
than « = 0.1. It is easy to find that considering the temporal distance is significantly better than considering
only the spatial distance. Moreover, The optimal values of & and f reflects the fact that in many dynamic
logistics scenarios, especially those with multiple depots and time windows, spatial distances typically play a
more dominant role in determining optimal routes. The time component, while important, is generally less
critical when the logistics network is relatively stable, and the customer demand is spread across a broader
area, making spatial factors more influential in the overall solution quality.

Similarly, under the above parameter settings, we also conducted a sensitivity analysis on the y;, y, and
Us.

As shown in Table 9, the combination (y; = 3, 4 =5, y3 =1) achieves the lowest average cost (32,856.65)
among all tested configurations. It also yields the smallest minimum cost (29,970.17), indicating that this
parameter setting provides the most cost-efficient performance in the spatio—temporal distance calculation.
Therefore, (3,5,1) can be regarded as the optimal configuration for minimizing the overall routing cost.
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Figure 6: Fitness of 150 iterations under different «

Table 9: Cost Analysis for Different y;, y», 43 Combinations

Combination

Minimum cost

Average cost Maximum cost

(M =2,u=3us=1)
(M1=2,42=3,43=2)
(p1=2,p42=5,p3=1)
(1 =2, 2 =5, y3 =2)
(=3 p=3,y3=1)
(=3, 42 =3, u3=2)
(=3 p2=5p;=1)
(U1=3, 42 =5, 43 =2)

31,731.9960
30,937.4593
31,792.8099
30,422.3212
31,243.0371
30,507.4774
29,970.1679
30,835.9040

34,167.3788 38,701.9194
33,417.9629 36,243.5240
33,668.7954 35,956.8726
33,787.5412 36,343.0589
33,717.0119 35,934.4687
33,129.4381 35,591.9067
32,856.6465 36,056.2564
33,394.3635 36,890.4576

17
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4.3 Further Experiments

To further evaluate the performance of TS-ACO, additional 18 instances (pr2-prl9) from Cordeau
et al. [29] were adapted, and comparative experiments were carried out. As illustrated in Fig. 7, TS-ACO
demonstrates notable improvements over classical ACO in instances prl-pr4, pr7-prl5, while performing
close in the remaining instances. Specifically, instances pr5, pr6, prl6 and prl9 involve a relatively large
number of customers. In contrast, although pr17 and pr18 contain fewer customers, they include more depots.
The results demonstrate that TS-ACO performs better in reducing operating costs in scenarios with moderate
data set sizes and depot quantities.

TS-ACO vs ACO Average Performance

TS-ACO
160000 - ACO

140000 -

120000 4

100000 4

Average Value

80000 -

60000 -

40000 -

&

o A
SR

o o
& & &

>y O D N> O
&L FFTETES

< & 4
Problem Instances (prl-prl9)

Figure 7: The average operating cost of ACO and TS-ACO

In addition, a Wilcoxon signed-rank test was performed between TS-ACO and classical ACO to
statistically assess the significance of the observed performance differences. As shown in Table 10, TS-ACO
achieves statistically significant improvements over classical ACO in prll, prl3, and prl5, with p-values of
0.0215, 0.0049, and 0.0094, respectively—all below the 0.05 significance level. In prl6, the p-value reaches
0.0897, which is close to the threshold, indicating a marginal yet consistent advantage of TS-ACO. These
results suggest that TS-ACO delivers significantly better performance in several instances and maintains
generally superior or comparable outcomes across the remaining datasets. Overall, TS-ACO achieves a
favorable balance between solution quality and computational efficiency, demonstrating both effectiveness
and practicality for dynamic routing scenarios.

Moreover, a comprehensive comparison was conducted among classical ACO, PSO [31], VNS [32],
TSACS [30], and TS-ACO.
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Table 10: p-value analysis for different instances

Instances p-value Instances p-value
prl 0.3118 pril 0.0215
pr2 0.2774 pri2 0.8408
pr3 0.6215 prl3 0.0049
pr4 0.2943 prl4 0.5459
pr5 0.5459 prl5 0.0094
proé 0.2943 prlé 0.0897
pr7 0.7841 prl7 0.5217
pr8 0.8695 prl8 0.6477
pr9 0.8408 prl9 0.8983
prl0 0.9854

19

As shown in Tables 11 and 12, although PSO and VNS achieve slightly better solution quality than TS-
ACO, their computational times are significantly longer. As the number of customers increases, their runtime

grows rapidly—reaching several times that of TS-ACO. PSO is somewhat faster than VNS but still far from

meeting real-time requirements. In contrast, TSACS exhibits high computational efficiency but produces
inferior solutions compared with TS-ACO.

Table 11: Performance comparison of algorithms on different datasets

Dataset Algorithm Min cost Avg cost Max cost Avg time (s)
ACO 2.9900E + 04 3.4043E + 04 3.5969E + 04 1.0935E + 02

prl PSO 2.4554E + 04 2.6307E + 04 2.8366E + 04 3.8479E + 02
VNS 2.4803E + 04 2.5358E + 04 2.6162E + 04 1.0582E + 03

TSACS 6.5296E + 04 6.7765E + 04 7.1901E + 04 4.9536E + 00

TSACO 3.1288E + 04 3.4051E + 04 3.5707E + 04 1.1707E + 02

ACO 5.9245E + 04 6.3456E + 04 6.8077E + 04 4.3362E + 02

pr2 PSO 4.4041E + 04 4.6367E + 04 4.9371E + 04 1.4250E + 03
VNS 3.8343E + 04 3.9055E + 04 3.9842E + 04 8.9880E + 03

TSACS 1.3011E + 05 1.3681E + 05 1.4388E + 05 1.0246E + 01

TSACO 6.0374E + 04 6.3449E + 04 6.9126E + 04 4.6374E + 02

ACO 9.4648E + 04 1.0104E + 05 1.0475E + 05 9.5437E + 02

pr3 PSO 6.6094E + 04 6.9274E + 04 7.4845E + 04 3.2527E + 03
VNS 5.5907E + 04 5.6699E + 04 5.7479E + 04 1.0005E + 04

TSACS 2.5131E + 05 2.6567E + 05 2.7843E + 05 1.6769E + 01

TSACO 9.6807E + 04 1.0155E + 05 1.0754E + 05 1.0298E + 03

ACO 1.2256E + 05 1.2925E + 05 1.3268E + 05 1.6769E + 03

prd PSO 8.3578E + 04 8.9438E + 04 9.7026E + 04 4.1882E + 03
VNS 6.6571E + 04 6.7527E + 04 6.8118E + 04 1.9422E + 04

TSACS 3.0175E + 05 3.1556E + 05 3.3573E + 05 2.5315E + 01

TSACO 1.2183E + 05 1.2888E + 05 1.3332E + 05 1.7866E + 03

(Continued)
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Table 11 (continued)

Dataset Algorithm Min cost Avg cost Max cost Avg time (s)
ACO 1.4815E + 05 1.5307E + 05 1.5995E + 05 2.4924E + 03
pr5 PSO 1.0384E + 05 1.0925E + 05 1.1729E + 05 4.5921E + 03
VNS 7.6735E + 04 7.7891E + 04 7.9703E + 04  2.5864E + 04
TSACS 3.3494E + 05 3.5052E + 05 3.6164E + 05 3.3761E + 01
TSACO 1.4748E + 05 1.5282E + 05 1.5783E + 05 2.6291E + 03
ACO 1.7994E + 05 1.8885E + 05 1.9578E + 05 3.6997E + 03
pr6 PSO 1.2068E + 05 1.2535E + 05 1.3431E + 05 8.2708E + 03
VNS 8.8160E + 04 8.9500E +04  9.0476E + 05 4.7719E + 04
TSACS 4.8006E + 05 4.8919E + 05 5.0252E + 05 4.4759E + 01
TSACO 1.8494E + 05 1.9019E + 05 1.9498E + 05 3.8879E + 03
ACO 4.5826E + 04 4.9311E + 04 5.1579E + 04 2.5393E + 02
pr7 PSO 3.3749E+ 04  3.4600E + 04  3.8289E + 04 9.1160E + 02
VNS 3.2308E+04  3.3264E+04  3.4496E + 04 1.7203E + 03
TSACS 1.0863E + 05 1.1447E + 05 1.2276E + 05 7.5805E + 00
TSACO 4.7079E + 04 4.9251E + 04 5.3034E + 04 2.7551E + 02
ACO 9.6427E +04  9.8720E + 04 1.0094E + 05 9.0008E + 02
prs PSO 6.2320E + 04 6.8102E + 04 7.2306E + 04 2.5500E + 03
VNS 5.2837E + 04 5.4592E + 04 5.6432E + 04 8.3073E + 03
TSACS 2.3447E + 05 2.4197E + 05 2.5040E + 05 1.7394E + 01
TSACO 9.4411E + 04 9.9669E + 04  1.0544E + 05 9.6215E + 02
ACO 1.3940E + 05 1.4523E + 05 1.5341E + 05 2.0364E + 03
pro PSO 8.9303E + 04 9.6196E + 04 1.0459E + 05 5.2632E + 03
VNS 7.0152E + 04 7.0872E + 04 7.1387E + 04 2.5677E + 04
TSACS 3.6203E + 05 3.7674E + 05 3.8651E + 05 2.9803E + 01
TSACO 1.3823E + 05 1.4533E + 05 1.5235E + 05 2.1578E + 03
ACO 1.9066E + 05 1.9886E + 05 2.0951E + 05 3.5412E + 03
pri0 PSO 1.2868E + 05 1.3836E + 05 1.4678E + 05 6.7795E + 03
VNS 9.1630E + 04 9.4876E+04  9.7056E + 04 3.8991E + 04
NPC 4.8122E + 05 4.9644E+05  5.0840E + 05 5.2066E + 01
TSACO 1.9298E + 05 1.9948E + 05 2.0514E + 05 3.7861E + 03
Table 12: Performance comparison of algorithms on different datasets continued
Dataset Algorithm Min cost Avg cost Max cost Avg time (s)
ACO 3.3888E + 04 3.7113E + 04 4.0191E + 04 1.1951E + 02
pril PSO 2.7804E + 04 2.8971E + 04 3.0140E + 04 3.6441E + 02
VNS 2.5882E + 04 2.6587E + 04 2.7530E + 04 6.9670E + 02
TSACS 6.6133E + 04 7.0827E + 04 7.4593E + 04 4.2702E + 00
TSACO 3.3880E + 04 3.7185E + 04 4.1178E + 04 1.2843E + 02

(Continued)
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Table 12 (continued)

Dataset Algorithm Min cost Avg cost Max cost Avg time (s)
ACO 5.9275E + 04 6.1757E + 04 6.5060E + 04 4.4286E + 02

pri2 PSO 4.3179E + 04 4.6325E + 04 4.9586E + 04 1.4327E + 03
VNS 3.9027E + 04 4.0113E + 04 4.1538E + 04 6.3364E + 03

TSACS 1.2905E + 05 1.3438E + 05 1.5276E + 05 9.6289E + 00

TSACO 5.4165E + 04 6.1091E + 04 6.7038E + 04 4.7250E + 02

ACO 8.8683E + 04 9.4127E + 04 1.0048E + 05 9.7407E + 02

pri3 PSO 6.6204E + 04 6.9734E + 04 7.5088E + 04 3.2024E + 03
VNS 5.5421E + 04 5.7220E + 04 5.8096E + 04 2.4042E + 04

TSACS 2.6397E + 05 2.7865E + 05 3.0340E + 05 1.6167E + 01

TSACO 9.1256E + 04 9.6009E + 04 1.0263E + 05 1.0403E + 03

ACO 1.1429E + 05 1.2184E + 05 1.2789E + 05 1.6934E + 03

prid PSO 8.4251E + 04 9.0605E + 04 9.9722E + 04 4.0020E + 03
VNS 6.6319E + 04 6.7494E + 04 6.8196E + 04 4.9015E + 04

TSACS 3.1490E + 05 3.2717E + 05 3.4245E + 05 2.4704E + 01

TSACO 1.1813E + 05 1.2392E + 05 1.3081E + 05 1.7750E + 03

ACO 1.3689E + 05 1.4604E + 05 1.5192E + 05 2.4518E + 03

prl5 PSO 1.0370E + 05 1.1142E + 05 1.2159E + 05 4.5502E + 03
VNS 7.5835E + 04 7.7798E + 04 7.9154E + 04 2.4615E + 04

TSACS 3.5562E + 05 3.6444E + 05 3.7292E + 05 3.2003E + 01

TSACO 1.3852E + 05 1.4503E + 05 1.5215E + 05 2.6628E + 03

ACO 1.7566E + 05 1.8610E + 05 1.9328E + 05 3.6624E + 03

prl6 PSO 1.2107E + 05 1.2838E + 05 1.3496E + 05 8.9803E + 03
VNS 8.9879E + 04 9.0789E + 04 9.3100E + 04 4.3167E + 04

TSACS 4.8858E + 05 5.0177E + 05 5.1045E + 05 4.2279E + 01

TSACO 1.7484E + 05 1.8456E + 05 1.8975E + 05 3.8915E + 03

ACO 4.4252E + 04 4.8781E + 04 5.3627E + 04 2.5679E + 02

prl7 PSO 3.3667E + 04 3.4899E + 04 3.5941E + 04 9.7131E + 02
VNS 3.3003E + 04 3.3779E + 04 3.4590E + 04 2.6868E + 03

TSACS 1.1258E + 05 1.2219E + 05 1.2989E + 05 6.4754E + 00

TSACO 4.3758E + 04 4.8950E + 04 5.3081E + 04 2.7418E + 02

ACO 8.6587E + 04 9.2137E + 04 9.6238E + 04 8.9736E + 02

pris PSO 6.6347E + 04 7.1548E + 04 7.9300E + 04 2.7439E + 03
VNS 5.2822E + 04 5.4908E + 04 5.6815E + 04 1.8595E + 04

TSACS 2.3521E + 05 2.5349E + 05 2.6965E + 05 1.6104E + 01

TSACO 8.2562E + 04 8.9091E + 04 9.4115E + 04 9.7834E + 02

(Continued)
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Table 12 (continued)

Dataset Algorithm Min cost Avg cost Max cost Avg time (s)
ACO 1.3243E + 05 1.3779E + 05 1.4364E + 05 2.0180E + 03

prio PSO 9.3189E + 04 9.7585E + 04 1.0382E + 05 5.8974E + 03
VNS 6.9065E + 04 7.1682E + 04 7.3680E + 04 7.5497E + 04

TSACS 3.6997E + 05 3.9261E + 05 4.0901E + 05 2.8987E + 01

TSACO 1.3202E + 05 1.3839E + 05 1.4404E + 05 2.1529E + 03

In this section, we compare the evaluation, TS-ACO, which incorporates temporal-spatial distances,
outperforms the classical ACO algorithm in 13 instances. To further verify the effectiveness of TS-ACO at
different time slices, we compare the different cost increments between consecutive time slices for both
algorithms. As illustrated in Fig. 8, where TC, EC, LC, and DC denote the total cost, the early arrival cost,
the late arrival cost and the distance cost, respectively. Compared to the classical ACO algorithm, TS-ACO
reduces all the cost increment in all time slices except the early arrival cost. Although the 2nd time slice has
a higher early arrival cost increment than the classical ACO in the early arrival cost, TS-ACO reduces the
cost increment by a large amount at the other time slices, especially at the 1st time slice. This comparative
analysis confirms that the ACO algorithm with temporal-spatial distance achieves superior performance in
cost reduction across all time slices.

The results demonstrate that TS-ACO achieves a significant cost reduction within each time slice,
attesting to its superior performance in contemporary logistics. When new customer orders emerge in real
time, it seamlessly inserts these dynamic requests into the existing delivery routes at a lower marginal cost,
thereby offering a measurable cost-saving advantage for the enterprise.
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Figure 8: (Continued)
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Figure 8: Comparison of TS-ACO and ACO at different costs

Fig. 9 illustrates the distribution of depots and customers, where star-shaped icons represent depots
and circular dots denote customers. Customers who share the same color as a depot are served by vehicles
departing from that depot. The figures show the depot-customer assignments under the optimal routes
generated by the classical ACO and TS-ACO, respectively, using the prl instance. In particular, TS-ACO
requires fewer deployed depots to complete the routing task, thereby reducing overall operational costs.
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Figure 9: Distribution of customers of each depot after optimization

5 Conclusion

In today’s rapidly developing era, the logistics industry needs real time service, so many logistics
companies choose to expand a single depot into multiple depots to meet customer demand in time. Due to
the rapid development of communication technology, customers can submit their requirements to service
providers at any time. Consequently, a scheduling system TS-DPU driven by the TS-ACO is developed
in this paper to tackle the proposed MD-DVRP. It expands the traditional DVRP and brings it closer to
the real environment. Here, we add the time cost to the calculation of the total cost and propose TS-ACO
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that considers the spatial and temporal distance to solve the problem. Experiments have shown that TS-
ACO considering spatial and temporal distance is significantly better than the classical ACO only considers
spatial distance.

However, our study did not consider multi-objective optimization, thereby overlooking the simultane-
ous minimization of operational costs and maximization of customer satisfaction, both of which are critical
in real-world logistics operations. In addition, environmental dimensions such as carbon emissions and
energy consumption, which are increasingly emphasized in contemporary logistics practice, have not been
explicitly integrated into the proposed framework. Future work should therefore extend the current single-
objective model to a multi-objective model that jointly optimizes economic efficiency, service quality, and
environmental sustainability.
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