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ABSTRACT: Digital twins (DTs) are rapidly emerging as transformative tools in materials science and engineering,
enabling real-time data integration, predictive modeling, and virtual testing. This study presents a systematic bibliomet-
ric review of 1106 peer-reviewed articles published in the last decade in Scopus and Web of Science. Using a five-stage
methodology, the review examines publication trends, thematic areas, citation metrics, and keyword patterns. The
results reveal exponential growth in scientific output, with Materials Theory, Computation, and Data Science as the most
represented area. A thematic analysis of the most cited documents identifies four major research streams: foundational
frameworks, DTs in additive manufacturing, sector-specific applications, and intelligent production systems. Keyword
co-occurrence and strategic mapping show a strong foundation in modeling, simulation, and optimization, with
growing links to machine learning and sustainability. The review highlights current challenges and proposes future
research directions for advancing DTs in materials science.
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1 Introduction
In recent years, virtual reality (VR) has expanded the possibilities of teaching in technical careers, where

there is a heavy load of practical classes taught in laboratories. In fact, there seems to be a growing trend
towards the use of virtual laboratories by educational institutions. One of the most developed knowledge
areas in this aspect is engineering, where there is evidence of the implementation of virtual reality applica-
tions in different fields: architecture, construction engineering, mining engineering, automotive engineering,
chemical engineering, mechanical engineering, engineering education, and materials science [1–5]. While
VR has enhanced experiential learning in engineering disciplines, digital twins (DTs) represent a more
comprehensive and intelligent integration of physical systems and digital technologies. Unlike VR, which
emphasizes visualization, DTs focus on simulation, optimization, and autonomous control, making them a
foundational pillar of Industry 4.0.

On the other hand, within this virtual world of training, DTs have emerged as one of the key technologies
of Industry 4.0 [6]. However, there seems to be no clear definition, being recognized, for example, as a
multi-scale, multiphysics, probabilistic, ultra-fidelity integrated simulation that replicates the behavior of its
physical counterpart [7] and, in other cases, a distinction is made between digital models, digital shadows and
DTs depending on the level of integration between physical and digital entities [8]. In this regard, DTs consist
of three core components: (i) a physical entity or system; (ii) a virtual representation developed through
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simulation and computational modeling; and (iii) a real-time data link enabling synchronization between
the physical and digital realms. This architecture supports continuous monitoring, predictive analysis,
and autonomous decision-making. Key operational processes in DT systems include sensor-based data
acquisition, real-time analytics, multiphysics simulations, and feedback mechanisms, that often enhanced
through artificial intelligence and cloud computing platforms. Nowadays, it seems to be recognized that a DT
must have the ability to quickly interpret contextual data in real time and modify their behavior accordingly
when abrupt changes occur in their surroundings [9].

There are numerous case studies on the use of DTs in the field of engineering, with a notable increase
in the last decade, as shown in Fig. 1. Thus, there are examples in various fields of engineering, such as
in the field of construction, electric unmanned autonomous vehicles, manufacturing process, architecture,
civil engineering, robotics, marine engineering, materials engineering, software engineering, aerospace
engineering, etc. [10–14]. All these studies agree on the usefulness of using DTs for technical training and
engineering instruction.

Figure 1: Trend of DT research in engineering over the last 10 years. Data obtained from the Scopus database with the
query: “DTs” and “engineering”

In the context of materials science and engineering, DT systems are defined as dynamic, data-driven
virtual replicas of physical materials, components, or processes, designed to monitor, predict, and optimize
their behavior in real time. These systems typically integrate a high-fidelity virtual model—based on finite
element analysis, phase-field modeling, or molecular dynamics simulations—with real-time data collected
through embedded sensors or IoT devices. The synchronization between the physical and virtual entities
is enabled through low-latency communication protocols (e.g., MQTT, OPC-UA) and may include edge
computing to manage data processing efficiently [15,16]. Methodologically, DTs can be built using physics-
based simulations, data-driven machine learning models, or hybrid approaches, allowing them to capture
complex relationships such as processing–structure–property correlations or microstructural evolution
under operational loads [17,18]. In materials science and engineering, these systems are increasingly applied
to areas such as fatigue prediction in composites, optimization of additive manufacturing parameters, and
corrosion monitoring in structural metals, offering a powerful tool for accelerating material development
and enhancing performance assessment across the lifecycle [13,19,20].

Specifically, this paper deals with the use of DTs in the field of materials science and engineering,
separating the analysis into the subareas set out in the North American academic environment and by the
Materials Research Society [21]: (i) characterization; (ii) electronics, optics and photonics; (iii) energy and
sustainability; (iv) general interest; (v) manufacturing; (vi) materials for quantum information technologies
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and topological systems; (vii) materials theory, computation and data science; (viii) nanomaterials; (ix) soft
materials and biomaterials; and (x) structural and functional materials. To better understand the trend
in the design and use of DTs in the field of materials science and engineering, a bibliometric analysis of
Scopus and Web of Science has been developed in this study, covering publications from the last decade.
This paper is divided into several sections: (i) Introduction; (ii) Methods; (iii) Results; (iv) Discussion; and
(v) Conclusions.

2 Methods
The methodological approach for this bibliometric review adheres to a structured five-stage process

that ensures both breadth and depth in data collection, screening, analysis, and synthesis. The workflow is
visually summarized in Fig. 2, which illustrates the following core phases: (i) literature identification, locating
all potentially relevant studies through comprehensive database querying; (ii) data collection, retrieving
and organizing metadata for bibliometric processing; (iii) data analysis, applying statistical and bibliometric
techniques to evaluate publication trends, sources, and citation networks; (iv) data visualization, using
graphical methods to represent key findings and patterns; and (v) draw conclusions, synthesizing insights
and identifying research gaps and future directions.

Figure 2: Stages of the research process

Starting with the procedure of the research, the Stage I involved the formulation of a robust search
strategy. To identify relevant publications, a bibliometric search was conducted in the two most reputable
academic databases, Scopus and Web of Science (WOS). The search strategy, executed in April 2025,
targeted scientific articles published between 1 January 2015, and 30 April 2025. A Boolean search string was
constructed to capture a comprehensive set of digital twin (DT)–related terms in conjunction with a broad
spectrum of materials science and engineering topics. To validate the Boolean search string, an iterative
refinement process was carried out. This included trial searches and benchmark testing using a curated list
of known, high-impact publications on DTs in materials science. Adjustments were made to maximize the
retrieval of relevant articles while minimizing false positives. The final query was confirmed to retrieve all
key reference works considered representative of the field. As detailed in Table 1, this included terms like
“digital twin*,” “virtual replica*,” “material* scien*,” “polymer*,” “simulation,” and “manufacturing,” among
others. The inclusion of both wildcards and logical operators enhanced the scope of the search, enabling the
identification of word variants and thematic expansions within the dataset.
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Table 1: Search string for the bibliometric review in Scopus and WOS

Search string
(“digital twin*” OR “virtual twin*” OR “digital replica*” OR “virtual replica*” OR “virtual

representation”)
AND

(“material* scien*” OR “metal*” OR “ceramic*” OR “*composit*” OR “polymer*” OR “material*
engineer*” OR “material* behavior” OR “material* propertie*” OR “material* characteri*” OR

“material* simulation” OR “material* model*” OR “material* design” OR “material* optimization”
OR “material* performance” OR “material* testing” OR “material* manufacturing” OR “material*

process*” OR “material* microstructure” OR “material* prediction”)

Note: *Word variations and expansion of the search results.

As part of the methodological procedure, Stage II focused on the data collection of the records retrieved
during the initial database search, as stated in Fig. 3. To ensure a robust and transparent selection process,
the PRISMA 2020 methodology was applied. Widely used in bibliometric and systematic reviews, this
framework provides a clear, step-by-step outline of how studies are filtered, allowing for reproducibility
and methodological clarity [22,23]. The identification stage began with the extraction of 3411 records from
the combined databases: 2082 from Scopus and 1329 from WOS. Following this, 795 duplicate entries
were removed, along with 2 records deemed ineligible by automated filtering tools. Duplicate records were
identified and removed using the duplicateMatching() function in the Bibliometrix R package, which relies
on DOI matching as the primary criterion and exact title string matching as a secondary criterion when
DOIs are unavailable. This resulted in a working dataset of 2642 unique studies moving forward. During the
screening stage, all remaining records were retained for evaluation, as none were excluded based solely on
title or abstract. The eligibility stage introduced more stringent filters, just considering scientific paper written
in English, as they are considered the source with the highest impact in the scientific community. Here, a
total of 1536 records were excluded at this stage for not meeting the inclusion criteria: 776 were classified as
conference papers, 342 as conference reviews, 197 as review articles (non-bibliometric), 149 were not written
in English, 62 were book chapters, and 12 were either retracted, short communications, or editorial content.
As depicted in Fig. 2, this process culminated in the inclusion of 1106 peer-reviewed journal articles, which
constituted the final dataset for the bibliometric analysis, as extracted in Table S1.

In Stage III (Data Analysis), the bibliographic data extracted from the selected studies—such as
titles, abstracts, keywords, publication years, journals, citation counts and affiliations—were systematically
processed using the Bibliometrix R package (version 4.4.2) and its companion web interface, Biblioshiny.
Bibliometrix played a critical role in data cleaning, standardization and the extraction of key bibliometric
indicators. These included citation metrics (total citations, citations per year, and normalized impact),
collaboration structures (e.g., co-authorship networks at the author, institution, and country levels), and
thematic patterns derived from keyword co-occurrence and clustering algorithms. Here, the clustering
algorithm employed is based on the Louvain method for community detection. In parallel, Biblioshiny
facilitated interactive data visualization, enabling the generation of a wide range of graphical outputs.
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Figure 3: PRISMA 2020 flow diagram for the review on the use of digital twins in materials science and engineering

Moving into Stage IV (Data Visualization), the most relevant results were organized and presented using
charts and diagrams designed to enhance interpretability. These visualizations included network graphs of
co-authorship and keyword associations, histograms showing publication and citation trends over time, and
scatter plots mapping the performance of influential journals and documents.

Finally, in Stage V (Synthesis and Interpretation), the analytical results were integrated into a cohesive
narrative. This narrative aims to describe the current landscape of DT research in materials science and
engineering and identify conceptual gaps, underexplored application domains, and emerging interdisci-
plinary intersections. Particular emphasis was placed on the evolution of research themes, the concentration
of scholarly output in specific geographic and institutional hubs, and the increasing prominence of data-
driven and simulation-based methodologies. The findings were framed to inform future investigations and
strategic decision-making for researchers and stakeholders interested in leveraging DTs to advance the field
of materials science.

3 Results

3.1 General Bibliometric Data and Progress of Publications
Table 2 summarizes the main bibliometric indicators regarding the use of digital twins (DTs) in mate-

rials science and engineering over the period 2015–2025. A total of 1106 documents were analyzed, derived
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from 553 distinct sources, which correspond exclusively to peer-review scientific journals, as described in the
Methods section. The annual growth rate of publications is remarkably high at 66.53%, highlighting the rapid
development and increasing attention this topic has received in recent years in comparison with other hot
topics in the state of the art as carbon fiber-based batteries (24.08%) [24], titanium additive manufacturing
(14.87%) [25] or nanocomposites for multifunctional sensors (22.94%) [26]. Moreover, the average age of
documents is 2.08 years, consistent with a recently established and rapidly evolving domain. The average
number of citations per document is 11.62, indicating a moderate yet meaningful impact. Regarding content
indicators, the dataset includes 3557 keywords plus and 3921 author’s keywords. These descriptors reflect the
thematic diversity and the strong integration of digital methodologies into materials research.

Table 2: Summary of bibliometric data on the use of DTs in materials science and engineering from 2015 to 2025

Description Results Description Results
Main information about the data Authors

Timespan 2010–2025 Authors 4024
Sources (journals, books, etc.) 553 Authors of single-authored docs 32

Documents 1106 Authors Collaboration

Annual growth rate % 66.53 Single-authored docs 38
Document average age 2.08 Co-authors per doc 4.95

Average citations per doc 12.82 International co-authorships % 21.07

Document Contents Document Types

Keywords plus (ID) 3557 Article 1068
Author’s keywords (DE) 3921 Article; early access 38

In terms of authorship, the dataset includes 4024 unique authors. However, only 32 single-authored
documents were identified, which underscores the highly collaborative nature of research in this field. On
average, each paper has 4.95 co-authors, and 21.07% of the publications involve international collaboration,
demonstrating growing global interest and cooperative research frameworks. The distribution by document
type shows a clear dominance of peer-reviewed journal articles (1068), accompanied by a smaller number of
early access articles (38), likely representing papers accepted and available online ahead of print.

Fig. 4 presents the evolution of annual scientific production and citation metrics from 2015 to 2024. The
number of publications increased steadily from 1 in 2015 to a peak of 336 documents in 2024. A particularly
sharp rise was observed between 2021 and 2024, which may be attributed to the convergence of digitalization
efforts and data-driven material design strategies. Despite a dip in 2020, likely influenced by disruptions
caused by the COVID-19 pandemic, the field regained momentum rapidly. In this regard, citation metrics
reveal that the Mean TCperArt (mean total citations per article) and Mean TCperYear (mean total citations
per year) peaked in 2018, indicating the publication of highly cited foundational papers during that year. In
subsequent years, although the number of publications rose, citation averages per article showed a gradual
decline, a trend commonly associated with the recency of newer publications which have had less time to
accumulate citations. This pattern reinforces the presence of influential early works and a continuous influx
of newer studies sustaining the field’s growth.
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Figure 4: Annual scientific production and citation evolution from 2015 to 2024 (MeanTCperArt: mean total citations
per article; MeanTCperYear: mean total citations per year)

3.2 Leading Scientific Journals
Table 3 presents the ranking of the most relevant scientific journals publishing research on DTs in

materials science and engineering, according to Bradford’s Law. This law is a bibliometric principle that
classifies journals into “zones” based on their productivity on a specific subject. According to Bradford,
if journals are arranged in order of decreasing productivity, they can be divided into a core (Zone 1)
and subsequent concentric zones, each producing approximately the same number of articles, but with an
increasing number of journals in each zone. The first zone contains the most prolific journals and constitutes
the essential core for the studied field.

Table 3: Leading scientific journals, according to Bradford’s Law

Scientific journal Ranking Impact factor
(2023)

Frequency Accumulative
frequency

Zone

International Journal of Advanced
Manufacturing Technology

1 2.9 25 25 Zone 1

Applied Sciences-Basel 2 2.5 22 47 Zone 1
Journal of Manufacturing Systems 3 12.3 20 67 Zone 1

IEEE Access 4 3.4 19 86 Zone 1
Journal of Intelligent

Manufacturing
5 5.9 16 102 Zone 1

Sensors 6 3.4 15 117 Zone 1
Computer Methods in Applied

Mechanics and Engineering
7 6.9 13 130 Zone 1

Journal of Manufacturing Processes 8 6.1 12 142 Zone 1
Processes 9 2.8 12 154 Zone 1
Materials 10 3.1 11 165 Zone 1
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In this case, all the top-10 journals identified fall within Zone 1, indicating a concentrated core of
publication activity. These journals account for a total of 165 documents. The International Journal of
Advanced Manufacturing Technology leads the list with 25 documents, followed by Applied Sciences-Basel
(22) and the Journal of Manufacturing Systems (20). Other prominent journals include IEEE Access and the
Journal of Intelligent Manufacturing, each with 19 and 16 documents, respectively. These outlets are closely
aligned with advanced manufacturing, automation, and intelligent systems, reinforcing the interdisciplinary
nature of DTs within materials research.

Fig. 5 provides a temporal visualization of the scientific output from the top-5 journals between 2015 and
2024. A significant growth trend is evident, particularly from 2019 onward, which correlates with the overall
expansion of the field discussed earlier. The International Journal of Advanced Manufacturing Technology
shows the most pronounced increase, reaching 24 documents by 2024. Applied Sciences-Basel and the
Journal of Manufacturing Systems also show sustained growth, with 19 and 18 documents, respectively, in
the same year. Notably, IEEE Access and the Journal of Intelligent Manufacturing follow closely, with 16 and
13 documents.

Figure 5: Top-5 scientific journal production from 2015 to 2024

These trends highlight the growing interest in DTs within established journals of manufacturing and
materials science and the responsiveness of these platforms to emerging research topics. The predominance
of these journals in Zone 1 suggests that future work in this area will continue to consolidate within these
high-output venues, facilitating visibility and knowledge exchange.

3.3 Institutional and Regional Contributions to Scientific Research
Fig. 6 illustrates the leading contributing affiliations by country, providing a detailed overview of

the most productive institutions and their publication dynamics within the studied domain. Here, China
emerges as the dominant contributor, with Zhejiang University (35 publications), University of Science and
Technology Beijing (23), Xi’an Jiaotong University (20), and Southeast University (20) occupying leading
positions. In Europe, the Centre National de la Recherche Scientifique (CNRS) in France stands out with 30
publications, while Germany is represented by the Helmholtz Association (25), the Technical University of
Munich (21), and the Fraunhofer Gesellschaft (19). In the United States, the Purdue University system leads
with 20 documents. These figures suggest a strong institutional engagement from technologically advanced
nations, particularly those investing heavily in smart manufacturing and advanced simulations. The central



Comput Mater Contin. 2025;85(1) 49

role of Chinese institutions reflects national strategic priorities in digital innovation and industrial automa-
tion, while the visibility of the CNRS and Helmholtz highlights the relevance of interdisciplinary research
platforms in Europe.

Figure 6: Top contributing affiliations by country and number of publications

Fig. 7 traces the annual publication output of the top five institutions between 2015 and 2024. The
CNRS shows the most pronounced growth, peaking at 35 publications in 2024, followed by the Helmholtz
Association (33), Zhejiang University (28), University of Science and Technology Beijing (25), and Xi’an
Jiaotong University (22). The rapid increase observed from 2021 onward aligns with the post-pandemic
acceleration of digitalization across scientific domains, as commented before. The presence of CNRS
and Helmholtz at the top of the list reflects their structured support for collaborative, high-performance
computing initiatives and the development of cyber-physical systems, which are closely tied to the DT
paradigm. Meanwhile, the consistent upward trajectory in China’s universities reflects robust investment
in digital infrastructure and computational modeling, essential components for DT implementation in
materials research.

Turning to the geographical distribution, Figs. 8 and 9 offer complementary views of national-level
contributions. Fig. 8 provides a global heat map of country-level scientific production, underscoring China’s
dominant role, followed by notable activity in the United States, Germany, the United Kingdom, and Italy.
This spatial representation confirms the centrality of East Asia, North America, and Western Europe in
driving research in this emerging field. In Fig. 9, the temporal evolution of the top five countries’ output
reveals exponential growth for China, reaching 490 publications in 2024. Germany and the United States
follow closely with 225 and 217 publications, respectively. Italy (95) and South Korea (52) round out the group.
These results suggest a sharp increase in scientific output worldwide, with China accelerating at a particularly
fast pace. This growth may be attributed to its national-level programs such as “Made in China 2025” and
increased focus on artificial intelligence and advanced materials.
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Figure 7: Top-5 affiliations’ production from 2015 to 2024

Figure 8: Countries’ scientific production from 2015 to 2024

Figure 9: Top-5 countries’ scientific production from 2015 to 2024
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Table 4 analyzes the country affiliation of corresponding authors, distinguishing between single-country
publications (SCP) and multi-country collaborations (MCP). China again leads with 248 articles (22.4% of
the total), of which 208 are SCPs and 40 MCPs. The United States follows with 131 documents (108 SCP,
23 MCP), and Germany with 108 (83 SCP, 25 MCP). The data indicate a strong national concentration
of research output in China, suggesting internal research capacity and limited reliance on international
collaborations. In contrast, countries such as Germany and the United Kingdom exhibit a more balanced
pattern, combining domestic leadership with active engagement in cross-border research. These findings
reflect differing models of scientific production: while China emphasizes rapid domestic expansion and
capacity building, European countries and the USA continue to foster international collaborations that may
enhance diversity in approaches and broader applicability of results.

Table 4: Corresponding author’s countries

Country Articles Articles % SCP MCP
China 248 22.4 208 40
USA 131 11.8 108 23

Germany 108 9.8 83 25
United Kingdom 57 5.2 41 16

Italy 52 4.7 38 14
Korea 45 4.1 36 9
Russia 44 4 43 1
France 39 3.5 26 13
Spain 34 3.1 29 5

Sweden 26 2.4 20 6

Although this study presents absolute publication counts by country, it is important to recognize that
such metrics inherently favor countries with larger populations or more extensive R&D infrastructures. For
example, China’s dominant position in publication volume may partially reflect the scale of its research
ecosystem. However, smaller countries with high research intensity (e.g., Germany, Italy, France or Spain)
may demonstrate significant contributions when metrics are normalized by GDP, population, or R&D spend-
ing. While normalization was not conducted in this review due to data scope constraints, we acknowledge
its importance for a more equitable representation of national scientific productivity.

Fig. 10 shows the collaboration world map. Here, the most active international links include China–USA
(18 co-authored articles), China–Singapore (9), Germany–Switzerland (6), and France–Spain (3), among
many others. These data confirm the existence of a robust international research network, though they
also reveal regional concentration patterns, with China, the USA, and Germany forming the core of the
collaboration network.

In summary, a robust and geographically diverse research scene is confirmed by institutional and
national analyses. China’s leadership is clear in its significant institutional output and national productivity,
reflecting a strategic drive in digital manufacturing and material informatics. Complementarily, European
and North American institutions show strong, sustained engagement, particularly leveraging collaborative
structures to embed DT technologies across numerous disciplines.



52 Comput Mater Contin. 2025;85(1)

Figure 10: Countries’ collaboration world map

3.4 Quantitative Impact of the Most Cited Publications
Table 5 presents the citation metrics of the most impactful publications related to the field. To enable

fair comparison across publications from different years, a normalized citation metric (Normalized TC) was
included. This was calculated by dividing the total citations of each article by the average number of citations
for all articles published in the same year within the dataset. This year-based normalization mitigates bias
arising from publication age and varying exposure times in citation accumulation. Among them, the paper
by Adil Rasheed et al. (2020) stands out with 790 total citations, achieving 131.67 citations per year and a
normalized citation score of 20.93, highlighting its pivotal role in shaping the field. Similarly, Chao-Yang
Wang et al. (2022), despite being a more recent contribution, has already garnered 454 citations and exhibits
the highest normalized impact (22.96), indicating both its rapid recognition and relevance. Other influential
works include Kazi Masudul Alam et al. (2017) with 475 citations and a strong yearly citation rate (52.78),
as well as Qiang Liu et al. (2019) and G.L. Knapp et al. (2017), which maintain steady influence over time.
Notably, while some studies exhibit high total citations, their normalized citation scores suggest a more
moderate influence when adjusted for publication year, as seen in G.L. Knapp et al. and T. Mukherjee et al.

Table 5: Citation Metrics of the most impactful publications on DTs in materials science and engineering

Reference Authors Total Citations TC per Year Normalized TC
[27] Adil Rasheed

et al., 2020
790 131.67 20.93

[28] Kazi Masudul
Alam et al., 2017

475 52.78 2.34

[29] Chao-Yang Wang
et al., 2022

454 113.50 22.96

[30] Qiang Liu et al.,
2019

272 38.86 4.72

[31] G.L. Knapp et al.,
2017

260 28.89 1.28

(Continued)
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Table 5 (continued)

Reference Authors Total Citations TC per Year Normalized TC
[32] Claudio Mandolla

et al., 2019
232 33.14 4.03

[33] Haishan Xia et al.,
2022

214 53.50 10.82

[34] T. Mukherjee
et al., 2019

196 28.00 3.40

[35] Shimin Liu et al.,
2021

174 34.80 8.44

[36] Grigor Angjeliu
et al., 2020

152 25.33 4.03

4 Discussion

4.1 Analysis of the Most Impactful Documents and Citation Trends
The quantitative and thematic analysis of the ten most cited publications in the field of DTs applied

to materials science and engineering reveals four dominant research streams. These categories reflect the
diversity and maturity of research topics and demonstrate how the concept of DTs has evolved across different
application domains, methodologies, and technological enablers. The publications were grouped based on
shared themes, objectives, or application sectors: (i) conceptual frameworks and modeling foundations,
(ii) DTs in additive manufacturing (AM), (iii) sector-specific implementations, and (iv) integration with
emerging technologies for sustainability.

The first group, conceptual frameworks and modeling foundations, includes two highly cited
papers [27,28] that lay the theoretical and architectural groundwork for DT technologies. These works
do not aim for a specific industrial application, but instead focus on defining core principles, system
structures, and technological enablers that contribute to DT development. Rasheed et al. (2020) [27] provide
a comprehensive exploration of the values, challenges, and enabling technologies associated with DTs, from
a modeling and simulation standpoint. Their work is pivotal in establishing a shared language and research
agenda for DT development. Similarly, Alam and El Saddik (2017) [28] propose C2PS, a cloud-based cyber-
physical systems reference model, emphasizing architectural principles and system interoperability. These
works do not focus on specific applications but rather outline the structural and functional dimensions that
support DT implementation in various sectors.

The second group, focused on DTs in AM, highlights that AM as one of the earliest and most dynamic
domains for the application of DT technologies, as demonstrated by four seminal contributions in this
area [31,32,34,35]. Knapp et al. (2017) [31] define a modular framework to construct DTs in AM, with
emphasis on materials behavior and real-time data integration. Mandolla et al. (2019) [32] extend the
discourse by integrating blockchain technology into the DT of the aircraft industry, addressing traceability
and trust in the AM lifecycle. Mukherjee (2019) [34] focus on the qualification process of 3D-printed metallic
components, proposing a DT framework to enhance quality control and reduce development time. Liu et al.
(2021) [35], in turn, incorporate biomimicry principles in the digital modeling of machining processes for
aerospace parts, showcasing how biologically inspired strategies can enhance the adaptability and precision
of virtual replicas. Collectively, these works illustrate the convergence of data-driven modeling, real-time
monitoring, and quality assurance in the evolving landscape of AM.
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The third group, sector-specific implementations, comprises three studies that investigate DTs as tar-
geted solutions for distinct application domains, demonstrating the versatility and cross-sectoral adaptability
of the concept beyond traditional manufacturing settings [29,33,36]. Wang et al. (2022) [29] present a
breakthrough in the battery industry, combining DTs with electrochemical modeling to achieve fast charging
in high-energy lithium-ion batteries. This article, published in Nature, exemplifies the increasing role of
DTs in materials-centric energy applications. Xia et al. (2022) [33] provide a bibliometric and technological
review of DT applications in smart cities, emphasizing the integration of GIS (Geographic Information
Systems) and BIM (Building Information Modeling) technologies. Their work underlines the potential
of DTs in urban planning, environmental monitoring, and infrastructure sustainability. Angjeliu et al.
(2020) [36] address a unique heritage context, developing DTs for historical masonry buildings by integrating
numerical simulation and experimental data, thus bridging cultural heritage preservation and modern
computational methods.

Finally, the fourth group, rapid design and smart manufacturing systems, is represented by the work
of Liu et al. (2019) [30], who propose a DT-driven approach for rapid and individualized design in flow-
shop manufacturing environments. Their work demonstrates how smart manufacturing can leverage DTs for
real-time decision-making, system optimization, and mass customization. The proposed model emphasizes
flexibility and responsiveness in production systems, showing how DT technology can enable adaptive
control and synchronization in highly dynamic environments.

When comparing the four thematic clusters, a methodological evolution becomes apparent. Initial
efforts were centered on defining the foundational architecture of DT systems, focusing on interoper-
ability, modularity, and conceptual clarity. These early models served as flexible blueprints for diverse
applications but remained largely theoretical. The next stage in the evolution introduced domain-specific
implementations, particularly in additive manufacturing, where digital twins began to incorporate sensor-
driven data acquisition, multi-scale simulation, and feedback loops to support process monitoring and
control. As the field matured, research extended into complex application domains such as energy systems
and infrastructure, requiring hybrid approaches that fused data from heterogeneous sources—ranging
from electrochemical modeling to geospatial analysis—into unified virtual environments. More recent
developments point to a convergence with artificial intelligence and biomimetic strategies, enabling adaptive,
self-optimizing systems capable of real-time decision-making. This trajectory reflects a shift from descrip-
tive virtual replicas toward autonomous and predictive digital ecosystems, signaling a maturing research
landscape driven by integration, scalability, and operational relevance.

To further contextualize the four identified research streams, Fig. 11 presents a conceptual taxonomy
that maps them across two dimensions: technical complexity (from conceptual models to autonomous
systems) and temporal maturity (from exploratory to mature deployment). This classification highlights
how each theme aligns with the technological and developmental progression of digital twins. In this
regard, foundational frameworks exhibit high systemic complexity but remain largely theoretical or emerging
in application. Digital twins in additive manufacturing are both technically advanced and industrially
mature. In contrast, sector-specific implementations are still in early, low-complexity stages. Integration with
emerging technologies (e.g., AI, blockchain, e-learning) is gaining traction, though it remains conceptually
grounded and at a moderate level of maturity.
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Figure 11: Taxonomy of the four thematic research clusters in DT studies applied to materials science and engineering,
positioned according to technical complexity and temporal maturity

4.2 Classification of Materials Science Research Areas
Table 6 provides a thematic breakdown of research areas in materials science, following the classification

scheme proposed by the Materials Research Society (MRS) [21] and considering in other studies [37,38],
along with the specific Boolean search strategies used to retrieve relevant literature. It allows us to identify
which subfields are most actively engaging with computational modeling, data-driven techniques, and
simulation-based methods—core components of DTs. Among the ten thematic categories, Materials Theory,
Computation, and Data Science stands out as the most frequently represented, accounting for 28.77% of
the total query results. This finding is highly significant within the scope of this review. The prominence of
this area underscores the foundational role that computational models, simulation environments, and data
analytics play in the development and implementation of DTs in materials engineering. DTs rely heavily
on the continuous interaction between physical systems and their digital counterparts through real-time
data acquisition, model updating, and predictive analytics. These capabilities are made possible through
advancements in computational materials science, high-throughput simulations, artificial intelligence, and
cloud-based platforms—all of which are encompassed by this research category [39–42].

Table 6: Classification of materials science research areas according to the materials research society: query modifica-
tions and relative frequencies

Area Query modification Frequency Percentage
Characterization AND (“characteriz*”) 258 16.00

Electronics, optics and
photonics

AND (“electronic*” OR
“optic*” OR
“photonic”)

85 5.27

Energy and
sustainability

AND (“energ*” OR
“sustainab*”)

197 12.21

(Continued)
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Table 6 (continued)

Area Query modification Frequency Percentage
General interest AND (“general”) 31 1.92
Manufacturing AND (“manufactur*”) 337 20.89

Materials for quantum
information

technologies and
topological systems

AND ((“quantum”) OR
(“topolog* system*”))

8 0.50

Materials theory,
computation and data

science

AND (“theory” OR
“comput*” OR “data

scienc*”)

464 28.77

Nanomaterials AND (“nano*”) 39 2.42
Soft materials and

biomaterials
AND (“bio*” OR

“soft”)
164 10.17

Structural and
functional materials

AND (“structural*”
AND “function*”)

30 1.86

Note: *Word variations and expansion of the search results.

Following this, the Manufacturing category accounts for 20.89% of the results, reinforcing the relevance
of DTs in process optimization and digital control systems. DTs are particularly impactful in advanced
manufacturing processes, including additive manufacturing (AM), where they enable real-time feedback
loops, defect detection, and lifecycle simulation. These capabilities are central to the push for “smart factories”
and Industry 4.0 applications. Characterization (16.00%) and Energy and Sustainability (12.21%) also exhibit
significant activity. In material characterization, DTs support predictive insights into material responses,
optimize experimental protocols, and enhance reliability through digital replicas of test environments
[17,43–45]. In the energy sector, DTs are used to simulate battery aging, monitor thermal material perfor-
mance, and improve sustainability through predictive maintenance and system diagnostics [46–49]. The
category Soft Materials and Biomaterials follows with 10.17%, suggesting growing interest in applying DTs to
biomedical and flexible materials contexts. Applications include tissue modeling, personalized biomaterial
design, and smart prosthetic development—fields where DTs can simulate complex biological interactions
in real-time [50].

Moderate representation is found in Electronics, Optics, and Photonics (5.27%), and Nanomaterials
(2.42%). In these areas, DTs contribute primarily through nanoscale process simulations, optoelectronic
device modeling, and adaptive design of smart nanocomposites [51,52]. Structural and Functional Materials
(1.86%) and Materials for Quantum Information and Topological Systems (0.50%) are the least represented,
which may reflect narrower query scopes or their inclusion under broader categories such as theory or
electronics. Nonetheless, these areas also offer fertile ground for DT deployment, particularly in smart
sensing, multifunctional composites, and structural health monitoring systems [53,54].

In summary, the analysis of thematic frequency confirms that the most prominent and enabling
field for DTs within materials science are Materials Theory, Computation, and Data Science. This domain
provides the methodological backbone that allows DTs to function as intelligent, adaptive systems capable of
enhancing materials discovery, performance prediction, and lifecycle optimization. Its dominance reinforces
the idea that the advancement of DTs is inseparable from progress in computational infrastructure, modeling
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accuracy, and data integration which are at the heart of this thematic cluster. Other research subareas
that have made substantial contributions to the implementation of digital twins is Manufacturing and
Material characterization. Considering that these domains have also seen extensive exploration of virtual
reality technologies [37] and artificial intelligence [38], such subareas arguably represent the most advanced
application of immersive technologies within the field of materials science and engineering.

4.3 Conceptual Structure and Thematic Evolution of DT Research in Materials Science
To provide a deeper understanding of the conceptual landscape and evolution of DT research in

materials science and engineering, this section presents a keyword co-occurrence network, a strategic
thematic map based on centrality and density metrics and trend topics analysis.

Fig. 12 presents the co-occurrence network of keywords extracted from the bibliographic data. The
nodes represent keywords, and their size reflects frequency of occurrence, while the connecting lines
denote co-occurrence relationships. Two main thematic clusters are clearly distinguishable. On the one
hand, the first cluster, shown in green, comprises keywords such as optimization, design, simulation, and
model, which are closely linked and represent the methodological foundation of DT implementations. These
terms highlight the computational modeling and system engineering aspects that are crucial for building
virtual replicas capable of predicting the behavior of complex material systems. The strong interconnectivity
suggests a well-established subdomain that emphasizes simulation-driven optimization processes. On the
other hand, the second cluster, depicted in red, revolves around the term digital twin and includes key-
words such as prediction, microstructure, mechanical-properties, behavior, and temperature. This cluster
emphasizes the materials-specific dimension of DT, particularly its use in simulating and predicting material
responses under various physical conditions. The close association with microstructural and behavioral
descriptors indicates the application of DTs at finer scales, reflecting a growing interest in integrating virtual
representations with real-time material data. Additional clusters, such as the blue cluster associated with
machine-learning and e-learning, indicate peripheral but increasingly relevant intersections between DT
and artificial intelligence. These suggest the development of smart, adaptive systems for materials research
and education.

Figure 12: Co-occurrence network of keywords in DT in materials science research

Fig. 13 presents a strategic thematic map that classifies research themes into four quadrants based on
their development (density) and relevance (centrality). This map reveals that themes such as machine-
learning (betweenness centrality: 408.18; density proxy via closeness: 0.002) and e-learning (280.83; 0.002)
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fall within the upper-right quadrant (Motor Themes), indicating that these areas are both well-developed and
central to current DT research. Their prominent position highlights the growing integration of intelligent
technologies in DT environments, which may contribute significantly to real-time analysis and decision-
making capabilities. In contrast, the lower-right quadrant (Basic Themes) includes fundamental concepts
such as digital twin (3007.18; 0.002), prediction (1163.51; 0.002), decomposition (622.65; 0.002), simulation
(2829.27; 0.002), design (2290.95; 0.002), and model (2388.32; 0.002). These keywords constitute the
conceptual backbone of the field. Despite their high relevance, the relatively lower density indicates that
while these topics are central, there is still room for further methodological refinement and interdisciplinary
articulation, particularly concerning their application in materials-specific contexts. The top-left quadrant
(Niche Themes) contains more specialized terms such as genetic algorithm (59.86; 0.002), variation simu-
lation (31.36; 0.002), electrodes (65.83; 0.002), and mechanism (107.70; 0.002), which are densely developed
yet marginal in relevance. These topics reflect focused investigations that, although technically advanced, are
not yet fully integrated into the core DT research landscape. Finally, the lower-left quadrant (Emerging or
Declining Themes) includes keywords such as Internet of Things (101.49; 0.002), Industry 4.0 (117.12; 0.002),
cyber-physical systems (135.95; 0.002), and fabrication (458.55; 0.002). Their presence in this quadrant may
suggest a reduced centrality in the current literature, possibly due to the maturation of these concepts or a
shift in focus toward more application-specific domains within DT.

Figure 13: Strategic thematic map of DT in materials science research

In this regard, the role of machine learning is increasingly pivotal across several functional layers.
In materials science, machine learning models are commonly used as surrogates for computationally
expensive simulations, enabling rapid approximation of complex behaviors such as stress–strain responses,
thermal gradients, or microstructural evolution. Furthermore, machine learning facilitates real-time model
updating by integrating sensor data streams into predictive models, ensuring that the digital replica
remains synchronized with the physical system. In adaptive control applications, reinforcement learning and
Bayesian optimization are employed to dynamically adjust process parameters—such as in AM or thermal
treatment—based on feedback from both simulated and physical environments.
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In order to gain additional insights into the temporal evolution of key themes in the field, Fig. 14
presents a trend topics analysis based on term frequency and time of emergence. This figure highlights both
persistent and emergent concepts extracted from the bibliographic dataset. Notably, terms such as digital
twin, simulation, model, and design have been present since the early stages of the field’s development
and continue to exhibit strong presence through 2024. In contrast, more recent topics such as machine
learning, parameters, and behavior have shown significant momentum in the last two years, suggesting a
growing shift toward data-driven, predictive, and adaptive systems. The emergence of specialized terms such
as solidification, distortion, and genetic algorithms further illustrates the increasing technical granularity
and modeling depth in DT research applied to materials science. This temporal perspective complements
the structural mapping presented earlier and helps identify high-impact research directions and upcoming
subfields within the community.

Figure 14: Trend topics analysis based on the temporal evolution and frequency of keywords

In summary, the combined interpretation of Figs. 12–14 indicates that the DT field in materials science is
structured around two dominant pillars: computational simulation and system optimization, and materials-
level prediction and behavior modeling. This trial characterization confirms that, in this field, DT research
is prominent and central to the convergence of engineering simulation, intelligent systems, and materials
behavior prediction.

4.4 Industrial Impact and Strategic Direction
In parallel with academic research, the industrial sector has become a driving force in the development

and deployment of DT technologies within the area. Several global companies have established dedicated
platforms and solutions to apply DTs across the materials lifecycle, from design and processing to perfor-
mance monitoring and maintenance. Among them, Siemens, General Electric, Dassault Systèmes, PTC, and
Ansys have emerged as leading contributors [55–57]. Siemens’ Xcelerator platform, for instance, offers an
integrated DT environment that combines sensor data, simulation, and analytics for predictive material
behavior and manufacturing optimization, especially in aerospace and industrial machinery. Similarly, GE’s
Predix platform focuses on digital twins of critical components in power generation and aviation, enabling
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real-time monitoring and failure prediction based on material fatigue models and thermal stress simulations.
Dassault Systèmes’ 3DEXPERIENCE platform is heavily oriented toward collaborative virtual prototyping,
providing a unified digital environment where engineers can model, simulate, and test material systems
under varying conditions. PTC’s ThingWorx and Ansys’ Twin Builder also contribute significantly to digital
transformation by enabling scalable DT solutions based on physics-based models, embedded analytics, and
machine learning.

These industrial platforms serve as both technological tools and strategic assets, aligned with broader
corporate digitalization roadmaps. Many of these companies have published clear long-term visions that
position DTs as core enablers of Industry 4.0, smart manufacturing, and sustainability transitions. For
example, Siemens and General Electric have committed to expanding the capabilities of their DT solutions
to include multiscale materials modeling, integration with AI-driven optimization algorithms, and support
for decentralized edge/cloud architectures. Dassault Systèmes, through its strategic alliances with materials
innovation centers, has emphasized DT-based virtual material design environments, particularly in sectors
like aerospace, biomedical, and electronics. These initiatives reflect a shift toward closed-loop material
development, where the interaction between real-time data and predictive simulation accelerates innovation
cycles and supports circular economy principles. Furthermore, many of these platforms are increasingly
adopting open standards and promoting interoperability with public research institutions, indicating a grow-
ing convergence between industrial and academic DT ecosystems. This industrial engagement highlights the
transformative potential of DTs to enhance operational efficiency and drive more intelligent, adaptive, and
sustainable materials technologies.

5 Conclusions
This review has examined the role of digital twins (DTs) in materials science and engineering through

a systematic bibliometric analysis of 1106 peer-reviewed scientific articles indexed in Scopus and Web of
Science from 2015 to 2025. The study employed a five-phase methodology to retrieve, classify, and evaluate
scientific production, thematic areas, citation impact, and keyword patterns. The documents were analyzed
both quantitatively—through citation metrics, source and country performance—and qualitatively—via
thematic clustering and strategic keyword mapping. The review was structured around ten subareas estab-
lished by the Materials Research Society (MRS), providing a comprehensive view of the conceptual and
application-driven evolution of DTs in materials science and engineering.

The results show a remarkable increase in scientific output on DTs, with an average annual growth
rate of 66.53%, especially accelerating from 2020 onward. The most prominent thematic category identified
was Materials Theory, Computation, and Data Science, representing 28.77% of the indexed publications.
This underscores the foundational importance of simulation environments, computational modeling, and
data-driven strategies in enabling DT functionality. The Manufacturing category followed closely with
20.89%, highlighting the relevance of DTs in process optimization, production control, and digital integration
within advanced manufacturing systems. Other notably active subfields included Characterization (16.00%)
and Energy and Sustainability (12.21%), both of which reflect the increasing role of DTs in predictive
testing, real-time system diagnostics, and performance monitoring across experimental and application-
oriented material research. Additionally, co-occurrence networks and strategic maps revealed that DTs
are conceptually anchored in modeling, optimization, and simulation, while increasingly integrating with
peripheral themes such as machine learning, cyber-physical systems, and e-learning.

The thematic discussion based on the most cited documents highlighted four dominant streams of
DT research: (i) conceptual frameworks and modeling foundations, (ii) DTs in additive manufacturing (iii)
sector-specific implementations, and (iv) integration with emerging technologies for sustainability. These
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clusters underscore the versatility of DTs as both a modeling paradigm and a practical tool for improving
process efficiency, quality assurance, and material innovation. While additive manufacturing has emerged
as a leading application domain, recent studies also demonstrate the potential of DTs in sustainable battery
design, biomedical materials, and smart cities—thus broadening the scope of future implementations.

To sum up, this review contributes to a clearer understanding of the DT research landscape in material
science and engineering, offering insights into both established and emerging trends. The findings are valu-
able for researchers and practitioners aiming to deploy DTs in areas such as process optimization, predictive
maintenance, and digital material testing. However, several challenges remain, including data interoperabil-
ity, real-time integration, and multiscale model validation. Future research should focus on enhancing the
fidelity and adaptability of DTs, promoting open data standards, and exploring interdisciplinary synergies—
particularly with artificial intelligence, biomimetic design, and sustainable engineering—to fully exploit the
transformative potential of DTs in materials science.
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