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ABSTRACT: RESTful APIs have been adopted as the standard way of developing web services, allowing for smooth
communication between clients and servers. Their simplicity, scalability, and compatibility have made them crucial
to modern web environments. However, the increased adoption of RESTful APIs has simultaneously exposed these
interfaces to significant security threats that jeopardize the availability, confidentiality, and integrity of web services.
This survey focuses exclusively on RESTful APIs, providing an in-depth perspective distinct from studies addressing
other API types such as GraphQL or SOAP. We highlight concrete threats—such as injection attacks and insecure
direct object references (IDOR)—to illustrate the evolving risk landscape. Our work systematically reviews state-of-
the-art detection methods, including static code analysis and penetration testing, and proposes a novel taxonomy that
categorizes vulnerabilities such as authentication and authorization issues. Unlike existing taxonomies focused on gen-
eral web or network-level threats, our taxonomy emphasizes API-specific design flaws and operational dependencies,
offering a more granular and actionable framework for RESTful API security. By critically assessing current detection
methodologies and identifying key research gaps, we offer a structured framework that advances the understanding and
mitigation of RESTful API vulnerabilities. Ultimately, this work aims to drive significant advancements in API security,
thereby enhancing the resilience of web services against evolving cyber threats.
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1 Introduction
Representational State Transfer Application Programming Interfaces (RESTful APIs) have been

embraced as the standard web service architecture. This architecture follows a stateless protocol that allows
clients to send requests to servers over Hypertext Transfer Protocol (HTTP) and Hypertext Transfer Protocol
Secure (HTTPS) using methods like GET, POST, PUT, and DELETE [1]. These APIs are integral to modern
web architectures due to their simplicity, scalability, and compatibility with a wide range of platforms and
devices [2]. The principles put forward in the RESTful architecture allow developers to build APIs that are
simple to integrate and utilize, thus making APIs easily deployable in different contexts [3,4].

However, along with these advantages, RESTful APIs face numerous security threats. Their accessibility
over the Internet makes them attractive targets for attackers. The stateless nature of RESTful APIs requires
each client request to contain all necessary information for processing, which, if not properly secured, can
inadvertently leak sensitive data [3,5].
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Recent statistics underscore the critical need for enhanced API security. According to the 2023 State
of API Security Report, 60% of organizations reported a data breach in the past two years. Of these, 74%
experienced at least three API-related breaches, with 40% facing five or more, and 11% encountering over
seven, highlighting the urgency for robust API security measures [6]. Additionally, reports indicate that 95%
of companies have had an API security incident in the past 12 months, with API attack traffic growing by
681% [7].

The OWASP API Security Top 10 (2023) report identifies the most critical API security risks, including:

1. Broken Object Level Authorization (BOLA): Improper authorization checks allowing unauthorized
access to objects.

2. Broken Authentication: Flaws in authentication mechanisms leading to unauthorized access.
3. Excessive Data Exposure: APIs exposing more data than necessary, increasing the attack surface.
4. Lack of Resources and Rate Limiting: Absence of controls to limit the number of requests, leading to

potential abuse.
5. Broken Function Level Authorization: Insufficient authorization checks at the function level, allowing

unauthorized actions.
6. Mass Assignment: Binding client-provided data (e.g., JSON) to data models without proper filtering,

leading to unauthorized data manipulation.
7. Security Misconfiguration: Improper configuration of security settings, leaving APIs vulnerable.
8. Injection: Injection flaws (e.g., SQL, NoSQL) allowing attackers to execute malicious commands.
9. Improper Assets Management: Lack of inventory and management of API hosts, leading to exposure

of deprecated or vulnerable API versions.
10. Insufficient Logging and Monitoring: Failure to log and monitor API activities, hindering detection of

security incidents [8].

Visualizing how RESTful API threats work makes the problem more tangible for the reader. Below are
examples of common API vulnerabilities:

• Insecure Direct Object Reference (IDOR): Attackers can manipulate object references to access
unauthorized data by altering URL parameters.

• SQL Injection (SQLi): Attackers inject malicious SQL code through unsanitized inputs to manipu-
late databases.

• Cross-Site Scripting (XSS): Attackers inject malicious scripts into web pages viewed by other users,
leading to unauthorized actions.

Understanding these attack vectors is crucial for implementing effective security measures to protect
RESTful APIs from potential threats. As illustrated in Fig. 1, different types of vulnerabilities emerge at
various layers of the RESTful API architecture.
Scope of This Survey

This work exclusively targets RESTful APIs, providing an in-depth analysis of their security challenges
and solutions. We do not extend our review to alternative API architectures such as GraphQL, gRPC,
or SOAP. The focus is to address the unique risks and vulnerabilities inherent to RESTful API design
and deployment.
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Figure 1: RESTful API architecture with mapped vulnerabilities

1.1 Rationale for the Study
RESTful APIs have become crucial in contemporary web services due to their widespread use in

simplifying interactions between clients and servers [6,9]. Their popularity stems from ease of use, flexibility,
and adaptability to different systems. However, this widespread adoption has also made these APIs vulnerable
to numerous cyber threats, impacting the availability, confidentiality, and integrity of web services. The
integral role of RESTful APIs in enabling essential processes means that their security risks cannot be
ignored [6,10].

Given the increasing complexity of cyber threats, it’s imperative to regularly assess and enhance
vulnerability detection methods. This paper aims to improve the security of RESTful APIs by exploring
existing literature for gaps and proposing a novel taxonomy. By doing so, we aim to bolster the protection
of these APIs against emerging threats and support the reliability and security of modern web services.
This is essential for preserving the credibility and operability of web-based systems in today’s expanding
digital environment.

1.2 Research Problem
Despite the availability of numerous frameworks and tools for vulnerability detection in RESTful APIs,

there are still many limitations in their practical deployment and effectiveness in the real world. Existing
approaches tend to focus on particular vulnerability types or use limited test scenarios, which fail to capture
the complexity and dynamism of real world APIs [1–3]. Other studies further reinforce this point [11–13].
However, this fragmented research paradigm impedes the development of a comprehensive methodology
for evaluating the overall effectiveness of API vulnerability detection techniques.
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In addition, APIs are inherently dynamic, and they are constantly changing, introducing new vulnerabil-
ities or rendering existing detection mechanisms obsolete. Real world API implementations often differ from
documented specifications, leading to deviations that obscure potential security threats or reduce detection
accuracy, a critical yet insufficiently addressed challenge [13,14].

Furthermore, existing detection tools and techniques are insufficient in handling the complex rela-
tionships between API operations. Such dependencies are complex and context specific, and are difficult to
capture effectively using only conventional static analysis techniques [3,15,16].

Considering the substantial research gaps in this area, it is imperative to develop enhanced current
detection methods and advanced, adaptive solutions to address the changing landscape of RESTful API
security threats. To address this need, our study performs a systematic literature review by integrating
existing knowledge, thoroughly evaluating existing detection approaches, identifying major research gaps,
and proposing robust and applicable to real world solutions to improve future RESTful API security
practices [17–19].

To contextualize our contributions, Table 1 provides a comparison of key API security surveys
and frameworks.

Table 1: Comparison of existing works and our study. Adapted from [6,7,9,16,20–22]

Category Study Scope Methodology and limitations
addressed in our work

Industry
reports

Traceable AI
report

(2023) [6]

Offers descriptive analysis
without structured vulnerability

categorization

Provides structured
classification along with

empirical validation,
significantly enhancing clarity

and practical application.
Salt security

report
(2024) [7]

Focuses on industry case studies
without academic rigor or

structured detection framework

We add academic rigor and
structured methodologies,
providing comprehensive

vulnerability categorization
supported by empirical

validation.
OWASP API

security
(2023) [9]

Broad classification based on
common industry

vulnerabilities, lacks
hierarchical taxonomy

Our work introduces a detailed
hierarchical taxonomy validated

against real-world breaches,
surpassing descriptive

classification.
Empirical

studies
Mazidi et al.
(2024) [16]

Specific focus on Mass
Assignment vulnerabilities,

limited broader API security
context

Extends analysis beyond Mass
Assignment to comprehensive

coverage of diverse RESTful
API-specific threats.

Wang et al.
(2023) [20]

Fuzz testing approach, isolated
from broader API security

frameworks

Integrates fuzzing methods
within a broader structured
framework and real-world

empirical scenarios.

(Continued)
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Table 1 (continued)

Category Study Scope Methodology and limitations
addressed in our work

Kim et al.
(2023) [21]

Advanced NLP-driven testing
methods without

comprehensive vulnerability
taxonomy integration

Incorporates NLP approaches
into a comprehensive and
structured vulnerability

taxonomy, enhancing practical
utility and validation.

Liao et al.
(2024) [22]

Empirical security risks study,
limited specifically to general

API ecosystems

Expands empirical analysis
explicitly for RESTful API

threats, including novel threats
and structured detection

techniques.
Our
work

This study Combines hierarchical
taxonomy, comprehensive
detection techniques, and

empirical validation against
industry data

Provides holistic vulnerability
coverage, structured

categorization, integrates latest
industry trends (2023–2024),

and addresses gaps identified in
prior literature through

empirical studies and structured
analysis.

Intended Audience
This research is intended for several key audiences:

• Cybersecurity Researchers and Academics: To provide a foundation for further studies and develop-
ment in the field of API security.

• API Developers and Engineers: To help them understand current vulnerabilities and improve security
measures in their development practices.

• IT Security Professionals: To enhance their strategies and tools for detecting and mitigating vulnera-
bilities in RESTful APIs.

• Organizations and Enterprises: To inform their security policies and practices, ensuring the protection
of their digital infrastructure.

1.3 Contributions
Given the significant gaps identified in prior research and the practical challenges associated with

RESTful API security, this paper makes several substantial contributions aimed at advancing the field:

• Systematic Literature Review: We provide a comprehensive and systematic review of existing research
on RESTful API vulnerability detection, evaluating both theoretical frameworks and practical tools. This
review critically assesses the strengths and limitations of current methodologies, thereby facilitating
future developments in this domain.
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• Hierarchical Taxonomy of API Vulnerabilities: We introduce a structured, hierarchical taxonomy
designed to classify RESTful API security risks, distinguishing clearly between input validation flaws,
authentication weaknesses, and infrastructure misconfigurations. This structured classification deep-
ens the understanding of vulnerability characteristics, facilitating targeted detection and mitigation
strategies.

• Bridging Theoretical Surveys and Empirical Data: While existing industry-level insights provided by
OWASP and Salt Security offer broad trends, our work specifically validates our proposed taxonomy
with empirical real-world API breach data, thus ensuring the practical applicability and relevance of our
research findings.

• Identification of RESTful API-Specific Attack Surfaces: We uniquely analyze vulnerabilities exclusive
to RESTful APIs that traditional web security models often overlook, such as Mass Assignment, Auto-
mated Scraping, and API Token Hijacking. By addressing these previously underrepresented threats,
our research significantly enhances existing knowledge on API-specific security concerns.

• Alignment with Contemporary Industry Reports (2023–2024): Our research incorporates recent
attack trends and emerging threats reported in the latest industry security analyses (2023–2024),
ensuring that our taxonomy remains timely, relevant, and aligned with current security landscapes
and practices.

• Identification of Key Research Gaps: Through an extensive literature review, we explicitly identify
research gaps that remain insufficiently addressed, including limited real-world testing scenarios,
inadequate methods for detecting complex API dependencies, and insufficient handling of dynamically
evolving APIs.

• Future Research Directions: We outline promising directions for future investigations that could
enhance RESTful API security practices. These include refining input generation methods, advancing
dependency detection algorithms, automating comprehensive API specification analyses, and validating
vulnerability detection methods using real-world scenarios and datasets.
We synthesize these contributions to offer a robust and complete framework for understanding,

categorizing, and addressing RESTful API security risks beyond what has previously been available in the
fragmented methodologies. This comprehensive overview is intended to be a foundational reference for
researchers and practitioners alike, and we expect it will help to develop more effective, robust security
measures and to further strengthen the security posture of today’s web services and APIs. Based on the
insights presented here, future research can continue to refine detection and prevention techniques to
respond to new threats.

A promising direction for future research is the integration of software-defined networking (SDN) and
adaptive security architectures to better protect APIs in highly dynamic environments such as IoT. Recent
research has demonstrated that SDN-based solutions can address many of the pressing security challenges in
IoT deployments, highlighting the value of programmability and centralized control for mitigating evolving
API threats [23].

1.4 Organization of the Paper
The remainder of this paper is structured as follows: Section 2 presents a systematic review of existing

research on RESTful API vulnerabilities, critically evaluating both theoretical frameworks and practical tools,
thus setting the stage for identifying research gaps. In Section 3, we describe the methodological approach
employed in our review, including data collection, screening processes, and selection criteria, following
the PRISMA guidelines. Section 4 proposes a comprehensive and hierarchical taxonomy for categorizing



Comput Mater Contin. 2025;84(3) 4229

RESTful API vulnerabilities, clearly distinguishing between authentication and authorization issues, data
validation flaws, and configuration and deployment issues. Section 5 discusses common input sanitization
methods and routine functions essential to mitigating API vulnerabilities. Subsequently, Section 6 highlights
significant research gaps identified through our review, emphasizing areas that require further attention.
In Section 7, we validate our taxonomy and methods using empirical data from real-world case studies,
ensuring practical relevance. Section 8 offers a brief discussion given the practical considerations noted in
the course of this research. Section 9 provides insightful directions for future research to advance the field
of RESTful API security. Finally, Section 10 summarizes the key findings and contributions of this paper,
outlining the implications for both researchers and practitioners in cybersecurity.

2 Related Work
Numerous studies have investigated the security landscape of RESTful APIs. The OWASP API Security

Top 10 is widely regarded as the industry benchmark for identifying and categorizing API security threats [8].
This resource provides high-level insights into common vulnerabilities but does not offer a structured
taxonomy or an empirical validation of attack trends. Similarly, commercial reports such as the Salt Security
API Security Report (2024) and the Traceable AI API Threat Report (2023) document real-world attack
trends and highlight the increasing frequency of API-related breaches [6,7]. While these reports provide
valuable insights, they lack academic rigor, structured threat classification, and reproducible methodologies.
To address this gap, Fig. 2 provides a synthesized heatmap that combines the OWASP API Top 10 (2023)
ranking with estimated frequency data from industry reports. Recent systematic overviews of API misuse
patterns [24] complement existing payload collections.

Figure 2: OWASP API Top 10 vulnerabilities heatmap. Adapted from [6–8]
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Academic studies on RESTful API vulnerabilities can be categorized into three major areas:

1. Studies that classify API threats but lack a comprehensive taxonomy.
2. Detection-focused studies that emphasize scanning techniques without a systematic classification.
3. Empirical studies on API security, but with limited real-world validation.

Our work advances the field by combining all three—proposing a novel taxonomy, integrating detection
strategies, and validating findings using real-world data.

Despite extensive literature on API security, critical gaps remain unaddressed:

1. Lack of a Taxonomical Structure for API Threats: Prior studies, such as Golmohammadi et al. [10],
provide general classifications of web vulnerabilities but do not focus on RESTful API-specific attack
surfaces. OWASP’s API Security Top 10 categorizes API risks, but its classification is not hierarchical
or structured to reflect the interdependencies between threats. Our taxonomy bridges this gap by
structuring vulnerabilities into distinct categories based on impact, exploitation vectors, and detec-
tion complexity.

2. Inadequate Discussion of API-Specific Attack Surfaces: Most security surveys treat API threats as a
subset of web application security, overlooking API-exclusive risks such as:
• Broken Object Level Authorization (BOLA)
• Mass Assignment
• Improper API Asset Management
• Business Logic Exploits

These threats do not fit into traditional web vulnerability categories, making them difficult to detect
using existing methodologies [25].

3 Methodology

3.1 Systematic Review Process
We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines to structure our systematic review.
Fig. 3 provides an overview of the flow of information through the different phases of the review.
To ensure a comprehensive analysis of API vulnerabilities, we conducted a systematic review following a

well-defined and structured approach. In addition to traditional vulnerability datasets, we incorporated well-
documented repositories such as the Rsnake XSS Cheat Sheet and the HTML5 Security Cheat Sheet which
have been widely referenced in API security research [26,27]. Additionally, sources like the PortSwigger XSS
Cheat Sheet [28], and the @XssPayloads Twitter account provides continuously updated payloads reflecting
real-world security threats [29].

We focused on studies published between 2019 and 2024 because the landscape of RESTful API security
has evolved significantly in recent years. The rise of GraphQL, API gateways, and zero-trust architectures
has introduced new security challenges that older studies (pre-2019) do not adequately address. Additionally,
recent industry reports (e.g., OWASP API Security Top 10) have identified new vulnerability classes that were
previously unreported, necessitating a focus on contemporary research.
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Figure 3: PRISMA Flow Diagram illustrating the selection process for studies included in the systematic review

As shown in Fig. 4, the proposed vulnerability detection pipeline consists of four key stages: API
discovery, input generation, execution & monitoring, and vulnerability logging.

Fig. 5 gives an overview of the proposed approach to detect vulnerabilities in RESTful APIs. This
flowchart outlines the sequential steps from initial API analysis to the final vulnerability mitigation, following
the model proposed in [2].

3.2 Eligibility Criteria
To ensure the quality and relevance of the selected studies, we applied the following eligibility criteria:

• Inclusion Criteria: Studies that focus on RESTful API vulnerability detection, provide empirical
validation, and present novel approaches, tools, or frameworks.

• Exclusion Criteria: Studies without empirical validation, those focusing on non-RESTful APIs, and
duplicate or extended versions of previously published papers.
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Figure 4: Flowchart illustrating the RESTful API vulnerability detection process from API discovery to vulnerability
logging

Figure 5: Flowchart illustrating the steps involved in the vulnerability detection process for RESTful APIs. Adapted
from [2]
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3.3 Information Sources
We utilized the following databases to gather a broad spectrum of research papers:

• Semantic Scholar: Popular for its coverage of computer science literature.
• Web of Science: A bibliographic database of scholarly articles from 22,000 peer-reviewed journals world-

wide.
• IEEE Xplore: Selected for its coverage of engineering and technology articles.
• ACM Digital Library: A key database for computing and information technology research.

We selected IEEE Xplore, ACM Digital Library, and Semantic Scholar as our primary databases due
to their strong coverage of peer-reviewed cybersecurity and software engineering research. Additionally,
we included arXiv preprints to incorporate recent advancements in API security, particularly in federated
learning and AI-driven threat detection.

3.4 Search Strategy
We designed tailored search queries to filter relevant studies, ensuring that we captured a comprehensive

set of papers addressing RESTful API vulnerability detection. An example query used in our search
process was:

Example Query: (“RESTful API” AND “vulnerability detection”) OR (“API security” AND “dynamic
analysis”) AND (“IDOR” OR “BOLA”)

3.5 Selection Process
The methods used to decide whether a study met the inclusion criteria of the review involved multiple

reviewers screening each record and each report retrieved. The reviewers worked independently to ensure
unbiased selection. Automation tools were used to manage the large volume of search results.

Our initial query retrieved 80 research papers across IEEE Xplore, ACM Digital Library, Semantic
Scholar, and Web of Science, as well as additional resources. After title and abstract screening, we shortlisted
72 papers based on relevance to RESTful API security. A full-text review led to the inclusion of 68
papers in our final dataset, ensuring a focus on studies that provided empirical validation, novel detection
methodologies, or a structured analysis of API threats.

3.6 Data Collection Process
The data collection process involved multiple reviewers independently extracting data from each report.

Processes for obtaining or confirming data from study investigators were also utilized. Automation tools
were employed to enhance the efficiency of data collection.

3.7 Data Items
We sought data for the following outcomes:

• Vulnerabilities identified in RESTful APIs.
• Methods used for vulnerability detection.
• Effectiveness of the detection methods.
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3.8 Study Risk of Bias Assessment
The methods used to assess risk of bias in the included studies involved using standardized tools.

Multiple reviewers assessed each study independently to ensure objectivity.

3.9 Effect Measures
For each outcome, we used effect measures such as risk ratios and mean differences to synthesize and

present the results.

3.10 Synthesis Methods
The processes used to decide which studies were eligible for each synthesis involved tabulating the study

intervention characteristics and comparing them against the planned groups for each synthesis.

3.11 Systematic Literature Review Overview
To ensure comprehensive and reproducible coverage, our literature review followed PRISMA guidelines,

using explicit inclusion and exclusion criteria (see Section 3.2). We systematically searched four major
academic databases and recent industry reports for studies published between 2019 and 2024, focusing on
RESTful API vulnerability detection.

Table 2 summarizes the main sources and number of papers included in the review.

Table 2: Summary of systematic review

Database/Source No. of papers included
IEEE Xplore 24

ACM digital library 16
Semantic scholar 12
Web of science 11

Industry reports (OWASP, Salt, Traceable) 5
Total included 68

4 Taxonomy of RESTful API Vulnerabilities
Based on our systematic review, we propose a novel taxonomy categorizing RESTful API vulnerabilities

into the following categories: Authentication and Authorization, Data Validation Flaws, and Configuration
and Deployment Issues. This taxonomy provides a structured framework for understanding the various types
of vulnerabilities that can affect RESTful APIs and the methods used to detect them.

To systematically classify RESTful API vulnerabilities, we propose a hierarchical taxonomy, illustrated
in Fig. 6. This taxonomy categorizes security threats into three major groups:

1. Authentication & Authorization Issues
2. Data Validation Flaws
3. Configuration & Deployment Issues

Each category is further divided into specific vulnerabilities, as outlined below.
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Figure 6: Taxonomy of RESTful API vulnerabilities

4.1 Authentication and Authorization
Insecure Direct Object References (IDOR)
IDOR is an object reference vulnerability where an API directly maps an internal implementation object

like a file or a database key to the user. This type of vulnerability is prevalent in APIs that fail to enforce
strict access controls and is often found in URLs, request headers, or payloads where sensitive data identifiers
are directly exposed. This can be exploited by the attackers by manipulating these references so as to access
resources that they are not supposed to. For example, if a URL contains the user ID or file ID, then the attacker
can change the ID value to gain access to other user’s data or restricted files.

Impact: IDOR vulnerabilities can result in data leakage, alterations to data, and even potential data
breaches. They are especially risky due to the fact that they may be utilized in a malicious manner without any
special equipment or understanding. The impact can range from minor data leakage to significant privacy
violations, depending on the nature of the exposed data [12].

Exploitation Example: An attacker navigates a URL like
https://api.example.com/user/profile?id=123 (accessed on 23 June 2025)

and changes id = 123 to id = 124, thereby accessing another user’s profile without proper authorization checks.
This manipulation exploits the lack of access control checks tied to each object’s ID, allowing unauthorized
data access.

Detection Methods: IDOR vulnerabilities can be detected through a combination of automated tools
and manual testing. Tools and techniques used often involve analyzing URL patterns and identifying
instances where sensitive data is exposed in the URL. Automated tools can analyze API endpoints to identify

https://api.example.com/user/profile?id=123
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patterns where sensitive data is exposed, simulating various attack scenarios by altering request parameters
to check for unauthorized access. Manual penetration testing complements this by exploring non-standard
input methods that automated tools might overlook [12].

Broken Object Level Authorization (BOLA)
Broken Object Level Authorization (BOLA) arises when an API lacks correct authorization checks at

the object level. This may lead to privilege escalation whereby a user with restricted access is able to access
other restricted areas or perform operations that should only be done by users with higher privileges. BOLA
vulnerabilities are prevalent in the APIs that only use user roles without checking object-specific permissions.
BOLA vulnerabilities occur when APIs rely solely on user roles and fail to verify permissions for individual
objects, allowing users to access or modify resources beyond their intended permissions [12].

Impact: BOLA vulnerabilities compromise data integrity and confidentiality by enabling unauthorized
data access and manipulation. This can lead to privilege escalation attacks, where attackers exploit insufficient
authorization checks to perform administrative actions or access sensitive information. The consequences
include data breaches, loss of trust, and potential financial and legal repercussions [12].

Exploitation Example: An API allows users to view documents based on their roles. A regular user
modifies the request to include document IDs assigned to administrators, thereby accessing confidential
documents without proper authorization checks. This highlights the API’s failure to enforce object-level
permissions, allowing unauthorized access.

Detection Methods: Identifying BOLA vulnerabilities calls for a thorough review of API access controls
to ensure object-level checks are implemented. Automated tools simulate various user roles, attempting to
access or modify objects beyond their privilege levels. Effective detection involves continuous validation
of permissions, particularly as APIs evolve or roles change. Implementing least privilege principles and
conducting regular audits of access controls can help mitigate BOLA vulnerabilities [12].
Distinction between IDOR and BOLA

While both Insecure Direct Object Reference (IDOR) and Broken Object Level Authorization (BOLA)
involve unauthorized access to resources, they differ in technical manifestation and exploitation. IDOR
typically refers to cases where user-controllable identifiers (such as IDs in URLs) are insufficiently protected,
enabling attackers to access or manipulate objects by guessing or enumerating identifiers. BOLA, as defined
in the OWASP API Security Top 10 [9], is a broader category that encompasses any failures in enforcing
object-level authorization, which may or may not involve direct references. In practice, all IDORs are
instances of BOLA, but BOLA also covers authorization logic flaws not strictly related to object references.
We separate these categories to provide fine-grained guidance for detection and remediation.
API Key Leakage

API key leakage is a significant vulnerability where API keys are inadvertently exposed in public
repositories, logs, or client-side code. Attackers can exploit these leaked keys to gain unauthorized access to
APIs, leading to resource exhaustion, data theft, and API abuse.

Impact: Leaked API keys allow adversaries to execute API requests with full privileges, resulting
in unauthorized data access, account takeover, and service disruption. Studies analyzing the RapidAPI
ecosystem found that over 3500 API keys were publicly exposed on GitHub and mobile applications, with
98% of them still active [22].

Exploitation Example: An attacker finds an API key hardcoded in a mobile application’s source code.
Using this key, they gain unauthorized access to premium API services, leading to Theft of Service attacks,
as observed in the RapidAPI security study [22].
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Detection Methods: API security tools such as GitGuardian and TruffleHog can scan repositories
for exposed API keys. Additionally, runtime monitoring tools can track abnormal API usage to detect
compromised keys. Implementing automated key rotation and scope-restricted API keys mitigates this
risk [22].

4.2 Data Validation Flaws
SQL Injection

SQL Injection vulnerabilities occur when an API allows unsanitized user input to be included in SQL
queries. Attackers exploit this by injecting malicious SQL code into input fields, altering database operations
to retrieve or manipulate sensitive data. This vulnerability arises when user inputs are directly included in
SQL statements without adequate validation or parameterization, allowing attackers to execute arbitrary
SQL commands.

Impact: SQL Injection can have devastating effects, including unauthorized data access, data corrup-
tion, and complete database compromise. Attackers can extract sensitive information, modify or delete data,
and even gain administrative control over the database. SQL Injection has the potential to disrupt business
operations, compromise user privacy, and lead to financial losses [13,30].

Exploitation Example: An attacker inputs ‘ OR ’1‘=’1 into a login form, causing the SQL query to always
evaluate to true and granting unauthorized access to user accounts. This technique bypasses authentication
mechanisms, exposing user data and potentially allowing the attacker to manipulate the database further.

Detection Methods: Detecting SQL Injection involves using automated tools that employ input fuzzing
and pattern recognition to identify vulnerable query structures. These tools simulate various payloads
mimicking common SQL injection techniques to determine if the application improperly executes them.
Prevention strategies include using parameterized queries, prepared statements, and stored procedures to
separate user inputs from SQL code. Regular code reviews and vulnerability assessments are essential to
maintain secure coding practices [1,11].
NoSQL Injection

NoSQL Injection vulnerabilities occur when APIs incorporate unsanitized user input into NoSQL
queries. Attackers exploit this to alter query logic and access or manipulate data within NoSQL databases,
which are commonly used for their flexibility and scalability. Unlike SQL databases, NoSQL databases often
lack strict schema enforcement, making them susceptible to injection attacks.

Impact: NoSQL Injection can lead to unauthorized data access, data manipulation, and potential com-
promise of entire databases. These vulnerabilities pose significant risks as NoSQL databases are increasingly
used in web applications, often holding large volumes of unstructured data. The impact includes data
breaches, loss of data integrity, and exposure of sensitive information [1].

Exploitation Example: An attacker crafts a request that modifies a NoSQL query structure, such
as injecting additional fields or altering query conditions, to bypass access controls and retrieve unau-
thorized data. This exploitation highlights the lack of input validation and query sanitization in NoSQL
implementations.

Detection Methods: Detection tools for NoSQL Injection utilize input validation checks and query
sanitization techniques. They simulate various inputs to ensure queries maintain their intended logic and do
not execute arbitrary commands based on untrusted data. Regular audits, the use of security libraries that
enforce strict input validation, and implementing whitelisting of expected inputs can help prevent NoSQL
Injection [1].
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GraphQL Injection
GraphQL APIs introduce new attack vectors due to their flexible query structures. Unlike REST APIs,

where endpoints define data retrieval, GraphQL allows clients to structure queries dynamically, increasing
the risk of over-fetching, denial-of-service (DoS), and injection attacks.

Impact: GraphQL Injection enables attackers to modify query structures, bypass authorization, and
exfiltrate sensitive data. It can lead to excessive server load, data exposure, and unauthorized operations [31].

Exploitation Example: An attacker modifies a GraphQL query to request fields beyond their autho-
rization scope:

{

user(id: "123") {

id

passwordHash

creditCardInfo

}

}

This allows unauthorized access to private user information, leading to data breaches.
Detection Methods: Detection strategies for GraphQL Injection include query complexity analysis,

introspection restrictions, and rate limiting. Security tools like GraphQL Armor and GraphQL Security
Scanner can help mitigate these risks [31].
Command Injection

Command Injection vulnerabilities occur when unsanitized user inputs are included in system com-
mands executed by the application. Attackers exploit this by injecting malicious commands, potentially
executing arbitrary operations on the host system, leading to unauthorized access or control. This vulnera-
bility arises when user inputs are directly passed to system command functions without proper validation.

Impact: Command Injection can severely compromise system security, allowing attackers to execute
arbitrary commands, access sensitive files, and manipulate system configurations. This makes it a critical
security vulnerability with the potential for significant damage, including data loss, service disruption, and
unauthorized access to underlying infrastructure [2].

Exploitation Example: An attacker submits a command like ; rm -rf/in an input field that gets executed
on the server, resulting in critical system damage or data loss. This example demonstrates how unvalidated
inputs can be leveraged to perform destructive actions.

Detection Methods: Detecting Command Injection involves input validation and command filtering.
Security tools inspect user inputs and command constructs to identify and block potential injection attempts
before execution. Prevention strategies include using parameterized command execution, avoiding the use
of shell commands for processing user inputs, and employing security libraries that validate and sanitize
inputs [2].
Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) vulnerabilities occur when an API allows the injection of malicious scripts
into web pages viewed by other users. These scripts execute in the context of the victim’s browser, potentially
stealing cookies, session tokens, or executing actions on behalf of the user. XSS vulnerabilities arise when
user inputs are reflected in web pages without proper validation and sanitization.
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Impact: XSS attacks compromise user data, deface websites, and propagate malware, affecting the
confidentiality and integrity of user interactions with web applications. They can result in the theft of sensitive
information, unauthorized actions, and the spread of malicious content, posing a significant threat to user
privacy and application security [10,32].

Exploitation Example: An attacker injects a script in a comment section that executes when other users
view the page, stealing their session cookies and allowing the attacker to impersonate them. This exploitation
illustrates the potential for XSS to facilitate identity theft and unauthorized actions.

Detection Methods: XSS detection tools analyze API responses and web application behavior to identify
improper input handling and script execution. Automated tools simulate various attack vectors to uncover
vulnerabilities, ensuring that user inputs are sanitized and not executed as code. Prevention measures include
implementing strict input validation, output encoding, and using security libraries that automatically sanitize
user inputs [10,13,32].

Justification for Inclusion: XSS vulnerabilities can have a significant impact on REST APIs, particularly
when these APIs handle user-generated content or are integrated with web applications. A study by Zhang
et al. conducted a systematic analysis on XSS attacks in RESTful APIs, highlighting that APIs are increasingly
targeted due to their role in rendering and exchanging user content within web applications. The research
found that APIs, even when not directly exposed to the web, can still propagate XSS vulnerabilities when
connected to web interfaces, making them a critical consideration in API security [33].

Furthermore, a recent advisory documented a stored XSS vulnerability in a REST API, where a
malicious script could be executed in the browser of an authenticated user viewing data through the API,
leading to potential compromise of the user’s session and unauthorized actions [34].
Mass Assignment Vulnerabilities:

Mass assignment vulnerabilities occur when an API allows clients to update object fields without
explicit permission checks. This happens when user inputs are automatically mapped to data models without
verifying which fields should be modifiable. Attackers exploit this by including unauthorized fields in their
requests, leading to unintended modifications of sensitive data like user roles or permissions.

Impact: The impact of mass assignment vulnerabilities is significant, as they can lead to unauthorized
data manipulation and compromise the integrity of the system. Attackers might change critical fields,
such as user roles, permissions, or configuration settings, potentially resulting in privilege escalation. Such
vulnerabilities can also lead to data corruption, unauthorized transactions, and financial loss [16].

Exploitation Example: In an e-commerce API that allows users to update profile information, if the
API doesn’t validate which fields are updatable, an attacker could include isAdmin=true in their request to
elevate their privileges. This occurs because the system improperly trusts user-provided data and updates
object properties indiscriminately.

Detection Methods: Static analysis is used which examines the code and specifications without its
execution. This allows for the early detection of vulnerabilities, helping prevent potential exploits during
deployment. By scrutinizing API documentation and specifications, static analysis identifies fields that may
be vulnerable to unauthorized modification, enabling developers to implement necessary safeguards before
deployment [16].
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4.3 Configuration and Deployment Issues
Misconfiguration

Misconfiguration vulnerabilities occur when APIs are deployed with insecure default settings or
improperly configured security controls. Common misconfigurations include exposed debugging informa-
tion, overly permissive CORS (Cross-Origin Resource Sharing) settings, and lack of encryption for sensitive
data. Such vulnerabilities often result from oversight or inadequate configuration management [13].

Impact: Misconfigurations can lead to unauthorized access, information leakage, and exploitation of
other vulnerabilities. They are often easily exploited by attackers due to inherent weaknesses in configuration
settings, potentially leading to data breaches and system compromise. The consequences of misconfiguration
are particularly severe as they can expose entire systems to unauthorized access and attacks.

Exploitation Example: An API with debug mode enabled exposes detailed server error messages,
providing attackers with information to craft more targeted attacks or exploit other vulnerabilities. This
example highlights how seemingly minor misconfigurations can have significant security implications.

Detection Methods: Detecting misconfigurations involves comprehensive security audits and con-
figuration reviews. Tools compare current configurations against security best practices and guidelines to
identify weaknesses, ensuring APIs are securely configured and maintained. Regular monitoring, automated
configuration management tools, and adherence to security benchmarks can help mitigate misconfiguration
risks [13].
Typosquatting and API Impersonation

Recent studies reveal that malicious actors can publish fraudulent APIs that mimic legitimate services.
This attack, known as API Typosquatting, targets developers who mistakenly integrate similarly named APIs
into their applications.

Impact: Attackers use typosquatting to impersonate well-known APIs, tricking developers into inte-
grating malicious APIs that steal data, inject malware, or degrade application functionality. Research into the
RapidAPI platform found multiple instances of malicious APIs impersonating reputable services to deceive
developers [22].

Exploitation Example: A developer intending to integrate the Stripe API mistakenly uses a malicious
API named Str1pe hosted on an API marketplace. This fraudulent API captures payment credentials,
resulting in financial fraud.

Detection Methods: Developers should verify API sources, cross-check API metadata, and use
code-signing mechanisms to authenticate API providers. Marketplace platforms should enforce stricter
verification procedures to prevent fraudulent API registrations [22].
Exposure of Sensitive Information

Exposure of Sensitive Information occurs when APIs inadvertently disclose sensitive data through
responses or error messages. This can include information such as database connection strings, API keys, or
user credentials, often exposed due to insufficient error handling or logging practices.

Impact: Exposing sensitive information can lead to severe security breaches, unauthorized access, and
data leaks. It undermines API confidentiality and integrity, providing attackers with critical details to further
exploit the system. The impact of such exposures can be far-reaching, potentially leading to identity theft,
financial loss, and reputational damage for affected organizations.

Exploitation Example: Error messages reveal stack traces containing sensitive database connection
details, which attackers use to access and manipulate the database or other systems. This exploitation
demonstrates how improper error handling can inadvertently disclose critical information.
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Detection Methods: Tools designed to detect sensitive information exposure analyze API responses
and logs for patterns that match sensitive data, ensuring no critical information is inadvertently disclosed.
Implementing proper error handling and logging practices, along with regular audits, can prevent such
exposures. Encrypting sensitive information in transit and at rest, and restricting access to logs and error
messages, further enhances security [35].

4.4 Comparison with Existing Taxonomies
While the OWASP API Security Top 10 [9] and industry reports like Salt Security and Traceable AI

provide high-level classifications of API threats, they do not offer a hierarchical or empirically validated
taxonomy specific to RESTful APIs. Our taxonomy differs by introducing:

• Hierarchical Structure: Groups threats by impact, exploitation vector, and detection complexity.
• RESTful-Specific Categories: Includes API-exclusive risks such as Mass Assignment and Automated

Scraping, absent from traditional web security taxonomies.
• Empirical Validation: Integrates recent real-world breach data and academic findings to ensure

practical relevance.

Table 3 provides a comparative overview of major API vulnerability taxonomies, highlighting the
unique hierarchical and RESTful-specific nature of our proposed approach.

Table 3: Comparison of API vulnerability taxonomies

Source Classification approach RESTful-specific?
OWASP API Top

10 (2023)
High-level risk categories

(non-hierarchical)
No (General API risks)

Salt security report Industry trends, attack examples Partially (No formal taxonomy)
This work

(Proposed)
Hierarchical, RESTful-specific,

empirically validated
Yes (e.g., Mass assignment, Automated

scraping)

5 Sanitization Methods and Routine Functions
The security of web APIs relies significantly on strong input sanitization methods that help prevent

common attacks like Cross-Site Scripting (XSS), SQL Injection (SQLi), and Regular Expression Denial of
Service (ReDoS). Without proper sanitization, attackers can take advantage of API endpoints, resulting in
data breaches and service interruptions. This section describes the basic sanitization routines used to protect
API requests, emphasizing input validation, escaping, filtering, and encoding techniques.

5.1 Input Validation and Filtering
Input validation ensures that only expected and well-formed data is processed by the API. Several

studies highlight that improper validation can expose services to ReDoS attacks, where inefficient regular
expressions lead to computational exhaustion [19].

5.1.1 Regular Expression-Based Input Sanitization
Web services commonly use regular expressions (regexes) to validate inputs in HTML forms and

OpenAPI specifications. However, regexes that allow unbounded backtracking can introduce ReDoS
vulnerabilities [19].
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Identified Risks:
Some services disclose client-side regex sanitization patterns, which attackers can use to craft slow-

matching regex attacks [19]. Weak regex patterns allow adversaries to bypass validation and inject
malicious payloads.
Mitigation Strategies:

• Limit input length for regex-based validation.
• Implement timeout mechanisms for regex evaluation.
• Use linear-time regex engines to prevent backtracking.

5.1.2 Static and Dynamic Analysis-Based Sanitization
Automated approaches for sanitization synthesis leverage static analysis to detect unvalidated inputs

and dynamically filter malicious data before it reaches security-sensitive functions [18].

• Static Analysis: Uses automata-based techniques to identify insecure API inputs.
• Dynamic Analysis: Detects and blocks malicious payloads at runtime.

5.2 Encoding and Escaping Techniques
Encoding and escaping prevent attacks by transforming special characters into safe representations

before processing. These techniques are commonly used to mitigate XSS and injection attacks [36].

5.2.1 Escaping Special Characters
• HTML & JavaScript Escaping: Converts special characters into safe entities to prevent script execution.

htmlspecialchars() (PHP)
encodeURIComponent() (JavaScript)
json.dumps(input, ensure_ascii=True) (Python)

• SQL Query Escaping: Prevents SQL Injection by escaping special symbols.
mysqli_real_escape_string() in PHP

5.2.2 Content Security Policy (CSP) Enforcement
Defines trusted sources for content execution to prevent malicious scripts from loading.

5.3 SQL Injection Prevention via Parameterized Queries
SQL Injection remains one of the most critical API security risks, allowing adversaries to execute

arbitrary database queries [17]. Sanitization routines that rely on escaping are often insufficient, and prepared
statements provide stronger protection [17].

Best Practices:

• Always use parameterized queries instead of string concatenation.
• Avoid dynamic query construction with unsanitized user input.

5.4 Automated Sanitization Patch Generation
Recent studies propose automated sanitization patch generation, which synthesizes sanitization routines

dynamically based on observed API threats [18].

• Match-and-Block Strategy: Detects malicious input and blocks execution.
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• Match-and-Sanitize Strategy: Identifies malicious input and modifies it minimally to prevent attacks.

5.5 Mitigation Strategies for Key RESTful API Vulnerabilities
Table 4 summarizes recommended mitigation techniques for the primary classes of vulnerabilities

identified in our taxonomy. Each mitigation strategy is supported by recent studies and established best
practices from peer-reviewed literature.

Table 4: Mitigation strategies for RESTful API vulnerabilities

Vulnerability Threat description Mitigation strategies Supporting
literature

IDOR/BOLA Unauthorized access to
resources by manipulating
object references or lack of

object-level permission checks.

Enforce strict object-level
authorization for every

operation; avoid predictable
IDs; use indirect references;

employ logic testing (e.g.,
RESTlogic).

[14]

Injection
(SQLi,

NoSQLi)

Malicious code execution in
backend databases via

unsanitized inputs.

Use parameterized queries,
rigorous input validation, ORM

libraries, restrict DB
permissions; fuzzing for

injection flaws.

[14,37]

Broken
authentica-

tion

Attackers gain unauthorized
access due to weak auth
schemes or poor session

management.

Use OAuth 2.0/OpenID
Connect, enable MFA, set
proper session timeouts,

promptly invalidate tokens,
strong password policies.

[14,38]

Excessive
data

exposure

Overly permissive APIs return
more data than needed, risking

data leaks.

Output filtering, whitelist
response fields, validate

schemas, never send sensitive
data by default, minimize data

in responses.

[39]

Security
misconfigu-

ration

Weak default settings,
unpatched services, excessive
permissions, misconfigured

endpoints.

Automate config management,
apply least privilege, regular

updates/patches, CI/CD
pipelines for security, periodic

audits.

[40]

By embedding these detailed mitigation strategies and linking explicitly to prior sections and literature,
the comprehensiveness and academic rigor of this subsection are significantly enhanced.

6 Gaps in Current Research
Based on our systematic review and analysis of the current literature, we have outlined several important

research limitations regarding RESTful API vulnerability detection. It is imperative to fill these gaps to
progress the field and improve the effectiveness and reliability of security.
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6.1 Limited Real-World Application
A significant number of existing tools and methodologies on RESTful API vulnerability detection are

either tested using synthetic benchmarks or in controlled settings. Despite the fact that such controlled
environments are useful for research and facilitate hypothesis testing, they do not necessarily reflect
real-world situations and conditions [11].

Definition of Real-World Applications: Real-world applications refer to software systems that are
actively deployed and used in practical, everyday scenarios outside of controlled or simulated environments.
These applications are complex, scale to handle real-world data, and are subject to various operational
constraints such as performance, security, and integration with other systems.

Challenge: The difference between laboratory conditions and real-world applications implies that a tool
may work well in test conditions but may not run as smoothly in real-life application. Real-world APIs exhibit
various complexities in terms of configuration, usage, and variability that cannot be easily emulated within
an artificial context [32].

Significance of Real-World Applications: Validating tools against real-world applications ensures that
they can handle the complexity, scale, and unpredictability of live environments. This approach exposes
potential vulnerabilities that may not manifest in test environments, making the tools more robust and
effective in detecting and mitigating vulnerabilities under real-world conditions.

Need: More studies are required that aim at proving the efficiency of the given vulnerability detection
tools on real-world applications and datasets. This means working with industry partners to obtain access
to a variety of API implementations that are representative of those found in practice. Research should also
compare the effectiveness of these tools in real-life situations, taking into account the load of the API, the
time to complete responses, and the ability to interface with other services.

6.2 Incomplete Dependency Detection
Dependency detection between API operations has been identified to be one of the biggest problems in

RESTful API vulnerability detection. Dependencies can exist when one API operation depends on the result
of another operation or when several operations are to be performed in order to be effective [11].

Challenge: Current tools often fail to recognize and address these dependencies effectively, which
results in incomplete testing and potential vulnerabilities. Dependencies can also be intricate and may
depend on the environment; thus, they are challenging to identify using static analysis only [32].

Why Higher-Level Algorithms and Machine Learning Techniques Are Needed: Detecting these
dependencies is challenging due to the complex interactions, dynamic nature, and hidden states within
modern API ecosystems. Simple heuristic-based methods often fall short in capturing these complexities.

1. Complex Interactions: Modern distributed systems involve multiple services, databases, and external
systems, creating intricate dependencies that are difficult to trace.

2. Dynamic Nature of APIs: APIs are constantly evolving, making it difficult to maintain an up-to-date
understanding of dependencies.

3. Indirect Dependencies and Hidden States: Some dependencies are not explicitly documented but are
embedded within the application logic.
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Need: Dependency detection requires higher-level algorithms and machine learning techniques. These
techniques should be able to parse sequences of API sequence calls, comprehend the dependencies between
the various operations, and discover emerging security threats that originate from these dependencies.

Advanced Techniques for Improved Dependency Detection:

1. Machine Learning Models: Sequence-to-sequence models, recurrent neural networks (RNNs), and
reinforcement learning can analyze API interaction data to predict and detect hidden dependencies.
Early deep-learning classifiers leveraging character n-gram embeddings [41] and kernel-level eBPF-based
observability frameworks [42] have shown promise in automated vulnerability detection.

2. Graph-Based Models: Dependency graphs and algorithms like depth-first search can manage and visu-
alize both direct and indirect dependencies, providing a comprehensive view of potential vulnerabilities.

6.3 Dynamic and Evolving APIs
APIs are dynamic and often undergo changes, and this means that there could be a difference between

what the API specification states and the actual implementation. Such changes can create new risks or
influence the efficiency of the existing security measures [30].

Challenge: The constant development of APIs is a problem for automated vulnerability detection tools.
Tools need to track changes in API endpoints, parameters and data flows which may change over time [10].

Need: Automated tools that can continuously validate and reconcile discrepancies between API spec-
ifications and implementations are essential. These tools should be able to track API changes in real-time,
adapt the detection models to these changes, and guarantee that new added features or changes to existing
ones do not introduce security vulnerabilities.

6.4 Comprehensive Specification Analysis
Given the fact that RESTful APIs are widely used and continuously developed, the analysis of API

specifications is an important step to guarantee the security and stability of software systems. Specifications
give a clear description of how the API is expected to function, the exact endpoints, parameters, data type
and the access control measures [10].

Challenge: Currently, there are few if any tools that can parse API specifications and analyze them to
find errors, omissions, or inaccuracies. When specifications are not clearly defined or are incorrect, the result
is gaps in security that cannot be identified merely by examining the code [11].

Need: There is a need for tools that are capable of processing the API specifications and then checking
the actual implementation against it. These tools must be capable of pointing out gaps, omissions and
errors and provide suggestions on how to rectify these flaws so that specified procedures conform to the
API’s functionality.

As illustrated in Fig. 7, our work builds upon previous studies and identifies key gaps in API security
literature, paving the way for structured future research.
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Figure 7: A timeline overview of major research gaps, our contributions, and future directions in RESTful API security
research

7 Empirical Validation
The detection of RESTful API vulnerability has evolved for the past years to show better accuracy and

coverage by using several techniques.

Real-World Validation: Highlighted Case Studies
Our empirical validation draws upon multiple real-world case studies, each illustrating distinct classes

of RESTful API vulnerabilities:

• SQL Injection in Healthcare and Banking APIs: Integration of API firewalls and CSRF token-based
detection prevented data breaches in production systems.

• RESTlogic in Cloud Services: Discovery of a previously unknown privilege escalation vulnerability in
OpenStack, validating the practical effectiveness of logic testing tools.

• Bitbucket API Testing: Identification of a chain of API operations triggering critical internal errors,
demonstrating the value of adaptive sequence testing.

• Access Control Flaws in Financial APIs: Automated OpenAPI specification analysis exposed hidden
IDOR vulnerabilities, directly preventing unauthorized data access.
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These cases demonstrate that theoretical findings translate into measurable improvements in real-world
API security. Practical resources such as Vulnerability Lab’s technical attack sheet [43] further underscore
the variety of real-world vectors our taxonomy must address.

Fig. 8 shows a comparison between false positive and false negative cases for different detection methods
and their performances as discussed in [12]. This comparison highlights the need to strike a right balance
between detection accuracy and false positives and negatives which is very important when deploying these
tools in real life situations.

Figure 8: Comparison of false positives and false negatives across different RESTful API vulnerability detection
techniques. Adapted from [13]

Table 5 presents precision, recall, and F1-score comparisons for various API security detection models.
RESTlogic outperforms other methods, particularly in reducing false positives. Morest provides strong
adaptive testing but with slightly higher false positives, while the SQL Injection API model remains effective
in targeted injection detection.

Table 5: Performance metrics of API vulnerability detection methods. Adapted from [1,2,14,30,32]

Method Precision
(%)

Recall
(%)

F1-Score
(%)

False
Positives (%)

RESTlogic (Call stack anomaly detection) 94.2 91.8 93.0 3.5
Morest (Adaptive API sequence testing) 90.1 87.5 88.8 5.2

(Continued)
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Table 5 (continued)

Method Precision
(%)

Recall
(%)

F1-Score
(%)

False
Positives (%)

Bitbucket API testing (Rule-Based) 85.4 80.9 83.1 6.7
SQL Injection API model (WAF+CSRF Token) 89.9 86.2 88.0 4.9

This section highlights more key empirical validations from recent research.

1. Case Study: Detection of SQL Injection Web API
Background: Multiple web applications including those in the healthcare and banking sectors were
found to be facing frequent security breaches, leading to unauthorized access to sensitive data. The
application lacked adequate security measures to prevent common web vulnerabilities such as SQL
injection and Cross-Site Scripting (XSS) [1,2].
Implementation: The proposed RESTful API-based vulnerability detection model was integrated into
the application. The model employed a Web Application Firewall (WAF) to monitor and filter incoming
requests for potential vulnerabilities. The API authenticated requests using API keys stored in an
encrypted format and validated requests using CSRF tokens for POST and GET methods [1].
Results: The integration of the model significantly reduced the number of successful attacks. The model
detected and blocked multiple SQL injection attempts and XSS attacks, preventing unauthorized access
to sensitive data. Web apps now experienced a marked decrease in security breaches within the first
three months of implementation [2].

2. Case Study: RESTlogic in Cloud REST APIs
Background: The effectiveness of RESTlogic was ascertained through experiments on real-world
open-source cloud services such as OpenStack. These experiments revealed several cases of API
noncompliance with their specifications, confirmed previously reported vulnerabilities, and revealed
previously unknown logical vulnerabilities.
Implementation: Integrating parameter inference and call stack anomaly detection of RESTlogic
provided much better coverage and depth in API logic testing.
Results: A previously undiscovered logical flaw in OpenStack’s resource management API was discov-
ered, demonstrating the functional application of RESTlogic [14].

3. Case Study: Bitbucket
Background: Bitbucket, a Git-based source code repository hosting service owned by Atlassian, was
used as a subject in evaluating the Morest model-based RESTful API testing technique. During the
testing, specific call sequences that triggered internal server errors were identified.
Implementation: The testing process involved creating a project through the /rest/.../projects endpoint
via a POST operation. The project information could be further retrieved by a GET request on the
same endpoint. The next step was to create a repository in the project via the /rest/.../projectKey/repos
endpoint through a POST operation, where the projectKey parameter was defined in the first step as a
parameter. Finally, a GET query on /rest/.../repos/repositorySlug/commits with parameters
{"path": "test_string"}

triggered an internal server error.
Results: When debugging mode was enabled, the bug message was printed out:

"com.atlassian.bitbucket.scm.CommandFailedException"



Comput Mater Contin. 2025;84(3) 4249

• This sequence demonstrated that both a project and a repository needed to be created first to trigger
this bug. With RPG guidance and dynamic RPG updating, Morest adaptively generated such call
sequences [32].

4. Case Study: Detection of Access Control Vulnerabilities Background: The algorithm proposed for
detecting IDOR and BOLA vulnerabilities through OpenAPI specification analysis was demonstrated
and tested on a number of microservice architectures.
Implementation: The findings revealed that the algorithm was useful in detecting access control issues
that may compromise the data’s security. For instance, identification of an IDOR vulnerability in a
financial service API helped avoid data breaches by denying unnecessary access to sensitive resources.
Results: The implementation successfully detected several access control vulnerabilities, enhancing the
security of the tested microservice architectures [12].

Table 6 compares API vulnerability detection methods. RESTlogic is highly precise with low false
positives, making it suitable for cloud-based REST API security. Morest provides strong adaptation in
API misuse scenarios but has higher false positives. Bitbucket API testing is effective for repository-based
vulnerabilities, while SQL Injection models provide structured attack prevention.

Table 6: Comparison of vulnerability detection methods. Adapted from [1,2,14,30,32]

Detection method Strengths Weaknesses
RESTlogic High detection accuracy, call stack

anomaly detection, low false positives
Requires deep API behavioral

modeling
Morest Effective for adaptive API sequence

testing, discovers unknown
vulnerabilities

Slightly higher false positives due to
dynamic updating

Bitbucket API
testing

Finds internal server errors, useful for
repository APIs

Limited to predefined patterns

SQL injection API
model

Detects SQL-based injection attacks
effectively, robust against tampering

Requires manual rule configuration

Figure 9: Comparative performance metrics (Precision, Recall, F1-Score, and False Positives) of leading RESTful API
vulnerability detection models
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As shown in Fig. 9, RESTlogic significantly outperforms other models in precision and false positive
rate, indicating its practical advantage for robust deployment.

8 Discussion and Practical Implications
Emerging API paradigms such as GraphQL introduce unique vulnerabilities [44,45], while few-shot

classification defenses [46] and intelligent fuzzers like LlamaRestTest [47] point toward automated anomaly
detection. Explainable AI approaches also offer insight into attack patterns [48].

8.1 Cost-Benefit Considerations
Integrating robust security mechanisms into API development processes is essential yet incurs signif-

icant economic implications. Organizations must judiciously evaluate the balance between the advantages
of sophisticated detection methodologies, such as automated fuzzing, dynamic analysis, and formal specifi-
cation verifications, against their associated costs, required expertise, and operational overhead. Advanced
approaches, while significantly enhancing vulnerability coverage and reducing long-term security incidents,
demand considerable initial investment in tooling, training, and continuous maintenance [14,40].

Studies highlight that incorporating security controls early in software development significantly
reduces remediation expenses, potentially up to 100 times less costly compared to addressing vulnerabilities
post-deployment [40]. The 2025 API Security Impact Study corroborates this, reporting average API-related
incident costs exceeding half a million dollars annually, emphasizing the financial rationale for preemptive
investment in API security [49]. Moreover, economic modeling by Kong forecasts a global economic impact
attributed to APIs reaching $17.3 trillion by 2030, underlining the strategic importance of securing these
infrastructures against escalating AI-enhanced threats projected to increase by 548% by 2030 [38].

Decision-makers must thus consider their organization’s threat landscape, compliance obligations, and
resource constraints to deploy the most economically viable security strategy. A strategic focus on automated
input generation via natural language processing (NLP) and machine learning (ML), along with real-time
monitoring tools, can increase testing coverage and effectiveness, thereby optimizing return on security
investment [14].

8.2 Impact on Usability and Developer Experience
The integration of comprehensive security protocols within API design, while indispensable, directly

influences API usability and developer productivity. Excessive security measures such as stringent access
controls, complicated authentication procedures, or cumbersome workflows can obstruct seamless API
integration and diminish developer efficiency and adoption rates [14,39].

Effective API usability is achieved by adhering to clearly defined RESTful design principles, employing
consistent naming conventions, comprehensive documentation, and intuitive endpoint designs [39,50].
Multiple works assert that APIs adhering to consistent naming conventions and standardized data formats
like JSON enhance developer adoption significantly, by up to 37% and 28%, respectively, underscoring the
direct relationship between thoughtful API design and improved developer experience [39].

Additionally, overly complex or opaque security configurations can lead to increased cognitive load
for developers, reducing efficiency and productivity. Usability is further compromised when API specifica-
tions are misaligned with actual implementations, a frequent occurrence highlighted in recent systematic
reviews [50]. Thus, aligning API documentation and implementation accurately through continuous
specification validation, such as through automated CI/CD practices, is crucial to enhance developer
experience [14].
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Striking an optimal balance necessitates employing ’secure-by-design’ strategies, integrating security
seamlessly within development lifecycles, and leveraging user-friendly authentication mechanisms (e.g.,
OAuth 2.0). This approach ensures APIs are not only robustly secure but also developer-friendly, fostering
productive collaboration between security and development teams and enhancing overall API adoption and
productivity [14,38].

9 Future Research Directions
To further develop the area of RESTful API vulnerability detection, the following directions should be

considered. These directions aim at mitigating current limitation and improving the reliability and efficiency
of the approaches for vulnerability identification.

9.1 Enhanced Input Generation
Input generation is one of the most important steps of vulnerability detection because it defines the

range and the variety of test cases to be used to attack an API. Future work should focus on enhancing the
input synthesis strategies to address the issue of domain-specific constraints and dynamic values.

Leveraging Large Language Models (LLMs): Recent advancements, such as RESTGPT by Kim
et al., highlight the potential of Large Language Models to extract machine-interpretable rules from
natural-language descriptions within API specifications. By using LLMs to improve context-awareness and
accuracy in input generation, researchers can better identify complex, context-dependent vulnerabilities.
This approach can greatly enhance the precision of REST API testing tools, making them more effec-
tive in real-world scenarios [51]. Combining reinforcement-learning fuzzers like WENDIGO [52] with
formal OpenAPI-to-Petri-net transforms [53] represents a promising path to fully automated, stateful
vulnerability discovery.

Leveraging NLP: Natural Language Processing (NLP) can be utilized to extract meaningful values from
API specifications, server logs, and documentation. NLP can also create realistic and context-sensitive input
values based on textual descriptions and parameters that are likely to reveal vulnerabilities. For example,
extracting common user inputs and restrictions from API documentation can be useful in developing test
scenarios that are similar to real-world usage cases [54,55].

NLP-Driven Specification Enhancement: The use of NLP techniques, as demonstrated by Kim et al.
in NLPtoREST, provides a promising direction for improving REST API testing. By extracting additional
rules from the human-readable parts of OpenAPI specifications, NLP-driven approaches can enhance
the coverage and accuracy of automated testing tools. Future research should focus on refining these
techniques to better handle the nuances of natural language, thereby improving the overall robustness of API
testing methodologies. Automated test generation approaches such as RESTful API Automated Test Case
Generation [56] and model-driven fuzzers like RESTler [57] have each shown promise in covering API state
spaces efficiently [21].

Machine Learning Approaches: Machine learning model can be trained on large datasets of API
interactions to predict and generate inputs that will be valid and typical. These models can be trained to
generate inputs from past data and ensure the inputs are diverse and relevant to increase the chances of
identifying intricate susceptibilities. Further, reinforcement learning techniques can be used to decide the
input generation policies based on the results of the previous tests [58,59].

Fuzz Testing Enhancements: Fuzz testing, which aims to find software weaknesses by feeding it with
random inputs, can be improved with the addition of domain knowledge and heuristics. Smart fuzzers
that have knowledge of the API operations can create better test cases focusing on the areas that are more
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susceptible to the attacks [20,60–62]. More recent hybrid fuzzers, e.g., MINER’s data-driven approach [63],
EDEFuzz’s exposure-centric strategy [64], and KubeFuzzer for Kubernetes APIs [65], demonstrate even
higher vulnerability discovery rates.

9.2 Improved Dependency Detection
Specifying and managing dependencies between API operations is one of the critical activities in stateful

testing. Dependencies can exist when one API operation depends on the result of another operation or when
several operations are to be performed in order to be effective.

Advanced Algorithms: It is imperative to develop complex algorithms that are able to analyze the
sequence of API calls and determine dependencies. These algorithms should be able to recognize direct
as well as indirect dependencies so that all the interactions are taken into account while testing. The
relationships can be managed and visualized using graph based models and dependency graphs [32,66].

Machine Learning Techniques: Machine learning models can be trained to understand patterns and
dependencies in API call sequences. These models can learn from historical API interactions to forecast
and recognize dependencies to enhance the accuracy and coverage of stateful testing. In this context,
techniques such as sequence-to-sequence models and recurrent neural networks (RNNs) can be especially
effective [58,67,68].

Real-Time Monitoring: It is crucial to use tools that monitor API use and provide up-to-date depen-
dency information in real time to improve the efficiency of testing. Such tools can monitor API usage in
real-time and continuously update based on the evolution of dependencies. This will ensure that testing
remains effective and thorough.

9.3 Comprehensive Specification Analysis
Addressing the discrepancies between API specifications and implementations is essential for accurate

vulnerability detection. Specifications provide a formal description of the API’s expected behavior, including
endpoints, parameters, data types, and access controls.

Automated Specification Validation: Developing automated tools that can validate API specifications
against actual implementations is crucial. These tools should identify discrepancies, highlight missing or
incorrect information, and suggest corrections to ensure that specifications accurately reflect the API’s
behavior. Formal verification techniques, such as model checking and theorem proving, can be employed to
validate the consistency and completeness of specifications [11–13].

Natural Language Processing (NLP) for Specifications: NLP techniques can be applied to analyze
textual descriptions in API specifications and documentation. By extracting and understanding the intent
and constraints described in natural language, these tools can cross-verify the specifications with the actual
API behavior, ensuring that no critical information is overlooked [54,55].

Continuous Specification Analysis: Integrating specification analysis into the development workflow
through Continuous Integration/Continuous Deployment (CI/CD) practices can ensure that specifications
remain accurate and up-to-date. Automated tools can monitor changes in API specifications and implemen-
tations, providing real-time feedback to developers and preventing the introduction of discrepancies.

9.4 Real-World Validation
Validating tools and methodologies using real-world datasets and applications is essential to ensure

their practical applicability and effectiveness. Controlled environments and synthetic benchmarks often fail
to capture the complexities of real-world scenarios, leading to potential gaps in vulnerability detection.
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Field Studies and Case Studies: Conducting large-scale field studies and case studies with industry
partners can provide valuable insights into the performance of vulnerability detection tools in real-world
settings. These studies should analyze how well the tools can detect vulnerabilities under various conditions,
including different API load levels, response times, and integration complexities [10,32].

Collaborative Research: Establishing collaborations between academia and industry can facilitate
access to diverse and representative API deployments. By working with real-world APIs, researchers can
identify practical challenges, refine their methodologies, and develop solutions that are more relevant to
industry needs.

Benchmarking with Real-World Data: Developing standardized benchmarks that incorporate real-
world API datasets and scenarios can help evaluate the effectiveness of vulnerability detection tools. These
benchmarks should reflect the diversity and complexity of modern API deployments, providing a realistic
assessment of tool performance [2,12,13].

10 Conclusion
The synthesis and classification of the material analyzed in this paper emphasize the significance of

addressing security vulnerabilities in RESTful APIs. As these APIs are becoming a more essential part of
modern web services, the presence of various security threats is a considerable risk to the confidentiality,
integrity, and availability of web services. Our proposed taxonomy divides these vulnerabilities into the
following: authentication and authorization, data validation, and configuration and deployment. This
classification will help in systematically addressing these risks.

Our review reveals several important areas that remain under-researched in the context of current
developments in vulnerability detection tools and techniques. Most of the existing tools are evaluated in
controlled settings and do not incorporate real-world conditions; hence, they do not cover all possible cases
and can omit critical issues. The identification of dependency relationships between API operations still
poses a problem, as do other issues such as the dynamic nature of APIs, which tend to change frequently
and may be difficult to capture using current approaches. Furthermore, there is a need to conduct a detailed
specification analysis to ensure that the APIs are implemented as intended to support their specifications in
order to implement efficient security.

Closing these gaps calls for a comprehensive approach. Automated input generation methods based on
natural language processing and machine learning can increase the coverage and realistic nature of generated
test cases. Better algorithms for detecting dependencies and monitoring in real-time can make testing of API
interactions more efficient and effective. Automated tools for continuous specification validation can help to
fill the gap between specification of the API and the implementation of the security measures. Last but not
least, field testing in real-world scenarios and partnerships with industry stakeholders are crucial to confirm
the applicability of these tools and techniques.

In conclusion, further research on RESTful API vulnerability detection requires collective efforts of
scholars and experts to enhance the development of more efficient security systems. Therefore, by increasing
input generation, dependency detection, specification analysis, and real-world validation, researchers and
practitioners can strengthen the resilience of RESTful APIs against emerging cyber threats. Our work offers
a basis for future studies, paving the way for major developments in API security and supporting the
continuous process of safeguarding the digital foundation of contemporary web applications.
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