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ABSTRACT: Early detection of Forest and Land Fires (FLF) is essential to prevent the rapid spread of fire as well as
minimize environmental damage. However, accurate detection under real-world conditions, such as low light, haze,
and complex backgrounds, remains a challenge for computer vision systems. This study evaluates the impact of three
image enhancement techniques—Histogram Equalization (HE), Contrast Limited Adaptive Histogram Equalization
(CLAHE), and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection
model in identifying fires and smoke. The D-Fire dataset, consisting of 21,527 annotated images captured under diverse
environmental scenarios and illumination levels, was used to train and evaluate the model. Each enhancement method
was applied to the dataset before training. Model performance was assessed using multiple metrics, including Precision,
Recall, mean Average Precision at 50% IoU (mAP50), F1-score, and visual inspection through bounding box results.
Experimental results show that all three enhancement techniques improved detection performance. HE yielded the
highest mAP50 score of 0.771, along with a balanced precision of 0.784 and recall of 0.703, demonstrating strong
generalization across different conditions. DBST-LCM CLAHE achieved the highest Precision score of 79%, effectively
reducing false positives, particularly in scenes with dispersed smoke or complex textures. CLAHE, with slightly lower
overall metrics, contributed to improved local feature detection. Each technique showed distinct advantages: HE
enhanced global contrast; CLAHE improved local structure visibility; and DBST-LCM CLAHE provided an optimal
balance through dynamic block sizing and local contrast preservation. These results underline the importance of
selecting preprocessing methods according to detection priorities, such as minimizing false alarms or maximizing
completeness. This research does not propose a new model architecture but rather benchmarks a recent lightweight
detector, YOLOv11, combined with image enhancement strategies for practical deployment in FLF monitoring. The
findings support the integration of preprocessing techniques to improve detection accuracy, offering a foundation for
real-time FLF detection systems on edge devices or drones, particularly in regions like Indonesia.
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1 Introduction
The Eaton Fire, more widely known as the LA Wildfire—a forest fire incident that occurred in early

2025—has so far claimed 30 lives and destroyed up to 15,000 buildings. This incident highlights the
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importance of early detection and mitigation of forest and land fires (hereafter referred to as FLF). As of
this year, FLF has burned 126 hectares of land across Indonesia, causing significant ecological and economic
impacts [1]. Whether caused by extreme weather and drought or by human activities like uncontrolled
burning to clear land, FLF can result in environmental degradation, increased greenhouse gas emissions,
and health issues due to the resulting smoke.

Early detection of forest and land fires is crucial for mitigating and preventing such disasters. Small
sources of fire must be detected quickly before they spread and turn into large-scale wildfires. Delays in
detection can accelerate fire spread. An effective monitoring system for FLF can enhance awareness and
preparation in reducing post-disaster impacts. In turn, this will also support the sustainability of ecosystems
for the future.

By utilizing deep learning models, Table 1 shows that various studies have developed early detection
systems for fire and smoke, for example, using YOLOv4 to YOLOv8, as well as other variants. However,
among these systems, there are still two main aspects that need improvement—detection speed and accuracy,
especially in recognizing fire and smoke. The optimization of YOLOv5 up to YOLOv11 for real-time detection
has been explored in several studies [2–4]. Some researchers have also combined the YOLO model with other
techniques (such as filter pruning [5]) to reduce computational load on low-power devices.

Table 1: Summary of FNF detection methods in the literature

Author Method Contribution Limitation
Goncalves
et al. [2],

2024

YOLOv5, 7, and 8
models

Detection speed &
smoke localization

Detection of small areas with
visual disturbances (fog, clouds,

sun)
Wicaksono [3],

2024
YOLOv8 model Real-time detection

efficiency & accuracy
Effectiveness in real-time field

conditions
Venâncio
et al. [5],

2022

Combination of
YOLOv4 model and

pruning filter

Computational load
(83.6%) & memory

(83.86%) efficiency on
low-power devices

Accuracy of detecting multiple
fire points in complex scenarios

Pan
et al. [6],

2021

Distillation approach
in CNN

Lightweight Faster
R-CNN framework

Segmentation accuracy
compared to pixel labels

Perrolas
et al. [7],

2022

Segmentation-
classification with

SqueezeNet + U-Net
and quad-tree

Accuracy in
segmenting small fire

areas & fire
localization

Effectiveness on other image
types & accuracy in large fire

areas being roughly segmented

Tingting Li
et al. [8],

2022

Adversarial fusion
network (AFN) &

domain-adversarial
neural network

(DANN)

Optimized detection
of small smoke in
complex scenarios

Detection accuracy in complex
scenarios & data variability due

to lack of feature detail

Li et al. [9],
2025

YOLOv8 model
optimization with

SE-ResNeXt &
Focal-SIoU

Optimized detection
of varying fire sizes

High computational cost for
low-power devices

(Continued)
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Table 1 (continued)

Author Method Contribution Limitation
Muksimova
et al. [10],

2024

Miti-DTER with
modified AlexNet

backbone & HE data

Effective feature
extraction & training

stability

Real-time detection
effectiveness & non-fire

scenarios
Farhan

et al. [11],
2022

YOLOv4 model & HE
data

Accuracy & speed of
fire detection

Detection stability is affected by
input resolution

Ayumi
et al. [12],

2024

Xception &
MobileNet models
and CLAHE data

Fire and smoke
detection accuracy

Detection of data variations in
complex real-time scenarios

The novelty of this research does not lie in proposing a fundamentally new detection architecture
or image enhancement technique, but rather in conducting a comprehensive empirical evaluation of
the recently launched YOLOv11 model combined with selected image enhancement techniques such as
Histogram Equalization (HE) [11], Contrast Limited Adaptive Histogram Equalization (CLAHE) [12], and
the DBST-LCM CLAHE method proposed by Chakraverti et al. [13].

Prior works in forest fire detection have focused on various improvements across model design, training
strategies, and preprocessing methods. For example, Pan et al. [6] developed a lightweight Faster R-CNN
via distillation, Venâncio et al. [5] optimized YOLOv4 pruning for low-power devices, and Muksimova
et al. [10] integrated Miti-DETR with HE to improve feature extraction and training stability. Other studies
enhanced detection speed and real-time efficiency using YOLOv5, YOLOv7, YOLOv8 [2,3], and SE-ResNeXt
backbones [9].

However, challenges remain in balancing computational efficiency, detection accuracy, and robustness
under complex real-world conditions, especially with smoke and small fire regions amid environmental
disturbances like fog and varying illumination. The recent work of [14] introduces an adaptive hierarchical
multi-headed CNN with a modified convolutional block attention mechanism to improve aerial forest fire
detection precision. Although this method shows promising accuracy, its high computational complexity
may limit practical real-time deployment on resource-constrained platforms.

In contrast, this study prioritizes evaluating YOLOv11’s performance when combined with different
image enhancement methods, including HE [11], CLAHE [12], and DBST-LCM CLAHE [13], to improve
detection precision and robustness while maintaining computational efficiency suitable for real-time wildfire
detection. The empirical results highlight YOLOv11’s strong potential as an efficient single-shot detector, with
DBST-LCM CLAHE showing superior precision by adaptively enhancing local contrast without excessive
noise amplification, advancing beyond traditional HE and CLAHE techniques.

Thus, this work contributes valuable benchmarking and practical insights into how state-of-the-
art detection models can be effectively paired with image enhancement preprocessing to address forest
and land fire detection challenges in realistic environments, complementing existing research focused on
architectural innovations. Unlike recent methods that focus primarily on model complexity and attention
mechanisms [10–12], our study explores a lightweight yet effective combination of modern object detection
and preprocessing techniques to achieve a balance between accuracy and real-time feasibility.
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The structure of this report is as follows: the theoretical foundation of this study will be explained in
Related Work. The materials and methods used will then be discussed in Section 3, Methodology. Section 4—
Results and Discussions—will present the experimental results, analysis, comparisons, and insights related to
FNF detection. Finally, Section 5, Conclusions, will summarize the findings and explore potential directions
for future research.

2 Related Work

2.1 Forest and Land Fires (FLF) Detection
The process of identifying and recognizing early indicators of FLF, such as localized temperature spikes

and the appearance of smoke from fire sources, through the use of visual analysis technology is commonly
referred to as FLF detection. By analyzing images to assess the size and density of fire and smoke in forest
and land areas, FLF detection has become a critical component of early disaster warning systems and global
forest conservation. Indonesian FLF Prevention Patrol System [15] serves as a real-world example of early
FLF detection implementation.

Li et al., in their study, combined AFN and DANN models to improve the detection accuracy of small-
sized smoke in complex forest scenarios [8]. This method showed significant improvements in both detection
accuracy and generalization ability, particularly in reducing false alarms. Such capability is critical to ensure
detection systems can identify potential fires even from the early appearance of smoke before it spreads and
becomes uncontrollable. This is especially crucial in tropical forests, like those in Indonesia, where vegetation
is dense.

In addition, the YOLO model has become one of the most widely adopted techniques for developing
real-time FLF detection systems [16]. Utilizing YOLOv5, v6, and v8 for smoke localization, Goncalves
et al. [2] still encountered challenges in detecting small fires under visually disturbed conditions caused by
haze and sunlight. Caixiong Li et al. [9] further explored YOLOv8’s capability in recognizing varying fire
sizes, although the method required high computational resources. This can hinder FLF detection efficiency
in real-time scenarios with limited computing power.

On the other hand, Venâncio et al. [5] addressed this issue by combining YOLOv4 with pruning filters,
which demonstrated YOLO’s strong potential in FLF detection. However, this still needs further testing
under underexplored data conditions. A clear example would be maximizing early-stage fire detection when
smoke or fire visuals are faint and scattered, while simultaneously avoiding false alarms. To support effective
early warning systems and FLF mitigation, developing an approach that can maintain accuracy under such
conditions becomes highly crucial.

2.2 Histogram Equalization (HE)
Histogram Equalization (HE) is an image enhancement technique that improves visual quality by

equalizing contrast through the redistribution of pixel intensity values. It has been successfully applied
in medical and forestry imaging, particularly in improving Signal-to-Noise Ratio (SNR) metrics [11,17].
However, HE has limitations in scenes with uneven lighting, where global adjustments may fail to enhance
local details.

To overcome this, Adaptive Histogram Equalization (AHE) was introduced, operating locally on sub-
regions of the image. Yet, AHE often excessively amplifies noise. CLAHE (Contrast Limited Adaptive
Histogram Equalization) improves upon AHE by applying a clip limit to the histogram, thus preserving visual
stability while enhancing local contrast [18]. CLAHE is particularly useful in handling varying illumination
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levels and textured backgrounds, making it more suitable for complex forest scenes compared to traditional
HE or Retinex-based methods.

Recent studies have also explored hybrid techniques such as Fuzzy Contrast Enhancement (FCE) and
learning-based histogram models to further improve detail visibility in low-resolution or noisy images [19].
Applications in plant disease detection have demonstrated that HE and CLAHE can improve classification
accuracy by clarifying subtle patterns and textures during preprocessing [20,21].

To address dynamic scene complexity and preserve fine details, DBST-LCM (Dynamic Block Size
Technique-Local Contrast Modification) was developed. This method adapts enhancement parameters by
dynamically selecting block sizes based on image features and applying localized adjustments. It then
performs CLAHE, followed by a feedback-driven quality check to ensure contrast clarity and sharpness
in complex backgrounds [13]. Unlike conventional methods, DBST-LCM provides both adaptability and
structure-aware enhancement, making it especially effective for detecting subtle smoke or fire signatures in
challenging FLF conditions.

These three techniques—HE, CLAHE, and DBST-LCM—were chosen for this study due to their
progressive improvements in enhancing visual cues critical for fire and smoke detection under varying illu-
mination and environmental conditions. Their performance will be evaluated comprehensively to determine
their suitability for real-time FLF detection.

2.3 YOLOv11
YOLOv11 is the latest evolution in the YOLO (You Only Look Once) architecture series, developed to

improve real-time object detection by enhancing both accuracy and computational efficiency. Key innova-
tions in this version include the C3K2 block and the C2PSA attention module, which are designed to optimize
feature extraction and attention to critical image regions. These improvements allow YOLOv11 to achieve
better inference speed and precision compared to its predecessors—YOLOv8, YOLOv9, and YOLOv10—
without significantly increasing model complexity. In this research, the official open-source implementation
of YOLOv11 provided by Ultralytics (available at https://docs.ultralytics.com/models/yolo11/, accessed on
17 June 2024) has been adopted to ensure reproducibility and consistency with the original architecture.

Here are the key features of YOLOv11: (1) Efficient Feature Extraction with the C3K2 Block: The C3K2
block is an enhancement of the Cross Stage Partial (CSP) architecture used in previous versions. By using
two small convolutions (3 × 3 kernel) instead of one large convolution, the C3K2 block maintains feature
extraction performance while reducing the number of parameters and computational load [22]. (2) Improved
Spatial Attention with C2PSA: C2PSA (Cross Stage Partial with Spatial Attention) is a new module that
introduces a spatial attention mechanism to help the model focus more on major areas in the image, such as
small objects or partially occluded objects. This improves the model’s sensitivity to spatial variations in the
image [23]. (3) Multi-Scale Feature Combination through SPPF: Like previous versions, YOLOv11 retains
the Spatial Pyramid Pooling Fast (SPPF) module, which combines features from various scales to enhance
the detection of both small and large objects [24]. (4) CBS Blocks for Inference Stability: YOLOv11 also uses
a Convolution-BatchNorm-SiLU (CBS) arrangement in the head section to ensure stable and effective data
flow, supporting more accurate bounding box prediction and classification [23].

As part of the Single Shot Detector (SSD) architecture family, YOLOv11 performs object detection in
a single forward pass, eliminating the need for region proposal stages found in two-stage detectors like
Faster R-CNN. This makes YOLOv11 highly efficient and well-suited for real-time applications, including
wildfire detection, where rapid response is critical. Combined with its enhanced modules—such as C3K2,
C2PSA, and SPPF—YOLOv11 achieves robust performance in detecting fire and smoke under challenging

https://docs.ultralytics.com/models/yolo11/
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conditions like low light, varied object scales, and partial occlusion. These improvements make it a robust
and practical solution for early forest and land fire monitoring systems, particularly when deployed in real-
time surveillance setups using UAVs (drones) or edge devices in high-risk areas such as peatlands or remote
conservation forests.

3 Methodology

3.1 D-Fire Dataset
Focused on effective early detection of fire and smoke in real-time conditions, this experiment is based

on real images representing fire and smoke events from various environmental conditions. These include
scenarios with only fire, only smoke, a combination of both, and negative examples without fire or smoke
but with visual elements that might be misinterpreted. Based on these four scenarios, Venancio et al. [25]
developed the D-Fire dataset, as outlined in Table 2. D-Fire consists of 21,527 labeled images categorized
accordingly. Although the fire category contains fewer images, it has a higher annotation density, with an
average of 2.52 fire objects per image. In contrast, smoke objects in the smoke and fire-and-smoke categories
have an average of 1.13 annotations per image. In total, the dataset includes 26,557 bounding boxes: 14,692
labeled as fire and 11,865 as smoke, as shown in Table 3.

Table 2: The distribution of images per scenario category in the D-Fire dataset

Scenario Description of scenario Image
Fire Images containing only fire 1164

Smoke Images containing only smoke 5867
Fire and smoke Images containing both fire and smoke 4658

None Images containing neither fire nor smoke 9838
Total of images 21,527

Table 3: Number of annotations and density per image in the D-Fire dataset

Object category Bounding box Average per-image
Fire 14,692 2.52

Smoke 11,865 1.13
Total 26,557

To support variation, the images were collected from several sources, including internet searches, legal
fire simulations at the Technological Park of Belo Horizonte (Brazil), surveillance camera footage from
Universidade Federal de Minas Gerais (UFMG), and Serra Verde State Park [26]. Additionally, some syn-
thetic images were generated using montage techniques by overlaying artificial smoke onto green landscape
backgrounds with photo editing software to simulate real forest conditions. Fig. 1 visually represents the
diversity within the dataset, highlighting different instances of fire and smoke along with their corresponding
ground-truth labels. The dataset captures a broad spectrum of scene types—such as forests, parks, and
semi-urban environments—as well as variations in camera angles, smoke density, and lighting conditions.
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Figure 1: D-Fire dataset instances

This diversity allows for a comprehensive evaluation of image enhancement methods, especially in
challenging scenarios such as diffused smoke, reduced visibility, and fluctuating lighting conditions. As a
result, D-Fire is particularly well-suited for testing contrast-based techniques aimed at enhancing feature
clarity in complex visual environments.

3.2 Experiment Setting
The D-Fire dataset is initially divided into two parts with an 80:20 ratio for training and testing. We

then combined these two folders before randomly splitting the dataset again into a 70:20:10 ratio for training,
validating, and testing. Afterward, we applied 3 image enhancement methods and categorized our dataset
into 3 groups: X Dataset, Y Dataset, and Z Dataset. X Dataset consists of images that were applied to HE
(Histogram Equalization), which works by equalizing the pixel intensity distribution in the image to flatten
the image contrast. The Y dataset contains images that have been applied to CLAHE (Contrast Limited
Adaptive HE). Improving upon HE, CLAHE divides the image into smaller blocks and limits contrast
amplification to avoid excessive noise in the same areas. Finally, the Z Dataset consists of images that have
been applied DBST-LCM CLAHE (Dynamic Block Size Technique-Local Contrast Modification), where,
before CLAHE, a combination of noise reduction based on shift transformation (DBST) and local contrast
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modification (LCM) is applied. Fig. 2 shows examples of images that have undergone image enhancement
with (a) HE, (b) CLAHE, and (c) DBST-LCM CLAHE.

Figure 2: Examples of image enhancement methods with (a) HE, (b) CLAHE, and (c) DBST-LCM CLAHE

We implemented the YOLOv11x variant for forest and land fire detection, utilizing a configuration of
depth_multiple = 1.00, width_multiple = 1.50, and max_channels = 512. These values were not the result
of empirical tuning but were adopted directly from the official Ultralytics YOLOv11 model configuration
as the standard settings for the YOLOv11x variant. This ensures consistency with the original reference
implementation and benchmark results. The model processes 640 × 640 × 3 input images through a deep
convolutional pipeline. It features down-sampling stages via alternating Conv and C3 modules, which
progressively reduce spatial resolution while increasing feature depth. The SPPF block aggregates multi-scale
context before passing features to the neck, where they are unsampled and concatenated to enhance semantic
richness. Final detection heads operate at resolutions of 80 × 80, 40 × 40, and 20 × 20 to detect small,
medium, and large-scale objects, respectively. The architecture’s combination of C3K2, SPPF, and C2PSA
modules improves feature extraction efficiency and attention precision, capabilities particularly valuable for
detecting subtle visual cues such as smoke. Fig. 3 illustrates the research workflow that is based on YOLOv11
architecture with customized depth, width, and max channels [22].

Model training was conducted on Google Collaboratory using an NVIDIA A100-SXM4-40GB GPU.
The training process spanned 100 epochs with a batch size of 6 and an input resolution of 640× 640 pixels. The
selection of these hyperparameters was based on hardware availability and training stability considerations,
in line with practices found in related studies [25].
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Figure 3: Research workflow
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3.3 Training Result
Table 4 shows the results of training the YOLOv11x model on the D-Fire dataset, which has been

processed using three different image enhancement techniques: Histogram Equalization (HE), CLAHE, and
DBST-LCM CLAHE. During the training process, X Dataset (HE) achieved the best performance with an
mAP50 score of 0.771, followed by Z Dataset (DBST-LCM CLAHE) with 0.770, and Y Dataset (CLAHE)
with 0.759. These results provide an initial indication that the HE method offers strong support in the object
detection model training process, even when compared to more complex methods like DBST-LCM CLAHE.

Table 4: Training results of the D-Fire dataset with YOLOv11x

Class Images Instances
HE (X Dataset) CLAHE (Y Dataset) DBST-LCM CLAHE

(Z Dataset)

P R mAP50 P R mAP50 P R mAP50
Smoke 2127 2419 0.834 0.791 0.84 0.822 0.79 0.833 0.839 0.788 0.846

Fire 1167 2993 0.735 0.615 0.703 0.704 0.6 0.685 0.741 0.605 0.694
All 4305 5412 0.784 0.703 0.771 0.763 0.695 0.759 079 0.697 0.77

The evaluation of detection results is based on the Intersection over Union (IoU) value, which calculates
the overlap ratio between the predicted box and the ground truth box. The formula can be seen in Eq. (1):

IoU =
Areapred ∩ Areag t

Areapred ∪ Areag t
(1)

The prediction outputs are then classified into True Positive (TP), False Positive (FP), and False Negative
(FN). This classification serves as the basis for calculating Precision and Recall, as shown in Eqs. (2)
and (3) [27]. Another evaluation indicator is the F1 Score, which is the harmonic mean of Precision and
Recall, as shown in Eq. (4).

Precision (P) = TP
TP + FP

(2)

Recal l (R) = TP
TP + FN

(3)

Based on the training results on the X, Y, and Z datasets, the model showed consistent detection
performance, especially for the Smoke class. The highest mAP50 score for this class was achieved with the
Z Dataset, reaching 0.846. In terms of Precision and Recall, the Smoke class in the Z Dataset recorded the
highest Precision (0.839), while the highest Recall (0.791) was obtained from the X Dataset. On the other
hand, for the Fire class, the highest mAP50 score was achieved with X Dataset (0.703), with the highest
Precision (0.741) recorded in Z Dataset and the highest Recall (0.615) in X Dataset. Another evaluation index,
F1, is shown in Eq. (4).

F1 = 2 × Precision × Recal l
Precision + Recal l

(4)

The training processes for each enhanced dataset are visualized in Fig. 4 (X Dataset for HE), Fig. 5
(Y Dataset for CLAHE), and Fig. 6 (Z Dataset for DBST-LCM CLAHE). Across more than 30 epochs,
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the loss values for all datasets consistently declined, indicating successful convergence of the model
parameters. Throughout training, the key components of the YOLOv11x loss function—namely, box loss
(localization error), classification loss, and distribution focal loss (bounding box refinement)—exhibited a
steady downward trend, reflecting stable and effective optimization during training. These loss components
correspond to the model’s efforts in improving bounding box localization, object confidence prediction,
and class classification performance, which are essential for accurate fire and smoke detection in various
environmental conditions.

Figure 4: Training process YOLOv11x with X Dataset (HE)

Figure 5: Training process YOLOv11x with Y Dataset (CLAHE)
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Figure 6: Training process YOLOv11x with Z Dataset (DBST-LCM CLAHE)

While the overall trends were similar, minor differences in the loss values were observed across the
three datasets. The model trained with the Z Dataset showed slightly lower overall loss values, particularly
in the validation box and classification losses, suggesting better optimization. The Y Dataset achieved
moderate loss reductions, whereas the X Dataset maintained slightly higher losses throughout training. These
differences highlight the potential benefits of advanced image enhancement techniques in improving model
performance.
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+
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( i ( ) − ˆ i (c))

2 (5)

As described in Eq. (5), the YOLOv11x model adopts a loss (L) function structure based on the
basic YOLO architecture. This loss function minimizes errors in predicting bounding box parameters.
( , , , ), object confidence , and class probabilities (c) [27]. Here, the symbols ˆ, ̂̂ , ̂ , ˆ , ˆ , ˆ
represent the predicted values, while the corresponding ground truth labels are denoted without a hat. The
indicator ıob j

i j identifies whether an object exists within a cell i and whether the j-th bounding box predictor
is responsible for that detection. In the training configuration, the hyperparameter λcoord was set to 0.5,
assigning moderate weight to localization errors. Similarly, λnoob j was set to 0.5 to reduce the impact of
prediction in grid cells without objects, preventing distraction from large background regions.
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YOLOv11x introduces significant advancements in real-time object detection, emphasizing both effi-
ciency and precision. Its architecture integrates modules such as the C3K2 block for lightweight feature
extraction and the C2PSA module for enhanced spatial attention. During training, YOLOv11x employed a
combination of data augmentation techniques, including HSV augmentation, random rotation, translation,
perspective transformation, scaling, and both vertical and horizontal flipping. Additionally, advanced aug-
mentations such as Mosaic and MixUp were applied to improve generalization across diverse environmental
conditions, with optional use of CutMix further enhancing training robustness.

4 Results and Discussions
To visualize the performance of the YOLOv11x model across different image enhancement tech-

niques, Figs. 7–9 present the validation results for datasets enhanced using Histogram Equalization (HE),
Contrast Limited Adaptive Histogram Equalization (CLAHE), and DBST-LCM CLAHE, respectively. These
figures demonstrate the model’s ability to detect fire and smoke under various visual conditions. The HE-
enhanced dataset (Fig. 7) shows consistent detection, but with relatively moderate confidence scores. In
contrast, the CLAHE-enhanced dataset (Fig. 8) reveals slightly improved detection clarity in several images
but also includes some lower confidence values and misidentifications. The DBST-LCM CLAHE dataset
(Fig. 9) displays the highest consistency in detection with generally stronger confidence levels, especially for
both smoke and fire, indicating better contrast and feature enhancement.

Figure 7: Validation Batch 0 with YOLOv11x and X Dataset (HE)
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Figure 8: Validation Batch 0 with YOLOv11x and Y Dataset (CLAHE)

Figure 9: Validation Batch 0 with YOLOv11x and Z Dataset (DBST-LCM CLAHE)

To further support this observation, Fig. 10 presents key evaluation metrics for the DBST-LCM CLAHE-
enhanced dataset. The precision-recall (PR) curve shows high precision values for smoke (0.864) and fire
(0.694), contributing to a mean Average Precision at 50% Intersection over Union (mAP@50) of 0.770 across
all classes. The F1 curve peaks at 0.74 at a confidence threshold of 0.353, indicating a good balance between
precision and recall. The confusion matrix supports this finding, with 2016 out of 2047 smoke instances
correctly identified (98.49% true positive rate) and 2071 out of 2179 fire instances accurately detected
(95.63%). Although 905 background instances were misclassified as fire, the primary object classes remained
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distinguishable. These results highlight the capability of DBST-LCM CLAHE in improving both detection
accuracy and object localization, especially under challenging visual conditions involving dispersed smoke.

Figure 10: Performance of DBST-LCM CLAHE based on precision-recall (PR) curves (a), per-class F1-scores (b), and
confusion matrix (c)

Table 5 presents the validation or testing results of the YOLOv11x model on the three image-enhanced
datasets. Z Dataset achieved the highest Precision score of 0.79, indicating its strong ability to correctly
identify fire and smoke with fewer false positives. Meanwhile, X Dataset maintained the highest mAP50 score
of 0.771 and the highest Recall at 0.703, showing better overall detection accuracy and generalization. This
suggests that while DBST-LCM CLAHE (applied on Z Dataset) is highly precise, HE (applied on X Dataset)
remains more balanced and effective in capturing a broader range of fire and smoke instances, especially
in varied or low-light conditions. CLAHE, although beneficial for enhancing local contrast, showed slightly
lower performance in comparison to the other two techniques.
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Table 5: Validating the result of the D-Fire dataset with YOLOv11x

Class Images Instances
HE (X Dataset) CLAHE (Y Dataset) DBST-LCM CLAHE

(Z Dataset)

P R mAP50 P R mAP50 P R mAP50
Smoke 2127 2419 0.834 0.791 0.84 0.821 0.791 0.833 0.839 0.788 0.846

Fire 1167 2993 0.735 0.615 0.703 0.706 0.601 0.685 0.741 0.605 0.694
All 4305 5412 0.784 0.703 0.771 0.763 0.695 0.759 079 0.697 0.77

In addition, the detection performance of YOLOv11x on each dataset is visualized in Fig. 11. When com-
paring the different image enhancement techniques, DBST-LCM CLAHE provides better object localization
for complex smoke features, especially under varying lighting and contrast conditions. This is noticeable in
the second and third rows of predictions, where smoke areas are more comprehensively mapped. However,
in some cases, such as those shown in the first column of Fig. 11, X Dataset allows the model to detect fire and
smoke more completely and with higher confidence scores, likely due to the global contrast enhancement
provided by HE.

Figure 11: Recognition results with YOLOv11x

Each image enhancement method contributes uniquely to the detection process. (1) Histogram Equal-
ization (HE) improves global contrast, making image features easier to recognize in dark or low-light areas.
(2) CLAHE enhances local contrast and preserves excellent details, supporting more precise detection in
regions with small intensity variations. (3) DBST-LCM CLAHE, as a hybrid method, balances both local and
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global contrast enhancement, making it effective for handling complex scenarios such as smoke dispersion.
(4) Additionally, the DBST preprocessing helps suppress background interference, while the LCM operation
helps maintain object structure. (5) Although more computationally complex, the contribution of DBST-
LCM CLAHE, particularly its highest precision score, demonstrates its strength in reducing false positives
and improving detection robustness under real-world conditions.

Overall, all three enhancement techniques have proven to improve detection quality in diverse ways.
Histogram Equalization remains an efficient and practical approach with the highest overall detection score.
However, for applications that require high sensitivity and precision, such as early smoke detection, DBST-
LCM CLAHE shows promising results and potential for further development.

5 Conclusions
This study aimed to empirically evaluate the effectiveness of three image enhancement techniques—

Histogram Equalization (HE), Contrast Limited Adaptive Histogram Equalization (CLAHE), and
DBST-LCM CLAHE—on the object detection performance of the YOLOv11x model for early Forest
and Land Fire (FLF) detection. Using the D-Fire dataset, which includes over 21,000 annotated images
representing varied times and weather conditions, the model was trained and tested to reflect realistic
environmental challenges.

Results show that all three enhancement techniques positively impact detection accuracy, especially
in low-illumination and high-noise scenarios. HE demonstrated the highest mean Average Precision at
50% IoU (mAP50) of 0.771, along with a balanced performance in Precision (0.784) and Recall (0.703),
indicating strong generalization across fire and smoke cases. In contrast, DBST-LCM CLAHE achieved the
highest Precision score (0.790), reducing false positives and demonstrating superior robustness in complex
scenes, such as dispersed smoke. CLAHE performed slightly lower but remained valuable in enhancing local
feature details.

The detection visualizations further confirm that each enhancement method contributes uniquely:
HE improves global contrast, aiding overall detection; CLAHE accentuates local details; while DBST-LCM
CLAHE successfully combines both strategies, with added benefits from DBST in noise suppression and
LCM in structure preservation. These differences suggest that the enhancement method can be selected based
on detection priority—completeness, precision, or clarity in complex backgrounds.

Importantly, this study contributes not by proposing new architectures but by benchmarking
YOLOv11x—one of the most recent lightweight detectors—under realistic FLF conditions enhanced by
proven preprocessing strategies. The inclusion of diverse evaluation metrics such as F1-score, precision-
recall curves, and qualitative assessments (e.g., bounding box visualizations) strengthens the credibility of
these findings.

For future development, one valuable direction would be the deployment of the system on edge
computing platforms, evaluating real-time inference speed, power consumption, and detection latency.
Additionally, training a localized model using region-specific data, such as forest imagery from Indonesia,
could further improve detection accuracy by incorporating native vegetation types, fire patterns, and regional
atmospheric conditions.

Ultimately, this research provides practical insights into how advanced image enhancement techniques,
when combined with modern detectors like YOLOv11x, can deliver high-performance FLF detection systems
suited for early warning applications in real-world environments.
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