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ABSTRACT: With rapid urbanization, fires pose significant challenges in urban governance. Traditional fire detection
methods often struggle to detect smoke in complex urban scenes due to environmental interferences and variations
in viewing angles. This study proposes a novel multimodal smoke detection method that fuses infrared and visible
imagery using a transformer-based deep learning model. By capturing both thermal and visual cues, our approach
significantly enhances the accuracy and robustness of smoke detection in business parks scenes. We first established
a dual-view dataset comprising infrared and visible light videos, implemented an innovative image feature fusion
strategy, and designed a deep learning model based on the transformer architecture and attention mechanism for smoke
classification. Experimental results demonstrate that our method outperforms existing methods, under the condition of
multi-view input, it achieves an accuracy rate of 90.88%, precision rate of 98.38%, recall rate of 92.41% and false positive
and false negative rates both below 5%, underlining the effectiveness of the proposed multimodal and multi-view fusion
approach. The attention mechanism plays a crucial role in improving detection performance, particularly in identifying
subtle smoke features.
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1 Introduction
In recent years, the acceleration of urbanization has resulted in higher requirements for urban environ-

mental monitoring and management, with urban fires becoming a major challenge in urban governance.
Among various monitoring methods, however, image-processing technology has attracted widespread
attention due to its intuitive and real-time nature. Particularly in complex scenes such as business parks,
smoke detection serves as a crucial means of preventing fires and environmental pollution.

The breakthrough in deep learning technology in computer vision provides new approaches for
solving this problem. However, most research focuses on smoke detection with single type of image inputs
[1–3], failing to fully utilize multimodal information to capture the characteristics of smoke. Infrared images
contain valuable heat radiation and temperature information that, when combined with visible light images
in complex scenes, can provide more comprehensive data for improved detection accuracy.

Infrared images offer unique advantages in smoke detection through thermal radiation capture.
Early researchers developed various algorithms based on infrared images [4–6], focusing on thermal
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radiation characteristics through manual feature-based analysis methods. These methods have broadened
the information space of pure visible-light images to a certain extent; however, universality issues still exist.

Recent advances in deep learning have enabled more sophisticated approaches, with several studies
exploring the fusion of visible and infrared images. Study in [7] put forward the utilization of composite
channel data as an image-based fire detection approach applicable to ships. By capitalizing on the character-
istics of RGB data within the visible-light range and infrared (IR) data in the infrared region, a convolutional
neural network was employed to construct a fire detection model with composite channel input. Study in [8]
used an infrared image as the fourth channel of an RGB image to use the target detection algorithm for fire
detection. Study in [9] employed Unmanned Aerial Vehicles (UAVs) to gather infrared and visible video
data of the combustion of combustible substances in a forest. Following alignment and sampling procedures,
the data was applied for the classification of smoke and flame. The author conducted a comparison of the
impacts of the pre-fusion and post-fusion strategies for the two types of image data. Study in [10] put
forward a method for detecting the danger level and confidence of forest fires by means of infrared and
visible-light images. The author utilized visible-light images and infrared images for smoke detection and
local temperature determination, respectively. Subsequently, a comprehensive assessment of the danger level
was made based on the outcomes of the two. Study in [11] presented a new deep learning framework that
transforms UAV-captured RGB images into infrared images for deducing temperature data and applies it
in forest fire surveillance. This research adopted an enhanced conditional adversarial generative network,
with RGB images and their corresponding IR images serving as inputs and conditions respectively to direct
the generator and discriminator. Eventually, it was utilized for forest fire detection and attained favorable
outcomes. There are also studies [12,13] that combine image and sensor information for fire and other
phenomena detection.

In addition, in view of the mismatch between the viewing angles of infrared and visible images, the
introduction of multi-view classification is feasible for the effective detection of smoke, which can deal with
the problem of view mismatch in the process of multi-modal image fusion. Multi-view learning aims to learn
a common feature space by combining multiple features or data sources. In image processing, multi-view
classification has become a major research issue, particularly in medical image analysis [14–16] and 3D shape
recognition [17–19]. In these multi-view problems, each view is obtained from a specific angle and is intended
to highlight specific features within the view, meaning that the data are generally structured. Cross-view
tasks with lower data structuring include plant species recognition [20–22] and action recognition [6,23].
As mentioned in [24], in addition to the aforementioned, some multi-view tasks are more like extensions of
single-view tasks because the additional views are not strictly regulated and may only play a role in inference.

Few studies have applied multi-view classification to smoke detection. Notable work includes the
Multi-View Generalized Eigenvalue Proximal Support Vector Machine [25] for smoke detection, which
uses the Hue, Saturation, Value (HSV) color features and Scale-Invariant Feature Transform (SIFT) features
as different views. Another example is the multi-perspective operation inspection system [26] based on
UAVs for monitoring flare stacks. These studies demonstrate that multi-view learning can obtain smoke
information from multiple angles, improving detection accuracy by addressing occlusion and incomplete
information issues.

Currently, there is no large-scale standardized infrared and visible-light smoke dataset for research on
multimodal information in smoke detection. Most data processing methods focus on image fusion first, then
proceed to various downstream visual tasks, which becomes problematic when the data itself is difficult to
fuse visually. Moreover, the lack of training data and stringent requirements for data quality and type present
significant challenges in applying multimodal information to smoke detection.
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This study proposes a multimodal multi-view smoke detection method mainly aimed at business park
scenes. The proposed method uses multi-view images of two modalities—infrared and visible light—and
employs deep learning algorithms for smoke detection. Compared with existing research, our method not
only combines multimodal and multi-view smoke image information but also better extracts and recognizes
smoke features through effective deep learning algorithms. The main contributions of this study include:

• Establishing a dual-view dataset containing infrared and visible-light videos.
• An innovative dual-view multimodal image fusion method that effectively combines the advantages of

infrared and visible-light images from different perspectives.
• Designing and implementing a deep-learning-based smoke detection model that significantly improves

the accuracy and robustness of detection.

The remainder of this paper is organized as follows: Section 2 provides a detailed description of the
Materials and Methods, including the dataset, details and overall situation of the method. Section 3 presents
the Experimental Results and Analysis, where the experimental results are shown and analyzed to assess the
performance of the proposed method. Finally, Section 4 offers a Discussion, where the experimental findings
are discussed, the strengths and limitations are analyzed, and potential improvements are proposed.

2 Materials and Methods
Currently, the publicly available fire and smoke datasets mainly focus on forest fires and wildfires, and

there are not many that involve urban scenarios. The fire and smoke datasets for urban scenarios can be
mainly divided into two categories: one category comes from the Internet [27]. This type of data has a
relatively large scale, but the scenarios are complex, the content is diverse, and the quality varies. Many
problems are likely to occur when using this data. The other category is collected through experiments by
research teams [28]. This type of data has detailed records, but the scenarios and scale are limited by the
research objectives of the teams, making it difficult to meet the needs of this study. In addition, publicly
available fire and smoke datasets that contain multi-view and infrared-visible light images are relatively
scarce. Therefore, this paper constructs a multi-view infrared-visible light smoke image dataset based on the
real scenarios of business parks and urban roads, providing a foundation for subsequent research.

2.1 Data Collection and Processing
2.1.1 Data Collection Experiment

In order to obtain multi-view and infrared-visible light smoke image data in urban scenarios, with
the support of HES Technology Group Co., Ltd., we carried out smoke simulation experiments and data
collection work at the Longxiang International Business Center in Changchun City, Jilin Province. The
experiments were conducted on 26 March 2024 from 10 a.m. to 12 p.m., with temperatures ranging from
2○C to 13○C and winds of 2–3 northeasterly. The ambient temperature was about 13○C at the beginning of
the experiment, and the surface temperature increased as the experiment progressed. The purpose of this
experiment is to obtain high-quality multi-view video data by simulating the smoke generated by a fire,
providing reliable data support for subsequent research.

During the experimental preparation stage, to ensure the safety of the experimental site as well as the
accuracy and representativeness of the data, we selected the two sides of the main road on the west side of the
park as the experimental location and set up five positions, as shown in Fig. 1. Since the park was in a state
where construction and trial operation were carried out simultaneously during the experiment, choosing the
positions on both sides of the main road can not only ensure the safety of the experiment but also restore the
smoke diffusion situation in the real urban scenario to the greatest extent.
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Figure 1: Schematic diagram of data collection points

During the experiment, we used smoke cakes as the smoke source to simulate the fire smoke, and
recorded the complete process of the smoke from generation to dissipation through surveillance cameras
and infrared thermal imagers. The surveillance camera has a resolution of 2560 × 1440 and a frame rate of 25
frames per second. It is installed on the lampposts 5–10 m away from the smoke source, with a fixed height and
an adjustable direction. The infrared thermal imager used is the handheld infrared thermal imager Tianxuan
M600F produced by Yantai InfiRay Photoelectric Technology Co., Ltd., with a resolution of 640 × 512 and
a frame rate of 25 frames per second. It is manually fixed on a tripod 2–4 m away from the smoke source
at a height of about 1.6 m. Although not all the cameras beside some roads were available, by reasonably
adjusting the positions of the equipment, we successfully recorded the smoke diffusion process at different
distances and viewing angles. The shooting duration at each position was 2–5 min, fully covering the entire
process of the smoke from generation to dissipation. Finally, we obtained 7 pairs of video data from different
viewing angles.

In addition, we also carried out smoke simulation experiments and data collection work beside some
roads in Hualong District, Puyang City, Henan Province. The experiment was carried out from 9:40 to
10:30 p.m. on 05 January 2025, and from 4:20 to 5:00 p.m. on 06 January. The temperature throughout the
day on the 5th was −2○C to 13○C, with a wind force of approximately level 3; the temperature throughout
the day on the 6th was −2○C to 7○C, with a wind force of approximately level 4. The experimental sites were
located on the non-motor vehicle lanes on both sides of the roads, and a total of 6 positions were set up. We
also used smoke cakes as experimental props, and recorded the smoke diffusion process through a vivo X90
mobile phone and an infrared thermal imager of the same model. The video recorded by the mobile phone
has a resolution of 1920 × 1080 and a frame rate of 30 frames per second. The parameters of the infrared
thermal imager are the same as those in the experiment conducted in Changchun. The mobile phone and
the infrared thermal imager were installed on a tripod 2–4 m away from the smoke source at a height of
about 1.6 m, with a viewing angle difference of approximately 20○. The shooting duration at each position
was 2–4 min, and finally, we obtained 11 pairs of video data, including 2 pairs of night videos and 9 pairs of
daytime videos.

2.1.2 Data Processing and Augmentation
After completing the collection of video data, in order to convert it into image data suitable for model

input, we carried out a systematic preprocessing of the collected visible light and infrared videos. First,
regarding the synchronization issue of the two types of video data in the temporal dimension, we adopted a
temporal alignment technique to ensure that the content at the same moment in the two videos corresponds
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to the events that occur at the same moment in reality. Then, we divided the video data into two parts: the
part with smoke and the part without smoke. The purpose of this division is to generate comparative data
that includes both smoke and non-smoke scenarios, thereby providing more comprehensive sample support
for model training. Specifically, the part with smoke covers the complete process of smoke from generation
to dissipation, while the part without smoke records the background environment before the appearance of
smoke, which is used to provide interference-free reference data.

After completing the temporal alignment and data segmentation, we extracted frames from the two
types of videos at intervals of 1 s. This method of frame extraction can reduce the amount of data while
ensuring the temporal resolution of the data, thus improving the efficiency of subsequent processing.
Through this processing step, we finally obtained 1855 pairs of original image pair data, and each pair of image
pairs is composed of a visible light image and an infrared image captured at the same moment. Examples
of these image pairs are shown in Fig. 2. Through the above processing of the video data, we successfully
converted the original videos into an image dataset suitable for model input. This processing method not
only ensures the temporal consistency of the data but also generates high-quality comparative samples
through frame extraction and segmentation operations, providing reliable data support for subsequent
smoke detection and recognition tasks. In addition, the generation method of the image pairs can effectively
support the joint analysis of multimodal data, providing abundant experimental data support for model
training and validation.

Figure 2: Schematic diagram of the image pair obtained after processing

In order to explore the changing trend of infrared images during the occurrence of smoke, we conducted
a grayscale value analysis on the collected infrared image frames to observe their variation patterns over
time. The analysis results are shown in Fig. 3, where Fig. 3a shows the changing trend of the grayscale values
of the data from Changchun region, and Fig. 3b shows the changing trend of the grayscale values of the data
from Puyang region. The horizontal axis represents the serial numbers of the images increasing with time,
and the vertical axis represents the average grayscale values of the images.
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Figure 3: The change trends of the gray values of infrared images in different scenes at two locations over time.
(a) The change trend of data gray values in the Changchun region; (b) The change trend of data gray values in the
Puyang region

As can be seen from Fig. 3a, the average grayscale values of the image data at the positions “Pos_2”,
“Pos_3”, and “Pos_4” show an obvious changing trend. This changing trend is closely related to the process
of smoke from generation to dissipation, indicating that the infrared images at these positions can effectively
capture the changes in the intensity of thermal radiation caused by smoke. However, the changes in the
grayscale values at the positions “Pos_1” and “Pos_5” are not obvious. Analyzing in combination with Fig. 2,
this phenomenon may be due to the existence of areas with high radiation intensity on the ground during
shooting. These high-radiation areas may originate from the thermal properties of the ground materials
or the background environment, resulting in the weakening of the radiation changes brought about by the
smoke, so that the overall grayscale value of the image does not change much. In Fig. 3b, except for the
positions “1-6_1_1” and “1-6_1_2”, the image data of the remaining positions all show obvious changing trends.
This indicates that the infrared images at these positions can truly record the changes in the intensity of
thermal radiation caused by the smoke during the process from ignition to dissipation. For the two positions
(“1-6_1_1” and “1-6_1_2”) where the changing trend is not obvious, by analyzing in combination with Fig. 2,
it is found that in the experimental settings of these two positions, the smoke source is located behind the
bushes beside the road. Due to the obstruction of the bushes, the changes in the thermal radiation of the
smoke are not obvious in the images, resulting in small changes in the grayscale values.

In addition, regarding the differences in the overall absolute values of the grayscale values, these
are caused by the different shooting angles, environmental conditions, and background thermal radiation
intensities at each position. These differences have no substantial impact on the trend analysis because the
changing trend of the grayscale values, rather than the absolute values, can better reflect the changes in
thermal radiation during the smoke diffusion process. By comparing the changing trends of the grayscale
values at different positions, it can be found that when the environment around the smoke source is relatively
open and there is no obvious obstruction, the infrared image can more clearly record the changes in thermal
radiation caused by the smoke; while when the smoke source is blocked or there are high-radiation areas in
the background, the changing trend of the grayscale values will be affected to a certain extent.

In order to improve the generalization ability and robustness of the model, this paper conducts data
augmentation processing on the collected 1855 pairs of original image pairs to expand the scale of the dataset
and enhance data diversity. Different data augmentation strategies are adopted respectively according to the
different characteristics of visible light images and infrared images. For visible light images, the following
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augmentation operations are carried out: (1) Mirroring: By horizontally or vertically flipping the images,
new samples are generated to simulate the scenes from different viewing angles. (2) Brightness adjustment:
By randomly adjusting the brightness of the images, different lighting conditions are simulated. (3) Noise
injection: By adding salt-and-pepper noise, the robustness of the model to noise is enhanced. For infrared
images, the following augmentation operations are carried out: (1) Mirroring: Similar to visible light images,
new samples are generated by horizontally or vertically flipping the images. (2) Digital detail enhancement:
By enhancing the detail information of the images, the characteristics of thermal radiation are highlighted to
simulate the changes in thermal radiation under different environments. (3) Noise injection: By adding salt-
and-pepper noise, the robustness of the model to noise is enhanced. Through the above data augmentation
operations, a total of 12,271 pairs of image pairs are finally generated, including 7887 pairs of image pairs with
smoke and 4384 pairs of image pairs without smoke. An example diagram of the data augmentation effect is
shown in Fig. 4. The specific distribution of the dataset is shown in Table 1.

Figure 4: Schematic diagram of the effect of data augmentation

As can be seen from Table 1, due to the fact that insufficient redundant data was retained during the
data collection of some scenes, there are missing data categories, and there is an imbalance in the scale of
data of different categories within the same scene. Taking these issues into account, when selecting the test
set, scene data that is different from the scenes of the training and validation sets and has complete data
categories should be chosen. Therefore, according to the quantity of data and the scene characteristics, the
data of the two scenes, “Pos1_1” and “1-6_3”, are selected as the test set, and the data of the remaining scenes
are used as the training and validation sets. The training set and the validation set are divided at a ratio of
8:2. In summary, the training set accounts for approximately 70% of the total data volume, the validation set
accounts for 18%, and the test set accounts for 12%.

Table 1: Distribution of data volume across different scenes in the dataset

Scenes Image pairs with smoke Image pairs without smoke
Pos1_1 896 160
Pos1_2 896 160
Pos2_1 592 960
Pos2_2 592 960

(Continued)
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Table 1 (continued)

Scenes Image pairs with smoke Image pairs without smoke
Pos3 456 1888
Pos4 800 –
Pos5 880 –
1-5_1 584 56
1-5_2 432 48
1-6_1 512 –
1-6_2 634 72
1-6_3 301 80
1-6_4 312 –

2.2 Image Fusion Strategy
In the tasks of multi-view and infrared-visible light fusion, feature fusion, as a part of the data processing

procedure, plays a crucial role. It determines whether the information from multiple types of data can be
effectively utilized. However, this is different from the pure image fusion problem. Due to the differences
in image views, directly fusing the images is of no practical significance. Therefore, the feature-level fusion
method is usually adopted to integrate the feature information of each view. The current mainstream image
fusion strategies are shown in Fig. 5.

Figure 5: Several common image fusion strategies. (a) Early fusion strategy; (b) Late fusion strategy; (c) Fusion strategy
based on evaluation indicators; (d) The adopted fusion strategy

The current common image fusion strategies include the following: (1) Early fusion stategy, as shown
in Fig. 5a, that is, the aggregation of low-level features from each view before processing by a deep
network [29,30], which is usually used in multimodal settings. However, a disadvantage is that features
unrelated to the task may be included in the process early on. (2) Late fusion strategy, as shown in Fig. 5b,
that is, learning features independently for each input and then combining the features, which is currently



Comput Mater Contin. 2025;84(3) 5165

a more effective strategy and is reflected in methods proposed in various fields. In earlier methods, simple
connections of single-view features or pooling operations were used [31,32]. Later studies added other
operations between the fusion and classification stages, such as two-stage pooling strategies [19], bilinear
pooling [33], graph convolution [18], recurrent neural networks [34], Transformers [35], or special modules
for specific tasks [17,36,37]. (3) Fusion strategy based on evaluation indicators, as shown in Fig. 5c, regards
each input as a separate learning process, and fuses the prediction results. The advantage of this strategy
is that each input is independent and can fully learn its features. If there are many input views, the model
parameter volume is too large, and the training process is cumbersome. Therefore, inspired by [24], we
adopted a combination of late and indicator fusion, as shown in Fig. 5d, which first sends each view of the
input into the pre-model for feature extraction separately. In the second stage, it sends the features extracted
from each view and the fused features to the subsequent model separately. Finally, the output results of these
parts were synthesized to obtain the final result.

2.3 Loss Function
For the loss during the training process, three loss terms are used to form the final loss function.

In addition to the cross-entropy loss commonly used in classification problems, we also used the mutual
distillation loss mentioned in [24,38,39] and other studies to perform mutual distillation learning between
single image detection and multi-view fusion detection. The equation used was as Eq. (1):

Ltotal = Ls (y
′

ir , y) + Ls (y
′

v i , y) + L f u (y
′

f u , y) + λLmd (1)

In Eq. (1), the first term represents the loss of the single infrared image view prediction, the second term
represents the loss of the single visible light image view prediction, and the third term represents the loss
of the prediction using the two fused views above, all of which are calculated using the cross-entropy loss
function. The last term represents the mutual distillation loss between the single and dual views, where λ
is a coefficient. According to [38], mutual distillation loss uses the Kullback-Leibler (KL) divergence loss to
measure. The formula used was as Eq. (2):

DKL (P∣∣Q) = ∑
x

P (x) log( P (x)
Q (x)) (2)

where P and Q represent the two probability distributions, and KL divergence can be interpreted as the
minimum average information loss required to transform from distribution P to distribution Q. It measures
the average amount of information loss per sample when we use distribution Q to approximate distribution
P. This means that there is asymmetry between the guiding and guided relationships. When distributions
P and Q represent two different prediction results, calculating the KL divergence loss between the two
detection results can achieve mutual guidance between the two detection methods, thereby achieving mutual
distillation. Based on the distillation scheme in [39], we obtain

LKL(t, s; T) = DKL(σ̃(t, T), σ̃(s, T)) (3)

where t and s represent the logits of the teacher and student models, respectively, divided by hyperparameter
T . We calculated two mutual distillation terms for the logits of single- and dual-view detections:

Lmd (zir , zv i , z′; T) = 1
2

T2 (LKL (ẑ, z′; T) + LKL (ẑ′, z; T)) (4)
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where zir , zv i and z′ represent the category distributions of the single- and dual-view predictions, respec-
tively, and T is the temperature hyperparameter. This loss term uses the model’s own prediction as the
source of distillation, penalizing the logits in the dual-view prediction and the logits of the dual-view
fused prediction, making it suitable for the dual-view environment and enhancing generalization ability. In
addition, ẑ and ẑ′ represent the gradient separations of z and z′, respectively, which follow the work in [40,41]
to calculate the gradients, with the teacher distribution as a constant.

2.4 Model Structure
Inspired by [24], we propose a multi-view feature fusion model combined with an attention module for

smoke recognition and classification, shown in Fig. 6. This model is based on the hybrid ViT architecture and
mainly consists of three parts: the feature extraction stage, the feature fusion processing stage, and the output
stage. The input data of the model is a pair of infrared and visible light images from different views. In the
feature extraction stage, the input data is first weighted in different dimensions through the attention module,
and then the image patch embedding operation is carried out to convert it into a tensor suitable for input
into the ViT. Different from the original Transformer, the feature extraction operation of the convolutional
layer is added to the image patch embedding part. Taking the Tiny version used in this paper as an example,
the input data first undergoes operations such as convolution, group normalization, activation function, and
max pooling to extract the image into a feature vector. Then, operations such as image patch embedding
and adding position encoding are carried out. In the feature fusion processing stage, the embedding vectors
obtained in the previous step are input into the subsequent Transformer model in the forms of a single image
and the fusion of two vectors, respectively, and global feature modeling is carried out, respectively. Finally,
in the output stage, the model will output a prediction result for each input vector. By synthesizing the two
results obtained from the single image vector, the prediction result under a single view and the prediction
result under multiple views can be obtained.

Figure 6: The overall structure and flowchart of the proposed model

2.5 Evaluation Index
In classification tasks, evaluation metrics are crucial for effectively assessing model performance. This

experiment will use commonly used evaluation metrics in classification tasks, including accuracy (Acc),
precision (Pre), recall (Rec), and F1-score. Additionally, false positive rate (FPR) and false negative rate
(FNR) will be calculated. All the above metrics are based on the calculation of confusion matrices, which
contain four basic elements: (1) True Positive (TP): The number of samples that are actually positive and
correctly predicted as positive; (2) False Positive (FP): The number of samples that are actually negative but
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incorrectly predicted as positive; (3) True Negative (TN): The number of samples that are actually negative
and correctly predicted as negative; (4) False Negative (FN): The number of samples that are actually positive
but incorrectly predicted as negative. These four basic elements will serve as important bases for calculating
the evaluation metrics.

Accuracy is the most intuitive evaluation index, which represents the proportion of correctly classified
samples to the total number of samples. Its definition is shown in Eq. (5):

Accurac y = TP + TN
TP + TN + FP + FN

(5)

Accuracy provides an assessment of the overall performance of a model, but its limitation is that it may
produce misleading results in imbalanced datasets. Therefore, it is necessary to comprehensively evaluate the
model with other evaluation metrics.

Precision measures the proportion of samples predicted as positive by the model that are actually
positive. In practical applications, high precision helps reduce false positives and avoid resource waste caused
by false alarms. The definition of precision is shown in Eq. (6):

Precision = TP
TP + FP

(6)

Precision focuses on the accuracy of the model’s positive class predictions and can effectively evaluate
the reliability of the model in predicting positive classes.

Recall measures the proportion of actual positive samples that the model can correctly identify. In
practical applications, high recall helps improve the ability to detect missed reports and ensures that early
fire smoke can be captured. The definition of recall is shown in Eq. (7):

Recal l = TP
TP + FN

(7)

Recall focuses on the model’s ability to capture positive class samples and can effectively evaluate the
completeness of the model’s discovery of positive class samples.

The F1 score is defined as the harmonic mean of precision and recall, as shown in Eq. (8):

F1 = 2 ⋅ Precision ⋅ Recal l
Precision + Recal l

(8)

The false positive rate and false negative rate reflect the ability to correctly predict the purity of
positive and negative samples, respectively. Specifically, the false positive rate represents the proportion of
negative samples predicted as positive among all negative samples, while the false negative rate represents
the proportion of positive samples predicted as negative among all positive samples. As shown in Eqs. (9)
and (10):

FPR = FP
TN + FP

(9)

FNR = 1 − Recal l (10)
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3 Experiments Results and Analysis

3.1 Parameter Settings and Evaluation Metrics
This experiment was conducted on a Linux server equipped with an Intel Xeon Silver 4210 CPU and

an NVIDIA RTX A4000 GPU. The backbone part of the proposed model adopts the Tiny model in the
hybrid ViT, and uses the pre-trained parameters from Imagenet. The training and evaluation are carried out
based on the PyTorch framework. During the training process of each model, the model parameters with
the best performance on the validation set are saved and used as the basis for testing on the final test set. The
relevant hyperparameter settings are shown in Table 2. The parameter settings of other comparative models
that appeared in the experiment adopt the default settings of the models.

Table 2: Configuration of relevant parameters during the training process

Parameter Value
Batch size 64

Learning rate 0.001
Seed 3407

Epochs 20
Optimizer SGD

LR scheduler OneCycleLR
λ in Lmd 0.1

Temperature in Lmd 4.0
Weight in CrossEntropyLoss [0.95, 0.025]

In terms of evaluation metrics, this experiment uses the commonly used accuracy, precision, recall, and
F1 score in classification tasks as evaluation metrics. At the same time, the number of parameters and the
computational load of different models will also be compared.

3.2 Result Analysis
This experiment compares the classification performance of several popular infrared-visible light fusion

models in recent years on the established dataset. Among the models used for comparison, DenseFuse [42],
NestFuse [43], RFN-Nest [44], CDDFuse [45], and EMMA [46] represent the typical development trends
of image fusion models in recent years, ranging from simple encoder-decoder structures to end-to-end self-
supervised learning architectures. The three models CVT [47], MVC-NET [30], and TMC [48] are used for
multi-view classification in medical image processing, which is the most widely applied field of multi-view
classification and represents the mainstream level of this field. For the models with the task of image fusion,
we added a classification head at the end of them to achieve the classification function. All the results are
shown in Tables 3 and 4. Among them, “CH” represents the classification head, and “*” represents the non-
shared weights. All models are trained according to the settings of Epochs in Table 2. DenseFuse, NestFuse,
RFN-Nest, CDDFuse and EMMA all use the cross-entropy as the loss function.
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Table 3: The multi-view classification performance of different models on the test set Bold text indicates the best results
for the indicators in the column of the table.

Model Single-view input Multi-view input

Acc Pre Rec F1 Acc Pre Rec F1
DenseFuse + CH – – – – 0.8023 0.7937 0.8022 0.8022
NestFuse + CH – – – – 0.8155 0.7885 0.8141 0.8141
RFN-Nest + CH – – – – 0.8164 0.8066 0.8145 0.8145

CVT* 0.8131 0.7965 0.8128 0.8128 0.8463 0.8129 0.8431 0.8431
MVC-NET* 0.8157 0.7958 0.8241 0.8241 0.8632 0.8167 0.8589 0.8589

TMC* 0.8098 0.7635 0.8098 0.8098 0.8487 0.7993 0.8325 0.8320
CDDFuse + CH – – – – 0.7485 0.7018 0.7485 0.7231

EMMA + CH – – – – 0.8285 0.6865 0.8285 0.7508
Proposed 0.8883 0.9882 0.9440 0.9656 0.9088 0.9838 0.9241 0.9530

Note: “CH” represents the classification head, and “*” represents the non-shared weights. Bold text indicates the best
results for the indicators in the column of the table.

Table 4: False Positive Rate (FPR) and False Negative Rate (FNR) on the test set Bold text indicates the best results for
the indicators in the column of the table.

Model Single-view input Multi-view input

FPR FNR FPR FNR
DenseFuse + CH – – 0.0602 0.1978
NestFuse + CH – – 0.0572 0.1859
RFN-Nest + CH – – 0.0512 0.1855

CVT* 0.0555 0.1872 0.0401 0.1569
MVC-NET* 0.0548 0.1759 0.0343 0.1411

TMC* 0.0678 0.1902 0.0428 0.1680
CDDFuse + CH – – 0.1249 0.2769

EMMA + CH – – 0.0864 0.2492
Proposed 0.0301 0.0560 0.0493 0.0470

Note: “CH” represents the classification head, and “*” represents
the non-shared weights. Bold text indicates the best results for the
indicators in the column of the table.

First of all, it can be seen that models such as DenseFuse, NestFuse, RFN-Nest, CDDFuse, and EMMA,
which achieve image fusion classification by directly adding a classification head, perform poorly in various
classification indicators. This is because, for the cross-view problem, there are significant differences in
viewing angles between the input images, and it is difficult to achieve good results through direct fusion.
Secondly, for networks with two input modes, all indicators of multi-view input are superior to those of
single-view input. This indicates that multi-view input and the feature fusion of these inputs can effectively
improve various indicators in the classification task, demonstrating the effectiveness of the multi-view input
fusion strategy. Finally, for the three multi-view classification models, namely CVT, MVC-NET, and TMC,
all their indicators on the test set are lower than those of the method we proposed. This shows that the
proposed method has good performance in the multi-view smoke classification task, especially in cross-view
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tasks. In terms of false positive rate (FPR) and false negative rate (FNR), the proposed model outperforms
the comparative models in all aspects except for a slightly lower FPR under multi-view input conditions,
demonstrating its reliability in practical applications. In addition, we compared the number of parameters
and computational complexity of several models involved in the comparison, as shown in Table 5. The results
show that although the proposed model has a higher number of parameters than other image fusion models,
it has fewer parameters and lower computational complexity than the three multi-view classification models,
and has certain advantages in lightweight deployment.

Table 5: Comparison of the number of parameters and computational complexity among different models Bold text
indicates the best results for the indicators in the column of the table.

Model Params GFLOPs
DenseFuse + CH 0.07 M 11.64
NestFuse + CH 2.73 M 152.50
RFN-Nest + CH 2.73 M 152.50

CVT 12.4 M 14.90
MVC-NET 32.6 M 30.40

TMC 14.0 M 9.40
CDDFuse + CH 0.79 M 12.87

EMMA + CH 1.52 M 8.86
Proposed 6.13 M 2.27

Note: “CH” represents the classification head. Bold text indicates
the best results for the indicators in the column of the table.

In order to eliminate the influence brought by the dataset factors, a comparative experiment was also
carried out on the public dataset FLAME2. The FLAME2 dataset is an RGB-thermal imaging image pair
dataset used for wildfire flame detection. This dataset was created by [9]. The experimental results are shown
in Table 6, and the identifiers in the table are the same as those in Table 3.

Table 6: The multi-view classification performance of different models on the FLAME2 dataset Bold text indicates the
best results for the indicators in the column of the table.

Model Acc Pre Rec F1
RFN-Nest + CH 0.6860 0.6860 0.6862 0.6860

CVT* 0.9796 0.9797 0.9796 0.9796
MVC-NET* 0.9527 0.9521 0.9527 0.9527

TMC* 0.9124 0.9153 0.9124 0.9124
CDDFuse + CH 0.6557 0.6554 0.6557 0.6041

EMMA + CH 0.6933 0.5208 0.6933 0.5906
Proposed 0.9813 0.9720 0.9720 0.9797

Note: “CH” represents the classification head, and “*” rep-
resents the non-shared weights. Bold text indicates the best
results for the indicators in the column of the table.

It can be concluded from Table 6 that, similar to Table 3, the models that achieve the classification
function by directly adding a classification head still do not perform well, even though the dataset is not a
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cross-view dataset. For the models whose original data input format is multi-view, they perform well on this
dataset, among which the evaluation indicators of CVT are comparable to those of the proposed model. The
above results indicate that the proposed model also performs well on the public dataset, demonstrating the
effectiveness of the method.

In order to illustrate the effectiveness of adding the attention module and compare the differences
between different attention modules, we compared the performance of the model when different attention
modules were added. We also compared the performance of the model when the ViT architecture version
was changed. The experimental results are shown in Table 7. It can be seen that when the attention module
is added, the performance of the model is significantly improved. This indicates that the attention module
can effectively enhance the model’s focus on the key areas of the image, thereby better extracting the smoke
features and improving the performance. At the same time, when the attention module is added while
using the Tiny architecture, the performance of the model is slightly better than that when using the Small
architecture, which is crucial for the lightweighting of the model.

Table 7: Performance under different attention modules and model architectures Bold text indicates the optimal results
for the indicators in the column of the table.

Model Acc (Single) Acc (Multi)
Small 0.9321 0.9357
Tiny 0.8883 0.9088

Tiny + CA & SA 0.8883 0.9158
Tiny + CBAM [49] 0.9905 0.9917
Tiny + SimAM [50] 0.9393 0.9547

Note: Bold text indicates the optimal results for the
indicators in the column of the table.

To explore the interpretability of our method during the detection process and the model’s attention
to the effective areas in the image, we used Grad-CAM [51] to visualize the category activation during the
inference process, taking the example of not adding an attention module and adding a CBAM module, the
results are shown in Fig. 7.

After adding the attention module, the focus area of the model exhibited a more obvious difference.
As shown in “Pos1_1”, “Pos2_2” and “1-6_1”, the improved model can focus more effectively on key areas,
thereby improving detection accuracy. However, for “Pos4” and “Pos5”, although the improved model
reduced attention to some irrelevant areas, the degree of attention to effective areas was lower than that
of the improved model. Second, under the same conditions, the multi-view detection’s focus on effective
areas is better than that of single-image detection, which also explains the results in Table 3 to some extent.
However, Fig. 7 presents several issues. First, because of the scenes in the pictures, the smoke bombs and
smoke do not occupy the main part of the image, so the hot areas in the heatmap do not include smoke,
which is also a limitation of the algorithm at present. Second, owing to the shared weights, the hot areas in
the heatmap consider the information of different views, which does not correspond well to their respective
key areas.
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Figure 7: Class activation heatmaps generated using GradCAM, exemplifying models with and without the CBAM
module

4 Discussion
Although the proposed method demonstrates great potential in the task of infrared-visible multi-view

smoke recognition in urban areas, there are still many shortcomings, as shown in Fig. 8. Although we have
carried out simulation experiments and data collection in multiple scenarios, there is still a substantial gap
between the richness of the current dataset scenarios and the real-world situation. In many scenarios, there
is a high degree of imbalance in data categories, causing the model to be more inclined to predict that smoke
does not exist in the category. Moreover, due to the particularity of the scenarios, it is difficult to conduct
more open-flame experiments to expand the categories of the dataset. Therefore, future research should focus
on enriching the scenarios and categories of the dataset, especially the data volume of the control categories.

Figure 8: The confusion matrix of the proposed method on the test set (a) Confusion matrix under single-view input;
(b) Confusion matrix under multi-view input
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Given the outdoor nature of the scenes studied, deploying additional sensor equipment was not feasible,
leading us to focus primarily on infrared imagery for multimodal analysis. In recent years there have been
many studies focusing on how to design better fusion strategies, such as fusion strategies based on simplified
Transformer modules [52], or methods for designing fusion rules based on different lighting conditions to
ensure adaptation to different scenes [53]. In addition, drones have significant advantages in outdoor scene
data collection. For example, drones equipped with sensors can be used to collect air quality data to con-
struct high-resolution air pollution maps [54], etc. In the future, when these conditions allow, we should
consider integrating a broader range of modalities to enhance the robustness of our detection methods.

Although there are numerous algorithms for multi-view classification, not all have been implemented
and compared in this study, owing to experimental constraints. Thus, the proposed method has room for
improvement. Future research should compare additional algorithms for similar tasks and incorporate their
strengths to refine our approach further.

5 Conclusions
This study successfully improved the accuracy of smoke detection in business park scenes by adopting

dual-view image fusion technology of visible light and infrared. The results show that even when the per-
spectives between images are different, combining multimodal data and improved multi-view classification
algorithms can effectively identify smoke in an image. In our future research, we will focus on optimizing
the model’s complexity in terms of computation, expanding and enhancing the scale and quality of the
dataset to further improve the model’s predictive accuracy and generalization capability. This study provides
new application scenarios and research ideas in the field of image processing and technical support for
actual detection.
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