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ABSTRACT: As the demand for advanced material design and performance prediction continues to grow, traditional
phase-field models are increasingly challenged by limitations in computational efficiency and predictive accuracy,
particularly when addressing high-dimensional and complex data in multicomponent systems. To overcome these
challenges, this study proposes an innovative model, LS GWO-BP, which integrates an improved Grey Wolf Optimizer
(GWO) with a backpropagation neural network (BP) to enhance the accuracy and efficiency of quasi-phase equilibrium
predictions within the KKS phase-field framework. Three mapping enhancement strategies were investigated—Circle-
Root, Tent-Cosine, and Logistic-Sine mappings-with the Logistic mapping further improved via Sine perturbation
to boost global search capability and convergence speed in large-scale, complex data scenarios. Evaluation results
demonstrate that the LSGWO-BP model significantly outperforms conventional machine learning approaches in
predicting quasi-phase equilibrium, achieving a 14%-28% reduction in mean absolute error (MAE). Substantial
improvements were also observed in mean squared error, root mean squared error, and mean absolute percentage error,
alongside a 7%-33% increase in the coefficient of determination (R?). Furthermore, the model exhibits strong potential
for microstructural simulation applications. Overall, the study confirms the effectiveness of the LSGWO-BP model in
materials science, especially in enhancing phase-field modeling efficiency and enabling accurate, intelligent prediction
for multicomponent alloy systems, thereby offering robust support for microstructure prediction and control.
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1 Introduction

In recent years, significant progress has been made in understanding phase transformations in metals
and alloys. While achieving complete equilibrium requires each phase to attain the configuration of
minimum free energy and comply with Gibbs’ phase rule, real-world material systems typically exist in
a quasi-equilibrium state due to factors such as elemental diffusion, interfacial energy, and structural
defects [1]. Under these influences, the phase composition, distribution, and morphology remain relatively
stable over certain time scales, despite not being fully equilibrated. To characterize microstructural evolution
under such quasi-equilibrium conditions, modern phase-field models employ coupled partial differential
equations that integrate temperature fields, concentration fields, and phase-field order parameters. These
models have proven effective in capturing both microscopic and macroscopic solidification phenomena in
metallic systems [2-5]. For instance, Wang et al. [6] successfully predicted microstructural evolution in
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alloys using phase-field simulations. Boettinger et al. [7] modeled phase transitions at various temperatures,
providing a solid theoretical framework for understanding microstructural dynamics during solidification.
Tourret et al. [8] further demonstrated the method’s effectiveness in predicting material behavior and
structural transformations.

Despite their widespread use, the development and application of phase-field models often depend on
extensive experimental datasets and intricate mathematical formulations, resulting in substantial computa-
tional overhead and heightened sensitivity to input parameters. These limitations can hinder the accurate
representation of global microstructural behavior and compromise predictive reliability. Particularly in the
context of complex multicomponent alloy systems, traditional approaches such as CALPHAD-although
known for their high predictive fidelity [9]-are constrained by long computation times and a strong
dependence on thermodynamic databases. Such limitations reduce their practicality in high-frequency
iterative tasks, including multi-objective optimization. Among these systems, the Al-Cu-Mg ternary alloy
stands out as a lightweight structural material of critical industrial relevance [10], extensively employed in
aerospace and transportation due to its superior strength and corrosion resistance. During solidification,
the alloy exhibits intricate phenomena such as dendritic growth, eutectic reactions, and precipitation of
strengthening phases. These microstructural features are intimately linked to its mechanical performance
and exemplify a typical solid-liquid coexistence regime [11-13]. Notably, the coupled evolution of solid and
liquid phases-driven by interdendritic liquid redistribution and multicomponent solute segregation-plays
a pivotal role in shaping the final morphology and elemental distribution, thereby exerting a profound
influence on the resulting mechanical properties.

To enhance the predictive accuracy and computational efficiency of phase-field models for multi-
component alloys, recent research has increasingly focused on integrating machine learning techniques to
optimize and improve modeling performance [14-17]. Jaliliantabar et al. [18] used deep learning techniques
to study the thermal conduction behavior in phase change materials. They trained neural networks to
predict the thermal conductivity of materials in different phase change states and applied this to the efficient
design and optimization of phase change materials. This method significantly reduced the time required for
experiments and simulations, but still faces issues of stability and accuracy of neural networks in complex
phase change processes. Hu et al. [19] proposed using neural networks for phase field simulation to replace
traditional dynamic methods. However, the training process of this method requires a significant amount
of computational resources and time, especially when applied to large systems. Fuhr et al. [20] proposed
a deep learning-based materials design method that combines neural networks and high-throughput
computing to achieve rapid predictions of material properties. This method trains a neural network model
to learn the relationship between the structure and properties of materials, thus reducing the resources and
time required by traditional experimental and computational methods. Although this method has made
significant progress in predicting material properties, the training iterations of the neural network model still
require a large amount of computational resources, especially when dealing with complex material systems.
Fan et al. [21] proposed a combination of phase field simulation and deep learning models to accelerate the
simulation of the grain growth process. They utilized deep learning methods to learn the dynamic behavior
of grain boundaries, achieving faster and more accurate simulations of grain growth. Although using deep
learning generative models to accelerate grain growth simulations has made some progress, this method is
still limited by the accuracy and stability of the generative models.

These studies indicate that the application of machine learning in materials science has made sig-
nificant progress, but still faces some challenges. Traditional machine learning and neural networks face
issues such as getting trapped in local optima and slow convergence during the optimization process.
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To overcome these issues, this study proposes a hybrid model that combines a Logistic-Sine mapping-
enhanced Grey Wolf Optimizer (LSGWO) with a BP neural network, aiming to reduce training complexity
and improve the model’s generalization capability. To further validate the applicability and effectiveness
of the LSGWO-BP method in simulating material microstructures, it is applied to the construction and
solution of the KKS phase-field model for the Al-Cu-Mg ternary alloy system. Experimental results show
that, compared to conventional phase-field numerical simulations, the trained LSGWO-BP model enables
efficient batch prediction of microstructure evolution, significantly enhancing the overall computational
efficiency. Meanwhile, while maintaining prediction accuracy for grain size and phase distribution, the
method significantly improves the model’s capability to capture the dynamic evolution of microstructures
near quasi-phase equilibrium. This application case demonstrates that the LSGWO-BP method not only
optimizes the selection of key parameters and the training process in phase-field models, but also offers a
novel technical pathway and methodological support for multi-objective performance-driven alloy design
and large-scale parallel simulations.

2 Phase Field Models and Machine Learning
2.1 Phase Field Models

This paper establishes the KKS phase field model by using the regular solution method to define the free
energy [22]. Each Gibbs free energy under multicomponent alloys is related to its associated thermodynamic
factors, which can be described by a thermodynamic model as follows [23]:

G=G'+Gp + G (1)

mix
Here, G° represents the contribution from pure components, G'9¢%/ denotes the contribution from ideal
mixing, and G* is the excess Gibbs free energy. For the Al-Cu-Mg ternary alloy, the Gibbs free energies of
the solid phase G* and the liquid phase G, can be expressed as follows:
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Here, S denotes the solid phase, L represents the liquid phase, subscript i refers to solute components 1
and 2, with i = 1and i = 2, and i = 3 represents the solvent component; c is the solute concentration; 1’ and
uY stand for the chemical formulas of the solid and liquid phases, respectively; R denotes the gas constant; T
represents the thermodynamic temperature. The G** values for the solid and liquid phases of the Al-Cu-Mg
ternary alloy can be expressed as follows [23]:

G = CC,[(~53520 + 2T) + (38590 — 2T) (Cy — C;) + 1170(C; - C,)*| + C1C5[ (4971 - 3.5T)

+ (900 +0.423T) (C; — C3) +950(Cy — C3)*] + C,C5(-22279.28 + 5.868T) (4)
Gi* = C1C[ (66622 + 8.1T) + (46800 — 90.8T)(C; — C;) + 10T In T(C; - C,) - 2812(C; - Cy)? ]

+ C;C5[(—12000 + 8.566T) + (1894 — 3T)(C; — C3) +2000(C; — C5)*] + C,C5[ (~36984

+4.7561T) - 8191.29(C, - C3) ] (5)

In the equation, C;, C;, and C; represent the concentrations of Al, Cu, and Mg, respectively. The
constants are sourced from fitting parameters in thermodynamic databases; for example, “~53520” and
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“38590” denote the interaction terms describing the Gibbs free energy between Al and Cu in the solid phase.
These temperature-dependent terms are used to fit experimental data and accurately characterize the alloy’s
thermodynamic behavior in the solid phase. In phase field models, the free energy density is typically coupled
with thermodynamic databases, which can be specifically expressed as:

flg,cc) = We(o) + i {h(9)G8 (cr,c2) + [1- h(9)]G™ (c1, c2) } ©)

In this equation, ¢ represents the phase field parameter, V;, denotes the molar volume, and the
interpolation function h(¢) and double-well potential g(¢) can be expressed as follows:

h(9) = ¢*(10 + 69> —15¢) 7)
g(p) =’ (1-9)’ (8)

The solute composition at each position can be expressed as:
ci=h(p)eis + (1-h(p))ea  i=(12) ©)

When the two phases are in equilibrium, the chemical potentials of the solid and liquid phases are equal
at any point, which can be expressed as:

ui (cin(x,1)) = uj (cis(x, 1)) (10)

Thus, the phase field governing equation can be expressed as:

% M@, &

fo = B (@) (s — cin) + ua(cas — car) +fS —fL] +Wg'(9) (12)
n—1 n-1

% =V{h(¢)z D?jVCJS‘JF[l—h(SD)]ZDzLjVCJL} (13)
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Here, D} ;and D,-Lj represent the solute diffusion coefficients in the solid and liquid phases, respectively,
and M is the phase field mobility, which can be calculated by the following equation:

1 e b (cf,eis) L5, c5s) SZRT(l_Ke)ﬁ
M _a\/_2W( D, D, )+ Vi (1)
RT(c%,c&)> !
ﬁ,‘:%[} q(¢)d, @15)
h(e)[1-h(g)] 16)

q(p) =
[1=h(p)]ei(1=ci) + h(g)eis(1-cis)e(1-9)
Here, ¢§; and ¢ represent the concentration distribution of solute components in equilibrium, K¢
denotes the partition coefficient, V;, is the molar volume, m® is the slope of the liquidus, and ¢§ = K°cf
represents equilibrium. D; and D, are the diffusion coefficients of two different solutes, 3 is the dynamic
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coefficient, and o represents interfacial energy. Anisotropy is introduced into the phase field model via the
interfacial energy-related parameter .

€(0;) = eo(1+vcos(k;)) 17)

/610
= - 18
&0 22 (18)

Here, 0 represents the angle between the x-axis and the preferred growth direction of the grain, with
subscript i denoting a specific grain and k representing the symmetry coeflicient, which is set to 4 in this
study’s phase field model calculations. v denotes the anisotropy intensity coefficient. By combining the phase
field equation with the solute field equation, the model is established, and the solute field equation can be
expressed as:

86. D,(gD)
iy
at ( fCiCi

Here, f., and f.,, represent the first and second derivatives of free energy with respect to concentra-
tion, respectively.

Vfc,.) i=(12) (19)

2.2 Machine Learning Model
2.2.1 BP Neural Network

The fundamental idea of the BP neural network is to adjust the network’s weights and biases to make the
output as close as possible to the target value [24]. Its core lies in the error backpropagation algorithm, which
calculates the gradient of the error with respect to each weight using the chain rule and optimizes using
gradient descent. The network structure includes an input layer, hidden layers, and an output layer. The input
layer primarily receives external signals, and the hidden layer(s) are between the input and output layers;
there may be one or more hidden layers, each composed of several neurons that use activation functions
for nonlinear transformation of input signals, while the output layer produces the network’ final prediction.
The training process of the BP neural network follows these steps:

(1) The input data is transmitted through the input layer to the hidden layer, where it undergoes a
nonlinear transformation via the activation function before passing to the next layer, until reaching the
output layer.

(2) The gradient of the error at the output layer is calculated and propagated backward layer by layer
using the chain rule, determining the error gradient for each hidden layer.

(3) Update the weights and biases: Based on gradient descent, the weights and biases in the network are
adjusted to gradually reduce the error. The update formula is as follows:

0
W,']‘(t)
bt +1) = by(1) - =2 (1)
9, (1)

Here, w;;(t) denotes the weight at the ¢-th iteration, b;(t) is the bias at the ¢-th iteration, # represents
the learning rate, and E is the loss function.

(4) Repeat the above process until the error converges to a predefined threshold or the maximum
number of iterations is reached.
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2.2.2 Grey Wolf Optimization Algorithm

The GWO simulates the natural leadership hierarchy and cooperative hunting behavior of wolves
by defining four distinct roles to represent the social structure within the pack. The optimal solution
corresponds to the Alpha wolf («), which leads the entire group. The second- and third-best solutions are
designated as the Beta wolf (f3) and Delta wolf (), respectively, assisting the Alpha wolf during the hunt.
All other candidate solutions are classified as Omega wolves (w), which follow the guidance of the «, j3,
and & wolves. This role-based hierarchy models the wolves™ social structure mathematically, enabling the
algorithm to effectively balance exploration and exploitation within the search space. Optimization proceeds
by simulating behaviors such as encircling, tracking, and attacking prey. During the hunting process, the
wolf pack first encircles the prey, which can be mathematically described as follows [25]:

B=|E’.)?;(t)-3(’(t)| (22)
X(t+1)=X,(t)- A-D (23)

Eq. (22) represents the distance between an individual and the prey during iterations, while Eq. (23) is
the position update formula for the wolves in each iteration, with t representing the current iteration count.

— — — —
A and C are coefficient vectors, where X, and X represent the position vectors of the prey and the wolves,

respectively. The formulas for calculating A and C are as follows:
A=2a -« (24)
C=2.7 (25)

e e > . . .
Here, r{ and r; are random number vectors, and « is the convergence factor, which decreases linearly
with each iteration.

7=2(1—%) (26)

Here, t represents the current iteration count, and T stands for the maximum iterations allowed.

Grey wolves can locate the prey’s position and proceed to encircle it. Once they lock onto the prey,
and y, under the guidance of «, direct the pack to encircle the prey. The mathematical model describing how
individual wolves track the prey’s position is as follows:

— | => =
Da:|Cl-X0,—X

— > = -

Dy = |G- Xg - X| (27)
— — —
D;=|Cy- X5 - X

- = g . . . . . ey
Here, Dy, Dg and D; respectively represent the distances between «,  and é and other individuals; X,

— — . . - — — -
Xp and X respectively denote the current positions of «, 8 and §; C, C; and C; are random vectors, and X
is the current position of the grey wolf.
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X+ X0+ X,

+ X, +

X(t+1) =122 (29)

W

Eq. (28) defines the step size and direction of the w individual in the wolf pack as it moves toward «, f3,
and &, while Eq. (29) defines the final position of w. When the prey stops moving, the grey wolves attack to
complete the hunting process. The iterations are repeated and updated until either the maximum number of
iterations is reached or the convergence criteria are met.

2.2.3 LSGWO-BP Model

Chaotic mapping algorithms play a critical role in the improvement of intelligent optimization
algorithms. This experiment thoroughly considers the convenience of enhancing intelligent optimization
algorithms, and comprehensively compares three improved mappings: Circle-Root mapping, Tent-Cosine
mapping, and Logistic-Sine mapping.

(1) Circle-Root mapping: This mapping combines Circle mapping with the square root function. First,
the input position undergoes a linear transformation to reduce its scale by a certain proportion, followed
by a nonlinear mapping using Circle mapping, and finally, the result is further adjusted with the square
root function. This combination generates more complex dynamic behaviors, facilitating the exploration of
different parameter spaces.

(2) Tent-Cosine mapping: This mapping combines the Tent mapping and the cosine function. First, the
Tent mapping performs a piecewise linear mapping on the input position, followed by nonlinear adjustment
with the cosine function. This combination enhances the algorithm’s robustness to data variations or noise,
making it more reliable and stable in applications.

(3) Logistic-Sine mapping: This mapping integrates the properties of the Logistic nonlinear mapping
and the sine function, capable of producing various chaotic behaviors. By adjusting parameters, the system
can gradually transition from a stable state to a chaotic state, thereby achieving effective control over
dynamic behavior.

Fig. 1 presents the convergence curve and optimal fitness values observed during the grey wolf optimiza-
tion process. Compared to the Circle-Root and Tent-Cosine mappings, the Logistic-Sine mapping achieves
faster convergence toward the global optimum, reaching a more accurate final result within approximately
32 iterations. Specifically, the Logistic-Sine mapping attains an optimal fitness value of 0.270821, which
slightly surpasses the Circle-Root mapping’s 0.27089 and the Tent-Cosine mapping’s 0.2709, demonstrating
its superior search precision and convergence speed in enhancing the grey wolf algorithm. This improved
performance stems from the Logistic-Sine mapping’s effective combination of the chaotic dynamics inherent
in the Logistic mapping and the periodic properties of the Sine mapping, thereby making the search process
both more efficient and precise. Consequently, this study adopts the Logistic-Sine mapping to further refine
the grey wolf algorithm for optimizing the BP neural network.

This study initializes the GWO population using Logistic-Sine mapping, integrating grey wolf group
behavior characteristics and chaotic mapping techniques to increase population diversity, enhance global
and local search abilities, and avoid local optimal solutions. The algorithm uses Logistic-Sine mapping to
generate chaotic sequences to update the positions of wolves. Then, the fitness value corresponding to each
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wolf’s position is calculated, updating the positions of &, 3, and § wolves according to the fitness values.
Finally, the positions of other wolves are updated based on the leaders’ positions, repeating the steps until
reaching the maximum iterations or satisfying convergence conditions. Fig. 2 compares the bifurcation
behavior of the Logistic-Sine map and the traditional Logistic map under different chaos control parameters
1, clearly illustrating the differences in their chaotic dynamic characteristics. The results indicate that, after
entering the chaotic regime, the conventional Logistic map still exhibits pronounced periodic windows,
whereas the Logistic-Sine map, by introducing a nonlinear sine perturbation, effectively attenuates these
windows’ prominence, yielding a more continuous and uniformly distributed chaotic region.

The Logistic-Sine mapping generates chaotic sequences by the following formula [26]:
xM=sin(m- (4-x!-(1-x1))) (30)

Here, xf is the value at the i-th position in the ¢-th iteration, and xf“ is the updated value at the i-th
position in the (t + 1)-th iteration after applying the Logistic-Sine mapping, 4 is the chaos control parameter.
This formula generates a chaotic sequence, which is then mapped to the upper and lower limits of the search
space to determine the initial population’s positions. The specific steps of optimizing the BP neural network
using the LSGWO algorithm are as follows:

(1) Design an appropriate BP neural network structure based on the characteristics of the regression
prediction problem, and initialize the network’s weights and biases.

(2) Use the weights and biases of the BP neural network as optimization variables, and optimize them
with the LSGWO algorithm.

(3) Train and optimize the BP neural network using the optimized weights and biases, continuously
adjusting the network parameters with the backpropagation algorithm to reduce prediction error.

(4) Use the trained LSGWO-BP neural network model to predict the test data and evaluate the accuracy
and performance of the prediction results.
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Figure 1: Convergence curves of three improved mappings
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By combining the LSGWO algorithm with the BP neural network, the global search capability of the
LSGWO algorithm and the nonlinear modeling ability of the BP neural network can be fully utilized to
improve the accuracy and stability of regression predictions. Fig. 3 shows the process framework of the
Logistic-Sine mapping improved grey wolf optimization BP neural network:
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Figure 3: Framework diagram of Logistic-Sine mapping improved grey wolf optimized BP neural network
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3 Experimental Results
3.1 Experimental Setup

Based on the Al-Cu-Mg ternary alloy, this work establishes a KKS phase field model and depicts the
growth process in its equilibrium phase diagram via Fig. 4. In this process, the primary S phase nucleates
within the liquid phase and gradually grows, undergoing an L—S phase transformation as the temperature
decreases, as indicated by the red circle in Fig. 4a. Upon additional cooling, the crystal nuclei continuously
enlarge (as shown in Fig. 4b), and several dendrites compete for growth, forming various shapes as a result
of their interactions. Fig. 4c presents the numerical simulation results of simultaneous growth of multiple
grains within the solute field distribution. The specific physical parameters required for the experimental
process are provided in Table 1.

v ~. 0 P
L *v't}.. g : '!: .- :
& [T e I
A o e ,
& '* * . X H ] : : I:
of .. ] } Il
3, i : 1
' I
' I
. e e ] ]
(a) liquid state of Al-Cu-Mg alloy (b) erystal nucleus (c) Al-Cu-Mg dendrites

Figure 4: Schematic diagram of the growth process of the Al-Cu-Mg ternary alloy

Table 1: Parameters used in phase field simulation

Description Value
Molar volume 1.06 x 10~ m*/mol
Melting temperature T, 933.3K
Interfacial energy o 0.093]-m™?
Diffusion coefficient of Cu in liquid phase  1.06 x 1077 exp(-2887/T) m?/s
Diffusion coefficient of Cu in solid phase 107 exp(-16104/T) m?/s

Diffusion coefficient of Mg in liquid phase 9.9 x 107> exp(-8610/T) m?/s
Diftusion coefficient of Mg in solid phase 0.37exp(-14854/T) m?/s

The LSGWO-BP algorithm was constructed and compared with six other machine learning models,
including the traditional backpropagation neural network (BP), Extremely Randomized Trees (ET), Random
Forest (RF), AdaBoost, Linear Regression (LR), and Decision Tree (DT). ET is an ensemble learning method
for classification and regression that generates decision trees by incorporating additional randomness
into the splitting process, thereby enhancing the model’s predictive accuracy and generalization perfor-
mance [27]. As a variant of decision tree ensembles, ET is similar to RF but introduces greater randomization
during tree construction to reduce variance. RF is a widely adopted ensemble learning algorithm known for
its robustness in classification and regression tasks. It constructs multiple decision trees and aggregates their
outputs to make final predictions, thereby improving model stability and reducing overfitting [28]. AdaBoost
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is another ensemble technique designed to improve classification accuracy by sequentially training a series
of weak classifiers, where each subsequent model focuses on correcting the errors of its predecessor [29].
The core principle of AdaBoost is to increase the weights of previously misclassified samples, allowing the
model to focus more on difficult cases and incrementally enhance overall accuracy. LR is a statistical learning
method used to model the linear relationship between independent variables (features) and a dependent
variable (target). Despite its simplicity, LR remains a powerful and widely used regression technique for
predicting continuous outcomes [30]. DT constructs a predictive model by recursively partitioning the
dataset based on feature values, forming a tree structure in which internal nodes represent attribute tests
and leaf nodes correspond to output values or categories. The recursive splitting continues until a predefined
stopping criterion is met or the data in each subset becomes homogeneous [31].

This paper uses 490,000 data samples as the basis for the experiments. To ensure the fairness and
comparability of the experiment, we used a common method of dividing the data set into training, testing,
and validation sets in an 8:1:1 ratio. The training set is used for model training and parameter adjustment,
the test set for evaluating the model’s generalization ability, and the validation set for monitoring model
performance and adjusting hyperparameters during training. During the preparation of the training data,
phase-field model parameters C,, Cs, and ¢ were used as input independent variables, while the metallic
species Cu and Mg under various states (indices C, C3, C., and C3) served as output dependent variables.
This setup reflects the physical linkage between inputs and outputs grounded in the KKS phase-field model’s
thermodynamic equilibrium and dynamics: input parameters govern solute partitioning between solid and
liquid via the free-energy functional and concentration-weighted constraints, and the machine learning
model learns this mapping in a data-driven manner.

Considering that the regression task in this study involves mapping 3 input dimensions to 4 output
dimensions, characterized by a low-dimensional input space and sufficient sample size, to avoid empirical
biases in network architecture design and improve model performance, this work introduces neural archi-
tecture search (NAS) to optimize the number of neurons in the hidden layer. As shown in Fig. 5, during the
search process, the average mean squared error (MSE) on the validation set was used as the evaluation metric.
Through comparative analysis of multiple structural configurations, it was determined that setting 9 neurons
in the hidden layer yielded the optimal predictive performance. Therefore, a three-layer network structure
of 3-9-4 was adopted as the fundamental framework for the regression model. To prevent overfitting during
training, the MSE on the validation set was monitored in real time, and an early stopping mechanism was
introduced: training was terminated immediately if the validation set MSE did not significantly decrease
over several consecutive epochs. This strategy ensures adequate model training while effectively enhancing
its generalization capability. The MSE calculation method is as follows: the squared errors for all validation
samples across the 4 output dimensions are computed separately, then averaged overall to comprehensively
assess the prediction accuracy across the entire output space.

To ensure adequate training, the number of training epochs was ultimately set to 1000, with a learning
rate of le-3 and a target error of le-5. When using the LSGWO algorithm to optimize the neural network
weights and biases, we set the grey wolf population size to 30 and the maximum number of iterations to 50.
According to the network structure, the total number of optimized parameters is 76, including 27 weights
from the input layer to the hidden layer, 36 weights from the hidden layer to the output layer, 9 biases for the
hidden layer, and 4 biases for the output layer, with parameter values ranging within [-1, 1]. Specifically, all
parameter lower limits were set to —1 and upper limits to 1 to ensure parameter variation within a reasonable
range, preventing overly large or small parameter values from impacting model stability and performance.
The hidden layer of the feedforward neural network uses the hyperbolic tangent function tansig as the
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activation function, and the output layer uses the activation function purelin. Table 2 presents the specific
experimental parameter settings.
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Figure 5: Comparison of average MSE under different numbers of hidden layer neurons

Table 2: Table of experimental parameter settings

Description Value
Input layer 3
Hidden neurons 9
Output layer 4
Training epochs 1000
Target error le-5
Learning rate le-3
Grey wolf population 30
Max iteration 50
Optimization parameters 76
Optimization parameter target lower limit -1
Optimization parameter target upper limit 1

In this study, the LSGWO-BP model required approximately 4-6 min per training session on a
computing platform equipped with an Intel Core i7-12700H CPU, with peak memory usage around 2 GB and
no need for a dedicated GPU. In contrast, traditional phase-field quasi-equilibrium numerical simulations
(with an 800 x 800 grid) required several hours for a single solution under the same hardware environment,
with memory usage often exceeding 10 GB. Furthermore, after training, the LSGWO-BP model achieved
a single prediction time of approximately 0.2 ms, representing a significant speed improvement. Efficiency
comparisons clearly demonstrate that the introduction of the LSGWO-BP method not only significantly



Comput Mater Contin. 2025;84(3) 4325

accelerates subsequent large-scale high-throughput simulation processes but also completes model optimiza-
tion and validation within an acceptable computational resource budget. To systematically present the overall
framework and logical structure of this study, a mind map was constructed, as shown in Fig. 6.
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Figure 6: Technical roadmap for quasi-phase equilibrium prediction in the KKS phase-field model based on the
LSGWO-BP method

3.2 Testing of the LSGWO Algorithm

The model developed in this study adopts a multi-input multi-output structure, where the output
variables correspond to different physical quantities of the liquid and solid phases. However, due to the strong
physical coupling among the output variables and their highly similar numerical ranges and trends, these
outputs exhibit weak distinguishability during optimization. Based on these characteristics, the problem
can be simplified to a multi-input single-output formulation to facilitate algorithm performance analysis
and evaluation. Therefore, three representative types of standard benchmark functions were selected in
this study, as shown in Table 3. These functions are widely used in evaluating optimization algorithm
performance, covering various dimensions, domains, and global optimum characteristics. These benchmarks
facilitate a comprehensive assessment of the proposed algorithm from multiple perspectives, including search
capability, convergence speed, and robustness.

To further validate the adaptability and solving capability of the proposed optimization algorithm, four
representative classical optimization algorithms were selected for comparison experiments: Particle Swarm
Optimization (PSO) [32], African Vulture Optimization Algorithm (AVOA) [33], Whale Optimization Algo-
rithm (WOA) [34], and Moth-Flame Optimization (MFO) [35]. Fig. 7 illustrates the 3D search spaces and
fitness evolution curves of the selected test functions, while Table 4 presents the performance comparison
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of the algorithms across different test functions. As shown in Fig. 7 and Table 4, the proposed LSGWO
optimization algorithm consistently outperforms the others across all three types of benchmark functions.

Table 3: Test function

Test function n Range Jmin
2
hz+h,‘
fix) =YL, [a,. - ’;};ﬂb—ﬁ] 4 [-5,5]" 0.0003075
fo(x) = 4xf - 2.0x} + 3xf + x1x, —4x3 +4x5 2 [-5,5]"  -1.0316285
2
f3(X) = - Z?:l C; €Xp [— Z;%zl aij (Xj — Pij) ] 4 [0, 1]” -3.86
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Figure 7: (Continued)
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Figure 7: 3D plots and fitness convergence curves of benchmark test functions

Table 4: Comparison of optimization algorithms on benchmark test functions

Test function PSO AVOA WOA MFO LSGWO

hf 0.0025 0.0017 0.0015 0.0016 0.00032
2 -1.006 -1.021 -1.011 -0.998 -1.037
f3 -3.839 -3.826 -3.776 -3.814 -3.862

3.3 Evaluation Metrics

This study establishes a quasi-equilibrium regression prediction for the phase-field model and evaluates
the predictive performance of the training model using five metrics: Mean Absolute Error (MAE), Mean
Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and the
Coefficient of Determination (R?). The formulas for each evaluation metric are as follows:

A 1 < A
MAE(y,y ):;Zl(yi—yi)l (31)
i=1
1 n
MSE(y,y") =~ 2 (i -y (32)
i=1
—
RMSE(y,y") = | ~ 2. (i = 1) (33)
i=1
MAPE(y, y") - lz(Lﬂ) (34)
ni3 Yi
n A \2
RX(y,y") =1- 22:1 (i )’1)2 (35)
i (vr - i)

In model evaluation, y; represents the true values, y} represents the predicted values obtained from the
Logistic-Sine mapped Grey Wolf Optimized BP Neural Network model and six machine learning models,
and y; is the mean observed value of the samples. MSE is used to measure the mean squared difference
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between the predicted and actual values, while RMSE, as the square root of MSE, provides information on the
standard deviation of prediction errors. MAE calculates the mean absolute difference between the predicted
and actual values. R? evaluates the model’s ability to explain the variance in the data; the closer its value is to 1,
the better the model fits the data. MAPE provides the mean percentage error of the predicted values relative
to the true values; the smaller the value, the higher the prediction accuracy. Collectively, these evaluation
metrics offer a comprehensive basis for evaluating the predictive performance of the model.

3.4 Model Evaluation Result Analysis

Figs. 8-19 show the performance of the LSGWO-optimized BP neural network and six commonly used
machine learning models across multiple training datasets. As shown in Table 5, the LSGWO-BP model
demonstrates outstanding performance across all datasets based on comparisons of the MAE, MSE, RMSE,
MAPE and R? evaluation metrics.
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Table 5: Comparison of results of different machine learning evaluation metrics

Mean Absolute Error (MAE)

Parameters LSGWO-BP BP LR ET DT RF AdaBoost
C} 0.009894  0.014010  0.011971  0.013854  0.013898  0.011436  0.012071
G 0.003922 0.005777  0.004991 0.006038 0.005994 0.004959  0.005114
Cé 0.016599 0.027247  0.027596  0.032687  0.031404  0.027235  0.027208
Cs 0.004333 0.005629  0.005721  0.007035 0.006976  0.005837  0.005908

Mean Squared Error (MSE)

Parameters LSGWO-BP BP LR ET DT RF AdaBoost
Cé 0.000091 0.000326  0.000243 0.000453 0.000456 0.000263  0.000241
G 0.000002 0.000043 0.000044 0.000087 0.000085 0.000051 0.000045
Cé 0.000938 0.002008 0.001078 0.002041 0.002041 0.001183 0.004991
C; 0.000044 0.000068 0.000057 0.000116 0.000114 0.000066  0.000058

Root Mean Squared Error (RMSE)

Parameters LSGWO-BP BP LR ET DT RF AdaBoost
Cé 0.008388 0.017038 0.015576  0.021489  0.022616  0.016408  0.015901
C; 0.004624 0.006588  0.006572  0.008171  0.009829  0.006991 0.006299
Cé 0.009915 0.035756  0.033321  0.044488 0.042389  0.035154 0.033531
cs 0.005765 0.008509 0.008088 0.007342  0.011982  0.008801  0.008149

Mean Absolute Percentage Error (MAPE)

Parameters LSGWO-BP BP LR ET DT RF AdaBoost
Cé 0.199111 0.357333 0.321047 0.294619 0.337369 0.253498 0.360533
C; 0.316961 0.367834 0.342017 0.366508 0.412909 0.324457 0.455533

(Continued)
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Table 5 (continued)

Cé 0.529185 0.705009 1.337311 0.786025  0.787085  0.654463  0.839506
cs 0.890978 1.078644 1.301018 0.999829 1.151658 1.046348 1.768351
Coefficient of Determination (R?)
Parameters LSGWO-BP BP LR ET DT RF AdaBoost
Cé 0.86648 0.773332 0.79837 0.61625 0.57494 0.78262 0.80977
G 0.87037 0.740668 0.73448 0.58961 0.40605 0.69959 0.75605
Cé 0.63671 0.526742 0.53974 0.17956 0.25515 0.46114 0.53395
] 0.52132 0.388827 0.42548 0.52655 0.26066 0.31151 0.43297

Fig. 8 presents a bar chart comparing the MAE results of different models. The LSGWO-BP model
consistently achieves lower MAE values than the six baseline machine learning models across all four
prediction outputs, indicating superior predictive accuracy. For C!, the RF model yields the best performance
among the six traditional models with an MAE of 0.011436, whereas the LSGWO-BP model achieves a lower
MAE of 0.009894. For C3, RF again performs best among the baseline models with an MAE of 0.004959,
while LSGWO-BP further reduces the error to 0.003922. Regarding C., AdaBoost produces the best result
among the six models, with an MAE of 0.027208, while LS GWO-BP achieves a lower value of 0.016599.
For C5, BP performs best among the baseline models with an MAE of 0.005629, compared to 0.004333 for
LSGWO-BP.

Fig. 9 presents a bar chart comparing the MSE values for different models. For C}, AdaBoost achieves the
best performance among the six conventional machine learning models with an MSE of 0.000241, whereas
the LSGWO-BP model yields a substantially lower MSE of 0.000091. For C3, BP attains the best result among
the baseline models with an MSE of 0.000043, while LSGWO-BP achieves an even lower error of 0.000002.
For C., LR again provides the best performance among the six models with an MSE of 0.001078, while
LSGWO-BP reduces the error to 0.000938. In the case of C5, LR obtains the lowest MSE among the traditional
models at 0.000057, but the LSGWO-BP model achieves a better result of 0.000044. Overall, Fig. 9 clearly
demonstrates that the LSGWO-BP model consistently outperforms the traditional machine learning models
in terms of predictive accuracy based on MSE.

Fig. 10 presents a bar chart comparing the RMSE results across different models. For C} and C!, the
LR model achieves the best performance among the six baseline machine learning models, with RMSE
values of 0.015576 and 0.033321, respectively. In comparison, the LSGWO-BP model attains lower RMSE
values of 0.008388 for C. and 0.009915 for C.. For C5 and C3, AdaBoost and ET provide the best results
among the traditional models, with RMSE values of 0.006299 and 0.007342, respectively. The LS GWO-BP
model, however, further reduces these errors to 0.004624 and 0.005765. Overall, Fig. 10 demonstrates that
the LSGWO-BP model exhibits the lowest overall fluctuation in prediction error, indicating greater stability
and consistency across different prediction tasks.

Fig. 11 shows the MAPE comparison histogram, where LSGWO-BP also performs exceptionally well in
terms of MAPE. For Cl, C3, and CJ, RF yielded the optimal results among six machine learning methods,
with MAPE values of 0.253498, 0.324457, and 0.654463, respectively, while LS GWO-BP’s MAPE values were
0.199111, 0.316961, and 0.529185. For C3, the best traditional machine learning model was ET, with a MAPE
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value of 0.999829, which is notably higher than that of LSGWO-BP, at 0.890978. It is evident that LSGWO-
BP exhibits the smallest relative errors across the four prediction datasets, showcasing its superiority in
error management.

Fig. 12 is a histogram comparing R? results, where the minimum value of LSGWO-BP across the four
datasets exceeds 0.52. For Cé and Cj, the optimal traditional machine learning model is AdaBoost, with R?
values of 0.80977 and 0.75605, respectively, while LSGWO-BP achieves R? values of 0.86648 and 0.87037. For
C!l and C3, the best traditional machine learning models were LR and ET, with R? values of only 0.53974 and
0.52655, whereas LSGWO-BP achieved R? values of 0.63671 and 0.52132, respectively. Although LSGWO-BP
does not exhibit a distinct advantage for C3, its overall performance in R* values across the four datasets is
still superior.

To present a more intuitive comparison of model predictive performance, Figs. 13-19 show comparison
plots of predicted and actual values for each dataset. Given the large volume of data, a random subset
of 50 samples from each dataset was selected for visualization. As shown in Fig. 13, the LSGWO-BP
model produces predicted values that align more closely with the actual values than those generated by
the six baseline machine learning models, indicating superior fitting accuracy. In contrast, the traditional
models exhibit larger prediction deviations, particularly in the C) and Cj datasets, where their fitting
curves appear less consistent with the true values. These results further highlight the strong predictive
capability of the LS GWO-BP model in complex data scenarios—maintaining its advantage even under sample
reduction conditions.

As shown in the regression scatter plots in Fig. 14, the traditional BP exhibits certain performance
limitations in predicting multicomponent alloy KKS phase-field models. The main reason lies in the fact
that BP neural networks rely on gradient descent for parameter updates, which makes them prone to local
optima and sensitive to initial weights, thereby limiting their generalization capability. When dealing with
highly nonlinear and complexly coupled microstructural evolution data in materials, traditional BP models
struggle to comprehensively capture the global features in the parameter space. As a result, its prediction
accuracy and stability are significantly inferior to those of the LSGWO-BP model.

As shown in Fig. 15, which compares the predicted and actual values using the LR model, LR exhibits
relatively poor predictive accuracy for the C} and C; datasets. This limitation likely stems from the inherently
linear nature of the LR model, which hampers its ability to capture complex nonlinear relationships and
makes it sensitive to variations in feature diversity. As a result, LR struggles to represent intricate data
patterns and interaction effects in highly nonlinear regions, leading to noticeable discrepancies between its
predictions and the true values.

From Fig. 16, which shows the comparison plot of ET predicted vs. actual values, it can be seen that the
prediction accuracy of ET is also not ideal. This may be because, although ET can handle some nonlinearity,
its prediction results fluctuate greatly near extreme values, and its fit to actual values is not tight enough.
Although ET can improve generalization ability, it may be less sensitive to subtle changes in data compared
to the LSGWO-BP neural network.

As illustrated in Fig. 17, the predicted values generated by the DT model appear noticeably more
scattered compared to the actual values. This dispersion may stem from inherent limitations in tree depth
and branching structure, resulting in stepwise predictions that struggle to capture continuous variation
patterns. Although pruning techniques are employed to mitigate overfitting, they can inadvertently eliminate
informative branches, thereby reducing the model’s generalization capability. Moreover, the DT construction
process relies on a greedy algorithm that selects the best split at each step, which may lead to suboptimal
decisions and prevent attainment of a globally optimal structure.
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Similarly, Fig. 18 presents the comparison between predicted and actual values for the RF model. RF
also exhibits dispersed predictions in overall trend fitting, particularly in the C3, Cé, and C; datasets, where
notable deviations are observed. This may be attributed to the fact that, although RF enhances performance
by aggregating multiple decision trees and shows robustness in handling nonlinearities, it may still lack the
flexibility required to capture highly intricate nonlinear interactions when compared to an optimized neural
network model.

As shown in Fig. 19, which presents the comparison between predicted and actual values for the
AdaBoost model, its performance is suboptimal in predicting the C} and C§ datasets. This limitation may
arise because, although AdaBoost improves predictive capability by aggregating multiple weak learners and
typically requires minimal data preprocessing, it may still struggle to capture complex underlying patterns in
high-dimensional feature spaces. As a result, the model is prone to either underfitting or overfitting, leading
to noticeable discrepancies between its predictions and the true values.

To further facilitate an intuitive comparison of model performance, Fig. 20 presents a radar chart
illustrating the evaluation metrics of each model across different training sets. The results demonstrate that
the LS GWO-BP model not only achieves higher predictive accuracy but also exhibits superior stability.

LSGWO-BP LSGWO-BP
0.035
0.030
0.025

LR

daBoost

LSGWO-BP

(a) MAE (b) MSE

AdaBoost

LSGWO-BP LSGWO-BP

1.0
0.9

(¢) RMSE

daBoost AdaBoost ET

RF DT

RF DT

(d) MAPE . (e) R?

Figure 20: Radar chart of error metrics for each model
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LSGWO-BP outperforms the other six traditional machine learning models in the results of five evalua-
tion metrics and in the comparison plots between predicted and actual values. This advantage arises from the
integration of the BP neural network and the improved GWO algorithm in LSGWO-BP, enabling the neural
network to capture intricate data relationships. LSGWO optimizes the weights and biases of the BP neural
network, enhancing its global search and local optimization capacities, which allows the model to adapt
better to diverse dataset features, resulting in improved predictive accuracy and robustness. The multi-layer
structure of the neural network autonomously learns complex feature representations from data, enabling
LSGWO-BP to excel in processing high-dimensional and complex data. Additionally, regarding feature
processing capability, the BP neural network autonomously learns and extracts nonlinear features through
hidden layers without requiring manual handling, making it particularly advantageous for datasets with
diverse and complex characteristics. In terms of parameter optimization, the LSGWO algorithm performs
a global search by simulating the hunting behavior of grey wolves, effectively avoiding local optima and
enabling the BP neural network parameters to achieve global optimality. LSGWO also dynamically adjusts
neural network parameters, ensuring the model maintains robust predictive performance across various
datasets. The LSGWO algorithm enhances the BP neural network model’s adaptability to different data
characteristics, resulting in stronger generalization ability, greater stability, and more accurate predictions
for LSGWO-BP across different datasets.

In summary, based on the above analysis, LSGWO-BP has significant advantages in terms of model
structure, feature processing capability, parameter optimization, and adaptability to data characteristics. This
results in a better fit between predicted and actual values compared to traditional machine learning models,
demonstrating the excellent performance of LSGWO-BP in handling complex data.

4 Conclusion

This study introduces an optimized machine learning model-a BP neural network optimized by a GWO
algorithm enhanced through Logistic-Sine chaotic mapping. The model is designed to predict the quasi-
phase equilibrium of Al-Cu-Mg ternary alloys within the KKS phase-field model.

(1) The Logistic-Sine mapping mechanism improves the diversity of the initial population and enhances
the global search capability of the GWO algorithm, thereby avoiding entrapment in local optima and
increasing the algorithm’s adaptability and robustness when addressing large-scale, complex datasets.

(2) The LSGWO-BP model integrates the deep learning capacity of BP neural networks with the global
optimization ability and convergence efficiency of the improved GWO algorithm, resulting in significantly
enhanced predictive performance.

(3) A comprehensive performance evaluation of the LSGWO-BP model was conducted for the
KKS phase-field modeling of multicomponent alloys, including simulations of metallic microstructure
morphology under various conditions. Experimental validation confirms that the model maintains high
predictive accuracy and stability even when accounting for compositional complexity and microstructural
variation. Statistical analyses further demonstrate the model’s potential in multicomponent alloy phase-field
simulations, highlighting its advantages as a highly efficient and reliable predictive tool.
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