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ABSTRACT: A literature review on AI applications in the field of railway safety shows that the implemented approaches
mainly concern the operational, maintenance, and feedback phases following railway incidents or accidents. These
approaches exploit railway safety data once the transport system has received authorization for commissioning.
However, railway standards and regulations require the development of a safety management system (SMS) from
the specification and design phases of the railway system. This article proposes a new AI approach for analyzing
and assessing safety from the specification and design phases of the railway system with a view to improving the
development of the SMS. Unlike some learning methods, the proposed approach, which is dedicated in particular to
safety assessment bodies, is based on semi-supervised learning carried out in close collaboration with safety experts
who contributed to the development of a database of potential accident scenarios (learning example database) relating
to the risk of rail collision. The proposed decision support is based on the use of an expert system whose knowledge base
is automatically generated by inductive learning in the form of an association rule (rule base) and whose main objective
is to suggest to the safety expert possible hazards not considered during the development of the SMS to complete the
initial hazard register.

KEYWORDS: Artificial intelligence; ontology; semi-supervised learning; expert system; association rules; railways;
safety; hazard; accident scenarios; classification; assessment

1 Introduction
Machine learning (ML) is an important branch of AI research. Within ML, a distinction is made between

supervised learning, semi-supervised learning, and unsupervised learning (Fig. 1). There are several machine
learning approaches and algorithms that rely largely on regression, discrimination (or classification), and
clustering techniques.

In supervised learning, we find the following main approaches:

– Discrimination or Classification: supervised classification, K-nearest neighbors (KNN), Naive Bayes
classifier, Random Forests, Decision trees;

– Regression: simple linear regression, Multiple linear regression, Logistic regression, Logarithmic regres-
sion, Support Vector Regression (SVR);

– PAC-Bayesian theory (Naive Bayesian classifier, Bayesian Network (BN), Bayesian Belief Network
(BBN);

– Backpropagation (Gradient backpropagation).
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On the other hand, unsupervised learning includes several methods and algorithms:
– Grouping: Partitioning method: (K-means), Dynamic swarms (disjoint groups), k-median, Hierarchical

Clustering, Support Vector Machines (SVM), Probabilistic clustering;
– Artificial Neural Network (ANN): Convolutional Neural Networks (CNN), Recurrent Neural Network

(RNN), Deep Neural Network (DNN), etc.;
– Dimension reduction: discriminant Factor Analysis (DFA), Principal Component Analysis (PCA), etc.;
– Association: association rules;
– Optimization: genetic algorithm, etc.;
– Feature extraction (Data Mining): descriptive Tasks, Predictive Tasks.

Figure 1: Proposal for a classification of machine learning methods and algorithms
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Several review studies have been published in the literature on the application of AI in the transportation
sector: Intelligent transportation [1,2]; Public transport [3]; Energy, water, transport, and telecommunica-
tions infrastructure sectors [4]; Different modes of transport land (road, rail), maritime and air [5]. The
challenges, arguments, and interests of “Big Data” for risk management in rail transport are presented in
[6–8]. After giving an overview of “Big Data” technologies in the rail transport sector, Ghofrani et al. [9]
presented an interesting survey from 2003 to 2017 on the potential applications of big data analysis in
railway systems rail transport. According to Laiton-Bonadiez et al. [10], the areas of application of Industry
4.0 technologies in rail transport relate to the following three branches: (1) Surveillance, (2) Decision and
planning, (3) Communication and safety. Dong et al. [11] presented a critical review of recent textual research
and their applications in railways which notably concern the analysis of accidents and incidents, sentiment
analysis in particular passenger complaints and speech synthesis, detection of technical specifications, fault
diagnosis, servicing/maintenance and inspection, accident risk assessment, extraction of safety informa-
tion, identification of accident causes and finally the identification of maintenance events. An interesting
taxonomy of artificial intelligence methods and algorithms as well as their applications in rail transport
has been proposed in Bešinović et al. [12]. The applications identified by the authors relate to autonomous
train driving and control, maintenance, and inspection in particular fault diagnosis, infrastructure condition
monitoring, fault detection and prediction, and mobility of passengers which brings together the prevention
and prediction of passenger flows and passenger satisfaction, traffic planning and management, finally safety
and safety of transport in particular the analysis of incidents, the safety of stations, the detection of defects,
rail disruptions and research into the causes of accidents. Tang et al. [13] also proposed a literature review
on the applications of AI in railway transport systems and the applications studied concern autonomous
driving and control, revenue management, inspection, passenger mobility, traffic planning and management,
transport policy, and safety and security. An interesting study on recent applications of machine learning in
railway maintenance was proposed by Chenariyan-Nakhaee et al. [14]. Finally, several studies are increasingly
interested in AI applications which are essentially based on ontology and knowledge graphs:

– Ontologies for transportation research [15],
– Ontology-based systems engineering [16],
– Knowledge graphs as tools for explainable machine learning [17],
– Application of ontology and knowledge graphs in rail transport [18],
– Applications of “classical” AI, ontology, and knowledge graphs to European rail transport safety [19].

After this introduction to the methods, algorithms and types of machine learning (ML), the following
paragraph presents a quick review of the literature on the applications of AI and ML in rail transport.

2 Proposal for Classification of AI Applications Relating to Rail Transport
Drawing inspiration from the two European directives relating to the development (Directive (EU)

2012/34 [20]) and interoperability (Directive (EU) 2016/797 [21]) of the European railway system, we propose
to complete and refine previous studies on applications of AI techniques and in particular machine learning
(ML) to rail transport by focusing in particular on the contributions and limits of AI to railway safety. The
AI applications studied are classified into two approaches (Fig. 2) [19]:

1. AI approaches related to the “Structural Elements” of the railway system (Table 1):
– AI approaches related to railway “infrastructure”: switch system, rail, ballast, rail track geometry,

level crossings, tunnels, etc.
– AI approaches related to railway “rolling stock”: axles, wheels, pantographs, locomotives, wag-

ons, etc.
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2. AI approaches related to the “Functional Elements” of the railway system (Table 1):
– Operation/traffic management,
– Maintenance,
– Telematics applications,
– Investigation into railway accidents and incidents.

Figure 2: Decomposition of the railway system (inspired by Directives (EU) 2016/797 and (EU) 2012/34)
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Table 1: Review of AI applications studied and their distribution by type of railway equipment

Railway
system

Subsystems Equipment/
Constituents

Goals AI methods and algorithm

Structural
elements

Infrastructure Switch system Diagnosis of faults in the
switch system

- Artificial neural networks (ANN),
- Case-based reasoning (CBR)
- Convolutional Neural Network (CNN),
- Deep Convolutional Neural Networks (DCNN)
- Deep learning
- Expert system,
- Finite element method (FEM),
- Long-term and short-term memory (LSTM)
neural network,
- Natural language processing (NLP),
- Ontology,
- Petri net,
- Recurrent Neural Networks,

Rail Detection and inspection of
rail surface defects

Ballast Railway ballast
maintenance

Rail track geometry Inspection and prediction
of track failures

Level Crossings (LC) Hazard analysis,
monitoring, and violation

detection of level crossings
(LC)

Tunnel Railway tunnel
construction

Infrastructure Ontology-based railway
infrastructure topology

- SHAP: SHapley Additive exPlanations,
- Support Vector Regression (SVR),
- Vision-based AI.

Rolling stock Axle Maintenance of a railway
axle

- Case-based reasoning (CBR),
- Classification-based learning,
- Convolutional Neural Network Autoencoder
(CNN-AE),
- Decision trees,
- Deep Belief Network (DBN),
- Digital twin based on learning,
- Expert system,
- Fuzzy logic,
- Multi-layer perceptron auto-encoder (MLP-AE),

Wheels Diagnosis and detection of
defects in wheels

Pantograph Identify hazards related to
train traction equipment

(faulty sensors, faulty
pantographs)

Locomotive Railway locomotive fault
diagnosis

Wagons Maintenance and
prediction of the risk of

derailment of wagons

- Non-negative matrix factorization (NMF),
- One-class support vector machine (OC-SVM),
- Principal component analysis (PCA),
- Short-term Fourier transform (STFT),
- Statistical analysis methods.

Functional
elements

Operation: (Route
Compatibility)

Infrastructure & Rolling
stock

Checking the technical
compatibility between the

vehicle and the route

- Case-Based Reasoning (CBR),
- Expert system,
- Fuzzy Petri Net,
- K-nearest neighbors,
- Knowledge Graphs,
- Naive Bayes,
- Ontology,
- Random forests,
- Support vector machines,
- Train simulator.

Operation:
(Traffic Planning

and Control)

Rolling stock
(Locomotive)

Rail traffic planning and
control

Operation:
(Signaling)

ERTMS/ETCS Ontology for modeling
ERTMS/ETCS

Operation: (Train
driving)

Train Driving assistance (travel
time and fuel consumption)

Operation: (Train
driving)

Train Detecting train driver
fatigue

Maintenance Wagon
Metro

Wagon maintenance
Maintenance of automated

- Decision Trees,
- Classification Rules,
- Expert system,
- Linear Classifier,
- Markov Chain Monte Carlo,
- Ontology,
- Principal Component Analysis (PCA),
- Random forests,
- Support Vector Machine (SVM),
- Support Vector Machine (SVM).

metro lines

Rolling stock Maintenance and
monitoring

of rolling stock and track
condition

(Ontology-Based)

(Continued)
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Table 1 (continued)

Railway
system

Subsystems Equipment/
Constituents

Goals AI methods and algorithm

Telematics
applications (TA)

TA Traveler TA Freight - Train delay prevention,
- Customizing
user-interfaces,
- Personalized route
finding,
- Harmonizing information
systems,
- Evaluating key
performance indicators
(KPIs) (Ontology-Based)

- Accelerated failure time,
- Adaptive boosting,
- Case-based reasoning (CBR),
- Cosine Similarity,
- Extreme gradient boosting (XGBoost) tree,
- Gradient boosting decision tree (GBDT),
- Graph Theory,
- K-nearest neighbor,
- ML Regression Models,
- Ontology,
- Ordinary least squares,
- Quantile Regression (QR),
- Random forest,
- Short-Text Topic Modeling,
- Support vector regression (SVR).

Investigation into
railway accidents

and incidents

Infrastructure & Rolling
stock

- Analysis of railway
incident and accident data,
- Exploration of hazard
causes,
- Identification of actors
and safety risk factors,
- Modeling correlations
between accident-related
hazards,
- Discovery of accident
characteristics and
particularities,
- Prediction of hazards and
accident risks,
- Prediction of the annual
number of injuries,
etc.

- Artificial neural networks (ANN),
- Association rules (Aprioriand Clementine
software),
- Case-based reasoning (CBR),
- “K-means” classifier (ROST software),
- Convolutional Neural Networks (CNN),
- Decision tree,
- Deep Neural Networks (DNN),
- Genetic algorithm (GA),
- Graph theory,
- Knowledge graphs,
- Latent Dirichlet Allocation (LDA),
- Latent Semantic Analysis (LSA),
- Naïve Bays Classifier,
- Natural Language Processing (NLP),
- Ontology,
- Production rule learning,
- Random Forests,
- Recurrent Neural Networks (RNN),
- Rule-based reasoning (RBR).

AI applications relating to railway “Infrastructure” equipment are numerous: Diagnosis of faults in the
switch system, Detection and Inspection of Rail Surface Defects, Railway ballast maintenance, Inspection
and prediction of track failures, Hazard Analysis, Monitoring and Violation Detection of Level Crossings,
Railway tunnel construction, Ontology-based railway infrastructure topology.

Regarding railway “Rolling stock”, we can cite the following AI applications: Maintenance of a railway
axle, Diagnosis and detection of defects in wheels, identify hazards related to train traction equipment (faulty
sensors, faulty pantographs), Railway Locomotive Fault Diagnosis, Maintenance and Prediction of the Risk
of Derailment of Wagons.

AI work dedicated to railway “Operations” primarily concerns: Checking the technical compatibility
between the vehicle and the route, Rail Traffic Planning and Control, Ontology for modeling ERTMS/ETCS,
driving assistance (travel time and fuel consumption), and Detecting train driver fatigue.

For rail “Maintenance” and upkeep operations, we can cite: Wagon maintenance, Maintenance of
automated metro lines, Maintenance and monitoring of rolling stock and track condition (Ontology-Based).

Studies related to “Telematics Applications” (Traveler and Freight) are primarily based on the devel-
opment of ontologies: Train Delay Prevention, Customizing User–Interfaces, Personalized Route Finding,
Harmonizing Information Systems, and Evaluating Key Performance Indicators (KPIs).
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Finally, AI applications dedicated to railway “safety” rely on the analysis of accident and incident data
from railway investigation reports. The objectives of these studies are numerous: Exploration of hazard
causes, Identification of actors and safety risk factors, Modeling correlations between accident-related
hazards, Discovery of accident characteristics and particularities, Prediction of hazards and accident risks,
Prediction of the annual number of injuries, etc.

For each subsystem (infrastructure, rolling stock) and each function (Operation, Maintenance, Telemat-
ics applications, Investigation into accidents and incidents), Table 1 presents the AI methods and algorithms
used. For further information on the above-mentioned works, readers can consult Hadj-Mabrouk’s [18,19]
recent work on the applications of AI, ontologies, and knowledge graphs in the field of rail transport safety.

3 Limitations of Related Work, Problem Positioning, and Objectives
This brief literature review shows that AI and ML applications are increasingly numerous in the rail

transport sector and aim to improve, in particular, the operation, maintenance, and safety tasks of railway
subsystems (infrastructure, rolling stock, telematics applications, etc.). This study focuses solely on railway
safety, which remains a crucial issue for experts in the field as well as for national safety authorities (NSAs).
Approaches closely related to railway safety (Table 1) exploit railway feedback data from accident and
incident investigation reports and often use text mining and machine learning techniques to analyze accident
data, identify causes, predict accident risks, reveal the presence of informative concepts, identify actors
and risk factors, discover relationships between accident factors, distinguish accident characteristics and
particularities, classify accident causes, identify significant trends in accident data, or predict the annual
number of injuries.

Despite the undeniable value of these approaches, their implementation assumes that the railway system
has already received authorization for commissioning (rolling stock) or operation (infrastructure). However,
railway safety begins during the specification phase and is omnipresent throughout the system’s life cycle. For
example, during the specification phase, a preliminary hazard analysis (PHA) must be performed; during the
design phase, a functional safety analysis (FSA) must be established; during the production of hardware, a
failure mode and effect analysis (FMEA) must be performed, supplemented by a root cause analysis (RCA),
etc. Safety must therefore be considered not only during the specification, design, and production phases,
but must also be validated by the safety analysis and assessment expert (or organization), controlled by rail
operators as part of their safety management systems (SMS), monitored by national safety authorities (NSAs),
and finally improved based on investigation reports prepared by the investigation organization.

We propose a new approach to railway safety analysis and assessment that is upstream of the AI
approaches presented previously. This approach, based on the concept of “accident scenario” can help safety
experts from the specification and design phases of the railway system. It should therefore contribute to the
improvement of the safety management system (SMS) by improving the completeness and consistency of
the step of identifying potential hazards and accidents that could jeopardize safety and for which prevention
and/or protection measures (or barriers) are necessary during the design of the hardware and software
equipment of the railway system.

It is also important to emphasize that the basic concepts involved in railway safety, which are used
by several machine learning algorithms, suffer from a lack of precision and clarity. This includes the
apparent confusion between the terms “hazard”, “risk”, “accident”, “incident”, “potential accident”, “dangerous
event”, “dangerous situation”, “dangerous element”, “risk analysis”, “hazard analysis”, “risk assessment”, “risk
management”, “risk reduction”, “safety”, etc. Indeed, the vocabulary used during the development of an AI
system, particularly to define classes, descriptors, properties, etc., cannot in any way guarantee the semantics,
interoperability, and reusability of safety knowledge. Consequently, the validity of certain approaches arises,



4406 Comput Mater Contin. 2025;84(3)

as they are approaches intended for risk management in critical systems such as rail transport. To provide
an element of response to this crucial problem, we propose the development of a railway safety ontology
allowing the harmonization of basic concepts linked to railway risk management.

In fact, two major problems exist in AI applications: the quality of the data required for learning and the
explainability (or interpretability) of the data learned by the learning algorithm. These two major obstacles to
machine learning are also well detailed in Bešinović et al. [12], Attoh-Okine [6], Cooray [22], Niu et al. [23],
Tamascelli et al. [24], Richardson [25], Xu et al. [26], Rohlfing et al. [27], Longo et al. [28], Thekdi and
Aven [29]. To address data and explainability issues, several learning constraints are necessary:

– Domain knowledge is required to process noisy data. The goal is to ensure robustness against “noise” and
mitigate the disruptive effects of poorly characterized training examples. Machine learning is particularly
sensitive to the relevance of available data. Ensuring this quality relies in particular on the acquisition
and use of complementary knowledge to reduce diffuse noise in the examples.

– Formalize data and domain knowledge in the form of ontology to explicitly describe and represent
domain knowledge by defining classes, their relationships, and their properties.

– Ensure the representativeness and quality of the training example database. If a learning algorithm allows
rules or concepts to be generated from experimental examples, the fact remains that the quality of the
knowledge learned depends largely on the quality of the example base (correct, complete, coherent, rich
information, sufficient number of examples, and descriptors).

– Perform semi-supervised learning: Semi-supervised learning is halfway between supervised learning,
which uses known labeled data, and unsupervised learning, which uses unlabeled data. The use of
labeled data, in combination with unlabeled data, in our opinion, allows us to improve the quality of
learning and in particular the problem of interpretability and explainability which currently constitutes
the “bottleneck” of learning techniques applied in high-risk systems such as railway safety. Indeed, we
rarely manage to extract all the data and knowledge from domain experts at the first attempt, but when
we present the knowledge learned by the system to the expert, the latter becomes aware of their interest,
identifies contradictions, and relevant rules, completes the training examples, possibly corrects the
description language of the examples, adjusts the learning parameters, etc. Thus, involving the domain
expert in the learning “loop”, will certainly help him to better verbalize his know-how and consequently,
we contribute not only to the enrichment of domain knowledge but also to the interpretability of the
learning models developed, which today constitutes the main objective of explanatory AI.

– Consider the incrementality and stability of the knowledge learned by the system to facilitate its updates.
– Carry out symbolic/numerical learning: The numerical approach focuses on optimizing a global crite-

rion such as entropy or the distance between examples in data analysis. The major drawback of numerical
methods lies not only in the impoverishment of the initial data when translating them into numbers,
but also in the fact that the semantics of numerical operations sometimes differ from that of the initial
symbolic data. In addition, the knowledge generated is often incomprehensible to humans. On the other
hand, the objective of symbolic methods is to use knowledge to produce new knowledge, not presented
trivially in the initial description of the problem. This new knowledge constitutes an explanation at
a higher level than that of observation in traditional data analysis. In the symbolic approach, we no
longer ask what is most effective, but what is most meaningful. Indeed, the symbolic approach is
capable of explanations because it operates on data in the form of conceptual graphs, semantic networks,
ontologies, etc. The use of a digital component is fundamental, even indispensable, to optimize the
learning process and deal with complex real-life problems where domain knowledge is often incomplete,
non-exhaustive, or noisy. These remarks attest to the interest of the symbolic-digital approach for the
creation of effective learning systems integrating the explanatory component.
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– Achieve human-centered learning by ensuring interactivity between the safety expert and the learning
system: the system must explain its reasoning by producing knowledge that is understandable and
interpretable by the expert whose role is to control, complete, and validate this knowledge. The expert
can indeed contribute to evaluating and validating the knowledge learned. This approach implies intense
interactivity and cooperation between the expert and the learning system. This transparency of the
approach requires particular care when creating Human/Machine interfaces.

All of these learning constraints were considered for the development of an expert system based on
ontology and interpretable learning to help in the discovery of railway accident scenarios.

4 Methodological Approach for the Acquisition, Modeling, Classification, and Evaluation of Railway
Accident Scenarios

During the design and development of a rail transport system, all stakeholders involved use one
or more safety methods to identify hazardous elements, hazardous situations (or hazards), their causes,
potential accidents, and the severity of the resulting consequences. The main objective is to justify and
ensure that the transport system’s design architecture is safe and poses no particular risks to users and
the environment. As part of this process, safety analysis and assessment experts are required to imagine
new potential accident scenarios to enhance the comprehensiveness of safety studies. One of the challenges
then lies in identifying abnormal scenarios that could lead to a specific potential accident. This is the
fundamental point that motivated this work, the objective of which is to develop a decision-making tool
to assist safety experts in their crucial task of analyzing and assessing railway safety. Knowledge of railway
accidents and incidents is essentially derived from the contribution of lessons learned and experiences gained
resulting from feedback from railway systems. It is therefore appropriate to exploit this historical knowledge
to understand and explain the causes and circumstances of accident risks and consequently avoid at least
the recurrence of similar accidents by using AI techniques and in particular ontology, machine learning,
and expert systems. The objective is to anticipate and prevent the recurrence of risks of similar accidents
or incidents and possibly to discover and identify new potential accident scenarios likely to compromise
railway safety. Fig. 3 presents the approach adopted for the analysis and evaluation of railway safety based
on modeling, capitalization, classification, evaluation, and discovery of potential accident scenarios. The
following paragraphs successively present the following steps: Conceptual model of risk management,
Ontology of accident scenarios, Knowledge acquisition, Classification of new scenarios, and Deduction of
hazardous events.

4.1 Conceptual Model of Railway Risk Management
To eliminate inconsistencies, confusion, and terminological conflicts at the various levels of railway

safety analysis and assessment, a conceptual model for railway risk management should be developed to
harmonize certain vocabulary used in railway safety analysis and assessment, particularly railway hazard
analysis. The goal is to provide common terminology, a uniform vocabulary, precise definitions, terms,
concepts, and relationships to support railway hazard studies, particularly during the development of a
safety management system (SMS). The established vocabulary is largely based on experience acquired,
particularly during expertise and certification of railway systems, as well as on the analysis of a set of railway
standards and regulations relating to railway safety and risk management. Several definitions were thus
established, including the concepts of hazardous elements, hazard, potential accidents, accidents, near misses
(or incidents), damage, risk level, and preventive or protective measures. Fig. 4 presents the main results of
this study in the form of a conceptual model semantically articulating all the descriptive parameters involved
in railway risk analysis and assessment.
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Figure 3: Approach to railway safety analysis and evaluation based on accident scenarios

Figure 4: Conceptual model of railway risk management
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This conceptual model was subsequently implemented by the software “web protégé” [30]. For exam-
ple, Fig. 5 intuitively shows the semantic links between “Dangerous Element”, “Danger”, “Potential Accident”,
“Accident”, “Near Miss (Incident)”, “Damage”, etc.

Figure 5: Relationship between “Dangerous Element”, “Danger”, “Potential Accident” and “Damage”

“Safety” remains the key component of any high-risk industrial system such as rail transport. It is often
defined as “the absence of unacceptable risk” or “the state of a hazardous situation presenting a minimum
acceptable risk and therefore being free from all unacceptable hazards and risks”.

Regardless of the scope of application and regardless of the technical and organizational prevention
and/or protection measures in critical systems such as rail transport, absolute safety does not exist. Indeed,
even if prevention, control, and monitoring measures, operating and maintenance procedures, barriers, and
system protection and/or prevention equipment are essential and mandatory, they cannot guarantee absolute
safety. There is always a hazard, a dangerous event, or an uncertain hazardous situation that is more or less
predictable, more or less possible, or even more or less probable to which the rail system is exposed. Moreover,
this unfortunately still explains the numerous accidents and incidents in all transportation sectors, including
the rail sector. This has led to the implementation of a feedback process not only to investigate the causes
of these rail accidents and incidents but above all to avoid and prevent the recurrence of such dangerous
situations, which often result in damage, sometimes critical, in terms of deaths and serious injuries. Since
absolute safety does not exist, the presence of a potential risk must be acknowledged, provided that it is
acceptable or tolerable with respect to humans, the system, and the environment.

It is therefore necessary to define an acceptable “risk level” that measures both the occurrence (or
frequency or probability) of an adverse event, termed a “potential accident”, and the “damage” (or effects
or consequences) caused by this accident. The occurrence of this adverse event is generally measured by
its “probability of occurrence” over a given period. The consequences or effects can be human, economic,
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or environmental in nature. Risk is thus expressed, for example, in monetary units per unit of time, in the
number of deaths per unit of time, or in the probability of death per unit of time. In this context, we refer to
the definition of quantified safety objectives (or probabilistic safety objectives). Unfortunately, this acceptable
conventional safety level is not defined objectively because it depends on the subjective assessment of the
system’s designers. Thus, the dangerous scenario that no one has considered always exists (for example, the
forgotten tool that connects two distant points or the rat that gnaws through insulation, etc.). Designers and
safety managers must therefore continue to imagine potential accident scenarios and stimulate the search
for solutions before a new transportation system is put into service. Thus, based on the definition of the
system’s operation, the qualitative analysis consists of studying the system’s safety overall by carrying out a
risk analysis whose objective is to identify dangerous situations, potential accidents, dangerous elements or
equipment as well as the seriousness of the resulting consequences.

4.2 Ontology for the Harmonization of Concepts Involved in Accident Scenarios
An ontology is «a formal and explicit specification of a shared conceptualization that is characterized by

high semantic expressiveness required for increased complexity» [31]. It is a form of graphical, formal, precise,
and explicit knowledge representation that considers the semantics of the application domain, identifying
inconsistencies in the data, and establishing a common vocabulary for better information sharing. These
characteristics give ontologies a useful role in knowledge engineering to formalize, structure, represent,
capitalize, and reuse the knowledge of a domain with a great power of explainability and interpretability.
A clear, structured, and explicit representation of knowledge allows, among other things, to mitigate the
problem of bias involved in AI systems (black boxes) particularly deep learning by providing a clear
explanation during the decision-making process.

In our context, the “Protégé” tool developed by Stanford University [32] was used to implement the
ontology of railway accident scenarios. This ontology editor is free and open source and integrates Semantic
Web standards, including the OWL language. In addition to its graphical interfaces, such as “OntoGraf ”,
for visualizing the constructed ontologies (classes and class hierarchies), “Protégé” implements reasoners
(inference engines). Several reasoners allow reasoning on the ontologies described in description logic. With
the “Protégé” tool, it is possible not only to create and edit ontology in OWL format but also to use an
inference engine like “Pellet”. Fig. 6 shows an overview of the railway accident scenario ontology developed
using the “Protégé” tool. This ontology is subsequently used during the classification, learning, evaluation,
and accident scenario generation stages.

4.3 Acquisition and Modeling of Accident Scenarios
4.3.1 Characterization of an Accident Scenario

An accident scenario is an appropriate and orderly sequence of unpredictable events (or a combination
of unexpected circumstances) that can lead to an undesirable, even dangerous, situation, and potentially
cause an accident such as a train collision or derailment. Each risk of an accident or incident likely to
endanger passenger safety or impair the system’s ability to perform required safety functions is generally
translated by safety experts into an accident scenario. The development of an accident scenario draws in
particular on the experience and know-how of safety analysis experts, as well as on historical data, railway
investigations, and feedback from rail transport systems already certified and in operation.
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Figure 6: Ontology of railway accident scenarios

Example accident scenario: wrongly storing incompatible routes on two redundant autopilots (APs)
Scenario label: S01: redundancy switching between (Automatic Pilot)
To improve the availability of automated transport systems, it is common practice to duplicate certain

equipment, one being active, the other passive, and capable of replacing the first in the event of a failure. The
scenario presented here concerns the erroneous storage of incompatible routes on two redundant autopilots
(APs) in a terminal:

– A T1 train has turned back and is at the departure station under the control of the active AP (AP A).
– A T2 train arrives following route I1.
– Following a failure, the redundant AP (AP B) has not deleted route I2, even though it has been deleted

on the active AP (AP A).
– Consequence: A discrepancy alarm between the two autopilots (APs).
– Following this alarm, the central control center (CCP) could switch the active AP (AP A) to the passive

AP (AP B).
– The passive PA (PA B) would allow the T2 train to reverse.
– Potential accident: Collision between trains T1 and T2.
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Fig. 7 illustrates the ontological representation of the concepts and events involved in this example
scenario.

Figure 7: Descriptors involved in the example scenario: “Redundancy switching between (Automatic Pilot)”

4.3.2 Descriptive Parameters of an Accident Scenario
Each accident or incident scenario was formalized and characterized by eleven descriptors such as

“Dangerous Element”, “Hazards”, “Potential Accident”, “Safety Function”, “Incident Function”, etc. (Fig. 8).
The scenarios collected so far in the historical scenario database concern the “railway collision” problem and
were constructed from several safety files of French rail transport systems: VAL, POMA 2000, MAGGALY,
and TVM430 (Nord TGV), and the expertise of safety experts.

Figure 8: Descriptive parameters of an accident scenario
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Figs. 9 to 16 give several examples of values for each descriptor (Attribute) involved in an accident
scenario:

– Example of Dangerous Elements (DE): Fig. 9
– Example of Hazards (H): Fig. 10
– Examples of Potential Accidents (PA): Fig. 11
– Example of Damage (D): Fig. 12
– Example of Risk Level (RL): Fig. 13
– Example of Safety Measures (SM): Fig. 14
– Example of Safety Functions (SF) and Incident Functions (IF): Fig. 15
– Example of Driving Modes (DM), Block Types (BT), and Geographic Zones (GZ): Fig. 16

Figure 9: Example of dangerous elements (DE)

Figure 10: Example of hazards (H)
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Figure 11: Examples of potential accidents (PA)

Figure 12: Example of damage (D)

Figure 13: Example of risk level (RL)
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Figure 14: Example of safety measures (SM)

Figure 15: Example of safety functions (SF) and incident functions (IF)
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Figure 16: Example of driving modes (DM), Block types (BT), and Geographic zones (GZ)

These descriptive parameters of a scenario (HE, HA, PA, D, RL, SM, SF, IF, DM, BT, GZ) are then used by
a learning system to search for empirical regularities between several scenarios and then generate dangerous
situations likely to occur in a particular context and which require particular attention from railway safety
experts and evaluators.

4.3.3 Collection of Accident and/or Incident Scenarios
After approximately thirty interviews and knowledge-gathering sessions with rail safety experts in

France, the analysis of several rail transport system safety files, particularly preliminary hazard analyses
(PHAs) and functional safety analyses (FSAs), and the study of rail safety standards and European rail
regulations relating to rail safety and risk management, the knowledge acquisition phase led to the inventory
of approximately one hundred accident or incident scenarios relating to several risks of collision, derailment,
electrocution, etc. To demonstrate the feasibility of the decision support system, this study was deliberately
limited to the problem of “rail collisions”. Fig. 17 shows an excerpt from the list of accident scenarios,
such as redundancy switching problems, entering an occupied block, incorrect initialization, element
coupling failure, element order inversion, recording failure after a switch, or crossing a stopping point in
manual driving.

4.3.4 Aggregation (Grouping of Accident Scenarios)
The collected scenarios are grouped by the safety experts into around ten scenario classes such as

the “Initialization”, “Train localization”, “Redundancy switching”, “Train docking” or “Emergency braking
management” class (Fig. 18).
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Figure 17: Accident scenario database relating to the risk of “collision”

Figure 18: Classes of accident scenarios
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4.3.5 Definition of a Language for Describing Scenario Examples
The language used to describe the examples must be perfectly understandable by the domain expert and

semantically rich to convey the concepts of the expert assessment. The chosen language, which is directly
derived from the formalism used to characterize accident scenarios, is based on a classic representation by
descriptors (Attributes/Values). We have defined seven types of descriptors:

– Enumerated descriptor: in the description of an example scenario, this type of descriptor takes a single
value from a set of possible values (domain of definition). For example, the attribute “Blocking Principle”
(BP) takes either the value “moving block” or “fixed block”.

– Multivalued descriptors such as (train tracking AND initialization AND docking). This type of descrip-
tor can take multiple values at once from the set of possible values. It is expressed as a conjunction (&)
of values.

– Unknown descriptor that has no value in the description of an example (missing attribute value) for a
particular situation.

– “Key” descriptor for a given class of examples. “Key” descriptors are the descriptors deemed by the expert
to be the most relevant for characterizing a class of accident scenarios.

– “Minimal” descriptors for describing an example of an accident scenario. Unlike key descriptors that
characterize a class of accident scenarios, “minimal” descriptors consist of the essential attributes
for characterizing an example of an accident scenario. They define the necessary (but not sufficient)
conditions for an example to be admissible. Four “minimal” descriptors are identified during the
knowledge acquisition phase to describe an accident scenario: Hazard (H), Potential Accident (PA),
Safety Function (SF), and Geographical Zones (GZ). A scenario example is declared complete if: (1) the
four “minimal” descriptors defined by the expert are present in the scenario description and (2) among
the non-“minimal” (irrelevant) descriptors for describing a scenario example, some have no value; they
are considered irrelevant for characterizing an example. Instead of assigning them any possible value,
they are assigned the value “unknown”. However, missing values are not tolerated for relevant attributes
(“minimal” descriptors).

– Probable descriptor such as (GZ = terminus OR line OR section boundary). A “probable” descriptor is a
descriptor that can take multiple values, declared probable by the expert, from among the set of possible
values forming the definition domain. In the example above, an accident scenario can occur in several
Geographical Zones, it can occur at a terminus, a line, or a section boundary. This is a disjunction of
values, as opposed to a multi-valued descriptor.

– Comment descriptor: This type of descriptor is associated with a value expressed in the form of a
comment. This type of descriptor is used to describe Dangers (D) and Adopted Solutions (AS). For
example, H25 = Penetration of a train on a block by recoil, and AS36 = Prohibit I/O mode switching
while a mode is in progress.

– Inconsistent Descriptors: The final criterion for preventing “noise” concerns the handling of data
inconsistency. This involves extracting from the expert the values of an attribute “Ai” that should not be
present in the attribute “Aj” when describing a scenario example. If these values are present in “Aj”, then
the example is inconsistent and requires verification. For example, during the knowledge acquisition
phase with the safety experts, an exhaustive inventory of Safety Functions (SF) was carried out, an
example of which is shown below (Fig. 19). From these two taxonomies relating to the SFs successively
involved in the potential accident (PA) “collision” and “derailment”, we can deduce that SF14 = “Integral
authorization driving and high voltage”, SF15 = “Tracking trains” and SF16 = “docking” should not be
included in the description of an accident scenario relating to PA = “Derailment”.
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Figure 19: Examples of safety functions (SF) involved in the railway “Collision” and “Derailment”

4.4 Classification of New Scenarios
This study is part of supervised learning since the accident scenarios were grouped by the safety

expert into several accident classes. Consequently, the training examples are “labeled” (or classified) and
the objective is to predict the membership class of a new scenario. This is called “supervised” learning or
“discriminant analysis” which is a statistical technique whose objective is to describe, explain and predict
the membership to groups (scenario classes) of a set of observations (scenario examples) from a series of
predictive variables (scenario characteristic descriptors). In data analysis, discriminant analysis can be either
a “descriptive” technique such as discriminant factor analysis or a “predictive” technique which aims to
construct a classification function (or assignment rule) to predict the membership class of an individual from
the values taken by the predictive variables. A supervised learning process is structured around two steps: one
to determine a model from the labeled data, and a second (testing) step, which consists of predicting the label
of a new data item from the previously learned model, often based on a probability of belonging to each of the
predetermined classes. This is referred to as “probabilistic” supervised learning. It is therefore necessary to
learn to construct a function F such that Y = F(X), Y being one or more results calculated based on input data
X (based on accident scenarios). Y can be a continuous quantity (e.g., an electric current or a speed), in which
case we refer to regression, or a discrete quantity (e.g., an accident class, collision, or derailment), in which
case we refer to automatic classification or supervised classification, which consists of assigning a class or
category to each object (or individual) to be classified, based on statistical data. Thus, the learning approach
adopted in the context of accident scenarios can be described as a supervised automatic classification method
(labeled training data), discriminative, probabilistic, predictive, and discrete, the objective of which is, on the
one hand, to discover the relevant characteristics of the accident classes grouped by the safety expert and,
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on the other hand, to predict the membership class of the new scenarios whose relevance the expert seeks to
assess with regard to the safety of a new railway system.

For reasons of readability, the mathematical calculation method is not presented in this article. For
further information on the approach to classifying accident scenarios, the reader can consult the article [33].

Fig. 20 illustrates the architecture of the incremental learning system intended for the classification and
capitalization of accident scenario classes linked to the risk of “railway collision”. This classification system
consists of the following five modules:

Figure 20: Supervised automatic classification approach for railway accident scenarios [33]

– A module for entering three types of accident scenarios: (1) new scenario to verify its admissibility before
processing; (2) known scenario, pre-classified, tested by experts, and whose class Ck is known; and (3)
scenario to be classified (new scenario to be classified whose consistency the expert seeks to assess).

– A pre-design module is used to set the various values of the learning parameters and constraints required
by the decision support system. During this stage, the user defines the learning parameters (induction,
classification, and convergence parameters) and the admissibility constraints of a scenario, which define
the conditions necessary for its acceptance by the system. All these parameters primarily influence the
relevance and quality of the learned knowledge, as well as the system’s convergence speed.

– An induction module (concept learning) for learning the conjunctive descriptions of scenario classes.
– A classification module whose objective is to deduce the class Ck to which a new scenario belongs based

on the previously derived class descriptions and with reference to an Adequacy rate.
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– A dialog module for system argumentation and expert decision-making. During the argumentation or
justification phase, the system keeps track of the deduction phase to construct its explanation. Following
this classification decision justification phase, the safety expert decides either to accept the proposed
classification, in which case the scenario database will be updated or to reject the classification. In the
second case, it is up to the expert to decide how to proceed. For example, they may decide to evaluate
the scenario using the expert system based on the learning of association rules which we detail below.

The data and knowledge required to implement these modules are derived from the ontology (developed
above) in close collaboration with the user and the safety expert.

4.5 Deduction of Hazardous Events
Let us recall that an accident or incident scenario was modeled by the ontology through eleven

descriptive parameters (Fig. 21): (1) Hazardous Elements (HE), (2) Hazards (H), (3) Potential Accidents (PA),
(4) Damage (D), (5) Risk Levels (RL), (6) Safety Measures (SM), (7) Safety Functions (SF), (8) Incident
Functions (IF), (9) Driving Modes (DM), (10) Type Block (TB) and (11) Geographic Zone (GZ).

Figure 21: Descriptive parameters (or descriptors) of an accident scenario

Let us also recall that the conceptual model previously developed made it possible to identify the “causal
links” between Dangerous Element (DE), Hazards (H), Potential Accident (PA), Damages (D), and Safety
Measures (SM) (Fig. 22):

Figure 22: Causal link between the descriptors of a scenario

The following descriptors of a scenario: Risk Levels (RL), Safety Functions (SF), Incident Functions (IF),
Driving Modes (DM), Type Block (TB), and Geographic Zone (GZ) will now be called “Static Context” of
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the scenario’s appearance as opposed to the “Dynamic Context” which describes the evolution and progress
of a scenario. Thus, the other descriptors: Dangerous Element (DE), Hazards (H), Potential Accident (PA),
Damage (D), and Safety Measures (SM) describe the causal links between the “key” descriptors which evolve
dynamically, thus creating a real potential accident scenario (Fig. 23).

Figure 23: Decomposition of the potential accident scenario into “Static Context” and “Dynamic Context”

This approach allows for the guidance of rules discovered through learning by using a “dynamic context”,
meaning that the rules must be organized in accordance with the following causal links: Hazardous Elements
(HE) Hazards (H) Potential Accidents (PA) Damage (D) Safety Measures (SM).

The use of a learning method that allows the generation of rules oriented from one descriptor to another
from a set of examples (or scenarios) is essential. The specification of the properties required by the learning
system, as well as the analysis of existing systems, led to the choice of the CHARADE [34] learning system,
which not only allows the generation of a structured rule system that can be used by an inference engine but
also allows the simultaneous learning of certain logical rules and uncertain rules modulated by a likelihood
coefficient. The automatic induction of a rule system, rather than isolated rules, as well as the ability to
structure the rules, give CHARADE an undeniable interest. Rule generation in CHARADE is based on the
search for and discovery of empirical regularities present in the training set. A regularity corresponds to an
observed correlation between descriptors in the training example database: if all the examples in the training
set that possess the descriptor d1 also possess the descriptor d2, we can infer that d1 d2 on the training set.
To illustrate this principle of rule generation, suppose we have a training set consisting of three scenario
examples S1, S2, and S3:

– S1 = DE & H & SF & PA
– S2 = DE & H & PA & GZ
– S3 = DE & H & SF & PA & IF

We can then detect an empirical regularity between the conjunction of descriptors (DE & H) and the
descriptor PA. Indeed, all the scenario examples described by DE & H also possess PA in their description.
This regularity is obtained using two functions: function C (lattice of descriptors) and function D (lattice of
examples). Thus, CoD (DE & H) =C ({S1, S2, S3}) =DE & H & PA. Finally, the rule: DE & H PA is obtained.
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The proposed approach to assist in the assessment and discovery of potential accident scenarios is organized
around the following four modules, illustrated in Fig. 24:

Figure 24: Expert system based on association rule learning to assist in the discovery of accident scenarios [33]

– A scenario database (training examples) derived from the previous classification system and capitalized
in the ontology;

– An association rule learning system called CHARADE uses this database of examples to produce
recognition functions for Dangerous Elements (DE), Hazards (H), and Potential Accidents (PA);

– A rules translation and transfer module. The rules produced by CHARADE are written using a specific
syntax. They are translated to be compatible with the expert system generator, which does not process
multi-valued descriptors, but only enumerated or Boolean descriptors. They are then automatically
transferred to the expert system’s knowledge base;

– A knowledge base for assessing scenarios used by the expert system’s inference engine to deduce the DE,
H, and PA to be considered in the new scenario proposed by the expert.

Here is an example of rules generated by the Charade system where the rules are oriented towards the
“Dangers” descriptor at the end of the rules.



4424 Comput Mater Contin. 2025;84(3)

If Hazardous elements =mobile operator,
Incident functions = instructions,
Hazardous elements = operator in CC,

Then Hazards =H11 (Invisible element on the zone of completely
automatic driving),
Hazardous elements = AP with redundancy,
Safety functions = train localization,
Geographic zone = terminus.

[0]
If Type of block = fixed block,

Safety functions = initialization,
Incident functions = instructions,

Then Hazards =H10 (Erroneous re-establishment of safety
frequency/high voltage)
Safety functions = Full control/High voltage permission
Safety functions = alarm management,
Safety functions = train localization.

[0]
If Safety functions = train localization,

Hazardous elements = AP without redundancy,
Then Hazards =H9

(Entry of a train into an occupied block),
Geographic zone = line,
Type of block = fixed block.

[0]

The evaluation process requires a preliminary phase during which the rules generated by CHARADE are
transferred to an expert system in order to build a knowledge base for the evaluation of scenarios. Based on
the deductions (Forward and Backward Chaining) performed by the inference engine of the expert system,
the objective is to compare in particular the list of Dangerous Element (DE), Dangers (H), and Potential
Accident (PA), proposed in a new scenario developed by the safety expert with the list of historical Dangerous
Element (DE), Hazards (H) and Potential Accident (PA) stored in the rule base of the expert system in order
to stimulate the formulation of dangerous situations not anticipated by the expert during the development
of hazard analyses. This evaluation task draws the expert’s attention to the events contrary to safety not
considered during the specification and design phases of the system and likely to compromise the safety of
a new railway system. It can thus promote the generation of new accident scenarios.

For further information on modeling, classification, and evaluation of railway accident scenarios, the
reader can consult the works [33,35,36].

This phase of assessing and assisting in the generation of potential accident scenarios is currently
ongoing to develop a hybrid reasoning approach. Indeed, while theory advocates an “inductive” approach
(consequences/causes) to railway hazard analysis, the procedures applied in practice are mostly “deduc-
tive” (causes/consequences). The approach (currently under development) that we recommend explicitly
combines the two approaches in order to enhance the quality of the analysis in terms of completeness and
consistency. Indeed, analyzing the safety of a complex system requires experts in the field to implement
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an iterative analysis process combining “inductive” and “deductive” approaches. Thus, the hybrid approach
envisaged is structured around three complementary and iterative stages (Fig. 25).

– From the (PA), the first step determines the list of (D) by “induction” and the list of (H) by “deduction”;
– The previous (PA) is used to find the list of (DE) by “deduction” and, by “induction”, the list of (PA). This

is a verification loop allowing the initial list of (PA) to be expanded if necessary;
– From the previous (DE), the third step allows the (PA) to be “induced” which will, in turn, be compared

to those from the first step. Generating a new (H) requires repeating the two previous analysis steps.

This is an iterative process allowing for a comprehensive railway risk analysis.

Figure 25: General description of the hazard analysis method

5 Contribution of Ontology to Explainable Artificial Intelligence (IAX)
In recent years, explainability and/or interpretability has become a key factor for the adoption of AI

systems. It is now a very active research topic and has seen a resurgence of interest in order not only to
gain the trust of the system’s users but also to demonstrate “how” and “why” a learning system, particularly
deep learning (based on artificial neural networks), led to such a decision. The objective is to understand
the reasoning carried out following a decision as well as the predictions made by the learning algorithms
(“black boxes”) in order to make them more intelligible, transparent, and understandable for the user of the
AI system. Thus, the ability to explain the reasons for a decision has become an indispensable property of AI
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systems. However, to date, there is no clear consensus between the term’s “explanation”, “interpretation” and
“transparency”.

Graziani et al. [37] highlight the problems of terminological discrepancies and inconsistencies between
the terms “interpretable”, “explainable”, and “transparency” and propose a “global taxonomy of interpretable
AI” to unify this terminology:

– Interpretability of AI defines AI systems for which it is possible to translate the operating principles and
results into a human-understood language without affecting the validity of the system.

– Explainable AI defines the branch of AI research that focuses on generating explanations for complex AI
systems.

– Transparency is used in AI to characterize systems for which the role of internal components, paradigms,
and overall behavior is known and can be simulated.

Confalonieri et al. [38] reviewed the literature on explainable artificial intelligence (XAI), not only
reviewing traditional approaches but also approaches currently under development. The authors describe the
different notions of explanations in expert systems (explanations as lines of reasoning and explanations as
problem-solving activities), in machine learning (local, global, introspective, or counterfactual explanations),
in recommender systems (explainable recommendation models and explanation styles), and in neural-
symbolic learning and reasoning. According to the authors, explanations generated by ontologies, conceptual
networks, or knowledge graphs can support reasoning by implementing several forms of knowledge use,
such as abstraction and refinement.

Several other similar works use ontologies for explainability purposes.
To address the explainability problem, Confalonieri et al. [39] fed the classifier with data from a

knowledge graph and describe its behavior using rules expressed in the knowledge graph terminology. The
latter is perceived by the authors as a structured, common, and understandable representation of a domain
based on how humans mentally perceive the world. Indeed, the representation of structured knowledge
in the form of ontologies plays an important role in explainable artificial intelligence (XAI), not only to
enrich explanations with semantic information but also to support the personalization of the specificity and
generality levels of explanations based on user profiles [40]. The study proposed by [41] makes it possible
to exploit the properties of ontology to improve explainability. To improve the explainability of cardiac AI,
Tsolakis et al. [42] used ontologies to evaluate and ensure the clarity and relevance of explanations. Bellucci
et al. [43] combined an ontology-based explainable model with an explanation interface to classify images.

However, to our knowledge, there is currently no work on explainable AI applied to the field of
railway safety. Indeed, the proposed article demonstrates that the joint use of ontology, expert systems,
and machine learning to improve railway safety from accident scenarios has not yet been studied. The
representation of domain knowledge in the form of ontologies undoubtedly promotes the interpretability of
the data produced by the learning system. In addition, expert systems (or knowledge-based systems) can be
considered interpretable by design because they were developed to assist humans in decision-making.

6 Conclusion
After a brief introduction to the methods, algorithms, and types of machine learning (ML), a rapid

literature review on the applications of AI and ML in rail transport was presented. Drawing inspiration from
the two European directives relating to the development and interoperability of the European railway system,
we have proposed a classification of AI applications related to rail transport, distinguishing between:
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(1) AI approaches related to the “Structural Elements” of the railway system: (a) “railway infrastructure”
(switches, rail, ballast, track geometry, level crossings, tunnels, etc.), (b) “rolling stock” (axles, wheels,
pantographs, locomotives, wagons, etc.)

(2) AI approaches related to the “Functional Elements” of the railway system (operations/traffic manage-
ment, maintenance, telematics applications).

Particular emphasis is placed on AI approaches related to railway accident and incident investigations
to explore the causes of hazards identify actors and safety risk factors, model correlations between accident-
related hazards, discover accident characteristics and peculiarities, etc.

Despite the undeniable interest in these approaches, their implementation assumes that the railway
system has already received authorization for commissioning.

The proposed approach improves railway safety from the specification and design phases and is based
on a set of potential accident scenarios developed from railway system design files as well as the know-how
and experience of safety experts.

This approach is essentially based on the development of railway safety ontology to harmonize the
fundamental concepts related to railway risk management. This ontology, whose objective is to promote the
interpretability of learning data by safety experts, is used during the classification, evaluation, and generation
of potential accident scenarios. The primary benefit of the proposed approach is to improve the completeness
of hazard analysis, which is essential when developing a railway safety management system (SMS).

To date, the tools developed (scenario classification algorithm, expert system, production rule learning
system “Charade”, an approach to generating new dangerous situations), are at the model stage, but an initial
overall validation by experts has demonstrated the interest of the proposed approaches to improve railway
risk management from the system design phase.

The knowledge acquisition and modeling steps involved in accident scenarios represent a laborious
effort that required approximately thirty data and knowledge-gathering sessions. To this end, and to
demonstrate the feasibility of the proposed approach, we deliberately limited the development to a single
accident type: “collision”. However, the overall architecture of the decision support system is open and can
handle other accident types such as “derailment”. The number of scenarios processed to date is approximately
one hundred related to train collisions. We are aware that this reduction in the number of scenarios may affect
the quality of the training example database and obviously raises the performance issue of the developed
learning system. Therefore, it is essential to enrich the training example database with additional scenarios.
It should be remembered that this was initially a feasibility study aimed at demonstrating the contribution
of AI, particularly machine learning and ontology, to railway risk management.
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