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ABSTRACT: Devices in Industrial Internet of Things are vulnerable to voice adversarial attacks. Studying adversarial
speech samples is crucial for enhancing the security of automatic speech recognition systems in Industrial Internet of
Things devices. Current black-box attack methods often face challenges such as complex search processes and excessive
perturbation generation. To address these issues, this paper proposes a black-box voice adversarial attack method based
on enhanced neural predictors. This method searches for minimal perturbations in the perturbation space, employing
an optimization process guided by a self-attention neural predictor to identify the optimal perturbation direction. This
direction is then applied to the original sample to generate adversarial samples. To improve search efficiency, a pruning
strategy is designed to discard samples below a threshold in the early search stages, reducing the number of searches.
Additionally, a dynamic factor based on feedback from querying the automatic speech recognition system is introduced
to adaptively adjust the search step size, further accelerating the search process. To validate the performance of the
proposed method, experiments are conducted on the LibriSpeech dataset. Compared with the mainstream methods,
the proposed method improves the signal-to-noise ratio by 0.8 dB, increases sample similarity by 0.43%, and reduces
the average number of queries by 7%. Experimental results demonstrate that the proposed method offers better attack
effectiveness and stealthiness.
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1 Introduction
With the continuous advancement of artificial intelligence technology, deep learning has achieved

significant results in the Industrial Internet of Things (IIoT), such as speech recognition [1], computer vision,
and natural language processing. These technologies are not only applied in our daily lives but also play
crucial roles in IIoT and other domains. In the speech recognition, the use of deep neural networks has
greatly propelled the development of automatic speech recognition (ASR) systems. ASR is utilized in various
scenarios, including autonomous driving, smart homes, and industrial automation. As research in speech
recognition continues to progress, the accuracy of speech recognition models based on deep neural networks
has significantly improved. However, the security and robustness vulnerabilities have also been exposed.

In IIoT, ASR systems are often used to control industrial devices via voice commands. These systems
enhance automation, operational efficiency, and intelligent interaction among IIoT components. However,
due to the inherent complexity and non-linearity of deep neural networks, these networks are susceptible to
adversarial attacks. Huang et al. [2] demonstrate that, by adding carefully crafted small perturbations to the
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original speech, the ASR systems in IIoT can be misled into incorrect recognition. It proposed an Adaptive
Phoneme Filter Template (APFT) method, which leverages phoneme-level templates and adaptive band
filtering to generate real-time, transferable, and compression-robust adversarial examples with high audio
quality. These perturbations can be maliciously exploited by attackers to illegitimately control IIoT devices,
posing significant security risks. Such manipulated speech is known as adversarial voice samples. Attackers
use adversarial voice samples to target ASR systems in autonomous vehicles, causing voice commands
intended for safe parking to be misrecognized as acceleration commands. This misrecognition can lead
autonomous vehicles into dangerous areas or cause traffic accidents, resulting in serious safety incidents.
Adversarial voice samples thus pose a significant threat to the reliability and security of ASR systems.
To mitigate these security risks, researchers are working to identify and exploit these adversarial samples
to detect and patch vulnerabilities in ASR systems, thereby enhancing their security and robustness [3].
Therefore, research on adversarial attacks is crucial for the security of IIoT devices.

Moreover, in IIoT applications, ASR systems are often employed for voice-controlled operations such as
automated machinery control, remote fault diagnosis, and command execution. If adversarial audio samples
are injected, attackers could potentially trigger unauthorized actions, causing equipment malfunctions,
production downtime, or even safety hazards. Therefore, developing black-box adversarial attacks with
high stealthiness is crucial for understanding and improving the security robustness of ASR systems in
industrial applications.

In recent years, the study of adversarial voice sample generation methods has garnered important
attention from both academia and industry. Designing and generating adversarial voice samples with
minimal perturbations remains a challenging task [4]. Existing voice adversarial attack methods, such as
those based on generative adversarial networks (GANs) [5], perform well in learning voice features but face
complex training processes and high computational resource demands. Transferability-based methods [6],
which generate adversarial samples on a known model and then apply them to a target black-box model,
are simple to operate but have limited success rates. Genetic algorithm-based methods [7] do not rely on
gradient information and have strong search capabilities for global optimization problems, but they converge
slowly and require multiple searches. Current black-box attack methods often require numerous queries to
find effective attacks, making the process time-consuming and inefficient. Achieving efficient attacks while
maintaining stealth is a challenge, as it is difficult to perform effective attacks without significantly altering
the input samples.

Although significant progress has been made in adversarial voice attack generation methods, there
remain substantial research gaps, particularly in achieving a balance between effectiveness, stealthiness,
and query efficiency in black-box settings. Moreover, while many efforts focus on generating adversarial
examples, relatively fewer studies address the detection of such threats in ASR systems, which is essential
for real-world deployment. Detection strategies, including input transformation, statistical analysis of
internal representations, and model behavior consistency checks, have been explored to varying degrees. A
comprehensive review by Noureddine et al. [8] summarizes the recent advancements and classifies detection
methods into categories such as preprocessing-based, model-based, and feature-based approaches. However,
many of these techniques either incur high computational costs or lack generalization across different models
and attack types. Therefore, our work not only contributes a more efficient black-box generation method but
also complements the current landscape by indirectly facilitating detection-oriented research.

To address the issues associated with black-box voice attacks, this paper proposes a black-box voice
adversarial sample generation method based on enhanced neural predictors. This method utilizes an
optimization process guided by a self-attention neural predictor to find the optimal perturbation direction.
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The search efficiency is optimized through pruning strategies and dynamic step size adjustments. The
contributions of this paper are as follows:

• An enhanced neural predictor black-box speech adversarial example generation method is proposed.
In this method, a neural predictor is designed to predict the decision boundary distance that causes the
false recognition of audio signals;

• A pruning strategy of the search algorithm is designed, which discards the perturbation samples with
a fixed threshold in the early stage of the search, so as to accelerate the time of finding the minimum
perturbation;

• Experiments are conducted on the LibriSpeech dataset, and the adversarial examples generated on the
dataset are used to attack SpeechBrain model and analyzed, which provides a theoretical basis for guiding
more effective speech adversarial examples generation.

The rest of the paper is organized as follows. The related works are discussed in Section 2. Section 3
details the architecture of the proposed method. Section 4 introduces metrics for evaluating results against
other methods. Section 5 concludes this paper and makes a prospect of the research.

2 Related Work
For the design of black-box speech adversarial attacks algorithm, attackers do not know the specific

information of the speech recognition models. Therefore, compared with the algorithm of white-box speech
adversarial attacks, the algorithm design of black-box speech adversarial attacks is more difficult [9].
Ko et al. [10] propose an attack method of black-box attacks based on a genetic algorithm, which iteratively
adds adversarial disturbances to the original speech, and finally successfully attacks the target model. This
method verifies the feasibility of designing targeted attack ideas for black box target model. Taori et al. [11],
combining genetic algorithms and gradient estimation strategies, design a more efficient black-box speech
adversarial attack algorithm, and achieve significant attack effects on the more complex DeepSpeech speech
recognition model. However, this attack algorithm can only transcribe one or two words, which makes the
algorithm less practical.

Ma and Luo [12] propose an audio adversarial sample generation method based on time domain
constraints. By hiding the adversarial noise in the speech part of the audio, the generated adversarial sample
is difficult to be detected. This approach makes adversarial speech more difficult to detect by the human ear
while maintaining the same attack performance. Additionally, this method is more difficult to detect under
equivalent attack performance, thus improving the concealment of audio adversarial samples. Liu et al. [13]
proposed a new method DE_ES based on the differential evolution algorithm. This method improves the
effectiveness of the attack by injecting controllable noise disturbances into the samples through the dynamic
momentum probability regulation mechanism. Although this method provides an effective way to generate
robust speech adversarial samples, its attack success rate is still relatively low and there is some room for
improvement. Ye et al. [14] present an adversarial attack method based on a black-box framework, which does
not need to know the details of the target model. This method uses a gradient estimation process based on a
natural evolution strategy to generate adversarial examples, only using the confidence scores and decisions
generated by the SR system. The experimental results show that the proposed attack method can manipulate
the most advanced speaker recognition system with high success rate (97.5%) and small distortion, which
further verifies the effectiveness and concealment of the attack method.

Gong and Poellabauer [15] report an adversarial sample generation method for a speech recognition
system based on gradient symbols, which directly disturbs the original waveform of audio recording to
generate speech adversarial samples for misleading speech recognition systems. The generated adversarial
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perturbations are able to degrade the performance of state-of-the-art speech recognition systems. Yakura
and Sakuma [16] propose a black-box attack method based on time expansion and frequency masking for
the vulnerability of existing commercial ASR systems. This method focuses on spoofing ASR systems with
minor modifications, highlighting the security implications of the systems in practical applications. Cisse
et al. [17] develop a black-box adversarial attack method applicable to a variety of deep learning models. This
method attacks any gradient-based speech recognition model by generating speech adversarial examples that
can directly cause the target system to lose recognition ability, and it determines the optimal perturbation
approach by analyzing the confidence levels of model outputs, demonstrating the potential for cross-
model applications. The aforementioned black-box attack methods exhibit several notable drawbacks when
performing adversarial attacks, such as high computational cost and time consumption, and a large number
of iterations are needed to optimize the solution. Therefore, this kind of attack methods are usually inefficient.

Similar to the aforementioned methods, Carlini and Wagner [18] construct an adversarial example
attack against ASR to demonstrate that passing specific audio samples can cause speech recognition systems
to produce arbitrary error outputs. Wang et al. [19] proposed the MGSA method, which significantly
improved the generation efficiency of adversarial samples by reducing the query volume and optimizing
the perturbation amplitude. The experimental results show that, compared with the existing mainstream
methods, MGSA reduces the average number of queries by 27% and increases the signal-to-noise ratio
by 31% at the same time. However, this method relies on the loss function score of the target model to
generate adversarial samples, which makes it limited when facing commercial black-box ASR systems that
only provide real-time decoding and difficult to effectively carry out attacks. Yuan et al. [20] investigate
attacks on speech recognition systems by generating effective adversarial disturbances using an iterative
optimization method and adding them to music. They also use a reversible MFCC extraction module to
modify the original speech signal waveform. Through the output features of the song and the expected voice
command in the acoustic model, gradient descent is continuously performed to generate speech adversarial
samples with minimal disturbance to ensure concealment to the user. Kreuk et al. [21] apply the gradient sign-
based method to the acoustic feature MFCC to reconstruct the audio waveform according to this acoustic
feature, which can greatly improve the attack performance. In addition, two black-box attacks are carried
out to verify the transferability of the adversarial perturbations generated by the proposed method. Khare
et al. [22] propose a multi-objective evolutionary black-box attack method to make speech recognition text
transcribed incorrectly while maintaining highly similar perturbed speech. By optimizing the edit distance
and the Euclidean distance of MFCC features, good black-box attack effects are achieved on two ASR systems:
Deepspeech and Kaldi [23].

In order to alleviate the sensitivity of human ear to speech adversarial sample pairs, Qin et al. [24] present
a method to generate effective and imperceptible speech adversarial sample pairs by using the psychoacoustic
principle of human ear masking. Using the psychoacoustic principle of human ear masking, this method
only adds adversarial disturbances in the frequency region that is not perceived by humans. The concealment
to the human ear is verified through human hearing experiments. At the same time, it generates speech
adversarial samples with complete sentences, and successfully attacks on Lingvo speech recognition system.
The above black-box methods usually require a large number of queries to succeed, and it is very difficult to
carry out black-box adversarial attacks due to the limited information obtained from these systems, which is
impractical when the query budget is limited. Therefore, this paper proposes a black-box speech adversarial
attack method using an enhanced neural predictor, which finds the minimum perturbation and generates
adversarial examples through an optimization process while maintaining the effectiveness of generating
adversarial examples for automatic speech recognition systems.
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In addition to generation-based approaches, adversarial example detection has become an essential
area of study to improve the robustness of ASR systems. Detection methods are generally classified into
three categories:

Preprocessing-based: These methods apply signal transformations (e.g., denoising, compression) to
filter out adversarial perturbations.

Model-based: These techniques monitor internal model activations or gradients to identify inconsis-
tencies induced by adversarial inputs.

Feature-based: These approaches rely on statistical or machine-learned features extracted from input
signals or model outputs to distinguish adversarial samples.

Noureddine et al. [8] provide a comprehensive survey of these detection strategies in the context of ASR
systems, highlighting their effectiveness, limitations, and application challenges. Although promising, most
detection methods face scalability issues or lack cross-model generalizability. Therefore, the development
of efficient generation methods, such as ours, can also serve as a testbed for evaluating and enhancing
detection robustness.

3 Speech Adversarial Attack Method Based on Enhanced Neural Predictor

3.1 Problem Formulation
Consider an ASR model f that takes an audio sample x and outputs a text y, i.e., y = f (x). The goal of

adversarial examples is to find a perturbation δ such that x + δ can cause the model to produce a wrong
output y, and δ is small enough that the effect on human hearing is negligible. This process can be achieved
by optimizing the following objective function:

min
δ
L ( f (x + δ) , y′) + λ⋅ ∥ δ ∥p (1)

whereL is the loss function, which measures the difference between the model output and the target output;
Is the p-norm of the perturbation, which is used to ensure that the perturbation is small enough, and λ is the
regularization parameter, which is used to balance the two objectives. The process of generating adversarial
examples usually adjusts δ in an iterative manner until a perturbation satisfying the above conditions
is found. This process needs to comprehensively consider the amplitude of the perturbation, the output
difference of the model, and the impact of the perturbation on human perception, so as to find a balance
between improving the attack effect and maintaining the concealment.

Consider the trained black-box ASR model as a function f that maps an input audio x ∈ [−1, 1]D to a
transcript t = f(x), a sequence of characters or words. The goal is to find an imperceptible perturbation δ ∈ RD

such that the ASR model misinterprets the input audio signal. We find that such adversarial perturbations
can be formalized as optimization problems. In order to maintain the validity of the interfering audio, this
paper performs a clipping operation on the speech [−1, 1], which is assumed to be included in the ASR
model f,

min
δ
∥ δ ∥p s.t., f (x + δ) ≠ t (2)

where ∣∣ ⋅ ∣∣p is the p-norm representing the perceptivity, following previous work on speech adversarial
attacks and considering the overall magnitude of quantization perturbations, the l∞ norm will be used in
the rest of this paper. Due to the lack of knowledge about the function f, it is difficult to find the direct
optimization of the minimum norm perturbation of problem (1), so it is transformed into other forms of
problems for processing.
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To solve the above problem formally, the disturbance δ is decomposed into a direction vector θ ∈RD and
a magnitude scalar λ ∈ R+, namely δ = λ θ/ ∣∣θ∣∣. Given a small perturbation direction vector θ, the distance
from x to the closest adversarial example along θ is defined as follows:

g (θ) =min
λ>0

λ s.t., f (x + λ θ
∥ θ ∥) ≠ t (3)

g(θ) corresponds to the distance along θ to the decision boundary. Therefore, using the above
definition, Eq. (2) can be rewritten as follows:

min
θ

g (θ) (4)

This abbreviation can illustrate the optimization problem in Eq. (1). First, as shown in Fig. 1, the
objective function is locally smooth and continuous, that is, a small change in θ results in a small change
in g(θ). Second, the above complex problem is reduced to searching for a direction vector θ, which is an
unconstrained optimization instead of searching for a constrained disturbance δ. Although computing g(θ)
in Eq. (2) corresponds to solving another constrained optimization problem with respect to λ, it requires
only one degree of freedom, making the problem simpler. In addition, by g(θ), a certain accuracy can be
achieved through a two-step search process. As a first step, a coarse-grained search is applied to find the
range of magnitudes in which perturbations lead to incorrect translations. Specifically, the set of α > 0 as the
step length, coarse grained search through the query point sequence {x + α θ/ ∣∣θ∣∣, x + 2α θ/ ∣∣θ∣∣, . . .}. This
is done one by one until an adversarial example is found, that is, f(x + iα θ/ ∣∣θ∣∣) ≠ t for some i > 0. In the
second step, we use binary search to find [(I − 1) alpha, I alpha] within the scope of the smallest lambda λ∗,
makes the f(x + λ ∗ θ/ ∣∣θ∣∣) ≠ t.

Figure 1: ASR input spatial region partitioning and transcription result mapping

3.2 Enhanced Neural Predictor for Speech Adversarial Attack
In this paper, based on an enhanced neural predictor, a black-box speech adversarial attack method

is proposed to generate audio adversarial samples for black-box ASR systems. The overall framework is
depicted in Fig. 2.

(1) Enhanced neural predictor: Estimating the distance between the audio signals and the incorrectly
transcribed decision boundaries. The neural predictor is able to work efficiently while requiring less
training data as it does not have to directly impute the output of the target ASR model. The predictor
can effectively guide the optimal attack direction by in-depth analysis of the perturbation space.
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(2) Pruning strategy: Efficiently determine the minimum distance between the perturbation samples and
the decision boundaries, and quickly exclude those samples that are too far from the boundaries,
thereby reducing the search spaces. This strategy improves the efficiency and accuracy of finding
adversarial samples in adversarial attack.

(3) Adaptive step size: The method of dynamically adjusting step size accelerates the search when
discovering the direction of adversarial examples. Additionally, it dynamically determines the step size
to avoid excessive disturbance and ensure the concealment and effectiveness of the attack.

Figure 2: General framework diagram

3.2.1 Self-Neural Predictor
Eq. (3) is solved by progressively fitting a self-attention neural predictor as a proxy, which estimates the

distance from x to the decision boundary along a given perturbation direction. In the first step, a large number
of audio samples are generated by querying the ASR system, and then a self-attention neural predictor is
trained based on this dataset. In the second step, the trained neural predictor is used to identify a sequence
of attack successful perturbation directions. Due to full knowledge of the predictor’s parameters, the search
process can be greatly accelerated by a self-attention neural predictor, which is retrained each time a new
sample batch is obtained by querying the speech recognition model for the true distance.

We first generate n speech training samples by querying the speech recognition model, i.e., D =
{(θ1 , λ1) , ..., (θn , λn)} ⊂ RD × R+. For each perturbation direction θi, the true distance λ i = g(θi) from x to
the decision boundary is determined by the two-step search procedure explained in the previous subsection.
After constructing the dataset, it is used to train a neural predictor h(θ, w): RD → R+, where w is the training
parameters, whose goal is to estimate the distance to the decision boundary λ̂ = h(θ, w) by solving the
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following problem:

Q∗ = argmin
w

1
n

n
∑
i=1
(log r (θ i , Q) − log λi)2 (5)

In order to find the perturbation direction that can successfully attack, the trained parameters w∗ are
frozen, and then the preselected direction is found by solving the following formula:

θn+1 = argmin
θ

r (θ , Q∗) (6)

Assuming that r(θ, Q) is differentiable with respect to both θ and Q, Eqs. (5) and (6) can be solved by
gradient-based optimization. Subsequently, the actual distance λn+1 = g(θn+1) is computed by querying the
ASR model. This perturbed direction is added to the training set D: = DU(θn+1, λn+1). The parameters of
the predictor are unfrozen again, with newly added samples. This process is repeated until the query limit is
reached or adversarial samples are found within the perturbation estimate. To address the problem that the
self-attention neural predictor may produce noisy outputs at first, different random initializations are used
to produce more stable outputs when more samples are gradually added.

The self-attention neural predictor maps the perturbation direction θ to a positive scalar value λ,
representing the distance to the decision boundary along that direction. The input is first normalized to
have unit l∞-norm. To improve processing efficiency, the self-attention neural predictor is designed to
accommodate input data of arbitrary length. In order to reduce the time dimension of the input data, the
short time Fourier transform is used to process the data, and the size of fast Fourier transform, window size
and step size are set to 1024, 1024 and 256, respectively. Subsequently, the obtained spectral data are converted
into Mel-frequency cepstral numbers to extract speech features. The processed data treats each frequency as
an independent channel, and the number of channels is compressed to 32 by a one-dimensional convolution
operation. In addition, the preprocessed signal is further passed through four convolutional blocks to further
reduce the temporal dimension. Each convolutional block is activated by LeakyReLU function and processed
through an average pooling layer with kernel size 2. A convolution kernel of size 3 is used for all convolution
operations, and weight normalization is applied across all layers to maintain computational stability. A global
average pooling layer is used to eliminate the remaining time dimension, and the direction is predicted by
the output of the linear layer. To ensure the positive value of the output, the linear layer is followed by an
exponential activation function to ensure that the network output is always positive.

Small perturbations are added to the original speech, which are almost imperceptible to hearing
but sufficient to make the ASR system produce erroneous recognition results. The mean square error
loss function has strong processing ability in dealing with continuous numerical prediction problems,
which makes it suitable for dealing with continuous and high-dimensional data such as speech signals. By
quantifying and guiding the degree and direction of these disturbances, the expected misleading effect can
be achieved. In addition, due to its high sensitivity to large errors, the mean square error loss function can
effectively guide the optimization process of adversarial samples and ensure that the generated adversarial
samples can deviate from the correct classification boundary, which can be expressed as follows:

L = 1
n

i=1
∑

n
(yi − ŷi)2 (7)

where n is the total number of speech samples, yi is the actual value of the ith sample, and ŷi is the predicted
value of the ith sample. It has strong detection for outliers or outliers, and the generated adversarial samples
will be discarded if they deviate from the actual feasible perturbation range in extreme cases. In addition, due
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to the complexity and multidimensionality of speech data, using this loss function requires careful parameter
tuning and iteration to generate effective adversarial samples. To train the predictor weight parameter Q, we
used the Adam optimizer with a learning rate of 1e−4 and an exponential scheduler (decay rate of 0.99) with
batch size set to 32 and trained the model for 300 epochs.

3.2.2 Pruning Strategy and Dynamic Steps Sizes
Finding the minimal perturbation that can effectively fool machine learning models is a key challenge

in the study of adversarial attacks. In order to improve the search efficiency and reduce the computational
cost, an improved pruning strategy is proposed, which optimizes the search process of disturbance by
implementing the early stopping mechanism and binary search. The core of the strategy is to add a maximum
number of iterations limit to the traditional binary search method, which aims to prevent over computation
when the calculation is too complex. By gradually increasing the disturbance size, the initial disturbance
range of the successful attack model is quickly located. After determining the range, an accurate binary search
is performed within it to find the minimum successful disturbance amplitude.

The goal of the attack is to minimize an objective function f (θ), which represents the impact of the
attack perturbation θ on the model. The decision boundary distance function g(θ) is used to estimate the
distance of the current perturbation from the model decision boundary. To theoretically justify the pruning
strategy, the pruning strategy is defined by the following formula:

min
θ

f (θ)
s.t. θ lo ≤ θ ≤ θhi

g (θ) ≤ u
(8)

where θlo and θhi are the lower and upper bounds of the perturbation range determined by binary search,
respectively, and u is the preset upper threshold of the decision boundary. The core of the strategy is to add
a maximum iteration limit to the traditional binary search method, which prevents excessive calculation
in complex or high computational cost, which retains perturbations most likely to lead to misclassification,
based on their influence on the objective function. At the beginning of the strategy, by gradually increasing
the perturbation size, a preliminary perturbation range that can successfully attack the model is quickly
located. Once this range is determined, an exact binary search is performed within it to find the smallest
successful perturbation amplitude. Specifically, we select u such that over 90% of successful perturbations in
preliminary experiments fall below this threshold. This thresholding acts as a filtering mechanism, discarding
non-promising samples early and significantly improving search efficiency.

The goal of the pruning strategy is to update only the “important” parameters at each iteration, i.e., those
are most influential in improving the objective function. Assuming that P(θ) is a pruning function that maps
the parameter vector to a pruned-out parameter subset, the update step can be expressed as follows:

θnew = θ − α ⋅ P (∇ f (θ)) (9)

where α is the learning rate and represents the pruning of the gradient, this paper first defines an initial
perturbation range and tests whether the perturbation is successful by increasing. The increase is stopped if
a successful perturbation is found before a predetermined upper limit or number of iterations is reached. In
the initial stage, we adopt the method of gradually increasing the disturbance amplitude to locate a possible
attack success interval. The initial disturbance value is set to θ0 and the increment to Δθ. The goal of this phase
is to find a perturbation value θhi such that θhi is the first perturbation magnitude that leads to a successful
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attack. Terminate the search if θhi reaches a predetermined upper limit or if the number of iterations exceeds.
Based on the aforementioned results, we provide Algorithm 1 as the pruning strategy.

Algorithm 1: Description of the pruning strategy algorithm
Input: number of iterations i, maximum number of iterations M, upper threshold u, initial disturbance θ,
initial sample r
Output: The optimal disturbance θmid

Started
1: Initialization: Initialize θ = θ0, θlo, and θh0

2: for the number of iterations i<M do
3: if the model predicts error θ ≥u
4: else θ = θ + Δθ
5: end if
6: if θh0 − θlo > tol:
7: θmid = (θlo + θh0)/2
8: if model predicts wrong
9: θhi = θmid

10: else θlo = θmid

11: end if
12: Generate m adversarial examples by r’ = r + g(r)
13: end if
14: end for
15: return θmid

The pruning strategy designed in this paper can effectively reduce the number of iterations required
to find a successful perturbation, while maintaining the effectiveness of the attack. To further optimize this
strategy, we consider different parameter tuning, including the maximum number of iterations and the
perturbation increment. Reasonable setting of early stopping conditions and parameters can significantly
improve the efficiency of the attack. By adjusting these parameters, it can provide an efficient search method
for adversarial attacks to achieve more efficient search for specific attack scenarios and model complexity.

Finding effective perturbations while keeping them as small as possible is a key goal in speech adversarial
attacks. To this end, this paper proposes an adaptive perturbation strategy, which effectively approaches the
optimal solution by dynamically adjusting the perturbation step size. The strategy is based on a method to
dynamically adjust the perturbation step size to minimize the perturbation amplitude while ensuring the
success of the attack. The initial step size is set as Δθ and the maximum number of iterations as i. In each
iteration, the step size is adjusted according to the effect of the current disturbance on the model, so as to
gradually approach the minimum disturbance distance dmi.

Eq. (10) defines the step size adaptation rule using a sign-based function. During gradient descent, the
dynamic step size strategy usually depends on the performance of previous steps to adjust the step size of the
current step, which we adjust with the following formula:

βt = sgn ( f (θt−1) − f (θt),∇ f (θt)) (10)

where sgn is a function that adjusts the step size according to the improvement of the objective function, the
magnitude of the gradient, or other metrics, f (θt−1) − f (θt) indicating the change of the objective function
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value in two consecutive iterations. Such a dynamic step size strategy can make the gradient descent process
more flexible and be able to adjust the step size according to the local behavior of the objective function,
which has the potential to speed up convergence while maintaining stability.

Algorithm 2: Description of the adaptive perturbation algorithm
Input: number of iterations i, maximum number of iterations M, perturbation distance threshold ε,
adversarial sample y with minimum perturbation
Output:
Started:
1: Initialization: Initialize θcur = Δθ
2: for the number of iterations i<M do
3: Compute the perturbation distance d = bdist(x, θcur)
4: if d≤dmin:
5: update dmin = d
6: Increase the step size θcur = θcur ∗ 1.1
7: else:
8: Reduce the step size θcur = θcur ∗ 0.9
9: end if
10: if dmin≤ ε:
11: break;
12: end if
13: end for
14: return y

The adaptive step size strategy makes use of a dynamic adjustment mechanism, which adjusts the step
size according to the gradient information of the function g(θ). We define d(θ) as the distance between the
current perturbation and the minimum perturbation, and dmin as the minimum distance found. The adaptive
step size policy adjusts by solving the following optimization problem:

min
θ

d (θ)
s.t. ∥ θ ∥2 ≤ dmin

g (θ) ≤ ε
(11)

where ε is the perturbation distance threshold of the preset adversarial sample. The step update rule can be
expressed as:

θcur = θcur × αsgn(g(θ cur)−ε) (12)

where α > 1 is the step size increase factor, and the sgn function value is 1, if g (θcur) ≤ ε, and −1 otherwise.
In this way, the step size increases as approach the target and decreases as we deviate from it.

The adaptive perturbation strategy shown in Algorithm 2 effectively balances the success rate of the
attack and the minimization of the disturbance. By dynamically adjusting the step size of the perturbation,
it can quickly adapt to the reaction of the model, so as to find the best perturbation size. Parameters
such as step size adjustment factor can be adjusted according to the specific attack scenario to achieve
the best performance. Through the adaptive disturbance strategy, the amplitude of disturbance can be
effectively reduced under the premise of ensuring the success of the attack. We also conduct an ablation study
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in Section 4.2 to analyze the impact of the pruning threshold u and the adaptive step size on attack success
rate and query efficiency.

4 Experimental Studies and Comparative Analysis

4.1 Experimental Settings
Dataset: To evaluate the effectiveness of the attack method, a dataset is constructed by randomly

selecting samples from the LibriSpeech clean test data. These audio samples are obtained from English
audiobooks at a sampling rate of 16 kHz, and the dataset contains 1000 h of English speech covering a wide
range of topics and the voices of a variety of different people, which is widely used in the development and
evaluation of automatic speech recognition systems. Although this study only conducted experiments on the
LibriSpeech dataset, which is widely regarded as a standard benchmark for evaluating ASR systems and their
adversarial attack methods due to its clear labeling, standardized speech quality, and extensive application in
speech recognition research. In order to focus more on the effectiveness of the proposed method itself and
the mechanism analysis, this study prioritizes the evaluation in a standardized environment.

Speech Recognition Model: The ASR model used is an end-to-end Transformer-based ASR model for
SpeechBrain, trained on the LibriSpeech dataset. It supports a variety of speech tasks, including speech
recognition, speech synthesis, speaker recognition, and voice conversion, among others, providing a range
of pre-trained models and tools that support the latest deep learning techniques and algorithms. By using
the PyTorch framework, SpeechBrain ensures high performance and flexibility while simplifying the model
training and deployment process.

4.2 Experimental Results
In this chapter, a series of experiments are conducted to verify the performance of the proposed method

in the task of adversarial attack generation speech. In the experiments, we first focus on the change of
perturbation size and model performance with the increase of query times, and the performance of the
proposed method in terms of generated speech quality and attack effect. A comprehensive analysis of the
proposed method and different approaches in terms of multiple metrics during speech generation, such as
attack success rate, sample similarity, and signal-to-noise ratio, is conducted to validate the performance of
the generated samples. The similarity of speech samples can be represented by the following formula:

r =

i=1
∑
n
(xi − x) (yi − y)

√
i=1
∑
n
(xi − x)2 i=1

∑
n
(yi − y)2

(13)

where xi and yi respectively represent the ith sample point in the two speech signals, x and y are the mean
values of the two speech signals, respectively, n represents the number of sample points of the speech signal,
and the closer r value is to 1, the higher the similarity between the two signal.

In the training, the perturbation size will gradually decrease as the number of queries grows. Table 1
shows the parameters of the training process of the method. “Avg-min” refers to the average minimum
distance of model predictions after optimizing the query points, representing that the experiment has
identified the average input samples that minimize the model’s predictive output. Finding inputs that make
the model’s output as small as possible implies that adversarial attacks are more likely to succeed. “Perb” is
a measure of perturbation size in adversarial attacks, that is, the minimum amount of perturbation applied
to the original audio sample. By decreasing this value, the difference between the adversarial sample and
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the original sample can be made as small as possible, thus making it more difficult to detect. The “L-test” is
the error measure of the predictor fit, measured using the squared mean of the log difference between the
predicted and actual query results. If the value of “L-test” is small, then the predictor performs better.

Table 1: Training process parameters of the proposed method

Query counts Parameters

Avg-min Perb L-test
800 0 0.0094 2615.6279
1200 0 0.0094 445.1085
2000 0.0008 0.0089 361.9708
3000 0.0035 0.0031 170.8297
4000 0.0019 0.0019 95.6363
5000 0.0021 0.0007 33.5982
6000 0.0024 0.0001 13.0469

In Table 1, it can be observed that each parameter presents a series of changes as the number of queries
gradually increases. The change of “Avg-min” indicates that through multiple queries and optimization, the
average input sample that minimizes the output of the model is found. The perturbation size is gradually
reduced from 0.0094 to 0.0001, which means that the difference between the adversarial sample and the
original sample is gradually reduced, increasing the concealment of the attack. The error measure of the
predictor fitting gradually decreases with the increase of the number of queries, from 2615.6279 to 13.0469,
indicating that the performance of the predictor gradually improves, and the fitting effect is better. In
summary, these trends reflect that through the optimization process over many iterations, the attack becomes
more effective while the predictor performs better in the fitting task.

Table 2 shows the training process parameters of NP-Attack. By comparing the data in Tables 1 and 2,
the NP-Attack method in Table 2 is less effective than the model in Table 1 in terms of adversarial attack
perturbation reduction and predictor fitting under the same number of queries. The overall large value of
“Avg-min” indicates that the effect of average input sample minimization is relatively poor. The perturbation
value is also relatively large, indicating that the reduction effect of adversarial attack perturbation is relatively
weak. At the same time, the overall large value of “L-test” indicates relatively poor performance in terms of
the fitness of the predictor. In summary, the data analysis of the above two tables shows that the proposed
method has better performance in the training phase.

In the early stage of training, the model goes through the stage of fluctuation and rapid adaptation to
the data, but with the increase of training times, the loss gradually levels off, and its process is shown in Fig. 3
This indicates that the model has learned the characteristics of the training data, reflects the convergence
state of the model, and has achieved good performance during training.

To justify our architectural choices and understand the contribution of individual components, we
present a theoretical analysis of the model architecture to clarify the rationale behind the design choices and
the impact of key components.

The adaptive step size strategy dynamically adjusts the perturbation magnitude based on the model’s
feedback, with the goal of minimizing the perturbation while ensuring attack success. As shown in Table 1, the
perturbation value (Perb) decreases steadily from 0.0094 to 0.0001 as the number of queries increases. This
trend indicates that the adaptive mechanism successfully refines the perturbation, preventing overshooting
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and enabling the model to converge to a smaller and more imperceptible adversarial perturbation. In
contrast, a fixed step size could lead to either poor convergence or suboptimal perturbation scales.

Table 2: NP-attack training process parameters

Query counts Parameters

Avg-min Perb L-test
800 0.0000 0.0094 2299.4966
1200 0.0000 0.0094 186.6803
2000 0.0001 0.0094 19.3119
3000 0.0024 0.0059 15.8844
4000 0.0010 0.0040 14.5673
5000 0.0009 0.0011 10.9963
6000 0.0002 0.0011 10.9431

Figure 3: Loss change diagram during training

The pruning mechanism is designed to retain only the most informative gradient directions during
updates, which improves optimization efficiency. Evidence of this effect is reflected in the L-test value, which
represents the predictor’s fitting error. In Table 1, the L-test value significantly decreases from 2615.6 to 13.0,
demonstrating that the pruning helps the predictor concentrate on more useful dimensions. Compared
to Table 2 (NP-Attack baseline), which does not employ pruning, our method shows consistently lower L-test
and Perb values, further supporting the effectiveness of this strategy.

Fig. 3 illustrates the convergence behavior of the model’s training loss. The initial fluctuations reflect the
adaptive adjustment process, while the later stabilization indicates that the model has effectively learned the
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data structure and optimized its prediction ability. Combining adaptive perturbation control and pruning-
based parameter selection enables our method to achieve a better balance between attack success and
perturbation imperceptibility with fewer queries.

In summary, the architectural design—comprising adaptive step size adjustment and gradient
pruning—plays a crucial role in achieving the effectiveness and efficiency of the proposed adversarial
attack strategy.

In Table 3, this paper compares the proposed method and NP-Attack in three key performance metrics
measuring speech: STOI (Short-Time Objective Intelligibility), SNR (Signal-to-Noise Ratio) and PESQ
(Perceptual Evaluation of Speech Quality). For STOI, the proposed method achieves a high value of 0.9539,
while NP-Attack achieves 0.9236. STOI is a measure of speech intelligibility, with higher values indicating
better speech intelligibility. Therefore, the proposed method performs better in speech intelligibility. SNR
measures the relative strength between the speech signal and noise, and the SNR of the proposed method is
32.5, while that of NP-Attack is 29.4. PESQ is used to evaluate the speech quality, and the PESQ value of the
proposed method is 1.26, while that of NP-Attack is 1.11. Experimental results show that the proposed method
is superior to NP-Attack method in STOI, SNR and PESQ, and has better speech intelligibility, speech quality
and relatively high signal-to-noise ratio.

Table 3: Indicators of generated speech samples

Methods Parameters

STOI SNR PESQ
NP-Attack 0.9236 29.4 1.11

SP 0.9539 32.5 1.26

Table 4 shows part of the attack sentence fragments selected for this experiment. The original speech
recognition is the real text sentence that does not experience the attack, while the post-attack recognition
shows the speech text after the attack is carried out on the specific sentence. For example, the attack
replaces “WELL” with “WHALE”, “HIS” with “THIS”, “EVENING” with “EVERYTHING”, and “WHOSE”
with “HOUSE”. The recognition results after these attacks are used to evaluate the robustness of the
model to specific word substitutions, while testing the impact of adversarial attacks on speech recognition
performance. By comparing the original speech recognition and the post-attack recognition, it helps to
understand the recognition model’s ability to cope with specific word substitutions and the impact of
adversarial attacks, so as to carry out specific defenses for the recognition model.

Table 4: Speech recognition results after the attack

Original speech Attack results
THERE’S A WELL A WELL CRIED THE PROFESSOR WELL→WHALE

HIS DECISION WAS COMMUNICATED TO THE GIRLS HIS→ THIS
I KNOW HE HAD IT THIS VERY EVENING EVENING→ EVERYTHING

CRIED THE LADIES WHOSE DEPARTURE HAD BEEN FIXED WHOSE→HOUSE

Table 5 presents multiple metrics for the speech generated by different methods, providing a compre-
hensive performance evaluation. In terms of the attack success rate, the proposed method performs the best,
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reaching 96.9%, while the other methods are NP-Attack [25] 96.3%, SirenAttack [26] 91.4%, AudioPure [27]
95.3% and Tr [28] 95.3%, respectively. This indicates that the proposed method is more effective. In terms
of SNR, the proposed method leads with a value of 32.5, which is significantly higher than other methods,
especially the relatively low SirenAttack with 27.4. In terms of PESQ index, the AudioPure method is slightly
higher than the proposed method. In terms of sample similarity, the proposed method shows that the attack
speech generated by the proposed method is more similar to the original speech with 97.32%. The proposed
method achieves significant advantages in terms of attack success rate, signal-to-noise ratio and sample
similarity. Therefore, this indicates that the proposed method is more effective.

Table 5: Statistics of the indicators of the comparison methods

Methods Attack success rate SNR PESQ Similarity
NP-Attack 96.3% 29.4 2.11 96.89%

SirenAttack 91.4% 27.4 2.08 89.41%
AudioPure 95.3% 31.7 3.43 94.26%

Tr 95.3% 30.7 2.04 93.19%
SP 96.9% 32.5 2.26 97.32%

When comparing the perturbation size performance of BayesOpt [29], SignOpt, NP and the proposed
method in the adversarial attack generation speech task, it is observed that as the perturbation size decreases,
the perturbation size of these four methods increases. The results are shown in Fig. 4. The search times of
BayesOpt under perturbations of 0.01, 0.005 and 0.001 are 694, 3285 and 4880, respectively, showing that
BayesOpt is more difficult to search for small perturbations. The perturbation sizes of SignOpt at different
sizes are 633, 3077 and 4771, showing a similar trend to BayesOpt, which is sensitive to smaller perturbations.
The perturbation sizes of NP method under 0.01, 0.005 and 0.001 perturbation are 551, 2896 and 4570,
respectively. Like BayesOpt and SignOpt, NP method also shows an increasing trend of search times for
small perturbations.

Figure 4: Comparison of search times under different perturbations
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In contrast, the proposed method exhibits relatively small perturbations at various perturbation sizes,
539, 2671, and 4374, respectively, showing the advantage in generating finer speech perturbations. These
observations illustrated in Table 6 provide important clues for understanding the differences in sensitivity
of different methods to perturbation size in the task of adversarial attack generation speech. Therefore, the
proposed method may have more potential in practical applications as it is able to alter the speech output in a
more refined manner. Methods such as BayesOpt and SignOpt may require larger perturbations for achieving
the target speech transformation. These findings are instructive for further optimization and improvement
of adversarial attack generation speech methods.

Table 6: Statistics of the indicators of the comparison methods

Methods Magnitude of disturbance

0.01 0.005 0.001
BayesOpt 694 3285 4880
SignOpt 633 3077 4771

NP 551 2896 4570
SP 539 2671 4374

Analyzing the comparison between the original speech waveform shown in Fig. 5a,b and the adversarial
sample waveform, we can see the adversarial perturbation introduced in the original audio by the adversarial
attack. Although the two waveforms maintain the structural similarity at the macro level, the detail
differences reflect the waveforms of small perturbations. That is, it maximally affects the judgment of
automatic speech recognition system without significantly changing human auditory perception. In Fig. 5a,
the red waveform is the waveform of the adversarial sample. It can be seen that the waveform of the
adversarial sample has been deformed on the waveform of the original speech, and its amplitude has
changed significantly, which indicates that the adversarial disturbance at this moment is more prominent
than that of the original speech. In the waveform comparison of Fig. 5b, the overlap between the waveform
of the adversarial sample and the original audio waveform is more subtle compared to the left figure,
showing that the combination of the disturbance of the adversarial sample and the original signal is more
fine and subtle. It is obvious that the adversarial perturbations in the right image will be smaller than
those in the left image, and although these perturbations are not as visually obvious, they are enough to
mislead the automatic speech recognition system, confirming the effectiveness of the adversarial samples.
In summary, adversarial examples can effectively deceive automatic speech recognition systems by fine-
controlling perturbations without changing the core auditory characteristics of the speech signal, and are
not easily detected in the waveform. This demonstrates the need to consider and guard against the potential
risks and effects of adversarial attacks when designing secure and reliable defense or detection systems for
speech recognition systems.

By analyzing the waveform and its spectrogram of two different speeches in detail, the waveform
diagram of Figs. 6a and 7a shows the waveform diagram of the original speech, and the waveform diagram
of Figs. 6b and 7b shows the waveform diagram of the adversarial sample, where the change of amplitude
reflects the dynamic range of the sound signal. The corresponding spectrograms are shown in Figs. 6c and 7c,
respectively. The spectrograms show obvious fringe patterns with energy concentrated at specific frequencies.
These concentrated energy regions correspond to formant of speech signals, and these features play a key
role in speech analysis and recognition.
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(a) Attack result of speech segment 1 (b) Attack result of speech segment 2

Figure 5: Comparison of waveforms of original speech and adversarial samples

(a) original speech waveform diagram (b) adversarial sample waveform diagram

(c) spectrogram of original speech (d) spectrogram of adversarial sample

Figure 6: Comparison of original sample I and adversarial sample I
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(a) original speech waveform diagram (b) adversarial sample waveform diagram

(c) spectrogram of original speech (d) spectrogram of adversarial sample

Figure 7: Comparison of original sample II and adversarial sample II

In the spectrograms of Figs. 6d and 7d, the energy shows continuous concentrated stripes in specific
frequency bands, indicating that the energy distribution in these frequency bands is stable in time, and the
signal components are prominent at these frequencies. In summary, the original speech signal contains a
wider range of frequency components and richer dynamic changes, while the contrast speech signal shows
greater energy concentration and stability at specific frequencies, which has practical theoretical significance
for analyzing adversarial attacks.

Fig. 8 shows the dual graph analysis of the audio signal of the speech adversarial sample, the upper
graph shows the waveform, and the lower graph shows the spectral entropy corresponding to time. The
waveform plot represents the original audio signal in the time domain, with the horizontal axis indicating the
sampling point and the vertical axis indicating the amplitude. Looking at the waveform plot, it can be seen
that the signal contains different amplitudes and frequencies, and the lower graph plots the spectral entropy
against time, providing results on the power spectral complexity of the signal at different time intervals. The
horizontal axis measures time in seconds and the vertical axis quantifies spectral entropy, with higher values
indicating higher randomness in the frequency distribution. By understanding the changes in waveform and
spectral entropy, researchers can better design measures to detect and mitigate the impact of adversarial
attacks on ASR, which is crucial for developing more secure and reliable speech recognition system.
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Figure 8: Waveform diagram and spectral entropy diagram of adversarial sample

In order to quantitatively assess the differences between original and adversarial samples beyond visual
waveform and spectrogram comparisons, we refer to the results in Table 3, which includes SNR, STOI,
and PESQ metrics. For instance, the SNR values of 29.4 dB (NP-Attack) and 32.5 dB (SP) indicate low
distortion levels between original and adversarial samples, confirming that the perturbations are subtle and
not easily perceptible to human ears. Furthermore, the STOI values above 0.92 and PESQ scores greater than
1.1 suggest that intelligibility and perceived speech quality are largely preserved. These quantitative results
complement the visual analyses in Figs. 5–8, and further validate the effectiveness and stealthiness of our
proposed adversarial attack.

According to Fig. 9, the perturbation level exhibits two significant drops when the number of queries
increases. A significant decrease in the perturbation level occurs when the number of queries reaches
approximately 2500, indicating that the attacker has found a more effective adversarial example at this point,
resulting in a reduction in the amount of perturbation required. Subsequently, the perturbation level remains
stable under increasing number of queries until a significant decrease occurs again at about 4000 queries,
implying that adversarial samples with less perturbation are found.

The stability of each stage in the figure is related to the increase in the success rate of the attack at a
particular level of perturbation. The graph intuitively illustrates the change of the perturbation level with
the increase of the number of queries during the training process of speech adversarial attack. By constantly
testing and optimizing the adversarial samples, the attacker can effectively reduce the perturbation of the
audio samples while maintaining the success rate of the attack.

In adversarial attack training, the test loss is a key indicator of the optimization process, which reflects
the magnitude of the prediction error. Fig. 10 shows the trend that the test loss decreases significantly with the
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increase of the number of queries during the training of the attack. In the initial stage, the test loss decreases
rapidly from a very high value, which indicates that the attack effect improves rapidly after a small number of
queries and optimizations in the early stage of the adversarial attack. Subsequently, the test loss experiences
several small fluctuations and finally stabilizes at a low level, indicating that the superior adversarial samples
have been found. As the number of queries increases, the “L-test” value decreases rapidly and tends to plateau,
which reflects that the predictor gradually finds more effective perturbation directions after the initial rapid
learning. In summary, through continuous querying and optimization in adversarial attack training, the test
loss can be effectively reduced, and as the number of queries increases, the attacker can gradually find the
minimum perturbation required to cause the misjudgment of the ASR model.

Figure 9: Change diagram of disturbance size

Figure 10: Model error change diagram

5 Conclusions
The current automatic speech recognition technology is vulnerable to adversarial attacks. Studying

speech adversarial samples is of great significance to improve the security of automatic speech recognition
system. Aiming at the problems of complex search process and excessive generation disturbance in existing
black-box attack methods, this paper proposes a black-box speech adversarial attack method based on
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enhanced neural predictor. This method searches for the minimum perturbation in the perturbation space,
finds the best perturbation direction through an optimization process guided by a self-attention neural
predictor, and applies this direction to the original sample to generate adversarial examples. In order to
improve the search efficiency, a pruning strategy is designed to discard the samples below the threshold in
the early stage of the search to reduce the number of searches. Finally, according to the feedback results of
query automatic speech recognition system, a dynamic factor is introduced to adaptively adjust the size of the
search step to further accelerate the search process. Experimental results show that the proposed method has
better attack effect and concealment. Future research can focus on improving the efficiency and effectiveness
of black box attacks and developing more robust defense mechanisms, and the exploration of new attacks
and defense strategies will also be an ongoing research area.

Nevertheless, we acknowledge several current limitations of the proposed method. First, the exper-
imental evaluation is limited to a single dataset (LibriSpeech), which may not sufficiently capture the
acoustic diversity encountered in real-world applications. Second, the study primarily relies on attack
success rate as the evaluation metric, without incorporating additional ASR performance indicators to better
quantify the actual impact of adversarial attacks on model performance. Furthermore, the method has not
been tested against state-of-the-art adversarial detection techniques, so its stealthiness in adversarial-aware
environments remains to be fully validated.

In future work, we aim to evaluate the impact of the proposed method across different IIoT scenarios
and benchmark its stealthiness against existing adversarial speech detection mechanisms. We also plan
to investigate potential defense strategies, including adversarial training, signal reconstruction, and input
consistency checks, to enhance the robustness of ASR systems in real-world deployments.
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