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ABSTRACT: Adversarial attacks pose a significant threat to artificial intelligence systems by exposing them to
vulnerabilities in deep learning models. Existing defense mechanisms often suffer drawbacks, such as the need for
model retraining, significant inference time overhead, and limited effectiveness against specific attack types. Achieving
perfect defense against adversarial attacks remains elusive, emphasizing the importance of mitigation strategies. In
this study, we propose a defense mechanism that applies random cropping and Gaussian filtering to input images to
mitigate the impact of adversarial attacks. First, the image was randomly cropped to vary its dimensions and then placed
at the center of a fixed 299 × 299 space, with the remaining areas filled with zero padding. Subsequently, Gaussian
filtering with a 7 × 7 kernel and a standard deviation of two was applied using a convolution operation. Finally, the
smoothed image was fed into the classification model. The proposed defense method consistently appeared in the upper-
right region across all attack scenarios, demonstrating its ability to preserve classification performance on clean images
while significantly mitigating adversarial attacks. This visualization confirms that the proposed method is effective and
reliable for defending against adversarial perturbations. Moreover, the proposed method incurs minimal computational
overhead, making it suitable for real-time applications. Furthermore, owing to its model-agnostic nature, the proposed
method can be easily incorporated into various neural network architectures, serving as a fundamental module for
adversarial defense strategies.

KEYWORDS: Adversarial attacks; deep learning; artificial intelligence systems; random cropping; Gaussian filtering;
image smoothing

1 Introduction
Convolutional neural networks (CNNs) have demonstrated human-like or superior performance in

various computer vision tasks, including object recognition, action recognition, and pose estimation [1–4].
However, CNNs and other deep-learning models are highly vulnerable to adversarial attacks [5–7].

Adversarial attacks, first identified by Szegedy et al. [8], are illustrated in Fig. 1. These attacks intro-
duce imperceptible perturbations into the input images, generating adversarial examples that can deceive
well-trained models into misclassifications. Adversarial attacks can be categorized into white- [9–11] and
black-box attacks [12–14] based on the attacker’s level of knowledge. Both types involve adding visually
indistinguishable perturbations that cause the model to misclassify the input. In white-box attacks, an
adversary has full access to the target model, including its architecture, gradients, and parameters [15].
Conversely, black-box attacks occur when the attacker has no knowledge of the model’s internal structure
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and can only query the input-output relationship [16]. Real-world scenarios of adversarial attacks include
modifying stop signs to deceive autonomous vehicles or placing adversarial patches on objects to render
them unrecognizable by artificial intelligence (AI) systems [17,18]. The rapid evolution of adversarial attack
techniques poses a significant threat to AI-driven applications, particularly in computer vision and speech
recognition, necessitating the development of robust defense mechanisms.

Figure 1: Example of an adversarial attack

Numerous defense strategies have been proposed to counter adversarial attacks. These strategies can be
broadly classified into training- [11,19] and test-phase defenses [20–23].

One prominent training-phase defense is adversarial training [11], which incorporates adversarial
examples into a training dataset to enhance the robustness of the model. Many studies have demonstrated
the effectiveness of adversarial training in improving model resilience against adversarial attacks [24–26].
However, adversarial training has significant drawbacks, such as the need for model retraining whenever a
new attack method is introduced, which makes it computationally expensive and time-consuming [27,28].

Contrarily, test-phase defenses do not require model retraining but, instead, focus on preprocessing
input images to mitigate adversarial perturbations before feeding them into the model. One approach
is adversarial verification, which applies transformations to the input images, such as flipping or crop-
ping [21,22], or uses generative models to remove adversarial noise and reconstruct clean images [23,29].
Although adversarial purification methods eliminate the need for retraining, they are susceptible to increased
inference time overhead and potential degradation in classification accuracy on clean images [27].

To address this issue, we propose a combined approach of random cropping and Gaussian filtering that
focuses on image transformation during testing. The main contributions of this study are summarized as
follows:

1) The proposed defense method contributes to mitigating adversarial perturbations in commonly used
attack settings. While not a comprehensive solution, it demonstrates measurable improvements in
robustness under standard evaluation conditions.

2) The proposed method preserves the classification performance of clean images as the applied transfor-
mations align with common data augmentation techniques, minimizing accuracy degradation.

3) This method introduces minimal inference overhead because random cropping and smoothing require
low computational costs, ensuring efficient real-time deployment.

4) This method is conceptually adaptable to various network architectures and functions as a plug-and-
play module, although our experiments focused on CNN-based models.

2 Related Works

2.1 Adversarial Attack Methods
Adversarial attacks introduce imperceptible perturbations to input images, causing deep learning

models to misclassify them. Szegedy et al. [8] first identified this vulnerability, in which perturbations
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generated adversarial examples (Fig. 1). Based on the attacker’s access to model information, adversarial
attacks are classified as white- and black-box attacks (Fig. 2).

Figure 2: (a) White-box attack and (b) Black-box attack

2.1.1 White-Box Attacks
White-box attacks assume full knowledge of a model, including its architecture, parameters, and

gradients [15]. The fast gradient sign method (FGSM) [9] perturbs images using a gradient sign; however, its
effectiveness is limited because of its single-step nature. The projected gradient descent (PGD) [10] refines
this approach by iterating multiple times. Carlini and Wagner (CW) [11] further optimized perturbations
to maximize attack success while minimizing distortion [30–32]. The spatially transformed adversarial
attack (stAdv) [33] deviates from pixel-level perturbations by applying spatial transformations such as
smooth geometric warping. These perturbations are often visually imperceptible but result in high attack
success by subtly altering object structure and positioning. The mask-guided noise restriction (MGNR)
attack [34] constrains perturbations to high-saliency regions identified by binary masks, making the noise
both imperceptible and highly targeted. MGNR can bypass defenses by focusing its perturbation budget on
regions most influential to the model’s decision.

2.1.2 Black-Box Attacks
Black-box attacks assume no access to the model’s internal details and rely only on input-output queries.

Transfer attacks [12] use adversarial examples crafted on a surrogate model to deceive a black box target.
Query-based methods estimate the gradients using repeated queries [12]. A one-pixel attack [13] alters a
single pixel to cause a misclassification, whereas a square attack [14] applies random perturbations in a block-
based manner.

Although traditional black-box attacks assume access to model outputs and often involve numerous
attack iterations, recent research has demonstrated more practical and efficient black-box attack methods.
Park et al. introduced a similar color attack that restricted the number of attack attempts to 100 and ensured
that the modifications remained imperceptible to human observers [35]. Their results showed that even with
such constraints, adversarial examples can successfully deceive both deep learning models and human vision,
underscoring the importance of robust defense mechanisms.

2.2 Adversarial Defense Methods
Strategies against adversarial attacks can be broadly categorized into training and test phase defenses.

2.2.1 Training-Phase Defenses
Adversarial training [9] is a widely used defense strategy that enhances model robustness by incorporat-

ing adversarial examples into the training datasets. Studies have demonstrated its effectiveness in improving
resilience to various types of attacks [24–26]. However, adversarial training has some notable drawbacks. As
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models should be retrained whenever a new attack method emerges, they incur high computational costs
and require significant training time [27,28]. Furthermore, while adversarial training strengthens defenses
against known attacks, its effectiveness against adaptive or unseen attacks remains limited [25,26]. Despite
these challenges, adversarial training continues to serve as a fundamental approach in adversarial defense
research, with ongoing efforts to improve its efficiency and generalizability.

2.2.2 Test-Phase Defenses
Test-phase defenses mitigate adversarial effects without modifying the model parameters and are mainly

divided into generative-based purification and image transformation-based purification. Generative-based
purification methods such as DiffPure [23] and DensePure [29] use diffusion models to denoise adversarial
inputs. Although highly effective, these approaches incur high computational costs, limiting their real-time
applicability [23,27]. Image-transformation-based purification combines input images to reduce adversarial
noise with minimal computation. JPEG compression [36], random transformations [37], and spatial modifi-
cations, such as resizing and cropping [21,22] have been explored. Although computationally efficient, their
defense performance is generally weaker than that of adversarial training or generative purification.

2.3 Summary of Related Works
Adversarial training provides strong robustness but requires costly retraining. Generative purification

effectively removes adversarial noise but is computationally expensive. Image transformation-based defenses
require no retraining and inevitably incur minimal inference overhead; however, their effectiveness is often
limited. Given these tradeoffs, this study focuses on an efficient image transformation approach that balances
robustness, inference speed, and broad applicability.

3 Proposed Method
In this section, we introduce our defense mechanism, which mitigates adversarial effects by combining

random cropping and image smoothing using Gaussian filtering. As illustrated in Fig. 3, the proposed
method comprises two key steps: (1) random cropping with zero padding and (2) image smoothing using a
Gaussian filter.

Figure 3: Overview of the proposed method
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3.1 Random Cropping and Zero Padding
Random cropping alters the structure of adversarial perturbations by randomly resizing the input

images. Unlike fixed-size cropping, the proposed method dynamically selects a crop size between 240 and
270 pixels at each inference step. This variability enhances the robustness against iterative attacks, such as
CW and square attacks, which optimize adversarial perturbations through multiple iterations.

Once cropped, the image is resized to a fixed input dimension (299× 299) using zero padding. The
padding ensures that the modified image maintains a consistent shape while reducing boundary distortions
that may arise during subsequent transformations.

The random cropping remains effective when applied to adversarial examples after attack generation due
to its spatial disruption capability. Adversarial perturbations are typically optimized under the assumption
of a fixed spatial alignment between the perturbation and the classifier’s receptive fields. Randomly shifting
or resizing the input invalidates this assumption by misaligning the perturbation with the model’s feature
extraction layers. This process disrupts the adversary’s gradient optimization and diminishes the impact of
location-sensitive perturbations, especially for attacks relying on structured optimization such as CW or
square attacks.

3.2 Image Smoothing
After random cropping and padding, Gaussian filtering is applied to smooth the image and reduce

the effectiveness of adversarial perturbations. Image smoothing modifies pixel values based on neighboring
pixels, thereby disrupting adversarial noise patterns.

Among the various smoothing techniques, including mean, median, and bilateral filtering [38],
Gaussian filtering was selected owing to its superior adversarial mitigation performance. Gaussian filters
assign higher weights to closer pixels following a Gaussian distribution, effectively suppressing noise while
preserving the image structure.

The effectiveness of Gaussian filtering as a post-processing defense stems from the frequency character-
istics of adversarial noise. Most adversarial perturbations are high-frequency signals that exploit the model’s
sensitivity to minor pixel-level changes. Gaussian filtering acts as a low-pass filter, attenuating these high-
frequency components while preserving the semantic content of the image. Even when applied after the
adversarial example has been crafted, this operation significantly weakens the adversarial signal embedded
in the image, reducing its ability to mislead the classifier.

3.3 Defense Process with Random Cropping and Gaussian Filtering
The overall process of the proposed defense mechanism is as follows:

1. The input image is received for classification.
2. A random integer between 240 and 270 is selected.
3. The image is cropped to the randomly selected size.
4. The cropped image is centered in a 299 × 299 space.
5. Zero padding is applied to fill the remaining space.
6. Gaussian filtering with a 7 × 7 kernel and a standard deviation of two is applied.
7. The transformed image is passed to the classification model.

Instead of feeding the input image directly into the classification model, the image is randomly cropped
to vary its dimensions. The cropped image is then placed at the center of a fixed 299 × 299 space, with the
remaining areas filled with zero padding. Subsequently, Gaussian filtering with a 7 × 7 kernel and a standard
deviation of two is applied using a convolution operation.
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Finally, the smoothed image is input into the classification model. This transformation effectively alters
the structure of adversarial perturbations, reducing their impact while maintaining classification accuracy
on clean images. Fig. 4 shows an example of the original image (a) and its transformed version (b) using the
proposed defense mechanism.

Figure 4: Examples of images converted by the proposed method: (a) original image and (b) result image

4 Experimental Result

4.1 Experimental Setup
We tested 10,000 ImageNet validation images [39] correctly classified using each model. The hardware

used is listed in Table 1. ResNet101 [40] served as the main target for defense evaluation, and Inception v3 [41]
and VGG16 [42] were used to examine the generality.

Table 1: Experimental environment

Component Specification
CPU Intel i7-12700k
GPU GeForce RTX 3060
RAM DDR5 64 GB

OS Windows 11

4.2 Adversarial Example Generation
To generate adversarial examples, we employed three attack methods: white-box single-step FGSM,

white-box iterative CW, black-box Square, stAdv, and MGNR attacks. The FGSM perturbations became more
severe as the perturbation factor increased. We conducted attacks with FGSM using ε values of {0.01, 0.02,
0.05}. For CW and square attacks, we set a maximum of 1000 iterations but allowed early stopping if the loss
value remained unchanged. For the stAdv attack, we applied spatial transformations by optimizing a flow
field via L-BFGS with 500 iterations. The optimization minimizes both adversarial loss and total variation
of the flow field, with loss weights λtv = 50 and λadv = 0.05. For the MGNR attack, adversarial perturbations
were applied only to semantically important regions defined by pre-computed masks. We used a PGD-based
method with 100 iterations, a step size of α = 2/255, and a maximum perturbation of ε = 16/255, enforcing
perturbation only within the masked areas.

Using 10,000 correctly classified images from the dataset, we generated 10,000 adversarial examples for
each attack method, which resulted in 70,000 adversarial images.

Fig. 5 illustrates examples of adversarial images generated using different attack methods. FGSM, which
applies perturbations in a single step, spreads adversarial patterns across the entire image, with increasing ε
values making the perturbations more pronounced. The CW attack, an iterative method, introduces nearly
imperceptible perturbations in specific regions rather than across an entire image. Square attacks generate
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adversarial patterns in the form of rectangular noise patches. The stAdv attack distorts spatial structure
by applying smooth geometric transformations, resulting in perceptually similar images with spatially
shifted features.

Figure 5: Examples of the generated adversarial images: (a) clean image, (b) FGSM (ε = 0.01), (c) FGSM (ε = 0.02),
(d) FGSM (ε = 0.05), (e) CW, (f) Square, (g) stAdv, and (h) MGNR

The MGNR attack confines perturbations to semantically important regions using binary masks,
producing localized distortions that remain largely imperceptible in the unmasked background.

4.3 Evaluation of Adversarial Defense Mechanisms
We compared the proposed defense mechanisms (random cropping and Gaussian filtering) with

existing adversarial defense methods, including random resizing with padding [21] and random flipping with
cropping [22]. Moreover, we evaluate various image-smoothing techniques. Each defense method applies a
pre-processing transformation to the input image before feeding it into the classifier. Fig. 6 illustrates the
images transformed using different defense mechanisms.

Figure 6: (Continued)
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Figure 6: Examples of an image transformed using different defense techniques: (a) clean image, (b) mean filtering,
(c) median filtering, (d) gaussian filtering, (e) bilateral filtering, (f) random resizing and padding, (g) flip and crop,
(h) proposed method

4.4 Performance Degradation on Clean Images
A key evaluation criterion for adversarial defense is the effect on clean images. Considering a defense

algorithm is applied to all input images, regardless of whether they are adversarial, excessive performance
degradation on clean images can undermine model reliability.

We measured the classification accuracy of ResNet101 for clean images using various defense methods,
with the results summarized in Table 2. The baseline ResNet101 model achieved 100% accuracy as the dataset
was curated to exclude misclassified samples. Most defense methods resulted in a minor accuracy drop of
approximately 2%, whereas median and mean filtering exhibited the highest accuracy drop of 10.1%. The flip-
and-crop strategy was the best-performing method in terms of preserving accuracy, with accuracy reduced
by only 0.62%.

Table 2: Accuracy of clean images for different defense methods

Defense method Accuracy (%)
ResNet101 (No defense) 100

ResNet101 + Flip and crop 99.38
ResNet101 + Random resizing and padding 97.94

ResNet101 +Median filter 89.90
ResNet101 +Mean filter 89.90

ResNet101 + Gaussian filter 98.19
ResNet101 + Bilateral filter 90.30

ResNet101 + Proposed method 98.18

4.5 Inference Time Evaluation
An adversarial defense mechanism does not impose an excessive inference overhead. We measured the

per-image inference time for ResNet101 with and without each defense method, with the results summarized
in Table 3. The baseline model, without any defense, required 21.20 ms per image. Most defense methods,
including the proposed approach, had a negligible impact on the inference time, except for median and
bilateral filtering, which significantly increased the computational overhead.
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Table 3: Inference time per image for different defense methods

Defense method Inference time (ms)
ResNet101 (No defense) 21.20

ResNet101 + Flip and crop 21.23
ResNet101 + Random resizing and padding 22.70

ResNet101 +Median filter 88.11
ResNet101 +Mean filter 21.23

ResNet101 + Gaussian filter 21.25
ResNet101 + Bilateral filter 27.43

ResNet101 + Proposed method 21.50

4.6 Classification Accuracy on Adversarial Examples
To assess the effectiveness of each defense mechanism, we applied ResNet101 to the adversarial

examples generated in Section 4.2. Median and mean filtering were excluded because of significant accuracy
degradation and inference time overhead.

Table 4 presents the classification accuracy of adversarial examples under various attack scenarios.
Higher accuracy indicates greater mitigation of adversarial effects. All defense methods showed improve-
ments over the baseline model without defense.

Table 4: Classification accuracy on adversarial examples for different defense methods. The highest accuracy for each
adversarial example is highlighted in bold

Defense method Accuracy (%)

FGSM CW Square stAdv MGNR
(ε = 0.01) (ε = 0.02) (ε = 0.05)

ResNet101 + No defense 36.10 23.30 25.57 33.14 61.40 58.27 72.12
ResNet101 + Flip and crop 61.68 45.92 44.52 53.95 75.44 85.00 83.62

ResNet101 + Random resizing and padding 72.89 56.11 48.26 68.53 80.91 84.04 84.04
ResNet101 + Gaussian filter 80.28 63.81 59.68 67.79 84.55 85.19 86.35

ResNet101 + Proposed method 87.78 81.34 70.93 77.65 87.78 84.54 87.31

Although the highest accuracy does not occur for every single attack type, the proposed method
consistently achieved high performance across all evaluated threats, including FGSM, CW, Square, stAdv,
and MGNR attacks. For FGSM attacks with ε = 0.01, the accuracy improved from 36.10% to 87.78%. Similar
mitigation was observed for CW, Square, and MGNR attacks, where the proposed method ranked among
the top performers while maintaining stable performance across all threat models.

These results suggest that the proposed method provides balanced and effective mitigation
across diverse adversarial scenarios, demonstrating its suitability as a general-purpose, test-time
defense mechanism.

Furthermore, an ablation comparison among random cropping only (implemented via random resizing
and padding), Gaussian filtering only, and their combination reveals clear synergy. Gaussian filtering alone
contributes more to adversarial mitigation than cropping alone. However, combining both techniques leads
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to the highest overall robustness, indicating that the two transformations complement each other in reducing
adversarial impact.

4.7 Evaluation of Classification Accuracy by Parameter Selection
Experiments were conducted using two key parameters–random cropping size and Gaussian filter

parameters–to determine the optimal parameters for the proposed defense method. The classification
accuracy of the clean and adversarial examples was evaluated for each setting, with the optimal values
selected based on the results.

4.7.1 Evaluation of Classification Accuracy by Random Cropping Size
The proposed defense method uses random cropping within a predefined integer range to modify

the input image size. Experiments were conducted without Gaussian filtering to analyze the impact of the
cropping size on the classification performance. Image sizes were set to {200, 210, 220, 230, 240, 250, 260,
270, 280, 290, and 299}, and classification accuracy was measured for both clean images and adversarial
examples generated by FGSM (ε = 0.01).

The results shown in Fig. 7 indicate that the classification accuracy on adversarial examples was the
highest when images were cropped to sizes between 240 × 240 and 270 × 270. Furthermore, minimal
degradation in accuracy was observed for clean images with these cropping sizes. Based on these findings,
the random cropping size in the proposed method was set to a random integer between 240 and 270 pixels
to effectively mimic adversarial attacks while maintaining a high classification accuracy.

Figure 7: Classification accuracy by random cropping size

4.7.2 Evaluation of Classification Accuracy by Gaussian Filtering Parameters
Gaussian filtering involves two critical parameters: the kernel size and standard deviation (σ). To analyze

their impact, experiments were conducted without applying random cropping by varying the kernel sizes {3,
5, 7, and 9} and the standard deviation {1.0, 2.0, 3.0, 4.0, and 5.0}. The classification accuracy was evaluated
separately for clean images and adversarial examples.
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The results, illustrated in Fig. 8, show that increasing the kernel size generally improves robustness
against adversarial examples, with the best adversarial mitigation observed at kernel sizes seven and nine,
with σ = 2. However, using a kernel size of nine significantly reduced the accuracy of clean images, suggesting
that excessive smoothing distorted the image features.

Figure 8: Classification accuracy by Gaussian filter kernel size and standard deviation

Thus, to maintain high accuracy on both clean and adversarial examples, the optimal Gaussian filter
parameters were selected as follows:

• Kernel size: 7 × 7
• Standard deviation (σ): 2.0

4.8 Generalization across Different Models
To evaluate the generalizability of the proposed method, we conducted additional experiments using

different CNN-based model architectures. Specifically, the method was tested on pre-trained Inception V3
and VGG16 without additional training or fine-tuning.

Since the adversarial examples used in previous experiments were generated against ResNet101, new
adversarial examples were generated for both Inception V3 and VGG16. For each of the seven attack types,
we created 5000 adversarial examples per model, resulting in a total of 70,000 adversarial examples.

Classification accuracy was measured with and without the defense method to assess its effectiveness.
Results presented in Table 5 show that applying the proposed method led to substantial accuracy improve-
ments for both Inception V3 and VGG16. These findings suggest that the defense may generalize well across
multiple CNN-based classifiers and effectively mitigates adversarial attacks.
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Table 5: Classification accuracy of different models with the proposed defense method

Model Accuracy (%)

FGSM CW Square stAdv MGNR
(ε = 0.01) (ε = 0.02) (ε = 0.05)

Inception V3 (No defense) 36.40 27.82 26.14 30.17 63.22 62.10 71.51
Inception V3 + Proposed method 86.32 80.75 71.45 75.11 87.93 85.00 84.45

VGG16 (No defense) 34.38 22.40 23.62 35.94 61.07 53.46 68.15
VGG16 + Proposed method 86.13 78.75 67.36 71.53 82.61 82.52 77.02

4.9 Visualization of Defense Performance
To comprehensively compare the effectiveness of the different defense methods, we visualized the

classification accuracy results, as shown in Fig. 9. Each subfigure represents the classification accuracy on
adversarial examples generated by different attack methods: (a) FGSM (ε = 0.01), (b) FGSM (ε = 0.02), (c)
FGSM (ε = 0.05), (d) CW, and (e) square attacks.

Figure 9: (Continued)
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Figure 9: Classification accuracy visualization for different defense methods across adversarial attacks. *AE: Adversar-
ial Examples

In these plots, the x-axis represents the classification accuracy on clean images, whereas the y-axis
represents the classification accuracy on adversarial examples. A defense method positioned toward the top-
right corner of the graph indicates superior performance because it maintains a high classification accuracy
on both clean and adversarial images while effectively mitigating adversarial attacks.

As shown in Fig. 9, the proposed defense method consistently appeared in the upper-right region across
all attack scenarios, demonstrating its ability to preserve classification performance on clean images while
significantly mitigating adversarial attacks. This visualization confirms that the proposed method is effective
and reliable for defending against adversarial perturbations.

5 Discussion
While the proposed method demonstrates strong mitigation against various adversarial attacks, includ-

ing gradient-based (FGSM, CW), query-based (Square), spatial (stAdv), and semantically guided (MGNR)
perturbations, several limitations remain.

First, although our approach operates entirely at the input level and does not rely on model-specific
gradients or architecture-dependent assumptions, our empirical evaluation was limited to convolutional
neural networks (CNNs), including ResNet101, Inception V3, and VGG16. Architectures such as Vision
Transformers (ViTs) differ fundamentally in their handling of spatial information due to their reliance on
positional embeddings and lack of translation equivariance; thus, further studies are needed to assess whether
the proposed transformations–particularly random cropping-interact differently with such models.

Second, the evaluation focused on standardized image classification datasets, with ImageNet serving
as the primary benchmark. While ImageNet provides high-resolution and semantically diverse content, its
scale and complexity may not capture domain-specific challenges present in medical or satellite imagery.
Moreover, smoothing-based defenses such as Gaussian filtering are less effective on low-resolution datasets
such as CIFAR-10, where the risk of semantic information loss increases with even modest filtering. Despite
this, prior research suggests that defense methods that perform well on ImageNet often generalize to other
domains, although the reverse is not always true. Nonetheless, applying the proposed method to additional
domains remains an important future direction.
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Third, our study does not evaluate adaptive attacks in which the attacker is aware of the defense and
actively seeks to circumvent it. Although our method effectively mitigates several strong attacks, including
those localized in semantically important regions (e.g., MGNR), a more rigorous evaluation against adaptive
adversaries–such as those generated via Expectation over Transformation (EOT) or smoothing-aware
optimization–would further validate the robustness of the defense under stronger threat models.

Fourth, while the core of our method leverages established techniques (random cropping and Gaussian
filtering), our contribution lies in demonstrating their synergistic combination and practical utility as a test-
time, plug-and-play module. We have provided theoretical reasoning (Sections 3.1 and 3.2) to support the
effectiveness of these transformations in disrupting adversarial gradients and attenuating high-frequency
noise. However, further exploration into their effects on model calibration, prediction confidence, and loss
landscapes could yield deeper insights.

Finally, we deliberately focused our comparisons on test-time, preprocessing-based defenses to align
with the computational constraints and design philosophy of our method. While certified defenses, ran-
domized smoothing, and diffusion-based purification approaches offer promising robustness guarantees,
they often require retraining or incur high inference-time costs. A more comprehensive comparison across
different defense paradigms remains a valuable direction for future work.

Future work will focus on (i) extending evaluation to non-CNN architectures and domain-specific
datasets, (ii) testing the defense against fully adaptive adversaries, and (iii) comparing our lightweight
approach with certified or generative defenses under a unified cost–robustness framework.

6 Conclusion
In this study, we proposed a lightweight, test-time defense method that integrates random cropping

and Gaussian filtering to suppress adversarial perturbations. Unlike training-based defenses or generative
purification techniques, the proposed method operates entirely at the input level without requiring model
retraining or architectural modifications, incurring minimal inference-time overhead–making it suitable for
real-time deployment.

Extensive experiments demonstrated that the proposed method consistently improves classification
accuracy against a wide range of adversarial threats, including gradient-based (FGSM, CW), query-based
(Square), spatial (stAdv), and semantically guided (MGNR) attacks. Furthermore, evaluation on ResNet101,
Inception V3, and VGG16 confirmed that the performance of the proposed method is robust across CNN-
based architectures, supporting its practical applicability and its potential for architectural generalization
within the CNN domain.

While the results are promising, the current scope is limited to CNN architectures and standard
classification benchmarks. Future work will explore the applicability of the proposed method to non-CNN
models such as ViTs, evaluate its robustness under fully adaptive attack settings, and compare its efficiency
and effectiveness against certified and generative defenses within a unified cost–robustness framework.
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