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ABSTRACT: With the rapid development of the Internet of Things (IoT), artificial intelligence, and big data, waste-
sorting systems must balance high accuracy, low latency, and resource efficiency. This paper presents an edge-friendly
intelligent waste-sorting system that integrates a lightweight visual neural network, a pentagonal-trajectory robotic arm,
and IoT connectivity to meet the requirements of real-time response and high accuracy. A lightweight object detection
model, YOLO-WasNet (You Only Look Once for Waste Sorting Network), is proposed to optimize performance
on edge devices. YOLO-WasNet adopts a lightweight backbone, applies Spatial Pyramid Pooling-Fast (SPPF) and
Convolutional Block Attention Module (CBAM), and replaces traditional C3 modules (Cross Stage Partial Bottleneck
with 3 convolutions) with efficient C2f blocks (Cross Stage Partial Bottleneck with 2 Convolutions fast) in the neck.
Additionally, a Depthwise Parallel Triple-attention Convolution (DPT-Conv) operator is introduced to enhance feature
extraction. Experiments on a custom dataset of nine waste categories conforming to Shanghai’s sorting standard (7,917
images) show that YOLO-WasNet achieves a mean average precision (mAPs5,) of 96.8% and a precision of 96.9%, while
reducing computational cost by 30% compared to YOLOv5s. On a Raspberry Pi 4B, inference time is reduced from
480 to 350 ms, ensuring real-time performance. This system offers a practical and viable solution for low-cost, efficient
automated waste management in smart cities.
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1 Introduction

In recent years, the rapid improvement in residents’ living standards has led to a substantial increase in
household waste. Without proper sorting, recyclable materials, hazardous waste, and kitchen waste are often
mixed together, complicating subsequent treatment and potentially releasing harmful substances during
landfilling or incineration. Although many regions have introduced waste-sorting regulations and policies
[1], the lack of supporting infrastructure and systematic classification mechanisms continues to hinder
their effectiveness [2]. Additionally, significant variability in public awareness and participation further
increases the difficulty of consistent and accurate classification [3]. These challenges highlight the urgent
need for intelligent, efficient, and scalable waste-sorting systems to support sustainable waste management
in real-world scenarios.

Recent progress in artificial intelligence and robotics provides promising solutions to these issues [4].
Numerous studies have explored the development of automated waste-sorting systems [5], yielding notable
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advances in classification techniques. However, existing systems still suffer from high computational costs,
suboptimal performance, and difficulties in deployment on embedded platforms [6]. Additionally, manual
intervention remains a dominant part of many waste-sorting processes, resulting in high labor costs [7].
These limitations call for an integrated solution that enables full automation while maintaining high accuracy
and low resource consumption.

In this paper, we propose a lightweight and efficient waste-detection and sorting system based on
YOLOVS5, designed for deployment on embedded platforms. The system integrates a novel waste-aware
detection model with a robotic arm guided by a pentagonal grasping algorithm. Our key contributions are
summarized as follows:

« A novel model named you only look once with waste-aware sorting network (YOLO-WasNet) is
proposed, which substantially reduces both parameter count and computational complexity, thereby
lowering hardware investment and meeting the demands of efficient waste-classification systems.

« In mechanical design, a pentagonal grasping algorithm (a control strategy that computes robotic-
arm grasp points based on pentagon geometry) is combined with a parallelogram-based palletizing
arm structure (a linkage mechanism using parallelogram kinematics) and flexible gripper jaws to
accommodate various waste shapes, enabling rapid and precise handling of diverse items.

o The resulting sorting system demonstrates broad applicability-extensible to waste sorting, warehouse
order fulfillment, and parcel handling. Experiments show that using MobileNetV3-Small (a compact
convolutional neural network architecture for mobile and embedded devices) [8] as the backbone dras-
tically cuts model size; the SCBA module (a fusion of Spatial Pyramid Pooling Fast and Convolutional
Block Attention modules) [9] boosts detection accuracy; DPT-Conv (Depthwise Parallel Triple-attention
Convolution operator) [10] matches standard convolution performance with fewer parameters; and
the C2f (a lightweight feature-fusion block enhancing gradient flow) [I1] module provides richer
gradient information.

2 Related Works
2.1 Intelligent Waste Recognition

In recent years, Le and Ngo [12] proposed a vision-based deep learning system for waste classification
that employs convolutional neural networks for end-to-end feature extraction and classification of waste
images, integrating the automatic sorting pipeline into the robotic grasping module. Wahyutama and Hwang
[13] developed a YOLO-based system for recyclable collection and bin capacity monitoring, combining
real-time object detection with a multi-compartment bin lid mechanism and ultrasonic capacity sensing to
synchronize classification results with remaining volume data. Building on these advances, Hu et al. [14]
designed a collaborative-robot ACP system that seamlessly links vision-based detection with multi-joint
robotic-arm trajectory planning, boosting sorting throughput by over 30% and reducing misclassification
rates below 5%, thereby demonstrating high stability and safety in automated waste handling. Lightweight
models, with their reduced parameter counts and lower computational overhead, enable real-time, low-
power inference on resource-constrained platforms such as Jetson Nano and Raspberry Pi, significantly
lowering hardware costs and deployment complexity. Moreover, robotic arms-owing to their high-precision
positioning and flexible grasping capabilities-can adapt to a variety of waste shapes, minimizing human
intervention and reducing operational errors.
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2.2 Object Detection Methods

In recent years, object detection methods have broadly fallen into two categories: Transformer-based
detectors and the single-stage YOLO series. UP-DETR [15] employs an unsupervised pre-training task
of random patch detection on the Transformer decoder, which significantly accelerates convergence and
improves average precision on object detection and panoptic segmentation. However, because it still relies
on a one-to-one Hungarian matching strategy to align queries with targets, the query-to-target matching
remains inefficient and requires a very long convergence period. Building on this, Group DETR [I6]
introduces a group-wise one-to-many assignment strategy that indeed shortens training time and speeds up
convergence to some degree, but this improvement does not fundamentally reduce the computational and
memory overhead of the Transformer architecture, limiting its support for resource-constrained scenarios.

By contrast, the YOLO series, with its single-stage end-to-end regression and lightweight modular
design, offers superior real-time performance and deployment flexibility. For example, YOLO-MSA [17]
further enhances robustness in complex environments by integrating multi-scale stereoscopic attention with
spatial-channel collaboration. A Pi-based YOLO system demonstrates feasibility on a Raspberry Pj, interfac-
ing with a multi-compartment bin lid and capacity sensor for real-time sorting and status synchronization
in low-cost hardware settings. YOLO-GD [18] combines the GhostNet module with depthwise-separable
convolutions, reaching approximately 97.4% mAP and 32.75 ms inference latency on a Jetson Nano after
quantization, while providing precise grasp-point guidance. Finally, YOLOvVS5, with its PyTorch-based
modular architecture, Mosaic augmentation, and CIoU loss, achieves over 30 FPS and excellent mAP on
public benchmarks, greatly simplifying both training and edge-deployment workflows.

3 Materials and Methods
3.1 Garbage Sorting System
3.1.1 Introduction of the Garbage Sorting System

In order to design the complex mechanical structure of the robotic arm, SolidWorks, an industry-
leading computer-aided design software, was employed to construct the hardware model. Fig. | illustrates
the overall appearance of the gripping device designed in this study. Specific details regarding the selected
vision sensors and actuators and their key characteristics are provided below.

Flexible
mechanical
finger

Stepper motors and
their drivers

(a) Specific details of the robotic components (b) Actual robotic arm built in this study

Figure 1: Overall mechanical structure of the designed gripper arm and its components
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1) Stepper motors and drivers: The robotic arm is equipped with three high-precision stepper motors,
comprising one 42BYGH47 primary motor and two 42BYGHG60 auxiliary motors.

2) Camera: The selected camera is the Intel RealSense D415, which supports a resolution of 1280 x 720.
It employs a USB interface for image data transmission and operates over a range of 0.5 to 3 m. The field of
view is 65°(£2°) x 40°(£1°).

The actual waste-sorting robotic arm is shown in Fig. 1b, and its operational workflow is as follows.
Upon system initialization, the stepper motors perform a homing procedure. The end-mounted depth
camera continuously surveys the waste-detection zone and captures real-time images. These images are then
processed by the YOLO-WasNet model for object detection and localization. Finally, leveraging the robotic-
arm pentagonal algorithm, the arm is precisely actuated to grasp identified waste items and deposit them
into their respective collection bins, thereby achieving intelligent waste-sorting management.

3.1.2 Controller Chip

To control the intelligent waste-sorting robotic arm, an efficient control system was designed, with the
circuit connections shown in Fig. 2. The system leverages the synergy of two key components:

Intel RealSense D415

1
Stepper Motor Driver : X3
‘messssssssee. -

Figure 2: Schematic wiring diagram of the control circuit of the designed robotic arm. Where, x3 indicates that three
stepper motors and drivers were used to control the rotational degrees of freedom of each of the three different joints

1) Raspberry Pi 4B: Vision-processing platform with a compact form factor and powerful computing
performance; driven a Broadcom BCM2711 SoC with four Cortex-A72 cores for real-time image acquisition
and inference.

2) STM32F407ZGT6: Central control unit with an ARM Cortex-M4 core clocked at up to 168 MHz;
equipped with advanced timers for precise motor speed and position control.

3.2 Robotic Arm Structure and Robotic Arm Pentagon Algorithm
3.2.1 Robotic Arm Gripper

To effectively grasp waste items of various shapes and sizes without employing cost-intensive force-
feedback technology [19], a flexible manipulator based on a unique curved-structure design is adopted, as
depicted in Fig. 3. The refined internal actuation mechanism not only simplifies the overall assembly but also
extends the effective stroke range of the manipulator’s flexible fingers.
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Figure 3: Schematic structure of the adopted flexible gripper. The whole flexible gripper is made of TPU (Thermoplastic
Polyurethane) and the inner edge is made of silicone with high friction

3.2.2 Palletizing Robot Arm Structure

To ensure that the depth camera remains parallel to the horizontal plane during operation, the
mechanism principle of the palletizing robotic arm is adopted, as shown in Fig. 4. Two four-bar linkage
assemblies maintain a constant angle between the arm’s end-effector and the horizontal plane, thereby
reducing one degree of freedom, minimizing mechanical errors caused by motor backlash, and simplifying
the motor control system.

Figure 4: Schematic diagram of the principle of the palletising robot arm. Quadrilateral AIED, quadrilateral HGFD
and quadrilateral ABCD are parallelograms, EDF is a fixed triangle, and Al is fixed on the rotating base of the robot
arm

3.2.3 Robotic Arm Pentagonal Algorithm

The robotic-arm pentagonal algorithm is a technique grounded in mathematical and geometric princi-
ples for the precise control of individual joints to achieve designated positional and orientation targets. The
algorithm computes the distance from the end effector to the target point and determines the required joint
angles to ensure accurate manipulation.

As illustrated in Fig. 5, the initial configuration of the four-axis robotic arm is shown. During system
startup, the motors automatically execute a homing routine using the near-zero functionality built into the
driver board, returning to their predefined zero positions upon power-on. Consequently, at initialization,
the link lengths and their initial inter-joint angles are known. A horizontal reference line, AB, is introduced.
When the depth camera captures a target object, the distance from the camera to the object centroid is
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measured, and hand-eye calibration is used to determine the object’s real-world 3D coordinates (x, y, z).
From these data, the following parameters can be derived:

d=+\/x*+y? 1)

) @)

arm?2
Camera and gripper

o= arctan(

xR =

Figure 5: Diagram of the initial state of robotic arm gripping

By rotating the base stepper motor by an angle «, the end effector aligns with the object’s profile plane.
As depicted in Fig. 6, this configuration represents the ideal posture after grasping the object within the
profiling plane. Using the illustrated frame, a pentagonal linkage can be formed comprising arm 1, arm 2, the
robotic arm base, the object height, and the horizontal distance from the base to the object centroid, with
the two lower vertices being right angles. From this geometry, the following equation can be derived:

6," = arctan (%) (3)

arml®> + d*+ (z - h)* - arm2?

6," = arccos (4)
2% arml x\/d? + (z— h)’
0 =90-6,"-06, (5)
2 2 92 (., 1,\2
o - arccos(mml +arm2®—d* - (z-h) ) ©)
2 x arml x arm?2

Figure 6: Schematic diagram of the end state of robotic arm gripping
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3.3 Visual Algorithin Design
3.3.1 Overall Architecture Schematic

Object detection algorithms enable the robotic arm to precisely localize waste items. YOLO v5
represents a significant advancement in this domain, achieving an optimal balance between speed and
accuracy through single-stage detection and end-to-end optimization. Nevertheless, the standard YOLO
v5 model relies on the CSPDarknet53 backbone, which incurs substantial parameters and computational
overhead due to its Darknet Bottleneck and convolutional layers. Consequently, this study replaces the
original backbone with the lightweight MobileNetV3-Small, thereby markedly reducing the model’s overall
computational effort.

The network architecture employed in this work is depicted in Fig. 7. To counteract accuracy degra-
dation caused by a lightweight backbone, an SCBA module-comprising cascaded SPPF (Spatial Pyramid
Pooling-Fast) and CBAM (Convolutional Block Attention Module)-is embedded at the backbone’s terminus.
Additionally, to mitigate redundant computation in the detection head, a DPT-Conv module with efficient
feature operators based on depth-separable convolutions is introduced. Finally, the original C3 module is
replaced by the C2f block [20], thereby enhancing gradient flow.

Backbone Head Detect
size:(3.640,640) Input size;(512,20,20) _—. Detect
3 CBA ?
T,
size:(16,320.320) (16.320.320) C ¢ <
size:( 16, 160.160) ' InvertedResidual *
+ size:(256,20,20) DPT-Conv
size:(24.80.80)  InvertedResidual
¥ sizei(512.40,40) _——
size:(24,80,80) | InvertedResidual —
+ Coneat am
size:(40,40,40) InvertedResidual *
* size:(256.40.40) DPT-Cony
size:(40.40.40) InvertedResidual
v
size: (40,40, 40) InvertedResidual size:(256,80,80) e ke > Detect
size:(48.40.40)  InvertedResidual oD
size:(48.40.40) | InvertedResidual — T =
v b 2o
size:(96,20,20) InvertedResidual ?
+ size:(256.40.40) DPT-Cony ~ —
size:(96,20.20) InvertedResidual
+ size:(512,40,40)
size:(96,20,20) InvertedResidual
+ — Coneat
size:(376,20,20) CBA f
size:(1024.20,20) SPPF Upsample
size:(1024.20.20) size:(512,20.20) DPT-Conv = ——

T

Figure 7: Overall network structure of the proposed YOLO-WasNet
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3.3.2 SCBA Feature Enhancement Module

To further optimize the feature maps output by the backbone network, SPPF (Spatial Pyramid Pooling-
Fast) and CBAM (Convolutional Block Attention Module) are sequentially integrated at the backbone’s
terminus to form the SCBA module. The SPPF block retains contextual information by applying three
successive 5 x 5 max-pooling kernels-thereby continuously expanding the receptive field-and concatenating
the pooled outputs across channels to enhance both global and local feature perception. The concatenated
feature map is then fed into the CBAM module: first, channel attention is applied by performing max-pooling
and average-pooling on each channel to extract informative signals and suppress redundant features; next,
spatial attention assigns weights to different spatial locations, guiding the network to focus on salient regions
while ignoring background or irrelevant areas.

SPPF The traditional SPP module employs a parallel architecture, applying three max-pooling layers
of differing kernel sizes concurrently and concatenating their outputs. However, this parallel approach
incurs substantial computational and memory overhead on resource-constrained platforms such as mobile
or embedded devices. To mitigate this issue, the more efficient SPPF module is utilized: it sequentially
applies three 5 x 5 max-pooling operations before concatenating the pooled feature maps along the channel
dimension. This cascaded design preserves feature representation performance while significantly reducing
redundant computation and parameter count, thereby lowering deployment overhead.

The network architecture of the SPPF module used in this study is illustrated in Fig. 8. First, the input
feature maps are processed through convolutional layers, batch normalization (BN), and a Leaky ReLU
activation. Next, the feature maps undergo multi-scale pooling (e.g. 1 x 1, 2 x 2, and 4 x 4) to capture abstract
representations at various receptive fields. The pooled outputs from each scale are concatenated along the
channel dimension and then passed through additional convolutional layers, BN, and a SiLU activation. This
sequence fuses local and global context at the feature-map level, thereby enhancing the model’s ability to
represent multi-scale abstract features of waste-category targets.

MaxPool2d MaxPool2d

ks,s1,p2 € k5,51,p2 1,51,p0,c512
RF 13x13| RF 9x9 RF 5x5
MaxPool2d > A
k5,s1,p2 = :

Figure 8: The overall SPPF network structure used in this paper. RF stands for Receptive Field

CBAM CBAM leverages attention mechanisms to enhance the network’s capability for salient feature
identification. As illustrated in Fig. 9, CBAM employs channel attention and spatial attention modules to
recalibrate feature importance without altering the spatial dimensions of the feature maps.

F' = 6(MLP(Avg(F)) + MLP(Max(F))) ® F (7)

= o( MWy Fy g + WIWoFy,,, ) ® F (8)
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Figure 9: Network structure of CBAM

As described in Eqs. (7) and (8), where F' denotes the output feature map after the channel-attention
mechanism, and ® represents element-wise multiplication between the importance scores computed by the
channel-attention module and the input feature map F. The function ¢ denotes the activation function-
typically sigmoid-ensuring that attention weights lie within the interval [0, 1]. MLP stands for a multi-layer
perceptron that transforms channel descriptors obtained from average pooling (Fj,,) and max pooling (
using weight matrices W, and W, respectively, to produce the final channel-attention map.

max)

The feature maps refined by the channel-attention module are subsequently processed through a spatial-
attention mechanism to strengthen the network’ ability to recognize salient spatial features. This operation
can be expressed as follows:

F" = o(f”7([AvgPool(F); MaxPool(F)])) )
= O-(f7><7([ a'Vg) max]) ® F (10)

As shown in Eqs. (9) and (10), F” denotes the final feature map after applying spatial attention, and ®
represents element-wise multiplication. The function o-typically a sigmoid activation-ensures that attention
weights lie within the interval [0,1]. The term f”*” refers to a convolutional layer with a 7 x 7 kernel size.
Finally, [AvgPool(F); MaxPool(F)] (or equivalently [F;, s Fy, ]
pooled and max-pooled feature maps along the channel dimension.

) indicates the concatenation of average-

By combining SPPF and CBAM, the network benefits from rich multi-scale feature representations
provided by SPPF and the attention-driven refinement of those features via CBAM. This synergy not
only enhances the backbone’s capacity for feature extraction but also optimizes feature selection, thereby
improving the model’s overall performance.

3.3.3 Neck Feature Aggregation

During experiments, it was found that despite the lightweight backbone, the detection head still contains
substantial redundant parameters, resulting in a model that remains large in size and exhibits reduced
accuracy. Analysis reveals two primary issues:

1) Inefficiency of traditional convolution operators: convolutional layers are responsible for feature

extraction but larger convolutional kernels significantly increase computational cost and exacerbate the risk
of overfitting.
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2) Feature-transfer bottleneck in the C3 module: the complex “bottleneck” design of the C3 block
enhances representational capacity at the expense of increased parameter count and computational overhead.

Aiming at the above problems and analyses, this paper proposes an efficient feature extraction operator,
DPT-Conv, which combines deep separable convolution and lightweight attention mechanism to achieve
efficient feature extraction with less computational cost. On the other hand, in order to solve the C3 feature
transfer problem, the C2f module is employed to ensure sufficient gradient flow and maintain stability during
the training process, so as to improve the performance of the model in the target detection task.

In this study, we propose the DPT-Conv architecture, which integrates depthwise-separable convolu-
tions with a novel triple-attention mechanism to enhance feature representation, as illustrated in Fig. 10.
Initially, depthwise-separable convolutions are employed to extract low-level features while significantly
reducing computational complexity and parameter count. However, to address the limited expressive
capacity inherent in such operations, we introduce a multi-path attention strategy that reinforces spatial and
channel-wise representations.

y Max Conv ‘(_onct ,g
Av

: g {7><7}
| g M, {‘770”7‘; 'mﬁ,
x
| w,h |
nput(c,w,h) “ Max Conv 'COI‘IC ¢ Output{c,w.h}

(7x7)

Figure10: Detailed information on the triple attention structure, Avg and Max stand for average pooling and maximum
pooling respectively, and avg stands for the summed average of elements at the same position in each dimension

Given an input feature map U, we first construct three orientation-sensitive variants: the original
Uy = U, a version rotated along the horizontal axis U; = Rotate, (U), and another rotated along the vertical
axis U, = Rotate, (U). Each rotated feature map U (where k € {0,1,2}) undergoes both average pooling
and max pooling operations. These pooled maps are then concatenated along the channel dimension to form
a joint descriptor:

_ [Angool(Uk) ] RN

(11)
MaxPool(Uy)

Subsequently, a convolutional layer with a 7 x 7 kernel is applied to each concatenated feature map Gy,
followed by a sigmoid activation to generate the corresponding attention map:

Ag = O'(COI]V7X7(Gk)) € RIHXW, (12)

Each attention map Ay is then used to reweight the original input feature map U via element-wise
multiplication (Hadamard product), yielding the attention-enhanced outputs Vj:

Vi=Ar®U. (13)
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Finally, the output feature map F,,; is obtained by averaging the reweighted feature maps from all three
attention paths:

Fout = Z Vi (14)

This attention-augmented depthwise convolution framework allows the model to capture directional
and structural patterns more effectively, addressing the expressiveness bottleneck of conventional depth-
wise convolutions.

C2f After model lightweighting, it becomes crucial to introduce additional gradient pathways to
preserve the original performance. In the YOLOV5 architecture, the traditional C3 block adopts the branch-
split strategy of CSPNet, integrating residual connections to strike a balance between network size and
detection accuracy.

To further enhance gradient propagation and improve feature expressiveness under a lightweight
constraint, we introduce the C2f module, illustrated in Fig. 11. This module is an evolution of the C3
architecture, designed with a more efficient channel-splitting and fusion mechanism. It enables flexible
channel adjustment and strengthens multi-scale feature interaction, thereby improving object detection
accuracy and inference efficiency.

n boﬂfeneck

-

Input{c,w,h) r—
“. 6
( ‘wrcar

Output{c,w,h)

Figure 11: Model diagram of the network structure of C2f, where CBS denotes Convolution, BatchNormalization, SiLu

Formally, let the input feature map be F € R“*"*W The input is first split along the channel dimension
into two parts: a primary stream F, and a residual stream F,,, defined as

Fo=F[;,1:|aC|, ::], Frs=F[; [aC]+1:C, 2], (15)

where a € (0,1) controls the channel split ratio.

Next, a sequential transformation is applied to Fy using two stacked convolutional blocks. Let Y, = Fj,
and define

Y; = CBS;(Yi1), i=12, (16)

where CBS; denotes a composite module consisting of Convolution, Batch Normalization, and the SiLU
activation function.
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The intermediate outputs Y; and Y>, together with the residual stream F,,, are concatenated along the
channel axis to form a unified representation:

Z = Concat(Y;, Y, Fres) € ROV, (17)

Finally, a 1 x 1 convolution is applied to the fused feature map Z to generate the module output:

Fout = COHlel(Z). (18)

By integrating these operations, the C2f module enables more efficient gradient flow and richer semantic
representation, effectively boosting the detection capacity of lightweight networks.

3.4 Dataset

In this study, based on Shanghai’s waste-sorting standard, waste is classified into four major categories:
hazardous waste, dry waste, recyclable waste, and wet waste [5]. The dataset was constructed by aggregating
publicly available images from the Internet, smartphone photographs of everyday waste, and professional
images captured with an Intel RealSense camera. A total of nine object classes covering the four primary
categories were collected, yielding 7917 images. Table 1 details the mapping between each object class and its
corresponding general category.

Table 1: Detail of self-built garbage dataset

Category of waste Type of waste Number of waste
Hazardous waste Waste ointment 1570
Waste battery 2478
Dry waste Disposable cultery 1782
Paperbark 1709
Recyclable waste Can 1873
Plastic bottle 1785
Orange 2442
Wet waste Apple 1774
Banana 2037

4 Results and Discussion
4.1 Experimental Environment

To ensure experimental fairness, both the ablation and comparative studies were conducted on a
workstation equipped with an NVIDIA RTX 3070 GPU. In the ablation experiments, each newly intro-
duced module was trained using identical hyperparameters (initial learning rate = 0.01; batch size = 16;
epochs = 100; input resolution = 640 x 640), and the resulting models were then deployed to a Raspberry Pi
4B for inference.

During deployment, the Raspberry Pi computes the target angle for each stepper motor based on YOLO-
WasNet’s detection outputs and transmits these commands via a serial interface to an STM32F407ZGT6
microcontroller. Upon receipt, the STM32F407ZGT6 utilizes its advanced timers to precisely drive both the
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stepper motors and the TPU-based soft gripper, thus completing the grasping operation and enabling the
tull waste-sorting workflow.

4.2 Results of Ablation Experiments

Ablation experiments on YOLOV5s were conducted to evaluate the contributions of each enhanced
module, including the MobileNetV3-Small backbone, the SCBA (SPPF + CBAM) module, the DPT-Conv
operator, and the C2f block, as summarized in Table 2. The baseline YOLOV5s achieved 94% accuracy and
96.0% mAP5. Substituting the backbone with MobileNetV3-Small reduced the parameter count and FLOPs
to 3.74 M and 6.5 G, respectively, demonstrating that depthwise-separable convolutions can substantially
lower computational overhead with only a marginal accuracy drop. Introducing DPT-Conv further cut
parameters to 3.09 M and FLOPs to 5.9 G while improving both accuracy and mAPs,. Integrating SPPF and
CBAM into the SCBA module added 0.78 M parameters and 0.6 G FLOPs but resulted in a 2.6% accuracy
gain, thanks to multi-scale feature extraction and attention refinement.

Table 2: Ablation experiment results on YOLOvV5

YOLOv5s MobileNetV3-s DPT-Conv C2f SCBA Precision mAP50 P/M FLOPs/G

94.00% 96.0% 703 15.8
91.40% 93.6% 3.74 6.5
v 95.60% 96.4%  3.09 5.9
v v 94.30% 96.6% 411 8.0
v v v 96.90% 96.8%  4.89 8.6

AN N NN
ANANA S

4.3 Comparison and Analysis of Algorithms

To accurately assess the performance of YOLO-WasNet, comparative experiments were conducted on a
custom waste-classification dataset using several mainstream object detectors, including Sparse R-CNN [21],
VarifocalNet [22], SSD [23], CenterNet [24], DETR [25], and EfficientDet [26]. Since Sparse R-CNN,
VarifocalNet, SSD, and DETR cannot converge without pretrained weights, all of these models were
initialized with ImageNet-pretrained parameters, while the remaining models were trained from scratch.
The parameter counts and FLOPs of each model are presented in Fig. 12. The results demonstrate that YOLO-
WasNet exhibits a significant lightweight advantage: its parameter count and FLOPs are only marginally
higher than those of EfficientDet, yet substantially lower than those of the other baseline models. Compared
to Sparse R-CNN, VarifocalNet, SSD, CenterNet, and the Transformer-based DETR, YOLO-WasNet reduces
the parameter count by approximately one-seventh of DETRS, thereby greatly facilitating model optimization
and deployment.

As shown in Table 3, the effectiveness of the proposed YOLO-WasNet was validated by comparing it
against several mainstream object detectors-including CenterNet, DETR, EfficientDet, SSD, VarifocalNet,
and Sparse R-CNN on the same custom waste classification dataset. All models employed identical data
augmentation and optimization strategies; SSD, VarifocalNet, and Sparse R-CNN were initialized with
pretrained weights to accelerate convergence, while the remaining models were trained from scratch. To
prevent overfitting, VarifocalNet and Sparse R-CNN were trained for only 12 epochs, whereas the other
models were trained for 100 epochs.
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Comparison of Model Parameters and FLOPs (Including YOLO-WasNet)
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Figure 12: Comparison of FLOPs and param for various models

Table 3: Comparison of mAPs, training epochs, and pretraining status for various models

Sparse R-CNN  65.30% 12
VarifocalNet 81.50% 12

Model mAP;,, Epochs Pretrained
YOLO-WasNet 96.80% 100 X
CenterNet 87.87% 100 X
DETR 82.39% 100 e
EfficientDet  66.76% 100 X
SSD 92.33% 100 e
v
v

The experimental results demonstrate that YOLO-WasNet achieved a mAPs, of 96.8%, substantially
outperforming SSD (92.33%), VarifocalNet (81.50%), and Sparse R-CNN (65.30%), thereby fully validating
the significant accuracy gains introduced by the network modifications. Meanwhile, VarifocalNet and
Sparse R-CNN reached mAPs, scores of 81.50% and 65.30% under short training schedules, showcasing the
rapid convergence advantages of pretrained initialization. Compared with ResNet-101 or Transformer-based
architectures, YOLO-WasNet reduces both parameter count and FLOPs while maintaining high accuracy,
significantly lowering computational overhead.

This superior performance is attributed to four key design innovations: 1) Replacing the CSPDarknet
backbone with MobileNetV3-Small based on depthwise separable convolutions to reduce model parameters
and computation; 2) Introducing a bi-directional prediction transformation (DPT-Conv) module between
the backbone and feature fusion layers to enhance multi-scale feature representation; 3) Adopting the C2f
composite fusion structure for cross-layer semantic fusion and channel reorganization; 4) Integrating the
SCBA lightweight attention mechanism to strengthen salient features and suppress redundant information.

4.4 System Test
4.4.1 Recognition Speed Test

In this paper, the real-time performance of the model is validated on a Raspberry Pi 4B, as shown
in Fig. 13. Although YOLOV5s is a lightweight model designed for mobile and edge devices, YOLO-WasNet
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demonstrates superior real-time performance, with a single inference time of approximately 350 ms,
significantly outperforming the average 480 ms of YOLOv5s. These results indicate that YOLO-WasNet
effectively balances fast inference and detection accuracy on resource-constrained platforms.

0 20 40 60 80 100
N(times)

Figure 13: Comparison between YOLOv5s and YOLO-WasNet in real-time performance. Where, N is the number of
recognitions, and T is the inference time

4.4.2 Object Detection Correctness Test

To evaluate the performance of the YOLO-WasNet model in practical applications, a set of typical
household waste images was selected for testing, with the recognition results presented in Fig. 14. The test
outcomes indicate that YOLO-WasNet achieves satisfactory performance, effectively recognizing both single
objects and multiple similar objects. In many complex backgrounds, YOLO-WasNet also accurately captures
the location and category of waste items, further demonstrating the model’s generalization and robustness.
Overall, YOLO-WasNet constitutes an efficient and accurate waste-image detection model.

YOLO-WasNet YOLOvS-s

Figure 14: The effect of object detection for various kinds of garbage

4.4.3 Discussions

The robust detection performance of YOLO-WasNet extends beyond technical validation and plays a
meaningful role in advancing sustainable waste management practices. Accurate identification of different
waste types is a critical step toward enabling intelligent sorting systems, which help reduce environmental
pollution, lower landfill usage, and improve recycling efficiency. By applying such Al-driven models in real-
world scenarios, it becomes possible to automate the classification process, minimize human intervention,
and ensure more consistent and reliable waste sorting outcomes.
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Furthermore, the deployment of models like YOLO-WasNet supports the broader goal of building
greener urban environments. Its ability to handle complex scenes and recognize multiple objects ensures
that recyclable materials can be more effectively separated at the source, laying the groundwork for higher
recovery rates and reduced contamination. As societies continue to face growing waste management
challenges, integrating efficient object detection technologies into the recycling chain offers a promising path
toward a more resource-efficient and environmentally responsible future.

5 Conclusion

With increasing public awareness of environmental protection and the sustainable use of resources,
waste separation has become a global and urgent task. However, existing methods for waste classification
primarily rely on manual operation, which is inefficient and prone to errors. By integrating robotics
and Al-based image processing technologies, automated waste sorting and collection can be achieved,
significantly improving efficiency and reducing costs. YOLO-WasNet, a lightweight adaptation of YOLOVS5s,
incorporates attention mechanisms, an optimized backbone network, a redesigned convolutional structure
in the detection head, and an improved up-sampling method. These enhancements effectively meet the
requirements of embedded systems and provide an efficient, low-cost automated solution. The specific
contributions are as follows:

1) The YOLO-WasNet model is proposed, which significantly reduces parameter count and FLOPs. The
resulting YOLO-WasNet ensures real-time performance on embedded devices, thereby reducing hardware
costs and fulfilling the market demand for efficient waste-classification systems.

2) In terms of mechanical design, a combination of the robotic-arm pentagonal algorithm and a
palletizing-arm structure based on the parallelogram principle is implemented, along with flexible gripper
jaws adapted to various waste shapes. The designed mechanism achieves effective gripping and precise
placement of diverse waste items, enhancing the applicability and flexibility of the robotic-arm system.

3) The proposed sorting system exhibits broad application prospects, suitable for scenarios such as waste
sorting, warehouse sorting, and parcel sorting. Experimental results demonstrate that using MobileNetV3-
Small as the backbone substantially reduces model parameters; the SCBA module effectively improves
detection accuracy; DPT-Conv achieves comparable performance to standard convolution with lower
parameter count; and the C2f module provides richer gradient flow.
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