
echT PressScience

Doi:10.32604/cmc.2025.066717

ARTICLE

SP-Sketch: Persistent Flow Detection with Sliding Windows on Programmable
Switches

Yuqian Huang1, Luyi Chen2, Zilun Peng1 and Lin Cui1,*

1Department of Computer Science, Jinan University, Guangzhou, 510632, China
2Department of ICNOC, China Telecom Corporation Shenzhen Branch, Shenzhen, 518000, China
*Corresponding Author: Lin Cui. Email: tcuilin@jnu.edu.cn
Received: 15 April 2025; Accepted: 10 July 2025; Published: 30 July 2025

ABSTRACT: Persistent flows are defined as network flows that persist over multiple time intervals and continue
to exhibit activity over extended periods, which are critical for identifying long-term behaviors and subtle security
threats. Programmable switches provide line-rate packet processing to meet the requirements of high-speed network
environments, yet they are fundamentally limited in computational and memory resources. Accurate and memory-
efficient persistent flow detection on programmable switches is therefore essential. However, existing approaches often
rely on fixed-window sketches or multiple sketches instances, which either suffer from insufficient temporal precision or
incur substantial memory overhead, making them ineffective on programmable switches. To address these challenges,
we propose SP-Sketch, an innovative sliding-window-based sketch that leverages a probabilistic update mechanism
to emulate slot expiration without maintaining multiple sketch instances. This innovative design significantly reduces
memory consumption while preserving high detection accuracy across multiple time intervals. We provide rigorous
theoretical analyses of the estimation errors, deriving precise error bounds for the proposed method, and validate
our approach through comprehensive implementations on both P4 hardware switches (with Intel Tofino ASIC) and
software switches (i.e., BMv2). Experimental evaluations using real-world traffic traces demonstrate that SP-Sketch
outperforms traditional methods, improving accuracy by up to 20% over baseline sliding window approaches and
enhancing recall by 5% compared to non-sliding alternatives. Furthermore, SP-Sketch achieves a significant reduction in
memory utilization, reducing memory consumption by up to 65% compared to traditional methods, while maintaining
a robust capability to accurately track persistent flow behavior over extended time periods.

KEYWORDS: Sketch; persistent flow; sliding window; programmable switches; probability subtraction

1 Introduction
Persistent flow detection is fundamental for uncovering long-term abnormal traffic patterns, including

low-rate denial-of-service (LDoS) attacks, network probing, and malicious activities [1–3]. Unlike transient
anomalies, persistent flows—defined as those appearing in at least k distinct time intervals (where k
is a predefined operational threshold)—manifest recurrent patterns over extended periods, often with
negligible traffic intensity. Detecting persistent flows is indispensable for network performance monitoring
and security, as they frequently signal underlying issues like misconfigurations or stealthy attacks [4].

However, existing persistent flow detection solutions typically encounter substantial trade-offs between
accuracy and memory efficiency, especially in real-time, high-speed network environments. Traditional
methods, such as fixed-window sketches [5] and multi-instance tracking, often suffer from prohibitive

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.066717
https://www.techscience.com/doi/10.32604/cmc.2025.066717
mailto:tcuilin@jnu.edu.cn

6016 Comput Mater Contin. 2025;84(3)

memory overhead and computational limitations, making them challenging to deploy efficiently in high-
throughput networks. This issue is particularly pronounced in programmable switches (e.g., P4 devices),
where the strict limitations on memory and computational resources make existing solutions fundamentally
incompatible (e.g., Tofino ASIC only has 15 MB SRAM and limited ALUs, and does not support floating-point
numbers or division operations) [6].

Specifically, as shown in Fig. 1, conventional sliding window methods typically require multiple sketch
instances to represent sub-intervals within a time window, with each instance maintaining independent flow
counters. This design not only substantially increases memory consumption but also introduces significant
computational overhead, especially in network environments requiring real-time processing. Programmable
switches, with their fixed pipeline architecture, are fundamentally constrained in their ability to maintain
long-term state or perform complex computations, further exacerbating this challenge [7].

Figure 1: Comparison of sliding window and interval-based window techniques for persistent flow detection

Therefore, a key question arises: Considering the limitations of programmable switches, can we efficiently
detect multiple persistent flows, ensuring high accuracy and temporal resolution without requiring excessive
memory and computational resources?

To address this fundamental challenge, we propose SP-Sketch, a memory-efficient sketch-based method
for real-time persistent flow detection on programmable switches, using an innovative sliding window
scheme. SP-Sketch integrates the advantages of sliding window techniques with an innovative probabilistic
subtraction mechanism to provide accurate persistent flow estimation without requiring multiple sketch
instances or timestamp storage. The core innovation of SP-Sketch lies in its ability to dramatically reduce
memory requirements by maintaining a single sketch structure, where counter values are probabilistically
incremented or decremented based on flow occurrences, precisely simulating the expiration of historical
data without additional memory overhead. This approach enables precise persistent flow detection with
minimal memory utilization, making it particularly suitable for deployment in resource-constrained, real-
time environments.

The main contributions of this paper are summarized as follows:

• We propose SP-Sketch, a novel sliding window-based persistent flow measurement solution that simu-
lates slot expiration using a probabilistic subtraction mechanism. By maintaining only a single sketch
structure, SP-Sketch reduces memory consumption by up to 65% compared to existing multi-instance
approaches while sustaining over 95% detection accuracy.

• We design lightweight and efficient update/query algorithms specifically optimized for the resource
constraints of programmable switches. SP-Sketch avoids floating-point operations, uses fixed-size mem-
ory, and applies integer-based probabilistic updates. Our implementation achieves zero control-plane
interaction per packet and sustains processing at line-rate on P4 hardware.

Comput Mater Contin. 2025;84(3) 6017

• We implement SP-Sketch on both P4 hardware switches (Intel Tofino) and software switches (BMv2).
Extensive experiments on real-world traffic traces demonstrate that SP-Sketch significantly outperforms
traditional methods, improving accuracy by up to 20% over baseline sliding window approaches and
boosting recall by 5% compared to non-sliding alternatives, while enabling advanced tasks such as heavy-
change-aware persistent flow detection.

The remainder of this paper is organized as follows. Section 2 reviews the related work on persistent flow
detection and sketch-based methods. Section 3 presents the SP-Sketch design, detailing the algorithms, data
structures, basic operations, and a discussion on error analysis. Section 4 describes the implementation of SP-
Sketch on programmable switches and addresses the challenges encountered during deployment. Section 5
presents comprehensive experimental results, comparing SP-Sketch with other state-of-the-art approaches.
Finally, Section 6 concludes the paper and discusses promising directions for future research.

2 Related Work
Existing approaches to detect persistent flows can be categorized into three principal categories:

encoding-based methods, sliding-window-based methods, and persistent spread estimation.
PIE [8] is an encoding-based approach for systematically identifying persistent flow items. It utilizes

Raptor codes to compress item identifiers into an encoded format, which is then stored in a Space-Time
Bloom Filter (STBF) for subsequent decoding and analysis. PIE demonstrates high accuracy and supports
reversibility, making it suitable for scenarios that require offline decoding and comprehensive post-analysis.
Its design emphasizes encoding fidelity and offline analysis, making it particularly well-suited for scenarios
that prioritize accuracy over real-time processing.

For sliding-window-based methods, DISPERSE [9] extends the PIE framework to support distributed
datasets. It defines the persistence of an item i over T time windows as Persistence(i) = ∑T

t=1 Ii ,t , where
Ii ,t is an indicator function reflecting the presence of i in window t. DISPERSE enhances scalability by
enabling distributed processing and is well-suited for retrospective analysis in large-scale environments. The
On-Off Sketch [10] builds on this by introducing a binary flag mechanism to record item activity states
within a window, offering a compact structure for frequency filtering. Subsequently, the combination of
On-Off Sketch with Sliding Sketch [11] provides improved temporal granularity and enhances the ability to
track evolving item patterns across intervals. These designs represent significant advances toward efficient
time-aware measurement in streaming systems.

An alternative perspective in persistent flow detection focuses on estimating persistent spread. Tech-
niques such as LogLog [12] and HyperLogLog [13] provide compact, memory-efficient estimations of
cardinality, where the number of elements (e.g., destination IP addresses or ports) associated with a flow are
approximated as ˆCardinality(f) = 1

α ⋅ 2
max{R f ,1 ,R f ,2 , . . . ,R f ,k}, where R f , i is the rank recorded in the i-th register

for flow f, and α is a constant determined by the algorithm. These methods achieve high scalability by sharing
registers across flows and have been extended to persistent spread estimation in various studies [14–16]. Such
approaches are particularly effective when the goal is to monitor aggregate behavior over large volumes of
traffic, rather than to precisely identifying individual persistent flow identities with temporal precision.

Table 1 compares these persistent flow detection methods in terms of memory efficiency, accuracy,
temporal precision, and P4 compatibility. In contrast, SP-Sketch is specifically designed for fine-grained,
real-time tracking of individual persistent flows while supporting persistent spread estimation. It integrates
probabilistic operations within a single sketch structure, eliminating multiple instances or offline computa-
tion. This lightweight approach is compatible with programmable switch constraints, addressing a critical
gap in existing methods.

6018 Comput Mater Contin. 2025;84(3)

Table 1: Comparison of persistent flow detection methods

Method Memory efficiency Accuracy Temporal precision P4-Compatible
PIE [8] Low High ✗ ✗

SW-CM [11] Medium Medium Reset-based ✗

On-Off Sketch [10] High Medium ✗ –
Sliding Sketch [11] Medium Medium ✓ –
LogLog/HLL [13] High Low ✗ ✓

SP-Sketch (Ours) High High Prob. decay ✓

3 Design of SP-Sketch
We propose SP-Sketch, a probability-based sliding window sketch designed for efficient persistent flow

detection on the programmable data plane. Some key notations that will be used are summarized in Table 2.

Table 2: Symbols and notations

Notation Definition
S Set of flows
f Data flow identifier
N Number of time slots in the sliding window
t Time slot size
T Threshold for persistent flow detection
m Number of occurrences of the flow across different time slots

Pro Probability of decrementing the counter by 1
hi() Hash function used for the i-th row

bucket[i] Hash location of flow f in the sketch
bucket[i].ke y Key value of flow f in the i-th row and hi(f) column

counter[f] Counter value for flow f in the i-th row and hi(f) column
bucket[i].timeslot Time slot value of the last flow appearance in bucket i

3.1 Overview
SP-Sketch is a novel method for persistent flow detection on programmable switches. A flow is defined

by its source and destination IP addresses (simplified for clarity; 5-tuple definitions remain valid elsewhere)
and is considered persistent if it appears in at least T different time slots within the observation window. The
goal of SP-Sketch is to efficiently identify such flows in sliding window scenarios under high-volume traffic
with numerous concurrent flows [17].

To minimize memory usage and control plane communication overhead, we employ a Bloom filter
[18] to track the first occurrences of flows. A calculated timeslottimeslot timeslot field, derived from packet
timestamps, is used to mark each packet with its corresponding time slot. This method reduces unnecessary
resets of the Bloom filter and helps mitigate false positives.

SP-Sketch employs a probabilistic mechanism to manage flow counters and approximate the expiration
of flow activity in the oldest slot. Instead of creating new sketch structures, SP-Sketch uses probabilistic
operations to update the existing counters. This approach simulates the expiration of flow activity without

Comput Mater Contin. 2025;84(3) 6019

requiring additional memory for new data structures, thus reducing memory consumption and enhancing
overall efficiency.

To address the challenge of updating flow counters when packets appear intermittently across time slots,
SP-Sketch utilizes a match-action table to store the pre-calculated probability updates for each flow, thereby
enabling efficient retrieval and updating of flow counters even when the flow appears in non-continuous slots.

The following subsections present the detailed methodology of SP-Sketch, including its data structures,
algorithms, basic operations and the relevant discussion and analysis.

3.2 Data Structure
Data Structure: The data structure of SP-Sketch contains three rows and each row has w buckets, as

illustrated in Fig. 2a. Each bucket is divided into three parts. The first part stores a key value (i.e., source IP
address and destination IP address). The second part is a counter that tracks the number of slots that this
flow occurs within the current time window. The third part is a field named timeslot that records the last
appearance of the flow, as mentioned in Section 3.1.

Figure 2: SP-Sketch data structure and the packet’s flow information insertion process. (a) Data structure of SP-Sketch,
(b) f1 hashed to an empty bucket, and (c) f1 hashed to the bucket in the same slot

When a data packet arrives, it is processed by applying three different hash functions to map it to three
specific buckets within the sketch. The counters associated with these buckets are then incremented to track
the number of times the flow appears in different slots.

Initialization: All buckets are set to 0. Prior to the commencement of the detection process, it is
necessary to transmit the relevant table entries information to the data plane from the controller.

3.3 The Insertion Operation
When a packet arrives at the switch, its headers are parsed to extract the source and destination IP

addresses. These two components are then passed to three distinct hash functions, each generating a hash
value. These hash values are used to identify the corresponding buckets in the sketch where the packet’s flow
information is stored.

Next, SP-Sketch traverses these three buckets. If the packet’s source IP address and destination IP address
match the key (i.e., source IP address and destination IP address) stored in any one of these buckets, the
counter of that bucket will be incremented, and the packet is considered successfully inserted. If an empty
bucket is encountered and the buckets before the empty bucket do not have matching keys with the packet,

6020 Comput Mater Contin. 2025;84(3)

the packet’s flow information will be inserted into the empty bucket. Specifically, we set the key to the packet’s
source IP address and destination IP address, set the counter value to 1, and set the timeslot to the packet’s
timeslot.

If no matching flow is found and all the corresponding buckets are full, the replacement operation is
triggered. In this operation, one of the existing flows in the full buckets is evicted to make room for the new
flow. The evicted flow is selected based on a probabilistic strategy, which involves factors such as the least
recently updated flow or other criteria designed to optimize memory usage. The new flow’s information is
then inserted into the selected bucket, replacing the evicted flow’s data.

For example, as shown in Fig. 2b, when the packet belonging to flow f1 arrives at the switch during
the fifth slot, all buckets are empty. The packet is inserted into the first available bucket, and the flow’s
information, such as bucket[i].count, bucket[i].timeslot, and bucket[i].ke y, is updated accordingly. If a
matching flow is not found and no empty bucket is available, the replacement operation will be triggered to
evict an existing flow and insert the new packet into the sketch.

3.4 The Update Operation
The update operation is the core of SP-Sketch that maintains flow persistence tracking across sliding

time windows. This section details the four key components of the update process.

3.4.1 Detecting Time Slot Difference
When a data packet arrives, it is hashed to three buckets and checked for corresponding key values. The

first step is to compare the current time slot with the slot value corresponding to the key in the sketch. If both
slot values are equal, it means that the two packets of the flow appear in the same slot, so no further counting
is needed.

As illustrated in Fig. 2c, at the fifth slot, f1 finds the corresponding position, and no operation is
performed because it belongs to a flow that repeatedly appears in the same slot. The update operation is only
performed when the slot value exceeds the last occurrence, meaning the flow has entered a new slot in the
current window.

3.4.2 Calculating Delta
If the packet occurs in a different slot, the system calculates the number of missed slots between the

current arrival and the last recorded appearance. The difference between the current time slot and the stored
time slot value is recorded as δ, representing the number of time slots that have elapsed since the flow’s
last appearance.

This δ value is crucial for determining how many probabilistic decrement operations should be
simulated to account for the flow’s absence during the missed slots. The calculation ensures that when a flow
appears after multiple slots, the probability is reduced multiple times, not just once.

3.4.3 Determining Decrement Probability
The probabilistic subtraction mechanism adjusts the flow counters based on the appearance of flows

across different time slots. When a flow appears in adjacent time slots, the probability of decrementing its
counter is given by m

N , where m represents the current counter value, and N is the total number of slots in
the window.

Comput Mater Contin. 2025;84(3) 6021

When a flow reappears after missing Δs slots, we need to simulate the decay that should have occurred
during those missed slots. For each missed slot, the decay probability is p = m

N where m is the current counter
value. The number of decrements k over Δs missed slots follows a binomial distribution: P(k decrements) =
(Δs

k)p
k(1 − p)Δs−k . However, since the counter value changes after each decrement, we use the sequential

probability: P(final counter = m − k) = ∏k−1
i=0

m−i
N ⋅ ∏

Δs−1
j=k

N−(m− j)
N .

3.4.4 Performing Probabilistic Update
A random number is generated to determine whether the decrement operation should be performed

based on the calculated probability. The corresponding counter value is then read and potentially decre-
mented according to the probabilistic decision.

As illustrated in Fig. 3a, the probabilistic mechanism determines whether a decrement operation occurs
when flow packets arrive after missing time slots.

Figure 3: SP-Sketch collision handling and flow replacement mechanism. (a) f1 hashed to the bucket in different slots,
and (b) f3 replaced by f4 and saved by SP-Sketch

Fig. 4 provides a comprehensive step-by-step example where flow f1 appears in slots S1, S2, S6, and
S8, while being absent during slots S3, S4, S5, and S7. The figure shows how the counter evolves from 0
to 3 across eight time slots. Key observations include: (1) the counter increments by 1 when flow packets
arrive in consecutive slots (S1→S2), (2) the counter remains unchanged during absent periods (S3–S5), and
(3) probabilistic decrements occur when flows reappear after missing multiple slots, as demonstrated in
S6 where Δs = 3, P = 0.4, and a random value of 0.3 triggers the decrement operation before adding the
new packet.

Figure 4: Step-by-step counter update process

6022 Comput Mater Contin. 2025;84(3)

Finally, when Δs is greater than or equal to the window size N, the counter is directly set to 0, indicating
that the flow has been absent for too long and is no longer part of the current window.

The complete update procedure is formalized in Algorithm 1. The algorithm examines d hashed rows
and performs constant-time actions with time complexity O(d), making it well-suited for the parallel
pipeline of programmable switches like Tofino.

Algorithm 1: Update Procedure
Initialization: w ← windowsize, initialize all counters and timeslots to 0;
On receiving packet P from flow f
1: for i = 1 to d do
2: if P.ke y == bucket[i].ke y then
3: if P.timeslot ≠ bucket[i].timeslot then
4: pro ← rand(0, 1);
5: c ← counter[f];
6: δ ← P.timeslot − bucket[i].timeslot;
7: if pro < Cc

N−Cc
N−1

Cc
N

then
8: counter[f] ← counter[f] − 1;
9: end if
10: end if
11: counter[f] ← counter[f] + 1;
12: bucket[i].timeslot ← P.timeslot;
13: end if
14: end for

The algorithm uses simplified notation where counter[f] represents the counter value for flow f ,
and bucket[i] represents the bucket at position i. This notation makes the algorithm more readable while
maintaining the same functionality as the original formulation.

3.4.5 Mathematical Foundation and Convergence

Convergence Guarantee: The probabilities satisfy ∑min(m ,Δs)
k=0 P(final counter = m − k) ≤ 1, ensuring

mathematical consistency.
Numerical Example: Consider m = 3, N = 5, Δs = 2: P(k = 0) = 2

5 ×
2
5 = 0.16; P(k = 1) = 3

5 ×
3
5 +

2
5 ×

3
5 = 0.6; P(k = 2) = 3

5 ×
2
5 = 0.24. Total: 0.16 + 0.6 + 0.24 = 1.0, confirming perfect convergence. This

approach provides equivalent functionality while being mathematically verifiable and computationally
efficient. Finally, when Δs is greater than or equal to the window size N, B(i , hi(f)).count is directly set to
0, indicating that the flow has been absent for too long and is no longer part of the current window.

3.5 The Replace Operation
The replace operation handles the hash collisions when multiple flows map to the same bucket locations.

This operation consists of three main phases: conflict detection, minimum-count entry identification,
and the application of decrement or replacement strategies. This section details each phase to provide a
comprehensive understanding of the collision handling mechanism.

Comput Mater Contin. 2025;84(3) 6023

3.5.1 Conflict Detection
When a new packet from flow f arrives, the system first attempts to locate the flow in its three hashed

bucket positions. If any of these buckets contain a matching key, the packet is processed normally without
triggering the replacement operation.

A conflict occurs when all three hashed buckets are occupied by different flows (non-matching keys).
At this point, the system must decide which existing flow to potentially evict to make room for the new flow.
This conflict detection phase is crucial for maintaining the sketch’s integrity while accommodating new flows
under memory constraints.

The conflict detection process checks whether P.ke y ≠ B(i , hi(f)).ke y for all i ∈ {1, 2, 3}. Only when
this condition is satisfied for all three buckets does the system proceed to the next phase of identifying the
minimum-count entry.

3.5.2 Identifying Minimum-Count Entry
Once a conflict is detected, the system identifies the entry with the smallest counter value among the

three candidate buckets. This identification process is designed to preserve flows with higher counter values,
which are more likely to represent persistent flows.

The minimum-count identification examines the counter values bucket[i].count for each of the three
hashed positions and selects the entry with the smallest value. In case of ties, the system selects the first
encountered minimum entry. This strategy ensures that flows with stronger persistence indicators (higher
counters) are preferentially retained in the sketch.

The selection of the minimum-count entry is performed using simple comparison operations that are
well-suited to the constraints of P4 programmable switches, avoiding complex sorting algorithms that would
be resource-intensive.

3.5.3 Applying Decrement or Replacement
After identifying the minimum-count entry, the system applies one of two strategies: decrement the

counter or perform direct replacement. The choice between these strategies depends on the current counter
value and timing conditions.

Decrement Strategy: If the minimum counter value is greater than 0, the system decrements it by 1.
This gradual reduction approach allows persistent flows to persist longer in the sketch, as they need multiple
collision events to be completely evicted. The decrement operation also considers the time slot difference to
ensure proper temporal handling.

Replacement Strategy: When the minimum counter hits 0, direct replacement occurs. The existing flow’s
key is replaced with the new flow’s key, and the counter is set to 1. This ensures that completely aged-out flows
are efficiently removed to make room for new active flows.

3.5.4 Simplified Replace Algorithm
The complete replace procedure is formalized in Algorithm 2. The algorithm eliminates nested loops

and uses a streamlined approach for better efficiency and readability.

6024 Comput Mater Contin. 2025;84(3)

Algorithm 2: Replace procedure
On receiving packet P from flow f with collision:
1: mine ntr y ← null
2: min_count ←∞
3: for i = 1 to d do
4: if bucket[i].count < minc ount then
5: mine ntr y ← bucket[i]
6: minc ount ← bucket[i].count
7: end if
8: end for
9: if P.timeslot ≠ mine ntr y.timeslot then
10: mine ntr y.count ← mine ntr y.count − 1
11 end if
12: if mine ntr y.count == 0 then
13: mine ntr y.ke y ← P.ke y
14: mine ntr y.count ← 1
15: mine ntr y.timeslot ← P.timeslot
16: end if

3.5.5 Decision Flow for Decrement vs. Replacement
The decision process for applying decrement or replacement follows a clear decision tree structure: The

application of decrement or replacement is guided by a structured decision tree, depicted in Fig. 5. Upon
packet arrival, the system checks for conflicts across three hashed buckets to ascertain flow occupancy. If
no conflict arises, processing proceeds as usual. Upon conflict detection, the system selects the bucket with
the lowest count. Actions depend on the minimum count: a decrement triggers a complete eviction check
(counter == 0); immediate replacement occurs if the count is already zero. This method ensures efficient
memory use and maintains flows with higher persistence.

Figure 5: A decision tree diagram of replacement

Comput Mater Contin. 2025;84(3) 6025

3.6 The Query Operation
Based on the aforementioned operations, the objective is to maximize the retention of persistent flows

within the most recent window in the sketch structure. During querying, it is only necessary to traverse all
registers to identify the key value associated with a flow whose counter value surpasses the slot threshold.
This scan has time complexity O(d ⋅w), where d is the number of hash rows and w is the number of entries
per row. Although linear in sketch size, it is invoked periodically and can be offloaded or parallelized on the
switch’s control processor.

Overall, the sliding window probability reduction method provides a more accurate and reliable
approach to detecting persistent flows in real-time network traffic monitoring. By accounting for the sliding
window technique and the probabilistic nature of persistent flows, this method helps minimize errors and
improve the accuracy of network traffic analysis.

3.7 Discussion and Analysis
3.7.1 Flow Persistence Estimation

We first derive the expected value of flow persistence P, which is defined as the number of distinct time
intervals in which a flow appears within the sliding window. Let N be the total number of time intervals, v
the number of intervals in which the flow appears, and θ the probability of the flow appearing in any given
interval. We aim to calculate E(P), the expected average persistence of the flow across multiple time windows,
using a binomial distribution.

Step 1: Computing the Probability Distribution of P
Suppose a flow appears in v distinct time intervals. The probability of this event follows a binomial

distribution. The binomial distribution describes the number of successes in a fixed number of independent
trials. In this case, each time interval can be considered a trial, and the appearance of the flow in that time
interval counts as a success.

The probability that the flow appears in exactly v time intervals is given by: P(P = v) = (N
v) ⋅ θ

v ⋅
(1 − θ)N−v . As described earlier, (N

v) represents the number of ways to choose v intervals from N total
intervals, and the terms θv and (1 − θ)N−v represent the probability of the flow appearing in v intervals and
not appearing in the remaining N − v intervals, respectively.

Step 2: Computing the Expected Value E(P)
The expected value E(P) is a statistical measure representing the average persistence of a flow. According

to probability theory, the expected value can be computed by multiplying each possible value of v by its
corresponding probability and summing over all possible values of v: E(P) = ∑N

v=0 v ⋅ (N
v) ⋅ θ

v ⋅ (1 − θ)N−v .
As previously defined, v represents the possible values of persistence P, and (N

v) is the combination
term representing the number of ways to choose v intervals from N. The terms θv ⋅ (1 − θ)N−v represent the
probability of the flow appearing in exactly v time intervals.

3.7.2 Fairness of Replacement Strategy
In SP-Sketch, the replacement mechanism selects the entry with the smallest counter value among d

candidate buckets when a flow collision occurs. This strategy is designed to favor flows with high recent
activity, which are more likely to represent high-bandwidth or volumetric behaviors. Such prioritization
improves detection accuracy under tight memory constraints by preserving frequent flows that are assumed
to be more significant.

6026 Comput Mater Contin. 2025;84(3)

However, this approach may introduce a potential fairness issue: low-frequency but long-lived persistent
flows can be prematurely evicted if their counters remain small. This is particularly relevant in use cases such
as stealthy long-term threat detection or low-rate anomaly monitoring, where such flows may be of high
importance despite low volume.

To mitigate this, one possible extension is to incorporate temporal persistence indicators into the
replacement strategy, such as exponential aging of counters or incorporating timestamps to track recent
activity intervals. Another promising direction is to explore hybrid replacement schemes (e.g., combining
count with time decay or using reservoir sampling) to balance between frequency and longevity. We leave
the implementation of these advanced strategies to future work.

3.7.3 Fairness Analysis of Decay Mechanism
A critical concern in SP-Sketch is whether the packet-driven decay mechanism ensures consistent

counter decay rates across all flows. We provide a rigorous mathematical analysis proving that while
instantaneous fairness may vary, the system achieves statistical fairness in expectation.

Theorem 1 (Expected Decay Rate Consistency): In SP-Sketch, all flows achieve consistent expected
decay rates under appropriate conditions.

Proof: Let flow fi have packet arrival rate λi (packets per slot) and counter value Ci(t) at time slot t.
The packet arrivals follow a Poisson process, so the probability of k packet arrivals in slot Δt is: P(Ni = k) =
(λi Δt)k e−λi Δt

k! . Given k packet arrivals, the probability of at least one decay operation is: P(decay∣Ni = k) =

1 − (1 − C i(t)
N)

k
. The expected decay probability becomes: E[Pdecay, i] = ∑∞k=0 P(decay∣Ni = k) ⋅ P(Ni = k)

= 1 − e−λi Δt∑∞k=0 (1 −
Ci(t)

N)
k
(λi Δt)k

k! = 1 − e−λi Δt Ci(t)
N .

When λi Δt C i(t)
N ≪ 1 (typical in practice), using Taylor expansion: E[Pdecay, i] ≈ λi Δt Ci(t)

N . This
shows the expected decay rate is proportional to the target rate Ci(t)

N with factor λi Δt. ◻
Theorem 2 (Error Bounds): The relative error in decay rates is bounded and predictable.

Proof: The relative error is defined as: εi=
∣E[Pdecay, i]− Ci(t)

N ∣
Ci(t)

N
= ∣N(1−e−λi Δt

Ci(t)
N)

Ci(t) − 1∣ . For the critical case

λi Δt = 1 (one packet per slot): εi= ∣N(1−e−
Ci(t)

N)
Ci(t) − 1∣ ≈ 0 when Ci(t)

N ≪ 1. In general, the error is bounded by:

εi≤max (∣λi Δt − 1∣, 1
λi Δt − 1) . This bound approaches zero as λi Δt → 1. ◻

Theorem 3 (Long-Term Stability): Cumulative errors remain bounded over multiple time slots.
Proof: Let Ei(T) be the cumulative error over T slots. Since each slot’s error is bounded by ε max, we

have ∣Ei(T)∣
T ≤ε max = O(1). Due to natural counter bounds (0 ≤ Ci(t) ≤ N), the long-term average error

remains finite and does not diverge. ◻
Practical Implications: This analysis establishes that: (1) Perfect statistical fairness is achievable when

flows have approximately one packet in each slot; (2) Deviation errors are bounded and predictable; (3)
For typical network traffic where most flows have moderate packet rates (λi Δt ∈ [0.5, 2]), the relative error
remains below 10%; (4) The system maintains long-term stability without error accumulation.

Comput Mater Contin. 2025;84(3) 6027

3.7.4 Hash Collision Impact on Decay Accuracy
Hash collisions affect SP-Sketch decay accuracy since the decay probability m

N depends on counter values
that may be distorted by multiple flows mapping to the same bucket. We provide theoretical analyses of the
collision-error relationship and mitigation strategies.

Collision-Error Relationship: When bucket j has collision set C j with flows {m1 , m2, ..., mk}, the
counter m̂ j differs from individual persistence mi , causing a decay error. The collision probability is
Pcollision ≤ 1 − e− n2

2w and the expected error is E[εcollision] ≤ n
w ⋅

N−1
N . For a typical load factor α ≤ 0.7, the

collision error remains below 7%.
Collision Mitigation Strategies: SP-Sketch employs several design principles to minimize hash col-

lision impact: (1) Multi-hash verification: Using d = 3 independent hash functions reduces the collision
probability from n

w to (n
w)

3; (2) Hash function independence: CRC32 with different seeds ensures statistical
independence; (3) Counter-based replacement: The minimum-counter replacement strategy preserves
persistent flows with higher accuracy; (4) Load factor control: Maintaining α < 0.7 keeps the collision
probability manageable. These strategies ensure the collision impact remains bounded and predictable.

3.7.5 Error Analysis
In this section, we analyze the error in the persistence estimation used by SP-Sketch. Let Pt(ei) and

ˆPt(ei) represent the true and estimated persistence of flow ei in the t-th time interval, respectively. The error
term for the minimum persistence in the t-th interval is denoted by ct , and l is the first time interval in which
flow ei is inserted into the sketch. Additionally, q is the number of additional intervals between l and t in
which flow ei appears.

Step 1: Estimation error when a replacement operation is triggered
When flow ei is not found in the bucket during the query process, the estimated persistence is set to 0.

Therefore, the error is 0 in this case.
If flow ei is already stored in the bucket, there are two possible cases:

• Case 1: Flow ei does not require replacement, meaning its estimated persistence ˆPt(ei) is equal to its true
persistence Pt(ei). In this case, the estimation error is 0.

• Case 2: Flow ei is replaced by another flow. Suppose flow ei arrives at the l-th time interval, and the
minimum persistence in the bucket is cl−1. In this case, the estimated persistence of flow ei at time
interval l is: ˆPl(ei) = cl−1 + 1.

Step 2: Inductive derivation of the estimation error bound
We now proceed to derive the relationship between the estimated persistence and the true persistence

of the flow using mathematical induction.
Base case: When the flow ei is not found in the bucket at time interval t, the estimated persistence is set

to 0, i.e., ˆPt(ei) = 0. Therefore, the error in this case is 0, which satisfies the error bound ˆPt(ei) ≤ Pt(ei) + ct ,
since ct = 0.

Inductive hypothesis: Assume that for time interval l, the flow ei has been inserted into the sketch,
and the persistence estimate at time interval l is ˆPl(ei) = cl−1 + 1. We will show that for time interval t, the
estimated persistence is bounded by the true persistence and the error term.

Inductive step: Suppose flow ei appears q additional times between intervals l and t, with q ≤ Pt(ei) − 1.
The estimated persistence at time t is: ˆPt(ei) = ˆPl(ei) + q = cl−1 + 1 + q ≤ cl−1 + Pt(ei).

6028 Comput Mater Contin. 2025;84(3)

This shows that the estimated persistence ˆPt(ei) is bounded by the true persistence Pt(ei) plus the
error term cl−1. Therefore, the error is bounded by: ˆPt(ei) ≤ Pt(ei) + ct , where ct is the error term for the
minimum persistence in the t-th interval.

Summary of the error bound: The key formula that represents the relationship between the estimated
persistence ˆPt(ei) and the true persistence Pt(ei) is as follows:

ˆPt(ei) = ˆPl(ei) + q ≤ cl−1 + 1 + Pt(ei) − 1 = cl−1 + Pt(ei) ≤ Pt(ei) + ct . (1)

This formula captures the progression of the estimated persistence from time interval l to t, showing that
the error is bounded by ct , thereby ensuring the accuracy of the SP-Sketch algorithm within a predictable
error range.

4 Implementation on P4 Programmable Switches
We have implemented a prototype of SP-Sketch on P4 hardware switches with Intel Tofino ASIC. SP-

Sketch uses CRC32 as the hash function. The Tofino switch operates in a packet-driven manner during the
sliding window process. As shown in Fig. 6, probability table entries are transmitted from the controller to
the data plane before the detection process begins. If no packet arrives within a time slot, the flow information
remains unchanged.

Figure 6: Probability subtraction algorithm flow of SP-Sketch

To handle the sliding window, SP-Sketch computes the del ta value, which indicates the movement of
the window by subtracting the current packet’s slot value from the sketch’s corresponding value. Since P4
switches do not support floating-point operations, probability updates are simulated using integer slot ranges,
and a random number generator determines the probability based on the range.

Flow information, including the flow’s key, counter, and timestamp, is stored in the registers. The
window slides forward when a packet’s timestamp exceeds the stored value, and the flow’s count is updated
based on the calculated del ta. This mechanism helps efficiently track flow activity while meeting the resource
constraints of the Tofino switch.

Comput Mater Contin. 2025;84(3) 6029

5 Experiment

5.1 Experimental Setup
We have evaluated SP-Sketch using both P4 hardware switches (with Intel Tofino ASIC) and software

switches (i.e., BMv2). A flow is considered to be persistent if it appears in at least T = 5 distinct timeslots,
where T is the persistence threshold.

Dataset: Two public datasets are used to evaluate the efficiency and accuracy of SP-Sketch in detecting
persistent flows under both attack and real traffic scenarios:

• Datacenter: This dataset consists of real internet traffic traces collected by CAIDA’s passive monitors
from the “equinix-nyc” location in 2023 [19]. The dataset includes approximately 2 million packets and
64,127 distinct flows identified by source IP (srcIP), making it a valuable source for testing SP-Sketch’s
performance in real-world network conditions.

• DDoS: This dataset consists of simulated malicious traffic (normal and attack packets) to evaluate SP-
Sketch’s performance in persistent flow detection under adverse conditions. This dataset is sourced from
Sharafaldin et al. [20], which includes a variety of attack scenarios to mimic real-world DDoS activities.

Evaluation Metrics:

• Average Relative Error (ARE): 1
n ∑

n
i=1
∣ ŷ i−yi ∣

yi
, where yi is the real persistence of flow fi , ŷi is the

estimated persistence, and n is the size of the query set. The query set comprises the reported flows whose
persistence is higher than a predefined threshold.

• Mean Squared Error (MSE): 1
n∑

n
i=1(ŷi − yi)2, where yi is the real persistence of flow fi , ŷi is the

estimated persistence, and n is the query set. The MSE serves as a metric to quantify error. A smaller
MSE value, approaching zero, signifies a reduction in error magnitude at the corresponding time point.

• Precision Rate (PR): Precision measures the proportion of true positives (TP) among all instances
predicted as positive (TP + FP), where TP refers to true positives and FP refers to false positives. It is
defined as: PR = TP

TP+FP .
• Recall Rate (RR): Recall, also known as sensitivity, measures the proportion of true positives (TP) that

are correctly identified among all actual positives (TP + FN), where FN refers to false negatives. It is
defined as: RR = TP

TP+FN .
• Throughput: Throughput measures the amount of data or packets processed per unit of time. In the

experiment, it is evaluated using the tooliperf and is defined as the number of packets or bits processed
per second, i.e., Throughput = Total Data Processed

Time Taken . The “Total Data Processed” is in bytes or bits, and
“Time Taken” is in seconds.

5.2 Experimental Results
Fig. 7 shows how precision vaires with memory (512 to 32,768 KB) and window sizes (1–64 t) under 25

and 100 Mbps loads. Medium load (25 Mbps) achieves higher precision than high load (100 Mbps), with both
showing increasing but diminishing improvement as memory and window size grow. Error bars indicate
stable estimates, though high load shows greater variability.

6030 Comput Mater Contin. 2025;84(3)

Figure 7: Precision vs. window size under different workloads

Fig. 8a reveals the ARE of different methods under the datacenter dataset. The horizontal axis denotes
slot size characterized by parameter “t” (approximately 2 s duration). SP-Sketch maintains consistently low
ARE regardless of slot span size, indicating minimal difference between estimated and actual values. When
slot duration reaches 8 t, SP-Sketch achieves an ARE of approximately 0.1, while PI-Sketch reaches 0.137
and the SW-CM method (sliding window [11] plus count-min sketch [21]) escalates to around 0.18. As slot
duration expands to accommodate more data, ARE tends to rise across all methods. The same pattern
appears in Fig. 8b under DDoS conditions. Although ARE increases with slot size in all methods, SP-Sketch
demonstrates slower growth due to its probabilistic subtraction mechanism enabling smooth state decay
without resetting multiple sketch instances, thereby mitigating error and maintaining greater stability.

Figure 8: ARE of different datasets under different slot span sizes. (a) Datacenter (b) DDoS

As demonstrated in Fig. 9a, when the slot span is small, the precision rate exhibits a high value, although
it does not reach the same level of precision as the other two methods. This initial performance characteristic
may be attributed to probabilistic initialization effects. The baseline method (SW-CM) lacks consideration
for situations involving hash collisions and their subsequent replacement. Consequently, when the slot span
becomes relatively large, specifically when the slot time extends to two minutes, its effectiveness diminishes
substantially. In Fig. 9b, within the DDoS dataset, the PI and SP-Sketch methods exhibit comparable levels
of accuracy, and both consistently outperform the baseline method. However, as the slot span surpasses
16 seconds, SP-Sketch consistently maintains a marginally superior level of accuracy compared to PI.

Comput Mater Contin. 2025;84(3) 6031

Figure 9: PR and RR of different datasets under different slot span sizes. (a) Datacenter-PR (b) DDoS-PR
(c) Datacenter-RR (d) DDoS-RR

The PR and RR exhibit an interdependent relationship: emphasizing high precision typically reduces
recall, while prioritizing recall often compromises precision. Given the context of persistent flow detection,
a balance is sought between comprehensiveness and precision. Efforts focus on maximizing recall while
maintaining specified precision levels.

Fig. 9c,d shows that the sliding window method primarily addresses false negatives from fixed-time
interval detection. Consequently, this method achieves significantly higher recall than the other two
methods, approaching 1. This advantage is especially pronounced when dealing with fewer persistent flows,
making detection more efficient. For instance, as shown in Fig. 9c, the data center environment exhibits a
remarkably high RR of 98.7%.

5.3 Evaluation on P4 Hardware Switches with Tofino ASIC
To evaluate SP-Sketch performance in real-world scenarios, we implemented it on P4 hardware switches

with Intel Tofino ASIC. This platform was selected for its high throughput and comprehensive programma-
bility, making it well-suited for persistent flow detection in high-speed networks. Resource utilization on the
P4 hardware switch is shown in Table 3. The ALU and Hash units are the most heavily utilized resources,
consuming 29.7% and 24.3% of total capacity.

Table 3: CDF of throughput on Tofino

Resource Usage
SRAM 15.4%

Hash unit 24.3%
Stage 10
ALU 29.7%

VLIW 6.72%

To evaluate practicality, we measured the throughput of SP-Sketch on a Tofino switch using a 10 Gbps
optical fiber interface. As shown in Fig. 10, SP-Sketch achieves an average of 9.5 Gbps, close to line rate.
Compared to PI-Sketch with similar throughput, SP-Sketch additionally offers real-time sliding-window
detection with better temporal precision.

6032 Comput Mater Contin. 2025;84(3)

Figure 10: Resource usage of Tofino

5.4 Use Case: Detecting Persistent Heavy Changes
In this experiment, we assess the performance of SP-Sketch in detecting Persistent Heavy Changes

(PHC). As the slot size increases, the error in SP-Sketch increases, but even when the slot size is increased
sixfold, both ARE and MSE remain relatively low. For instance, in the Datacenter scenario (i.e., Fig. 11a, b),
when the slot size is 8 t, the ARE is below 0.1 and MSE is below 2. The error is mostly concentrated in
the first stage, with a more pronounced cumulative effect in later stages. Fig. 11 demonstrates that while SP-
Sketch’s error increases with slot size, it still outperforms traditional methods, maintaining low error rates
and high accuracy.

Figure 11: ARE and MSE performance of SP-Sketch under different slot sizes. (a) Datacenter-ARE (b) DDoS-ARE (c)
Datacenter-MSE (d) DDoS-MSE

6 Conclusion
In this paper, we introduce SP-Sketch, a novel sliding-window-based approach for persistent flow detec-

tion in real-time applications on programmable data planes. SP-Sketch leverages a probabilistic subtraction
mechanism to simulate slot expiration, substantially reducing memory consumption while preserving high
accuracy. Contrasting traditional methods that necessitate multiple sketch instances or timestamp storage,
SP-Sketch adopts for a single sketch structure, enhancing memory efficiency. We conduct an analysis of
SP-Sketch’s error bounds, demonstrating its effectiveness in practical settings. Our implementation on Intel
Tofino hardware and BMv2 software switches demonstrates its practicality and efficiency. Experimental
results indicate that SP-Sketch boosts accuracy by up to 20% and recall by 5% compared to non-sliding

Comput Mater Contin. 2025;84(3) 6033

methods, positioning it as a robust and memory-efficient solution for real-time persistent flow detection in
high-speed network environments.

Acknowledgement: Not applicable.

Funding Statement: This work was supported by the National Undergraduate Innovation and Entrepreneurship
Training Program of China (Project No. 202510559076) at Jinan University, a nationwide initiative administered by the
Ministry of Education, and the National Natural Science Foundation of China (NSFC) under Grant No. 62172189.

Author Contributions: The authors confirm contribution to the paper as follows: Conceptualization, Yuqian Huang,
Luyi Chen and Lin Cui; methodology, Yuqian Huang and Luyi Chen; software, Yuqian Huang and Luyi Chen; validation,
Yuqian Huang, Luyi Chen and Zilun Peng; formal analysis, Yuqian Huang and Luyi Chen; investigation, Yuqian Huang
and Luyi Chen; resources, Lin Cui; data curation, Yuqian Huang and Luyi Chen; writing—original draft preparation,
Yuqian Huang; writing—review and editing, Yuqian Huang, Luyi Chen and Lin Cui; visualization, Yuqian Huang and
Luyi Chen; supervision, Lin Cui; funding acquisition, Lin Cui. All authors reviewed the results and approved the final
version of the manuscript.

Availability of Data and Materials: The authors confirm that the data supporting the findings of this study are available
within the article.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Liu B, Tang D, Chen J, Liang W, Liu Y, Yang Q. ERT-EDR: online defense framework for TCP-targeted LDoS attacks

in SDN. Expert Syst Appl. 2024;254(1):124356. doi:10.1016/j.eswa.2024.124356.
2. León A, Perdices D, García-Dorado JL, Ramos J, Aracil J. An expert-aware Markovian system for end-user

proactive troubleshooting in the Network and Security Operations Center. Expert Syst Appl. 2025;276(1):127072.
doi:10.1016/j.eswa.2025.127072.

3. Singamaneni Krishnapriya SS. A comprehensive survey on advanced persistent threat (APT) detection Techniques.
Comput Mater Contin. 2024;80(2):2675–719. doi:10.32604/cmc.2024.052447.

4. Narmadha S, Balaji N. Improved network anomaly detection system using optimized autoencoder-LSTM. Expert
Syst Appl. 2025;273(9):126854. doi:10.1016/j.eswa.2025.126854.

5. Gou X, Zhang Y, Hu Z, He L, Wang K, Liu X, et al. A sketch framework for approximate data stream processing in
sliding windows. IEEE Transact Know Data Eng. 2023;35(5):4411–24. doi:10.1109/tkde.2022.3151140.

6. Zhang X, Cui L, Tso FP, Deng Y, Li Z, Jia W. Monte: SFCs migration scheme in the distributed programmable data
plane. IEEE Transact Parallel Distrib Syst. 2025;36(4):633–44. doi:10.1109/tpds.2025.3532467.

7. Zhang X, Cui L, Lau W, Tso FP, Deng Y, Jia W. Carlo: cross-plane collaboration for multiple in-network computing
applications. In: IEEE Conference on Computer Communications (INFOCOM); 2024 May 20–23; Vancouver, BC,
Canada. p. 1–9.

8. Dai H, Shahzad M, Liu AX, Li M, Zhong Y, Chen G. Identifying and estimating persistent items in data streams.
IEEE/ACM Transact Netw. 2018;26(6):2429–42. doi:10.1109/tnet.2018.2865125.

9. Dai H, Li M, Liu AX, Zheng J, Chen G. Finding persistent items in distributed datasets. IEEE/ACM Transact Netw.
2019;28(1):1–14.

10. Zhang Y, Li J, Lei Y, Yang T, Cui B. On-off sketch: a fast and accurate sketch on persistence. Proc VLDB Endow.
2020;14(2):128–40. doi:10.14778/3425879.3425884.

11. Gou X, He L, Zhang Y, Wang K, Liu X, Yang T, et al. Sliding sketches: a framework using time zones for data stream
processing in sliding windows. In: Proceedings of ACM International Conference on Knowledge Discovery & Data
Mining (SIGKDD); 2020 Jul 6–10; New York, NY, USA. p. 1015–25.

https://doi.org/10.1016/j.eswa.2024.124356
https://doi.org/10.1016/j.eswa.2025.127072
https://doi.org/10.32604/cmc.2024.052447
https://doi.org/10.1016/j.eswa.2025.126854
https://doi.org/10.1109/tkde.2022.3151140
https://doi.org/10.1109/tpds.2025.3532467
https://doi.org/10.1109/tnet.2018.2865125
https://doi.org/10.14778/3425879.3425884

6034 Comput Mater Contin. 2025;84(3)

12. Durand M, Flajolet P. Loglog counting of large cardinalities. In: Algorithms-ESA 2003: 11th Annual European
Symposium. Springer; 2003 Sep 16–19; Budapest, Hungary. p. 605–17.

13. Flajolet P, Fusy É, Gandouet O, Meunier F. Hyperloglog: the analysis of a near-optimal cardinality estimation
algorithm. In: 2007 Discrete Mathematics and Theoretical Computer Science (DMTCS); 2007 Jun 17–22; Nancy,
France. p. 127–46. doi:10.46298/dmtcs.3545.

14. Xiao Q, Qiao Y, Zhen M, Chen S. Estimating the persistent spreads in high-speed networks. In: 2014 IEEE 22nd
International Conference on Network Protocols; 2014 Oct 21–24; Raleigh, NC, USA. p. 131–42.

15. Huang H, Sun YE, Ma C, Chen S, Zhou Y, Yang W, et al. An efficient k-persistent spread estimator for traffic
measurement in high-speed networks. IEEE/ACM Transact Netw. 2020;28(4):1463–76. doi:10.1109/tnet.2020.
2982003.

16. Zhou Y, Zhou Y, Chen M, Chen S. Persistent spread measurement for big network data based on register
intersection. Proc ACM on Measur Analy Comput Syst. 2017;1(1):1–29. doi:10.1145/3084452.

17. Chen Y, Wang L, Wang J, Liu S, He K, Wang J, et al. Marlin: enabling high-throughput congestion control testing in
large-scale networks. In: EuroSys’25: Proceedings of the Twentieth European Conference on Computer Systems;
2025 Mar 30–Apr 3; Rotterdam, Netherlands. p. 460–74.

18. Dong F, Wang P, Li R, Cui X, Zhao J, Tao J, et al. Poisoning attacks and defenses to learned bloom filters for malicious
URL detection. IEEE Trans Dependable Secure Comput. 2025;22(4):3275–88. doi:10.1109/tdsc.2025.3528993.

19. CAIDA. Statistical information for the CAIDA Anonymized Internet Traces; 2023 [Internet]. [cited 2025 Apr 13].
Available from: https://www.caida.org/data/passive/passive_trace_statistics.

20. Sharafaldin I, Lashkari AH, Ghorbani AA. Toward generating a new intrusion detection dataset and intrusion
traffic characterization. In: Proceedings of International Conference on Information Systems Security and Privacy
(ICISSP 2018); 2018 Jan 22–24; Madeira, Portugal. p. 108–16.

21. Cormode G, Muthukrishnan S. An improved data stream summary: the count-min sketch and its applications.
J Algor. 2005;55(1):58–75. doi:10.1016/j.jalgor.2003.12.001.

https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1109/tnet.2020.2982003
https://doi.org/10.1109/tnet.2020.2982003
https://doi.org/10.1145/3084452
https://doi.org/10.1109/tdsc.2025.3528993
https://www.caida.org/data/passive/passive_trace_statistics
https://doi.org/10.1016/j.jalgor.2003.12.001

	SP-Sketch: Persistent Flow Detection with Sliding Windows on Programmable Switches
	1 Introduction
	2 Related Work
	3 Design of SP-Sketch
	4 Implementation on P4 Programmable Switches
	5 Experiment
	6 Conclusion
	References

