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ABSTRACT: EEG signals are widely used in emotion recognition due to their ability to reflect involuntary physiological
responses. However, the high dimensionality of EEG signals and their continuous variability in the time-frequency plane
make their analysis challenging. Therefore, advanced deep learning methods are needed to extract meaningful features
and improve classification performance. This study proposes a hybrid model that integrates the Swin Transformer
and Temporal Convolutional Network (TCN) mechanisms for EEG-based emotion recognition. EEG signals are first
converted into scalogram images using Continuous Wavelet Transform (CWT), and classification is performed on
these images. Swin Transformer is used to extract spatial features in scalogram images, and the TCN method is used
to learn long-term dependencies. In addition, attention mechanisms are integrated to highlight the essential features
extracted from both models. The effectiveness of the proposed model has been tested on the SEED dataset, widely used
in the field of emotion recognition, and it has consistently achieved high performance across all emotional classes,
with accuracy, precision, recall, and Fl-score values of 97.53%, 97.54%, 97.53%, and 97.54%, respectively. Compared to
traditional transfer learning models, the proposed approach achieved an accuracy increase of 1.43% over ResNet-101,
1.81% over DenseNet-201, and 2.44% over VGG-19. In addition, the proposed model outperformed many recent CNN,
RNN, and Transformer-based methods reported in the literature.

KEYWORDS: Continuous wavelet transform; EEG; emotion recognition; Swin Transformer; temporal convolutional
network

1 Introduction

Emotion is defined as an individual’s response to environmental, physiological, and psychological
stimuli and affects behavior, decision-making processes, and social interactions in daily life [1]. Emotion
recognition is utilized in various fields, including computer-aided learning, e-commerce, banking, military
and aviation, healthcare systems, and call center applications. In these systems, the more accurately the user’s
emotional state is identified, the more efficient communication becomes [2].

The perception and evaluation of emotions are directly related to the mental and neural activities of
the individual. Physiological signals are usually used to measure these activities. Non-physiological signals
include behavioral indicators such as gestures and body language, facial expressions, voice and speech, and
eye movements [3]. Some physiological signals, such as EEG, can capture involuntary neural responses that
individuals cannot control. Therefore, they provide more objective and reliable measurements than non-
physiological signals [4]. Due to these advantages, many researchers have used EEG signals in emotion
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recognition studies. The low cost, portability, and ability of EEG devices to provide rich signal information
at high temporal resolution are the main reasons for this preference [5].

In EEG-based emotion recognition, a common approach is to generate visual representations of
the signals and process them using CNN-based models. Bagherzadeh et al. [6] aimed to compare the
performance of the ensemble method against individual CNN models. First, EEG signals were converted
into scalogram images in the time-frequency domain using CWT. Then, the obtained images were processed
separately with five pre-trained CNN models: AlexNet, VGG-19, Inception-vl, Inception-v3, and ResNet-
18. The classification decision was made using majority voting, a type of ensemble method. Analysis shows
that the ensemble method yields better results compared to a single CNN model. Cai et al. [3] proposed a
model based on Swin Transformer architecture using features obtained by combining spatial and frequency
information in EEG signals. The effectiveness of the proposed model was demonstrated with experiments
using data augmentation techniques on SEED and SEED-IV datasets. In the study, the use of window-
based attention and shifted window partitions improved the overall performance of the model. Ke et al.
[7] transformed EEG signals into a vector by combining features of frequencies in four different brain
regions (frontal, parietal, temporal, occipital). They eliminated the mismatch between dimensions using a
fully connected network. The feature vectors they obtained were fed to the Transformer, and self-attention
calculations were performed. They also used Capsule Networks to identify the connections between local
and global features. The proposed model indicated that the frontal lobe region performed better in emotion
recognition compared to other brain regions.

In recent years, hybrid approaches utilizing attention mechanisms and Transformer architectures [8]
have emerged as a prominent method for modeling long-range dependencies in EEG data. Xu et al. [9]
aimed to develop an emotion recognition system using data in time, frequency, and spatial dimensions in
EEG signals. First, EEG signals were divided into multiple frequency bands, and Power Spectral Density
(PSD) and Differential Entropy (DE) features were extracted. Then, Transformer blocks were employed to
assign attention weights to the most informative features in each dimension. Thus, the model’s workload was
reduced by decreasing the number of channels. As a result of the study, it was observed that the spectral
Transformer block, which enables the selection of features, particularly in the frequency dimension, has
the greatest impact on the model’s performance. Li et al. [10] proposed a model that transforms frequency,
time, and spatial information in EEG signals into a graph structure. They used graph-based learning and
top-k connections for spatial data, the Temporal Convolutional Network (TCN) for temporal information,
and the power spectral density and differential entropy methods for frequency information. Additionally,
attention mechanisms were employed to highlight key features in each type of information. As a result of the
experimental findings, better classification performance was obtained compared to graph-based methods
in the literature. The hybrid system proposed by Liu et al. [I1] consists of two main stages. In the first
stage, noise reduction and feature extraction are performed on EEG signals using temporal and spatial
convolutions. In the second stage, the extracted features are processed through a multi-head attention
mechanism to model long-range dependencies. It is reported that the proposed model achieves higher
classification accuracy compared to CNN and LSTM-based models. Liu et al. [12] introduced a novel self-
attention mechanism that can simultaneously model both temporal and channel-wise dependencies. In their
model, preprocessed two-dimensional raw EEG signals are directly used as input. The attention mechanism
is structured hierarchically, enabling a coarse-to-fine computation strategy that reduces computational
costs while preserving rich feature representations. This mechanism demonstrates superior performance
compared to models that perform attention in a single dimension. In the model proposed by Gong et al.
[13], EEG signals are first segmented into one-second intervals, and features are extracted across five distinct
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frequency bands. Attention mechanisms are then applied to emphasize information-rich components of the
signal. Finally, CNN and Transformer-based architectures are integrated to perform emotion classification.

EEG signals contain both temporal and spectral information. Extracting these components with high
time-frequency resolution in a way that preserves the time-varying and complex patterns in the signal
provides more accurate results in emotion recognition [14]. For this purpose, analysis methods such as
the Fourier transform (FT), the short-time Fourier transform (STFT), and the wavelet transform (WT) are
widely used. The FT cannot preserve temporal locality, whereas the STFT, due to its fixed window size, is
limited in resolving both low and high-frequency components. In contrast, the WT performs multiresolution
time-frequency analysis using bandpass filters with variable bandwidths, enabling it to better adapt to the
diverse frequency characteristics of EEG signals [15]. The outputs of such analysis can be transformed into
rich visual representations (e.g., scalograms) that retain both detailed temporal and spectral content. These
visualizations, in turn, provide more informative inputs to deep learning models, enhancing their ability to
learn meaningful features.

Recent studies on emotion recognition using EEG signals have shown that CNN-based methods
are generally preferred. However, unlike CNNs, Transformer-based architectures can learn long-range
dependencies more effectively by directly modeling the global context. In particular, the Swin Transformer
preserves global context and significantly reduces computational cost compared to methods such as the
Vision Transformer (ViT) [16] due to its shifted window mechanism [17]. The Vanilla Transformer [18],
initially designed for sequential data processing, and the Graph Attention Network (GAT) [19], developed
for graph-based analysis, both demonstrate limited effectiveness in modeling visual EEG representations that
contain spatial structures, such as scalograms [20]. On the other hand, 2D-CNN:s are effective in capturing
short-term local dependencies but are insufficient in modeling long-term temporal relationships. As a
result, models like Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), and Temporal Convolutional Network (TCN) are commonly used to capture such long-range
dependencies. Compared to other time-series models, TCN significantly mitigates the vanishing gradient
problem through residual connections and enables faster training due to its parallel computational structure
[21]. In this study, the Swin Transformer is employed for spatial feature extraction, while the Temporal
Convolutional Network (TCN) is utilized to capture temporal dependencies. Accordingly, a modular hybrid
architecture is proposed that independently models spatial and temporal information. Compared to fully
integrated spatio-temporal architectures, this design enables more efficient training and lower computational
complexity due to reduced parameterization and architectural decoupling.

In this study, we propose an innovative model for emotion recognition from EEG signals using Swin
Transformer, TCN, and cross-attention mechanisms. The contributions of the study can be listed as follows:

I. To effectively model non-stationary EEG signals, these signals were transformed into scalogram images
using the Continuous Wavelet Transform (CWT). This transform preserves both temporal and fre-
quency components, allowing the model to learn complex patterns and local features in the signals
more effectively.

II. The self-attention mechanism in Swin Transformer is used to extract spatial context from scalogram
images. In addition, the spatial features extracted by the Swin Transformer were enhanced with CBAM
(Convolutional Block Attention Module) to emphasize important regions. The channel attention and
spatial attention components of CBAM enable the model to focus on only the most critical information.

ITI. A TCN block with dilated convolutions and residual connections is used to model long-term temporal
dependencies in scalogram images efficiently.

IV. Spatial and temporal features of EEG signals are combined for more comprehensive learning of
the model.
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V. The proposed model demonstrated higher classification performance compared to some recent CNN,
RNN, and Transformer methods on the SEED dataset, achieving accuracy improvements of up to
6.7%. Furthermore, comparable classification accuracy was achieved using a simpler and more modular
architecture instead of more complex structures such as LSTM.

The rest of the paper is organized as follows. Section 2 provides detailed information about the dataset,
the proposed model’s architecture, and the methods employed. Section 3 analyzes the performance of the
model, and Section 4 discusses the results obtained. Finally, in Section 5, the conclusion and future work
are presented.

2 Materials and Methods

The architecture of the proposed model is shown in Fig. 1. As can be seen in Fig. 1, the proposed model
consists of three main blocks. First, in the Swin + CBAM block, 224 x 224 scalogram images are divided into
4 x 4 windows and converted into 96-dimensional embed vectors. The Swin Transformer’s shifted window
mechanism was used to capture spatial features. Important feature channels were identified using the channel
attention mechanism (SE Block) within the CBAM component, while the spatial attention mechanism
(implemented via a 7 x 7 convolution) was employed to refine spatial feature maps by emphasizing
informative regions. The feature vector of size 768 obtained in this block was transferred to the TCN +
Attention block. In the TCN + Attention block, two different dilated 1D convolution filters (3 x 3, dilation
= 2, and dilation = 4) were used to capture temporal dependencies. As a result, 1024- and 512-dimensional
feature maps were created. In addition, batch normalization, dropout, and GELU activation were applied to
the TCN layer. To mitigate information loss in the features generated by the TCN, the SE channel attention
mechanism was employed to convert the features into a 512-dimensional vector, which was then passed
to the fusion stage. In the fusion layer, 768-dimensional spatial features from the Swin Transformer and
512-dimensional temporal features from the TCN are combined to form a 1280-dimensional feature vector.
The 1280-dimensional features extracted by the model are then processed in the 1024-dimensional fully
connected (FC) layer. In the classification stage, three classes of emotional states, namely ‘Positive, ‘Neutral,
and ‘Negative, were detected.

Spatial Features Temporal Features

{RelU, Dropout = 0.3)
|

Fusion Layer (768 + 512 =1280 D}
Fully Connectad Layer (1024 D)

Fusion and Classification Block

Figure 1: The architecture of the proposed model

2.1 SEED Dataset

The SEED [22] dataset used in this study contains EEG signals from the emotional responses of 15
participants. The EEG recordings were acquired using a 62-channel NeuroScan system and were prepro-
cessed using a bandpass filter to remove noise and artifacts. Each participant attended three sessions. In the
experiments, participants were shown 15 emotionally labeled movie clips in each session. Participants rated
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their emotional reactions after watching each clip, and these ratings were categorized as positive (+1), neutral
(0), and negative (-1) [23].

2.2 Scalogram Generation Using Continuous Wavelet Transform (CWT)

In this study, CWT is used to analyze the time-frequency components of EEG signals. CWT allows both
high and low-frequency components to be examined at different scales over time. For this reason, CWT is
widely preferred for analyzing biomedical signals such as time-varying EEG. CWT decomposes a signal into
different frequency components and uses wavelet functions to examine how each component changes over
time [24]. The CWT for a signal is defined as in Eq. (1):

C(a,b) = / (t)\p( b)dt o)

In Eq. (1), x (t) is the input signal, y(¢) is the wavelet function, a is the scale parameter (which
determines the frequency information), b is the shift parameter (which determines the time information),
and x is the complex conjugate operator.

The Morlet wavelet function, one of the most preferred wavelet functions, is used in this study. The
Morlet wavelet function is defined as in Eq. (2).

v (t) _ ej21'tfote—t2/2 (2)

In Eq. (2), f; denotes the center frequency of the wavelet. In this study, the center frequency is set to 10
Hz, and the scale parameter is set to a value between 1 and 64. The chosen wavelet configuration provides
an effective balance between adequate temporal resolution at high frequencies and excellent frequency
resolution at low frequencies.

In this study, the wavelet transform was performed separately for each EEG signal in the SEED dataset.
Thus, a total of 45 x 15 x 62 = 41,850 scalogram images were generated according to the formula number
of samples (N) x number of trials (T) x number of channels (C). Since there are an equal number of
EEG recordings for each class in the SEED dataset, the scalogram images were equally distributed, with
13,950 images for each class. These CWT-derived images were used as input data for the proposed model.
Representative scalogram examples are displayed in Fig. 2.

EEG Signal EEG Signal EEG Signal

T P | P T AT |
b | Liad LA v
e ey

positive neutral negative

Figure 2: Example scalogram images obtained using CWT
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2.3 Swin Transformer + CBAM Block

Swin Transformer and CBAM attention mechanisms are used to extract spatial features from EEG
scalogram images. Swin Transformer is a hierarchical Transformer architecture proposed by Liu et al. [25]. In
this architecture, the spatial resolution is reduced, and the channel width is increased through patch splitting
and merging operations [26]. Furthermore, the sliding window-based attention mechanism enables the
model to capture both local and global patterns in images, making Swin Transformer an efficient architecture
for spatial feature extraction.

In the study, scalogram images are given as input to the Swin Transformer model. In Swin Trans-
former, each input image I(x, y) is divided into 4 x 4 patches, and each patch (X;) is transformed into a
96-dimensional vector (Z) as in Eq. (3).

Z=W,.X,+b, (3)

In Eq. (3), W, represents the learnable weight matrix and b, represents the bias term.

In Swin Transformer, learning the relationships between patches within the window is accomplished
through Shifted Window Self-Attention [25]. For each self-attention operation, the formula in Eq. (4) is used:

A(Q,K,V) = softmax (Q—KT) \Y (4)
o Vdi
In Eq. (4), Q, Kand V denote the query, key, and value matrices, respectively. The term Vdy (the square
root of the key dimension) is used as a scaling factor.

CBAM was employed to further enhance the spatial features extracted by the Swin Transformer. It
utilizes channel and spatial attention mechanisms to refine the intermediate feature maps, allowing the
model to focus on the most informative regions and learn more meaningful representations. These attention
mechanisms are applied to the feature maps generated by the Swin Transformer, as illustrated in Eq. (5).

F' = Mg (M (F)) = Ms.M_.F (5)

In Eq. (5):

o F=represents 768-dimensional attribute maps extracted from Swin Transformer;

o M, =represents importance weights learned by the channel attention mechanism;

o Mj = represents importance weights learned by the spatial attention mechanism;

« F'=represents the attribute maps processed by CBAM and passed to the classification layer of the model.

The 768-D spatial features obtained after CBAM were transferred to the TCN + Attention block for
learning temporal dependencies and to the Fusion and Classification block for final classification.

2.4 TCN + Attention Block

TCN and attentional mechanisms were used to enhance the learning of spatial features extracted from
EEG scalogram images in a time series context. TCN, developed to model time series, can effectively capture
both short- and long-term dependencies, thanks to dilated convolutions that leave gaps between the core
elements. In this study, two different dilation ratios (d = 2 and d = 4) were used to explore these dependencies.
The mathematical expression for the 1D convolution used in the model is provided in Eq. (6).

K-1

y(0) =2 w(k)-x(t-k-d) (6)

k=0
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In Eq. (6):

o y(t) = represents the value of the output sequence at time step t;

o x(t) = represents the value of the input sequence at time step t;

« w(k) = represents convolution kernel weights;

ok =represents the kernel size;

o d = represents the dilation rate;

» k=represents element indices;

o t—k.d =represents the offset introduced by the dilation in the input data.

Batch Normalization was applied to both convolutional layers in the TCN block to stabilize the
training process and ensure faster network convergence. GELU was chosen as the activation function,
and a dropout rate of 0.3 was set to prevent overfitting. Temporal features extracted from the TCN were
reduced to 512 dimensions with dilated convolutions, and the most important features were highlighted by
applying a channel-based attention mechanism (SE Block). These features were transferred to the Fusion and
Classification Block.

2.5 Fusion and Classification Block

In this block, 768-D spatial and 512-D temporal features from the previous two blocks are directly
combined (Eq. (7)) to form a 1280-D feature vector. Thus, both features are evaluated together.

F= [Fspatial;Ftemporal] (7)

After the feature fusion stage, the 1280-dimensional feature vectors were fed into a fully connected
layer, where they were compressed to 1024 dimensions to reduce parameter complexity and improve learning
efficiency. ReLU activation and a dropout rate of 0.3 were applied to prevent overfitting. Finally, a Softmax
activation function was used in the output layer to classify the input into three distinct emotional categories:
positive, neutral, and negative.

2.6 Training Configuration

Experiments on the proposed model were conducted on a computer equipped with an Intel Core i5
processor and 16 GB of RAM, running the Microsoft Windows operating system. The creation and training
of the model were performed using the PyTorch deep learning library in the JupyterLab development
environment. The Scikit-learn library was used for performance evaluation metrics. The basic configurations
used for training and evaluation of the model are presented in Table 1. The scalogram images were resized to
224 x 224 pixels and converted into a tensor format to meet the input requirements of the Swin Transformer
architecture. The AdamW optimization algorithm, which is widely used in Transformer-based models, was
employed. To prevent overfitting, the learning rate was set to le—4 and the weight decay to le—3. Additionally,
cross-entropy loss incorporating label smoothing (0.1) was used to enhance the model’s generalization ability
and reduce overconfident predictions.

Table 1 : Experimental settings

Setting Value
Optimization AdamW
Learning rate (Ir) le—4

(Continued)
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Table1 (continued)

Setting Value
Weight decay le-3
Loss function Cross Entropy Loss + Label Smoothing (0.1)
Number of epochs 100
Batch size 3
Data split 70% training-30% validation
Data transformations Normalize Resize (224 x 224) to Tensor

2.7 Evaluation Criteria

The model’s performance was evaluated using Accuracy, Precision, Recall, and Fl-score. To compute
these metrics, the values of true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) were derived from the confusion matrix, as shown in Egs. (8)-(11).

TP+ TN
Accuracy = (8)
TP+ TN+ FP+FN

- TP

Precision = ——— 9)
TP + FP
TP

Recall = ——— (10)

TP+ FN

Precision x Recall
F1 - score:= 2 x — 11)
Precision + Recall

3 Results

The confusion matrix values obtained after the training of the proposed model are given in Fig. 3.
According to the confusion matrix results, the proposed model achieved an accuracy of 97.53%. In addition,
the precision, recall, and Fl-score values calculated separately for each class are presented in Table 2.

The classification metrics presented in Table 2 demonstrate that the proposed model achieves high
and balanced performance across all three emotional classes. The close Precision, Recall, and Fl-score
values among the classes indicate that the model maintains consistent classification performance across
all emotional categories. Notably, the high recall rate of 98.13% for the neutral class—which is typically
difficult to classify due to its ambiguous nature—indicates that the model can effectively distinguish not
only strong emotional states but also subtle emotional transitions. These performance levels provide a solid
basis for evaluating the model’s applicability in real-world scenarios such as mood monitoring and user
response analysis.

Fig. 4 presents the graph showing the training and validation accuracy values obtained at each epoch
during the training process of the proposed model. Upon examining the graph, it is observed that the
learning process progresses rapidly, with accuracy values reaching around 90% within the first few epochs.
This suggests that the model rapidly captures essential patterns from the training data. Furthermore, the
small difference between training and validation accuracy throughout the process suggests that the model
generalizes well to the validation data without overfitting. These findings demonstrate that the proposed
architecture ensures efficient and stable learning.
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Figure 3: Confusion matrix of the proposed model

Table 2: Classification metrics

Category Precision (%) Recall (%) Fl-score (%)

Negative 9791 9716 97.53
Neutral 96.69 98.13 97.41
Positive 98.03 97.29 97.66

Training and Validation Accuracy

1.0 1

0.9 1

0.6 1

0.5 1
—— Train Accuracy

—— Validation Accuracy

0 20 40 60 80 100
Epochs

Figure 4: Training and validation accuracy per epoch

The training and validation losses of the proposed model across epochs are presented in Fig. 5. Upon
analyzing the graph, it is observed that the training loss stabilizes at a low level after a certain number of
epochs. Although there are slight fluctuations in the validation loss, its overall trend closely follows that of
the training loss. The consistent and closely aligned behavior of the training and validation losses indicates
that the model avoids overfitting and demonstrates strong generalization capability. These findings suggest
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that the proposed architecture learns without overfitting and is capable of maintaining high performance on
unseen data.

Training and Validation Loss
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Figure 5: Training and validation loss per epoch

Fig. 6 presents the Receiver Operating Characteristic (ROC) curves of the proposed model for three
different emotion classes: positive, neutral, and negative. Upon examining the graph, it is observed that the
Area Under the Curve (AUC) values are notably high for all classes: positive = 0.99, neutral = 0.99, and
negative = 1.00. These scores indicate that the model exhibits strong discriminative ability among classes
and maintains very low false positive rates. In particular, the perfect AUC score of 1.00 for the negative class
suggests that the model did not misclassify any negative instances as positive. These findings demonstrate that
the model can accurately recognize each emotional class with high confidence and achieves strong overall
classification performance.

ROC Curve
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Figure 6: ROC Curve and AUC scores for each class
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4 Discussion

To evaluate the performance of the proposed model, the model was compared with the DenseNet-
201, VGG-19, and ResNet-101 transfer learning models. To make the comparison fair and consistent, the
hyperparameters given in Table 1 were used in the training of all three models. The results obtained are shown
in Table 3.

Table 3: Performance comparison of the proposed model with DenseNet-201, VGG-19, and ResNet-101 models

Accuracy (%) Precision (%) Recall (%) Fl-score (%)

DenseNet-201 95.72 95.77 95.72 95.74
VGG-19 95.09 95.1 95.09 95.09
ResNet-101 96.1 96.15 96.09 96.12

Swin + TCN + Attention 97.53 97.54 97.53 97.54

When the results in Table 3 are examined, the proposed Transformer- and TCN-based model yields
the best results in all metrics, achieving 97.53% accuracy, 97.54% precision, 97.53% recall, and 97.54% F1-
score. Additionally, the proposed model demonstrated the best performance across all classes (negative,
neutral, and positive). The second-best performance was achieved with the ResNet-101 model, yielding
96.10% accuracy, 96.15% precision, 96.09% recall, and 96.12% Fl-score. However, ResNet-101 exhibited
comparatively lower effectiveness, particularly in the negative class. The DenseNet-201 model ranks third in
the performance ranking with 95.72% accuracy, 95.77% precision, 95.72% recall, and 95.74% F1-score values.
Although the model gave balanced results in positive and neutral classes, it made more errors in the negative
class than in the others. The VGG-19 model exhibited the lowest performance among the four methods with
95.09% accuracy, 95.10% precision, 95.09% recall, and 95.09% Fl-score. The VGG-19 model performed worse
than the other models, especially in distinguishing the positive class.

The computational efficiency of the proposed model is presented in Table 4, compared with DenseNet-
201, VGG-19, and ResNet-101. The comparison includes the total number of parameters, the inference time
per sample, and the training time per epoch for each model. The proposed model has a significantly lighter
architecture compared to VGG-19 (139.58 million parameters), with 33.27 million parameters, similar to
ResNet-101 (42.5 million parameters) and more complex than DenseNet-201 (18 million parameters). In
terms of training time, the proposed model takes 1218.96 s per epoch, which is shorter than VGG-19 but
longer than ResNet-101 and DenseNet-201. The proposed model demonstrates the highest inference latency
per sample (414.99 ms) among the compared architectures, which is likely attributable to the computational
complexity introduced by its multi-layered structure. Therefore, additional optimizations may be necessary
to enhance computational performance in real-time scenarios.

The comparison of the proposed model with recent studies using the SEED dataset is presented
in Table 5. The proposed model achieved a higher classification accuracy of 97.53% compared to CNN- and
RNN-based approaches such as those by Yuvaraj et al. [27], Trujillo et al. [28], Dai et al. [29], and Vujji
et al. [30]. Although the models proposed by Xu et al. [9] and Asif et al. [31] reported similar accuracy
levels (97.17% and 97.68%, respectively), their architectures involve more complex components, including
multiple attention blocks or recurrent structures such as LSTM. In contrast, the proposed model consists
of two separate modules: Swin Transformer and TCN, which operate independently to extract spatial
and temporal features, respectively. This modular and decoupled design enhances the models flexibility
and interpretability. In conclusion, the proposed model offers a competitive and practical alternative for
EEG-based emotion classification.
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Table 4: Comparison of computational efficiency between the proposed model and the DenseNet-201, VGG-19, and
ResNet-101 models

Number of parameters Inference time (ms) Epoch time (s)

DenseNet-201 18,098,691 242.72 761.54
VGG-19 139,582,531 107.30 1325.13
ResNet-101 42,506,307 169.04 728.99

Swin + TCN + Attention 33,273,227 414.99 1218.96

Table 5: Comparison of the proposed model with current studies in the literature using the SEED dataset

Study Method Accuracy (%)

Yuvaraj et al. [27] 3D-CNN + ELM + Post-Processing 90.85

Quan et al. [32] Multi-source Transfer Learning + MR-VAE 92.83

Trujillo et al. [28] Kernel PCA + Radial Basis Function + Random Forest 93.20

Chen et al. [33] Variational Autoencoder + Capsule Network with Trial 93.48
Correction

Zhu et al. [34] Multiple Class Domain Adaptation + SLAC—Source Label 93.57

Adaptive Correction + Target Label Prediction

Zang et al. [35] Contrastive Reinforced Transfer Learning 93.57

Zhang et al. [36] 4D Feature Representations + Multiple Attention Mechanisms 93.93

Dai et al. [29] CNN + RNN + Contrastive Learning 95.16

Vujji et al. [30] Variational Mode Decomposition (VMD) + Grid Search SVM 95.80

Xu et al. [9] Attention-Based Multiple Dimensions EEG Transformer 9717
(AMDET)

Asif et al. [31] CNN-LSTM 97.68

Our study Swin Transformer + TCN + Attention 9753

Although the proposed hybrid model achieves high accuracy and balanced classification performance,
several limitations should be addressed in future studies. First, the model has an inference time of 414.99 ms,
which limits its suitability for real-time applications that require rapid response. Second, the training and
evaluation processes were conducted solely on the SEED dataset. Although SEED is widely used, relying on
a single dataset may limit the model’s generalizability. In future work, evaluating the model on diverse EEG
datasets will be essential to assess its robustness to varying signal characteristics. Furthermore, the practical
applicability of the model can be expanded by integrating it into real-time systems for domains such as
human-computer interaction and psychological analysis.

5 Conclusions

In this study, a hybrid model combining the Swin Transformer and Temporal Convolutional Network
(TCN) is proposed for emotion recognition using EEG signals. The proposed model has a structure that
evaluates both temporal and spatial features. The performance of the model was assessed on the SEED
dataset, yielding accuracy, precision, recall, and F1 score values of 97.53%, 97.54%, 97.53%, and 97.54%,
respectively. The findings confirm that the proposed model performs with both high accuracy and class
balance in emotion classification.
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When the proposed model is compared to transfer learning methodes, it is observed that it significantly
increases the success of emotion recognition. The proposed model achieved 1.43% higher accuracy than
ResNet-101, 1.81% higher accuracy than DenseNet-201, and 2.44% higher accuracy than VGG-19. When the
Precision, Recall, and Fl-score values are also examined, the proposed model demonstrated superior perfor-
mance compared to transfer learning-based methods. In addition, the proposed model has achieved higher
accuracy rates than CNN, RNN, and Transformer-based approaches for EEG-based emotion recognition.
These findings suggest that Transformer-based time series modeling approaches yield improved performance
in EEG-based emotion recognition.
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