(0] Computers, Materials & & Tech Science Press
Continua i

D0i:10.32604/cmc.2025.066551

ARTICLE Check for

updates

A Novel Malware Detection Framework for Internet of Things Applications
Muhammad Adil"", Mona M. Jamjoom’ and Zahid Ullah’

'Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
*Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University,
Riyadh, 11564, Saudi Arabia

*Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh, 11432, Saudi Arabia

*Corresponding Author: Muhammad Adil. Email: muhammad.adil@ieee.org

Received: 11 April 2025; Accepted: 25 June 2025; Published: 30 July 2025

ABSTRACT: In today’s digital world, the Internet of Things (IoT) plays an important role in both local and global
economies due to its widespread adoption in different applications. This technology has the potential to offer several
advantages over conventional technologies in the near future. However, the potential growth of this technology also
attracts attention from hackers, which introduces new challenges for the research community that range from hardware
and software security to user privacy and authentication. Therefore, we focus on a particular security concern that is
associated with malware detection. The literature presents many countermeasures, but inconsistent results on identical
datasets and algorithms raise concerns about model biases, training quality, and complexity. This highlights the need for
an adaptive, real-time learning framework that can effectively mitigate malware threats in IoT applications. To address
these challenges, (i) we propose an intelligent framework based on Two-step Deep Reinforcement Learning (TwStDRL)
that is capable of learning and adapting in real-time to counter malware threats in IoT applications. This framework
uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay
memory. The stored knowledge allows the model to effectively navigate the environment and maximize cumulative
rewards. (ii) To demonstrate the superiority of the TwStDRL framework, we implement and evaluate several machine
learning algorithms for comparative analysis that include Support Vector Machines (SVM), Multi-Layer Perceptron,
Random Forests, and k-means Clustering. The selection of these algorithms is driven by the inconsistent results reported
in the literature, which create doubt about their robustness and reliability in real-world IoT deployments. (iii) Finally, we
provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security
threats. During analysis, we noted that our proposed TwStDRL scheme achieves an average performance of 99.45 %
across accuracy, precision, recall, and Fl-score, which is an absolute improvement of roughly 3 % over the existing
malware-detection models.

KEYWORDS: IoT applications security; malware detection; advanced machine learning algorithms; data privacy
challenges

1 Introduction

Malware refers to software created to infiltrate or harm a computer system without the user’s explicit
consent. Malware has different types, and can be classified based on its specific actions, such as worms,
backdoors, ransomware, trojans, spyware, rootkits, adware, etc. [1]. According to the Computer Economics
reports, financial losses increased significantly every year due to malware attacks [2]. In 2016, the WannaCry
ransomware attack affected computers in more than 150 countries, causing financial damage to various

® Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.066551
https://www.techscience.com/doi/10.32604/cmc.2025.066551
mailto:muhammad.adil@ieee.org

4364 Comput Mater Contin. 2025;84(3)

organizations [3]. In 2024, the projected financial loss due to malware attacks is expected to reach $9.5 trillion
globally, a 19% increase from the estimated $8 trillion in losses in 2023 [4]. Ransomware alone is projected to
cost victims $265 billion annually by 2031. Moreover, it has been reported that cybercriminals are now using
more advanced techniques to quickly compromise the system’s security, with reduced average execution time
from 60 days in 2019 to just 4 days in 2023 [5]. The financial sector is deeply concerned about technological
security. To address this, they aim to design reliable and trustworthy countermeasures that can protect both
individuals and institutions. These groups face significant risks from phishing attacks and social engineering
tactics, which threaten their customer’s trust and security.

In the literature, several antivirus software solutions such as Avast, Norton, McAfee, Kaspersky,
AVG, and Bitdefender have been developed to counter various cyberattacks. These softwares rely on a
short sequence of bytes, known as a signature, to detect malware within systems. However, they have
significant limitations, especially when it comes to defending against zero-day attacks. These attacks exploit
vulnerabilities that are unknown to these antivirus software. This challenge is further aggravated by the rise
of malware generation toolkits, such as Zeus. These toolkits enable cybercriminals to generate thousands
of malware variants through various obfuscation techniques, which makes the traditional signature-based
detection technique less effective. In addition, malware is evolving daily, while signature generation is often
human-driven, which creates a log in the detection process. All this makes it increasingly difficult to detect
new malware with the help of older detection techniques. In light of these factors, relying solely on traditional
antivirus approaches may not be enough, because the nature of malware attacks changes continuously.
Therefore, more advanced and adaptive security solutions could be used to identify and mitigate emerging
threats in real time.

In this paper, we propose a TwStDrl-enabled malware detection framework for IoT applications. We
use a deep reinforcement learning algorithm to enable the system to learn and adapt in real time to evolving
malware behavior. This real-time adaptability allows the framework to effectively detect and prevent malware
infiltration in these applications. To evaluate the effectiveness of our model, we considered rival algorithms
such as SVM, random forest, k-means, and other state-of-the-art solutions. This comparative analysis
assesses how the TwStDrl-based framework outperforms existing methods in detecting and mitigating
malware in IoT applications. In addition, the model is designed in a way to be lightweight and resource-
efficient by considering the limited computational resources of IoT devices. The main contributions of this
work are summarized below.

o In this work, we propose a TwStDrl-enabled framework that efficiently distributes malware detection
tasks in two stages across IoT devices to reduce detection time. The framework primarily uses deep
reinforcement learning algorithms, enabling real-time learning and adaptation to the evolving nature of
malware threats.

o The two-step task scheduling strategy combines static and dynamic task management with presorting
techniques, using Johnson’s rule. This helps the model to adapt in real time and ensures the effective and
timely completion of malware detection tasks across the network.

« Johnsons’s rule, used in the model, facilitates an optimal sequence for task processing. This optimization
enhances both the detection and response rates to evolving security threats in IoT applications.

o In the subsequent phase, we implement various algorithms such as Support Vector Machine (SVM),
Random Forest, K-Means, and Convolutional Neural Network (CNN) to evaluate the performance of
the proposed model in comparison to these methods on different datasets.

o Finally, we compare the results of the TwStDrl algorithm with SOTA solutions and implemented
algorithms to demonstrate why this algorithm is necessary and how it outperforms existing solutions.

Comput Mater Contin. 2025;84(3) 4365

Paper Structure: In this section, we cover the related work by providing readers with a glimpse into what
has been achieved thus far in this domain. Moving on, Section 3 introduces our proposed model. In Section 4,
we explore various algorithms and state-of-the-art schemes with their results that have been selected for
comparison. Finally, Section 5 wraps up the paper by summarizing our findings and concluding remarks.

2 Related Work

In this section, we discuss the latest schemes used to counter malware attacks in IoT applications.
Moreover, we highlight the limitations of existing techniques to establish a foundation for the proposed work
in their presence. Given that, Glani et al. [6] proposed an advanced malware detection technique for IoT
applications that targets hardware and source code vulnerabilities. In this model, the author used the Adler-
32 hash function and Fibonacci search algorithms collectively to resolve this issue. However, the authors did
not discuss the complexity and computation requirements of this model in real-time operation, which keeps
itin a fuzzy state. In [7], the authors introduced convolutional neural networks (CNNs) for dynamic malware
analysis considering edge devices. In this model, the authors converted the extracted behavior data into
images to improve detection rate and accuracy. However, performing such a complex task on the edge of the
network introduces significant computational complexity, which leads to slow response time during attacks.
Htwe et al. [8] proposed a hybrid paradigm of feature selection method with a CART learning algorithm to
tackle malware security vulnerability issues in IoT applications. The authors claimed 100% accuracy for the
proposed model, with only botnet attacks. However, it is very hard to implement and use this model based
on one attack detection. It could be interesting to check the results of the proposed model against different
known and unknown attacks.

In [9], the author proposed an enhanced lightweight antivirus solution for embedded IoT devices. In this
paradigm, they used graph theory with a measurement-based rational selection technique to appropriately
set threshold levels for malware detection. However, the dependency on specific threshold parameters may
affect the result statistics, and inhibit its use in real deployment. Deng et al. [10] proposed a transformer-based
malware detection framework for IoT applications. The authors focused on the edge computing paradigm
to address the limitation of centralized techniques and enhance the efficiency of malware detection by
offloading computation-intensive tasks to nearby edge nodes. In [11], the authors proposed an Intelligent
Trusted, and Secure Edge Computing (ITEC) malware detection approach for IoT applications. In this model,
they used a signature-based pre-identification mechanism to detect malicious behaviors of untrusted third-
party applications to categorize network traffic. However, the proposed model is sensitive to communication
delay, throughput, and congestion issues, and could not be adopted in real IoT applications. Reference [12]
introduced a novel CNN-based approach for malware detection in IoT Android applications. The author
tested the proposed model on a specific dataset with defined rules and achieved remarkable results. However,
itis still necessary to evaluate the proposed model on different datasets to see the statistical results, as machine
learning models are susceptible to many internal and external threats.

In [13], the author proposed a graph compression algorithm with reachability relationship extraction
(GCRR) to resolve the malware detection issue in Android applications. In the result analysis, the authors
claimed that their model can detect malware in these applications 1.53% to 39.13% accurately compared
to existing static methods. In [14], the author proposed a host-based anomaly detection system for IoT
applications to resolve security problems. However, it is not clear how the proposed model is evaluated
for different attacks. In [15], the authors introduced an event-aware Android malware detection system by
considering the network traffic behavioral patterns. Moreover, the authors used event groups to capture
higher-level semantics than API-level threats. However, the clustering complexity of the proposed model
raises computation challenges, and may inhibit the deployment of this model. Vasan et al. [16] proposed

4366 Comput Mater Contin. 2025;84(3)

a robust cross-layer architecture-based malware detection scheme for IoT applications. In this model, the
author used RNNs and CNNs collectively to improve the attack detection accuracy. However, this model
was checked on a specific dataset during training and testing. Therefore, it is important to evaluate it on
different datasets, considering the requirements of IoT applications. Shahid et al. [17] proposed a sparse
autoencoder-based malware detection paradigm for IoT applications. This approach characterizes network
behavior using statistics on the size and inter-arrival times of the first N packets in bidirectional TCP flow to
improve the attack detection rate. However, a limitation of this method is specific characteristics of the smart
home dataset, which was used for training, may not fully capture the diversity of IoT network behaviors in
real-world scenarios.

In [18], the authors checked the application of one-class classification for malware detection in IoT
applications using unsupervised learning techniques, while Almazroi [19] proposed a BERT-based feed-
forward neural network framework to resolve the malware vulnerabilities detection problems in IoT
applications. However, this model is complex and was checked on one dataset. Therefore, it is necessary to
evaluate the proposed model on different datasets. Ahmad et al. [20] an advanced classification model for
IoT malware detection using an optimized SVM algorithm. For optimization, they used nuclear reactor opti-
mization (NRO), Artificial rabbits optimization (ARO), and particle swarm optimization (PSO) collectively
to improve the classification accuracy. The authors claimed better results in the presence of state-of-the-art
schemes. However, it is difficult to implement this model at the edges of IoT applications, where sensors
and actuators will be working to collect and process data. In [21], the authors propose a serverless-based
intelligent framework known as “CloudIntellMal” for detecting Android malware, while Sharma et al. [22],
propose a multi-dimensional hybrid Bayesian belief network model to detect APT malware. This model is
useful in the redressal of evasion attacks missed by signature-based solutions. In [23], the authors propose
a graph-embedding framework known as IHODroid for Android malware detection. They evaluate it on
the DREBIN dataset and demonstrate excellent results compared to existing baseline models. Moreover, we
suggest the general readers to review article [24] to have a basic and advanced level understanding of malware
and what has been done so far in the field and what is needed in the future. Following this, we added Table 1
in the paper to provide a more comprehensive analysis of the state-of-the-art schemes.

Table 1: Comparison between recent malware detection methods

References Year of Machine learning/Deep learning Application area
publication algorithm
Shah 2023 Deep Learning-enabled malware Internet of Battlefield Things
etal. [25] detection system, using control flow Applications
graph (CFG)
Smmarwar 2023 (AI)-empowered zero-day malware Industrial Internet of Things
etal. [26] detection systems Applications
Zhang 2024 Neural architecture search via General Internet of Things
etal. [27] proximal iterations (NASP) based Applications
malware detection systems
El-Ghamry 2023 colony optimizer (ACO)-based General Internet of Things
et al. [28] malware detection systems Applications
Esmaeili 2023 GNN-based adversarial detector General Internet of Things
etal. [29] detects based malware detection Applications
systems

(Continued)

Comput Mater Contin. 2025;84(3)

4367

Table 1 (continued)

References Year of Machine learning/Deep learning Application area
publication algorithm
Shafin 2023 Bidirectional long short-term memory;, Smart City Internet of
etal. [30] based malware detection systems Things Applications
Sharma 2023 Ensemble learning based malware General Internet of Things
etal. [31] detection systems (Logistic Applications
Regression(LR), K-Nearest
Neighbour(KNN), and eXtreme
Gradient Boosting(XGB))
Devi and 2024 Deep LSTM based malware detection ~ General Internet of Things
Arunacha- systems Applications
lam [32]

Bajao and 2023 Evaluation of CNNs, LSTM, and GRUs General Internet of Things
Sarucam [33] based malware detection systems Applications
Mohammed 2023 An adaptive Malware Analysis Healthcare Internet of

etal. [34] Dynamic Machine Learning Things Applications

framework for malware detection

3 Proposed Model

In this section, we thoroughly talk about the proposed TwStDrl-enabled malware detection framework.
For visual illustration, we added Fig. | in the paper.

The primary goal of our proposed model is to enable malware detection directly at the network edge.
To achieve this, it combines static and dynamic analysis into a unified task-management framework, using a
presorting technique based on Johnson’s rule alongside deep-learning decision making. Detection tasks are
then distributed across N IoT devices and M = 2 processors (one for the static stage and one for the dynamic
stage), where N and M denote the total number of connected devices and processors, respectively.

We address the resulting NP-hard scheduling problem by incorporating Johnson’s rule optimization
with deep-reinforcement-learning-based adaptive weighting. Task durations (d;;,d;,) are estimated from
feature-importance scores produced in the first stage of the model. Since minimizing the total completion
time of these two-step tasks is NP-hard, the presorting step orders static and dynamic tasks into an optimal
sequence, setting the stage for efficient, dependency-aware scheduling across the IoT network.

Following this, a scheduling controller within the proposed model manages task execution at the
network edge by continuously monitoring the system’s state and selecting optimal scheduling actions based
on data processing and threat analysis. The controller comprises three coordinated components such as
Johnson’s Rule-based presorting, load monitoring, and DRL action selection, which together ensure efficient
task allocation. This framework is built on two key principles: Concept 1: It provides an optimal scheduling
solution for single-processor devices, ensuring real-time malware detection. Concept 2: It guarantees that
any subset derived from the task list remains optimally sequenced according to the model’s defined rules.

Following Concept 1, our model improves malware detection accuracy across multiple processors by
initially sorting them into a list. While Concept 2, allocates to each processor a task (dynamic data) to form
subsets of the initial list (static dataset). This presorting guarantees that the parallel processing of tasks on

4368 Comput Mater Contin. 2025;84(3)

each processor is optimally arranged to identify malware patterns in the network. Moreover, these steps are
summarized in Algorithm 1.

......... M e o o o e e e
i - i
I 0 P Traffic Network I |oT Devices
Two Step Malware : s | 1 Target Network Evaluator Q Networl :
Detection Model I BE ! i Processors
=S|
! 8 o 1 : I
PS8 1 i
Poaf g ! P=P,P,....P,
1 T AQa 1 R — !
: 9 o : | Traffic Controller/ 1
3 & 1 Exploration & !
1 d
Static detection -4 s | 1 ! Exploitation H i1l
Oy : = H L : : :
]
] | = =
Dynamic detection 1 1 1 -
% 1 [| — —
'] 1 — b
n A . A G S B i TTTTTT
1L H H o
1 1 H c
] H 1 ©
Existing Pattern 1 =" : 1 P g
& New Pattern :_,_ L 1 Reward (R,) : €5
+ = i
Threats 1, . H t 1 = W
Higl & 136 ! Reward H w £
: 5 { 1 H Function : g 'g
Y H 1 i R
i ! 1 S
: ; I : : 7
0, i 1
RS oI
5 1 — |
Dynamic detection : i [:
o, 1 bolgl ! : 1 — L
i i H i 1 = —
il [-
11" i ! ! (- |—
:_— i T :
i I 1 Trrrni
1 - H ! i
] 1
Lmmmmmmem J L _zzzzzmz zzzzzz zzzz== zzzzz= zzzzz= ====== ====== - i

Figure 1: Architecture of the TwStDRL-enabled malware detection model, which integrates static and dynamic
detection. The incoming traffic is first filtered based on predefined rules before being processed by the traffic evaluator.
This evaluator, driven by a Q-network and a target network, continuously improves detection by balancing exploration
(discovering new threats) and exploitation (using known patterns). A reward function enhances learning, while a loss
function fine-tunes accuracy. IoT devices perform detection tasks according to a scheduled workflow by ensuring fast
and efficient malware identification

Algorithm 1: Malware detection through two-step rule

Require: Task set 7~ = { Tysx1, Taskzs - - - » Taskn }» €ach with two-stage durations {d;;, d;» }
Ensure: Sorted task list T/, for scheduling

1: Initialize Gy < {}, G, < {},and T, < {}

2: for each task T,r; € 7 do

3: if d;; < d;; then

4. G1 <« G1 @] {Taski}
5: else

6: Gy < Gy U{Tuei}
7: end if

8: end for

9: Sort G; by d;; in ascending order
10: Sort G, by d;, in descending order
1: T/, < Gy UG, — Append G, and G,
12: return Updated T, Results

Comput Mater Contin. 2025;84(3) 4369

In Algorithm 1, we showed how tasks are divided into two groups, G; and G,, based on the duration of
their two operational phases. G; contains tasks where the first phase is shorter than or equal to the second
(d;, < d;,), while G, includes tasks where the first phase is longer than the second (d;, > d;,). Each group is
independently sorted into a predefined rule-based list before the two groups are strategically merged. This
process of presorting and merging is important because it ensures that the tasks are efficiently assigned to
IoT device processors. This approach not only improves individual processor efficiency but also enhances
real-time malware detection across the network.

3.1 Operational Steps of the Edge-IoT Devices

In IoT applications, detecting malware at the network edge is very important to ensure security.
To achieve this, we use a two-step deep reinforcement learning (DRL) model that works in two phases:
identification and mitigation of malware threats. The proposed model is formulated as a Markov Decision
Process (MDP), which is defined by the following four-tuple representation:

{S: A) P(Sta ag, St+l)7 Rt} (1)

« State Space (S): The state space at time t, denoted as S, encapsulates all possible malware detection
scenarios based on the system’s data. Each state transition is represented as s;, s¢41 € S.

« Action Space (A): The action space, A, comprises all feasible countermeasures against potential malware
threats, including responses deployed across the network connected IoT devices.

o Transition Probability (P): The function P(s, as, s+1) defines the probability of transitioning from
state s; to s;+; when executing action a,. This captures the dynamic interactions between malware
behavior and defensive responses.

« Reward Function (R): The reward, R; = R(s;, a;), quantifies the effectiveness of action a; at state s,. The
objective is to maximize security by minimizing malware impact through optimal policy learning.

In our proposed model, the state (s;) captures all the important details needed to detect and prevent
malware at the edge of the network. These details include the detection status of edge devices, network traffic
characteristics, and system health, which are defined as below:

st = (Dty, (1), Dty, (1), Cty, (1), Cty(2), Uty (1)) (2)

In (2), Dt (t) and Dt,,(t) represent the detection times at Step 1 and Step 2 during malware
identification process, while Ct,, (t) and Ct,,(t) denote the completion times for these steps. Initially, these
values are set to zero and are updated dynamically as tasks are initiated and completed. Moreover, the Ut,, ()
represents the overall network load on edge devices, which helps in assessing resource utilization during
malware detection.

Given the current network state, the action a, determines how a device should handle the next malware
threat based on the learned policy. The goal is to maximize malware detection and mitigation efficiency
by optimizing action selection across states. The reward function R, evaluates the immediate impact of
actions taken against malware threats by ensuring the network security. To further enhance optimization, we

*

introduce a global objective function (ct)

), which minimize the overall network load. First, we compute
the total network utilization at time ¢ as:

Ul(t) = guka) (3)

4370 Comput Mater Contin. 2025;84(3)

In (3), uty(t) represents the load on node k in the network. This metric is important for assess-
ing real-time system performance to determine the instantaneous reward at time ¢. By integrating this
reward function into the proposed model, we ensure the dynamic and adaptive malware detection and
mitigation strategy.

For clarity, we added Algorithm 2 in the paper how the TwStDrl-enabled malware detection model
works during the training process.

Algorithm 2: Training process of TwStDrl-Enabled malware detection model

Require: 7 = {Tmskb Tiask2s e Ttaskn}
Ensure: M
1: Initialize Q(S, a;0), Q'(S, a; ®")
2:Seta, €,y
3: Initialize D
4: for eps = 1to MaxEpisodes do
5: for T, € T do
6: Task Scheduling via Johnson’s Rule
7: Sort T, based on:
If Ct,, (t) < Ct,, (t), execute detection first.
Else, execute mitigation first.

8: Select Action:
random action, €
= argmax, Q(S;,4;0), 1-e¢
9: Execute a;, observe S;i1, 1
10: Store (S, as, 71, Sg+1) in D
11: Sample (S;, at, 74, S¢41) from D
12: Compute:
Tt S;4+1 terminal
< re +ymax, Q'(St1,a’;50"), otherwise
13: Compute:
L(®) =E[(y: - Q(S1,a50))’]
14: Update:
O« 0®-aVeL(®)
15: Periodically update: @' < ©
16: end for
17: end for
18: return M

Model Initialization: The action-value function Q(S, a;0) and its target counterpart Q'(S, a; 8") are
initialized with weights 6 and ', respectively. The learning rate «, exploration rate €, and discount factor y
are set as hyperparameters to control the learning dynamics of the model. In addition, an experience replay
buffer D is used to store past transitions, and enable stable training by reusing historical experience.

Training Process:

The training occurs over multiple episodes, where the model learns from a series of tasks denoted by
T in batches of 32 samples. The learning process uses an Adam optimizer with a learning rate of 0.001 and

Comput Mater Contin. 2025;84(3) 4371

discount factor y = 0.95 for future rewards. Exploration is controlled through an e-greedy strategy (initial
€ =1.0) that decays by a factor of 0.995 per episode until reaching eni, = 0.001, ensuring a progressive
transition from exploration to exploitation.

Before selecting an action, tasks are pre-sorted using Johnson’s Rule to optimize execution efficiency.
The task sequence is determined based on detection and mitigation times as follows:

{execute detection first, if Ct,, (t) < Cty, (1), @)

execute mitigation first, otherwise.

The reward function combines binary classification accuracy (taking values of +1 or —1) with a load-
balancing term scaled by (1 — device_load) to prioritize underutilized devices. Empirical analysis compared
three variants—pure accuracy-based rewards (F1 = 0.89), load-scaled rewards (F1 = 0.92), and family-
weighted rewards (F1 = 0.91) —demonstrating that the load-scaled version achieves the best trade-oft between
accuracy and utilization. Action selection follows

_ {random action, with probability ¢, 5)

argmax, Q(S;,a;0), otherwise.

Upon selecting an action a;, the environment transitions to the next state S;,;, and a corresponding
reward r, is obtained based on the effectiveness of the malware detection response. The observed experience
tuple (S;, as, 74, S¢41) is stored in the replay buffer D for future learning.

Q-Value Update: To update the action-value function, a minibatch of stored transitions is sampled
from D. Before computing Q-values, the model applies Johnsons Rule to determine whether detection or
mitigation tasks should be prioritized, ensuring an optimal action sequence. The target Q-value is then
computed using the Bellman equation:

(6)

{rt, if S;,1 is a terminal state,
y =

re +ymax Q'(Sm, a’s 6'), otherwise.
a

Here, the reward r, is influenced by the efficiency of task execution, considering both detection and
mitigation completion times. By applying Johnson’s Rule, the model prioritizes tasks that reduce overall
malware response time, leading to more effective reinforcement learning.

Loss Computation and Optimization: The difference between the predicted Q-value and the target
Q-value y, is computed as the loss function:

L(0) =E[(y: - Q(S1, a1;6))]. -
A gradient descent step is then applied to update the model parameters:

6 « 0 — aveL(6). (8)

By incorporating Johnson’s Rule in task prioritization, this optimization ensures that the model learns
a task-aware policy, improving detection and mitigation efficiency.

Target Network Synchronization: To stabilize learning, the target network Q' is periodically synchro-
nized with the updated Q-network:

o' « 6. ©)

4372 Comput Mater Contin. 2025;84(3)

Completion of Training: After executing the training process over multiple episodes, the optimized
TwStDrl-enabled malware detection model is trained with an adaptive scheduling mechanism.

3.2 Experiment Setup

In this section, we discuss the setup adopted for the implementation and evaluation of the proposed
TwStDrl model. For implementation, we used Laptop Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz
1.19 GHz, 32.0 GB (31.8 GB usable) with Google Colab Pro version. In addition, we employed the TensorFlow
and PyTorch frameworks to build and train the TwStDrl models. This framework’ architecture is flexible and
dynamic for the computation of random changes in the IoT traffic. The real-time learning process mitigates
the risk of overfitting and helps to improve the model results.

3.3 Dataset

For our experiments, we utilized the IoT-23 dataset, which comprises network traffic data of 23 different
scenarios, including three benign and 20 malicious traffic patterns that belong to 11 distinct IoT botnet
families. Specifically, it includes seven Mirai variants, two Torii instances, two Kenjiro samples, and one
capture each of Gafgyt, Okiru, Hakai, IRCBot, Linux.Mirai, Linux.Hajime, Muhstik, and Hide-and-Seek.
Given that diversity, it provides a comprehensive representation of real-world IoT network activities, which
makes it well-suited for evaluating the performance of the TwStDrl model. To ensure robust model training
and validation, we partitioned the dataset into three subsets such as 70% for training, 10% for validation, and
20%.

The benign data was collected from real-world IoT devices such as smart door locks, smart sensors,
smart LED lamps, and other actuators commonly used in IoT applications. These devices provide an accurate
representation of typical IoT network behavior, and form a baseline for detecting malicious activities. Given
the large size of the IoT-23 dataset, our analysis focuses on differentiating malicious and benign traffic to
ensure an effective evaluation of our proposed model. A detailed characterization of the dataset is provided
in Table 2.

Table 2: Detailed overview of IoT-23 dataset for selected scenarios

Scenario type Time duration in (h) Total No. of Packets Traffic flow
Malware analysis phase-1 112 1,686,000 1,008,749
Malware analysis phase-2 2 1,309,000 238
Malware analysis phase-3 36 496,000 156,104
Malware analysis phase-4 24 233,000 23,146
Malware analysis phase-5 24 23,000 10,404
Malware analysis phase-6 24 50,000 3287
Malware analysis phase-7 24 50,000 3210
Honeypot analysis phase-1 5.4 398,000 1383

Honeypot analysis phase-2 24 21,000 461

Honeypot analysis phase-3 1.4 8276 139

Comput Mater Contin. 2025;84(3) 4373

3.4 Data Preparation

To achieve better results, it is important to prepare the data beforehand. First, we build a data pipeline
that handles both malware and normal traffic by utilizing a dataset containing multiple malware families.
We create a Label column (1 for malware, 0 for benign) for the binary classifier, and preserve each sample’s
family name in a separate Fami 1y column for auxiliary analysis. Unnecessary columns are removed, and
missing values are filled with zeros.

Next, we convert non-numeric fields into model-ready formats. IP addresses are encoded as f 1loat64
values by processing each octet. Protocol types (the proto field) are one-hot encoded. Port num-
bers (id.resp_p) are binned into the three standard IANA ranges—well-known (0-1023), registered
(1024-49,151), and ephemeral (49,152-65,535)—using quantile discretization. This preserves key network-
behavior patterns while reducing dimensionality.

To ensure a fair evaluation across all eleven malware families, we perform stratified splitting at two levels:
maintaining the malware-to-benign ratio for the binary task, and preserving each family’s relative proportion
for family-level analysis. Within each split, we apply Z-score normalization to continuous features only, using
training-split statistics to prevent data leakage.

Finally, we address class imbalance by (1) weighting malware samples three times more heavily than
benign ones during binary training; (2) sampling more frequently from rare families during the DRL phase;
and (3) adding dynamic rewards that penalize misclassifications of low-frequency families.

4 Comparative Analysis

In this section, we discuss the comparative performance of the proposed algorithm against other
established algorithms that have been considered in this research to practically check their results on the
[0T2023 datasets. In the first phase, we trained the selected algorithms, including our proposed model, to
ensure they were adequately prepared for evaluation.

4.1 Proposed Model Convergence Result Statistics

This training process included hyperparameter tuning and cross-validation to optimize model per-
formance and mitigate overfitting. Each algorithm was subjected to a consistent training process with the
utilization of the same training data split to ensure a fair comparison. This approach allowed us to assess the
generalization capabilities of each model under similar conditions by providing a robust basis for evaluation.
Following the training phase, we conducted a comprehensive evaluation of the algorithms based on several
things to see the model convergence. These metrics are crucial for understanding the effectiveness of each
model in detecting malware, particularly in the context of IoT environments where false positives can
lead to significant operational disruptions. The comparative analysis not only highlighted the strengths and
weaknesses of the proposed model relative to existing algorithms but also provided an understanding of the
specific characteristics of the datasets that influenced performance. By analyzing the results, we identified
areas for improvement in our model and gained a deeper understanding of the challenges associated with
malware detection in diverse IoT scenarios. The results obtained for TwStDrl are shown in Fig. 2.

4374 Comput Mater Contin. 2025;84(3)

Model Accuracy over Iterations Average Rewards per Episode Epsilon Decay over Iterations Model Accuracy over Episodes
10 10 T 1.0 10
] [r = Epsilon Policy — Model Accuracy
0.8 4 0.8 0.8 0.8 4
06 0.6 4 0.6 0.6
g b [T
: : £ :
2 s & g
< ” 1
04 0.4 0.4 0.4
0.2 4 0.2 02 0.2
—— Training Accuracy
Testing Accuracy —— Average Reward
0.0 - r T 0.0 44 - T T 0.0 r - ; 0.0 4+ - -
0 200 400 600 80O 1000 0 200 400 E0O 800 1000 0 200 400 600 B0O 1000 0 200 400 600 800 1000
Iterations Episode rerations Episode

Figure 2: TwStDrl model convergence result statistics

4.2 SVM and Random Forest Algorithm Result Statistics

In this section, we discuss the training and validation accuracies of the Support Vector Machine
(SVM) and Random Forest algorithms, as well as their corresponding training and validation losses on the
I0T2023 dataset. This evaluation is important for getting a deep understanding of the performance of these
comparative algorithms in the context of our proposed model. By analyzing both accuracy and loss, we can
gain a sense of understanding how well each algorithm works against seen and unseen data, which are basic
elements to illustrate each model’s robustness for real-world IoT applications. Furthermore, the training
accuracy provides an indication of how well the model fits the training data, while validation accuracy serves
as a benchmark for performance on new, unseen data instances. In addition to accuracy, monitoring training
and validation losses throughout the training process allows us to evaluate the convergence behavior of each
algorithm. A decreasing loss indicates that the model is learning effectively, while fluctuations or increases
in validation loss can show potential issues with model stability or generalization. Moreover, the results
obtained from this process are shown in Fig. 3 for SVM and Random Forest algorithms.

4.3 CNN and K-Means Algorithm Result Statistics

In this section, we examine the training and validation accuracies of the Convolutional Neural Network
(CNN) and K-Means clustering algorithms, along with their respective training and validation losses on
the IoT2023 dataset. Getting the results of these metrics will help while evaluating the effectiveness of these
algorithms in comparison to our proposed model. Moreover, in the literature, we noted that CNNs perform
better on structured data like images and sequences, while K-means is useful in unsupervised learning
scenarios because it offers valuable results by grouping similar data points based on feature similarity.
Therefore, it is important to check and evaluate their results in the presence of the proposed model to
acknowledge why our model is better suited for IoT applications in the presence of these algorithms.
Furthermore, checking both training and validation losses is important for analyzing the learning process
of these models. Moreover, the decline in training loss indicates that the model is effectively learning from
the training data, while validation loss serves as an indicator of how well the model is likely to perform on
unseen data. Moreover, the results obtained during experiment analysis are shown in Fig. 4.

Comput Mater Contin. 2025;84(3) 4375

—_— SVM Training vs. Validation Accuracy SVM Training vs. Validation Loss
] 0.10
= Training Accuracy = Training Loss
Validation Accuracy Validation Loss
1.00 0.08
> 0.99 : 0.06 | ' [\-/\
e L] f
5] \ 5
v .
4 o.98 A= 0.04 - \ ‘j\/
0.97 1 0.02 1 \’I_
0.96 - - T T T T 0.00 v - v v + -
(1] 10 20 30 40 50 [\] 10 20 30 40 50
Epochs Epochs
L 2Random Forest Training vs. Validation Accuracy L Random Forest Training vs. Validation Loss
.0 0.10
—— Training Accuracy —— Training Loss
Validation Accuracy \ Validation Loss
1.01 1 =
[
1.00
> 0.06
E A "
5 0.99 1 b
g S|
4 : 0.04 - .
N WA
0.97 - '
/
0.96 L — . T T - : 0.00 L — - - . . .
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 3: SVM and random forest result statistics

4.4 Overall Result Statistics

In this section, we discuss the training and validation accuracies of the different algorithms considered
in our study, along with their corresponding training and validation losses. We present Table 3 in the paper to
summarize the performance metrics, including F1 score, precision, and recall, which are important for evalu-
ating the algorithms’ capabilities in handling imbalances in IoT applications. Moreover, incorporating these
metrics into our analysis allows for a more detailed comparison between different considered algorithms by
identifying strong and weak. This comprehensive evaluation not only helps in selecting the most suitable
model for IoT malware detection but also contributes to the ongoing discourse on improving algorithmic
performance in the context of evolving cybersecurity threats.

4376 Comput Mater Contin. 2025;84(3)
CNN Training vs. Validation Accuracy CNN Training vs. Validation Loss
1.000 —— Training Accuracy —— Training Loss
Validation Accuracy Validation Loss
0.975 A 0.04 -
0.950 «N\J
z -_/\ 0.03 - \
8 0.925- A’\/ @
2 [Vs S A
§ 0.900 / 0.02 \’\/\/\/
0.875 - y \/\
0.850 B .
0.825 1 i : : : : 0.00 \
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
llé-oMeans Training vs. Validation Accuracy 8 mI(—Means Training vs. Validation Loss
) Vi) —— Training Loss
0.95 - /J\ Validation Loss
' 0.08 -
0.90 /
> y
g 0'85 4 m 0-06 \
L
E 0.80 9 0.04 g
0.75{ /\
0.02 1
0.70 —— Training Accuracy
Validation Accuracy
0.65 — T T T T T 0.00 — T . . . -
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs

Figure 4: CNN and K-Means algorithm result statistics

Table 3: Comparative analysis with implemented algorithms

Model /Algorithm Accuracy Precision Recall F1 Score
SVM 0.93 0.93 0.93 0.93
Random Forest 0.92 0.92 0.92 0.92
CNN 0.97 0.98 0.98 0.98
K-Means 0.96 0.95 0.96 0.95
TwST-DRL 0.99 0.997 0.998 0.993

4.5 Comparative Analysis with Rival Algorithms

In this section, we discuss the result statistics of the proposed model with rival algorithms as presented

in Table 4 by focusing on their performance metrics. Moreover, this comparative analysis highlights the

effectiveness of the proposed model in the presence of different malware detection models. This table also
provides a useful understanding of these different models’ performance in terms of accuracy, precision,
recall, and Fl-score. To explore, the accuracy metric shows the overall correctness of the model’s predictions,

Comput Mater Contin. 2025;84(3) 4377

while precision demonstrates the proportion of true positive results among all positive predictions. Recall,
on the other hand, measures the models ability to identify all relevant instances, which is particularly
important for malware detection and can have serious consequences, while the Fl-score serves as a harmonic
mean of precision and recall to offer a balanced view of the model’s performance, especially in scenarios
where class distributions are imbalanced. The results from our proposed model, TwStDrl, demonstrate a
significant improvement in performance metrics compared to existing models, achieving an accuracy of
99.0%, precision of 99.70%, recall of 99.80%, and Fl-score 99.30%. These results indicate that our approach
not only excels in detecting malware but also minimizes false positives to improve the robustness of
the model.

Table 4: Comparative analysis with rival malware detection models on the IoT-23 dataset

Reference and year of Model or adopted Accuracy% Precision% Recall% Fl-score%
publications algorithm
Dzulqarnain [35], 2019 Hybrid machine learning 98.41% 97.56% 98.83% 98.60%
model
Xing et al. [36], 2022 Deep learning 96.22% 96.14% 96.20% 96.17%
(Auto-encoder)
Jamal et al. [37], 2022 Artificial neural network 97.08% 94.00% 93.00% 93.50%
based framework
Bhayo et al. [38], 2023 SVM, decision tree and 97.60% 96.30% 98.20% 97.40%
Naive Bayes
Sanchez et al. [39], Deep learning (LSTM) 96.20% 95.90% 96.50% 96.10%
2024
Sahu et al. [40], 2021 Deep learning (LSTM) 95.68% 95.31% 96.42% 95.86%
Zhu et al. [41], 2020 Ensemble learning 94.92% 97.04% 96.94% 96.99%
framework
Sun et al. [42], 2024 96.40% 96.80% 95.90% 96.40%
This Paper (TwStDrl) Two-Step-Deep 99.0% 99.70% 99.80% 99.30%

reinforcement learning

5 Conclusion

In this paper, we propose an advanced two-step deep reinforcement learning-enabled framework,
known as “TwStDrl” to resolve malware detection and prevention issues in IoT applications. Our TwStDrl
framework is capable of identifying malware at the network’s edge while protecting the user’s important
data privacy. We implement and evaluate well-known algorithms such as SVM, Random Forest, CNN,
and K-Means to verify the experimental performance of the proposed model. During analysis, we found
that the proposed model outperforms these algorithms in terms of comparative metrics. Additionally, we
benchmarked the TwStDrl model with state-of-the-art schemes and found that it is better than them in terms
of accuracy, precision, validation rates, etc. Based on these findings, we are confident that TwStDrl will be
useful for IoT applications to detect malware in real time with great efficiency.

4378 Comput Mater Contin. 2025;84(3)

Acknowledgement: This work is supported by Princess Nourah bint Abdulrahman University Researchers Supporting
Project number (PNURSP2025R104), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding Statement: This work is supported by Princess Nourah bint Abdulrahman University Researchers Supporting
Project number (PNURSP2025R104), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author Contributions: Muhammad Adil performed the experiments research methodology, prepared the initial draft
of the manuscript, and gave final approval of the version to be published, while Mona M. Jamjoom conducted an analysis
of the research findings, contributed to editing and revising the manuscript, and provided project management and
supervision. Zahid Ullah provided research resources, contributed to the analysis, critically reviewed the manuscript
for technical content, and approved the final version. All authors reviewed the results and approved the final version of
the manuscript.

Availability of Data and Materials: Please find the link of dataset “https://www.stratosphereips.org/datasets-iot23”
(accessed on 24 June 2025).

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References

1. Raftf E, Nicholas C. A survey of machine learning methods and challenges for Windows malware classification.
arXiv:2006.09271. 2020.

2. Conti M, Gangwal A, Ryj S. On the economic significance of ransomware campaigns: a Bitcoin transactions
perspective. Comput Secur. 2018;79:162-89.

3. Hsiao SC, Kao DY. The static analysis of WannaCry ransomware. In: 2018 20th International Conference on
Advanced Communication Technology (ICACT). 2018 Feb 11-14; Chuncheon-si, Gangwon-do, Republic of Korea.
p- 153-8.

4. Kesler E. A transdisciplinary approach to cybersecurity: a framework for encouraging transdisciplinary thinking.
arXiv:2405.10373. 2024.

5. Neprash HT, McGlave CC, Cross DA, Virnig BA, Puskarich MA, Huling JD, et al. Trends in ransomware attacks on
US hospitals, clinics, and other health care delivery organizations, 2016-2021. In: JAMA Health Forum. Chicago,
IL, USA: American Medical Association; 2022. 224873 p.

6. Glani Y, Ping L, Shah SA. AASH: a lightweight and efficient static IoT malware detection technique at source
code level. In: 2022 3rd Asia Conference on Computers and Communications (ACCC). 2022 Dec 16-18; Shanghai,
China. p. 19-23.

7. Jeon], Park JH, Jeong YS. Dynamic analysis for IoT malware detection with convolution neural network model.
IEEE Access. 2020;8:96899-911. doi:10.1109/access.2020.2995887.

8. Htwe CS, Thwin MMS, Thant YM. Malware attack detection using machine learning methods for IoT smart
devices. In: 2023 IEEE Conference on Computer Applications (ICCA 2023). 2023 Feb 27-28; Yangon, Myanmar.
p. 329-33.

9. Buttyan L, Nagy R, Papp D. Simbiota++: improved similarity-based IoT malware detection. In: 2022 IEEE 2nd
Conference on Information Technology and Data Science (CITDS). 2022 May 16-18; Debrecen, Hungary. p. 51-6.

10. Deng X, Wang Z, Pei X, Xue K. TransMalDe: an effective transformer-based hierarchical framework for IoT
malware detection. IEEE Trans Netw Sci Eng. 2024;11(1):140-51. d0i:10.1109/tnse.2023.3292855.

11. Deng X, Chen B, Chen X, Pei X, Wan S, Goudos SK. A trusted edge computing system based on intelligent risk
detection for smart IoT. IEEE Trans Ind Inform. 2023;20(2):1445-54. d0i:10.1109/tii.2023.3245681.

12. Dhanya K. Obfuscated malware detection in IoT Android applications using Markov images and CNN. IEEE Syst
J. 2023;17(2):2756-66. d0i:10.1109/jsyst.2023.3238678.

https://www.stratosphereips.org/datasets-iot23
https://doi.org/10.1109/access.2020.2995887
https://doi.org/10.1109/tnse.2023.3292855
https://doi.org/10.1109/tii.2023.3245681
https://doi.org/10.1109/jsyst.2023.3238678

Comput Mater Contin. 2025;84(3) 4379

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

3L

32.

Niu W, Wang Y, Liu X, Yan R, Li X, Zhang X. GCDroid: android malware detection based on graph compression
with reachability relationship extraction for IoT devices. IEEE Internet Things J. 2023;10(13):11343-56. doi:10.1109/
ji0t.2023.3241697.

Breitenbacher D, Homoliak I, Aung YL, Elovici Y, Tippenhauer NO. HADES-IoT: a practical and effective host-
based anomaly detection system for IoT devices (extended version). IEEE Internet Things J. 2021;9(12):9640-58.
doi:10.1109/ji0t.2021.3135789.

Lei T, Qin Z, Wang Z, Li Q, Ye D. Evedroid: event-aware android malware detection against model degrading for
IoT devices. IEEE Internet Things J. 2019;6(4):6668-80. doi:10.1109/ji0t.2019.2909745.

Vasan D, Alazab M, Venkatraman S, Akram J, Qin Z. MTHael: cross-architecture IoT malware detection based
on neural network advanced ensemble learning. IEEE Trans Comput. 2020;69(11):1654-67. doi:10.1109/tc.2020.
3015584.

Shahid MR, Blanc G, Zhang Z, Debar H. Anomalous communications detection in IoT networks using sparse
autoencoders. In: 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA); 2019
Sep 26-28; Cambridge, MA, USA. p. 1-5.

Shi T, McCann RA, Huang Y, Wang W, Kong J. Malware detection for Internet of Things using one-class
classification. Sensors. 2024;24(13):4122. doi:10.3390/s24134122.

Almazroi AA, Ayub N. Deep learning hybridization for improved malware detection in smart Internet of Things.
Sci Rep. 2024;14(1):7838. doi:10.1038/s41598-024-57864-8.

Ahmad I, Wan Z, Ahmad A, Ullah SS. A hybrid optimization model for efficient detection and classification of
malware in the Internet of Things. Mathematics. 2024;12(10):1437. doi:10.3390/math12101437.

Mishra P, Jain T, Aggarwal P, Paul G, Gupta BB, Attar RW, et al. CloudIntellMal: an advanced cloud based intelligent
malware detection framework to analyze android applications. Comput Electr Eng. 2024;119(7):109483. d0i:10.1016/
j.compeleceng.2024.109483.

Sharma A, Gupta BB, Singh AK, Saraswat VK. A novel approach for detection of APT malware using
multi-dimensional hybrid Bayesian belief network. Int J Inf Secur. 2023;22(1):119-35. d0i:10.1007/s10207-022-
00631-5.

Li T, Luo Y, Wan X, Li Q, Liu Q, Wang R, et al. A malware detection model based on imbalanced heterogeneous
graph embeddings. Expert Syst Appl. 2024;246(27):123109. doi:10.1016/j.eswa.2023.123109.

Sharma A, Gupta BB, Singh AK, Saraswat VK. Advanced persistent threats (APT): evolution, anatomy, attribution
and countermeasures.] Ambient Intell Humaniz Comput. 2023;14(7):9355-81. d0i:10.1007/s12652-023-04603-y.
Shah IA, Mehmood A, Khan AN, Elhadef M, Khan AuR. HeuCRIP: a malware detection approach for Internet of
Battlefield Things. Cluster Comput. 2023;26(2):977-92. d0i:10.1007/s10586-022-03618-y.

Smmarwar SK, Gupta GP, Kumar S. AI-empowered malware detection system for Industrial Internet of Things.
Comput Electr Eng. 2023;108:108731. doi:10.1016/j.compeleceng.2023.108731.

Zhang X, Hao L, Gui G, Wang Y, Adebisi B, Sari H. An automatic and efficient malware traffic classification method
for secure Internet of Things. IEEE Internet Things J. 2023;11(5):8448-58. doi:10.1109/jiot.2023.3318290.
El-Ghamry A, Gaber T, Mohammed KK, Hassanien AE. Optimized and efficient image-based IoT malware
detection method. Electronics. 2023;12(3):708. d0i:10.3390/electronics12030708.

Esmaeili B, Azmoodeh A, Dehghantanha A, Srivastava G, Karimipour H, Lin JCW. A GNN-based adversarial
Internet of Things malware detection framework for critical infrastructure: studying Gafgyt, Mirai and Tsunami
campaigns. [EEE Internet Things J. 2023;11(16):26826-36. d0i:10.1109/ji0t.2023.3298663.

Shafin SS, Karmakar G, Mareels I. Obfuscated memory malware detection in resource-constrained IoT devices for
smart city applications. Sensors. 2023;23(11):5348. d0i:10.3390/s23115348.

Sharma A, Babbar H, Vats AK. Ransomware attack detection in the Internet of Things using machine learning
approaches. In: 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC
2023); 2023 May 4-6; Salem, India. p. 553-9.

Devi RA, Arunachalam A. Enhancement of IoT device security using an improved elliptic curve cryptography
algorithm and malware detection utilizing deep LSTM. High-Confidence Comput. 2023;3(2):100117. doi:10.1016/j.
hcc.2023.100117.

https://doi.org/10.1109/jiot.2023.3241697
https://doi.org/10.1109/jiot.2023.3241697
https://doi.org/10.1109/jiot.2021.3135789
https://doi.org/10.1109/jiot.2019.2909745
https://doi.org/10.1109/tc.2020.3015584
https://doi.org/10.1109/tc.2020.3015584
https://doi.org/10.3390/s24134122
https://doi.org/10.1038/s41598-024-57864-8
https://doi.org/10.3390/math12101437
https://doi.org/10.1016/j.compeleceng.2024.109483
https://doi.org/10.1016/j.compeleceng.2024.109483
https://doi.org/10.1007/s10207-022-00631-5
https://doi.org/10.1007/s10207-022-00631-5
https://doi.org/10.1016/j.eswa.2023.123109
https://doi.org/10.1007/s12652-023-04603-y
https://doi.org/10.1007/s10586-022-03618-y
https://doi.org/10.1016/j.compeleceng.2023.108731
https://doi.org/10.1109/jiot.2023.3318290
https://doi.org/10.3390/electronics12030708
https://doi.org/10.1109/jiot.2023.3298663
https://doi.org/10.3390/s23115348
https://doi.org/10.1016/j.hcc.2023.100117
https://doi.org/10.1016/j.hcc.2023.100117

4380

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Comput Mater Contin. 2025;84(3)

Bajao NA, Sarucam JA. Threats detection in the Internet of Things using convolutional neural networks, long
short-term memory, and gated recurrent units. Mesopotamian] Cyber. 2023;2023:22-9. doi:10.58496/mjcs/2023/
005.

Mohammed MA, Lakhan A, Zebari DA, Abdulkareem KH, Nedoma J, Martinek R, et al. Adaptive secure malware
efficient machine learning algorithm for healthcare data. CAAI Trans Intell Technol. 2023. doi:10.1049/cit2.12200.
Dzulqarnain D. Investigating IoT malware characteristics to improve network security [master’s thesis]. Enschede,
Netherland: University of Twente; 2019.

Xing X, Jin X, Elahi H, Jiang H, Wang G. A malware detection approach using autoencoder in deep learning. IEEE
Access. 2022;10:25696-706. doi:10.1109/access.2022.3155695.

Jamal A, Hayat MF, Nasir M. Malware detection and classification in IoT network using ANN. Mehran Univ Res
] Eng Technol. 2022;41:80-91.

Bhayo J, Shah SA, Hameed S, Ahmed A, Nasir J, Draheim D. Towards a machine learning-based framework
for DDoS attack detection in software-defined IoT (SD-IoT) networks. Eng Appl Artif Intell. 2023;123(1):106432.
doi:10.1016/j.engappai.2023.106432.

Sanchez PMS, Celdran AH, Bovet G, Pérez GM. Adversarial attacks and defenses on ML- and hardware-based IoT
device fingerprinting and identification. Future Gener Comput Syst. 2024;152(12):30-42. doi:10.1016/j.future.2023.
10.011.

Sahu AK, Sharma S, Tanveer M, Raja R. Internet of Things attack detection using hybrid deep learning model.
Comput Commun. 2021;176(3):146-54. doi:10.1016/j.comcom.2021.05.024.

ZhuH, LiY,LiR,Li]J, YouZ, Song H. SedmDroid: an enhanced stacking ensemble framework for Android malware
detection. IEEE Trans Netw Sci Eng. 2020;8(2):984-94. d0i:10.1109/tnse.2020.2996379.

SunZ, AnG, Yang Y, Liu Y. Optimized machine learning enabled intrusion detection system for Internet of Medical
Things. Franklin Open. 2024;6(11):100056. doi:10.1016/j.fraope.2023.100056.

https://doi.org/10.58496/mjcs/2023/005
https://doi.org/10.58496/mjcs/2023/005
https://doi.org/10.1049/cit2.12200
https://doi.org/10.1109/access.2022.3155695
https://doi.org/10.1016/j.engappai.2023.106432
https://doi.org/10.1016/j.future.2023.10.011
https://doi.org/10.1016/j.future.2023.10.011
https://doi.org/10.1016/j.comcom.2021.05.024
https://doi.org/10.1109/tnse.2020.2996379
https://doi.org/10.1016/j.fraope.2023.100056

	A Novel Malware Detection Framework for Internet of Things Applications
	1 Introduction
	2 Related Work
	3 Proposed Model
	4 Comparative Analysis
	5 Conclusion
	References

