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ABSTRACT: In today’s digital world, the Internet of Things (IoT) plays an important role in both local and global
economies due to its widespread adoption in different applications. This technology has the potential to offer several
advantages over conventional technologies in the near future. However, the potential growth of this technology also
attracts attention from hackers, which introduces new challenges for the research community that range from hardware
and software security to user privacy and authentication. Therefore, we focus on a particular security concern that is
associated with malware detection. The literature presents many countermeasures, but inconsistent results on identical
datasets and algorithms raise concerns about model biases, training quality, and complexity. This highlights the need for
an adaptive, real-time learning framework that can effectively mitigate malware threats in IoT applications. To address
these challenges, (i) we propose an intelligent framework based on Two-step Deep Reinforcement Learning (TwStDRL)
that is capable of learning and adapting in real-time to counter malware threats in IoT applications. This framework
uses exploration and exploitation phenomena during both the training and testing phases by storing results in a replay
memory. The stored knowledge allows the model to effectively navigate the environment and maximize cumulative
rewards. (ii) To demonstrate the superiority of the TwStDRL framework, we implement and evaluate several machine
learning algorithms for comparative analysis that include Support Vector Machines (SVM), Multi-Layer Perceptron,
Random Forests, and k-means Clustering. The selection of these algorithms is driven by the inconsistent results reported
in the literature, which create doubt about their robustness and reliability in real-world IoT deployments. (iii) Finally, we
provide a comprehensive evaluation to justify why the TwStDRL framework outperforms them in mitigating security
threats. During analysis, we noted that our proposed TwStDRL scheme achieves an average performance of 99.45 %
across accuracy, precision, recall, and Fl-score, which is an absolute improvement of roughly 3 % over the existing
malware-detection models.

KEYWORDS: IoT applications security; malware detection; advanced machine learning algorithms; data privacy
challenges

1 Introduction

Malware refers to software created to infiltrate or harm a computer system without the user’s explicit
consent. Malware has different types, and can be classified based on its specific actions, such as worms,
backdoors, ransomware, trojans, spyware, rootkits, adware, etc. [1]. According to the Computer Economics
reports, financial losses increased significantly every year due to malware attacks [2]. In 2016, the WannaCry
ransomware attack affected computers in more than 150 countries, causing financial damage to various
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organizations [3]. In 2024, the projected financial loss due to malware attacks is expected to reach $9.5 trillion
globally, a 19% increase from the estimated $8 trillion in losses in 2023 [4]. Ransomware alone is projected to
cost victims $265 billion annually by 2031. Moreover, it has been reported that cybercriminals are now using
more advanced techniques to quickly compromise the system’s security, with reduced average execution time
from 60 days in 2019 to just 4 days in 2023 [5]. The financial sector is deeply concerned about technological
security. To address this, they aim to design reliable and trustworthy countermeasures that can protect both
individuals and institutions. These groups face significant risks from phishing attacks and social engineering
tactics, which threaten their customer’s trust and security.

In the literature, several antivirus software solutions such as Avast, Norton, McAfee, Kaspersky,
AVG, and Bitdefender have been developed to counter various cyberattacks. These softwares rely on a
short sequence of bytes, known as a signature, to detect malware within systems. However, they have
significant limitations, especially when it comes to defending against zero-day attacks. These attacks exploit
vulnerabilities that are unknown to these antivirus software. This challenge is further aggravated by the rise
of malware generation toolkits, such as Zeus. These toolkits enable cybercriminals to generate thousands
of malware variants through various obfuscation techniques, which makes the traditional signature-based
detection technique less effective. In addition, malware is evolving daily, while signature generation is often
human-driven, which creates a log in the detection process. All this makes it increasingly difficult to detect
new malware with the help of older detection techniques. In light of these factors, relying solely on traditional
antivirus approaches may not be enough, because the nature of malware attacks changes continuously.
Therefore, more advanced and adaptive security solutions could be used to identify and mitigate emerging
threats in real time.

In this paper, we propose a TwStDrl-enabled malware detection framework for IoT applications. We
use a deep reinforcement learning algorithm to enable the system to learn and adapt in real time to evolving
malware behavior. This real-time adaptability allows the framework to effectively detect and prevent malware
infiltration in these applications. To evaluate the effectiveness of our model, we considered rival algorithms
such as SVM, random forest, k-means, and other state-of-the-art solutions. This comparative analysis
assesses how the TwStDrl-based framework outperforms existing methods in detecting and mitigating
malware in IoT applications. In addition, the model is designed in a way to be lightweight and resource-
efficient by considering the limited computational resources of IoT devices. The main contributions of this
work are summarized below.

o In this work, we propose a TwStDrl-enabled framework that efficiently distributes malware detection
tasks in two stages across IoT devices to reduce detection time. The framework primarily uses deep
reinforcement learning algorithms, enabling real-time learning and adaptation to the evolving nature of
malware threats.

o The two-step task scheduling strategy combines static and dynamic task management with presorting
techniques, using Johnson’s rule. This helps the model to adapt in real time and ensures the effective and
timely completion of malware detection tasks across the network.

« Johnsons’s rule, used in the model, facilitates an optimal sequence for task processing. This optimization
enhances both the detection and response rates to evolving security threats in IoT applications.

o In the subsequent phase, we implement various algorithms such as Support Vector Machine (SVM),
Random Forest, K-Means, and Convolutional Neural Network (CNN) to evaluate the performance of
the proposed model in comparison to these methods on different datasets.

o Finally, we compare the results of the TwStDrl algorithm with SOTA solutions and implemented
algorithms to demonstrate why this algorithm is necessary and how it outperforms existing solutions.
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Paper Structure: In this section, we cover the related work by providing readers with a glimpse into what
has been achieved thus far in this domain. Moving on, Section 3 introduces our proposed model. In Section 4,
we explore various algorithms and state-of-the-art schemes with their results that have been selected for
comparison. Finally, Section 5 wraps up the paper by summarizing our findings and concluding remarks.

2 Related Work

In this section, we discuss the latest schemes used to counter malware attacks in IoT applications.
Moreover, we highlight the limitations of existing techniques to establish a foundation for the proposed work
in their presence. Given that, Glani et al. [6] proposed an advanced malware detection technique for IoT
applications that targets hardware and source code vulnerabilities. In this model, the author used the Adler-
32 hash function and Fibonacci search algorithms collectively to resolve this issue. However, the authors did
not discuss the complexity and computation requirements of this model in real-time operation, which keeps
itin a fuzzy state. In [7], the authors introduced convolutional neural networks (CNNs) for dynamic malware
analysis considering edge devices. In this model, the authors converted the extracted behavior data into
images to improve detection rate and accuracy. However, performing such a complex task on the edge of the
network introduces significant computational complexity, which leads to slow response time during attacks.
Htwe et al. [8] proposed a hybrid paradigm of feature selection method with a CART learning algorithm to
tackle malware security vulnerability issues in IoT applications. The authors claimed 100% accuracy for the
proposed model, with only botnet attacks. However, it is very hard to implement and use this model based
on one attack detection. It could be interesting to check the results of the proposed model against different
known and unknown attacks.

In [9], the author proposed an enhanced lightweight antivirus solution for embedded IoT devices. In this
paradigm, they used graph theory with a measurement-based rational selection technique to appropriately
set threshold levels for malware detection. However, the dependency on specific threshold parameters may
affect the result statistics, and inhibit its use in real deployment. Deng et al. [10] proposed a transformer-based
malware detection framework for IoT applications. The authors focused on the edge computing paradigm
to address the limitation of centralized techniques and enhance the efficiency of malware detection by
offloading computation-intensive tasks to nearby edge nodes. In [11], the authors proposed an Intelligent
Trusted, and Secure Edge Computing (ITEC) malware detection approach for IoT applications. In this model,
they used a signature-based pre-identification mechanism to detect malicious behaviors of untrusted third-
party applications to categorize network traffic. However, the proposed model is sensitive to communication
delay, throughput, and congestion issues, and could not be adopted in real IoT applications. Reference [12]
introduced a novel CNN-based approach for malware detection in IoT Android applications. The author
tested the proposed model on a specific dataset with defined rules and achieved remarkable results. However,
itis still necessary to evaluate the proposed model on different datasets to see the statistical results, as machine
learning models are susceptible to many internal and external threats.

In [13], the author proposed a graph compression algorithm with reachability relationship extraction
(GCRR) to resolve the malware detection issue in Android applications. In the result analysis, the authors
claimed that their model can detect malware in these applications 1.53% to 39.13% accurately compared
to existing static methods. In [14], the author proposed a host-based anomaly detection system for IoT
applications to resolve security problems. However, it is not clear how the proposed model is evaluated
for different attacks. In [15], the authors introduced an event-aware Android malware detection system by
considering the network traffic behavioral patterns. Moreover, the authors used event groups to capture
higher-level semantics than API-level threats. However, the clustering complexity of the proposed model
raises computation challenges, and may inhibit the deployment of this model. Vasan et al. [16] proposed
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a robust cross-layer architecture-based malware detection scheme for IoT applications. In this model, the
author used RNNs and CNNs collectively to improve the attack detection accuracy. However, this model
was checked on a specific dataset during training and testing. Therefore, it is important to evaluate it on
different datasets, considering the requirements of IoT applications. Shahid et al. [17] proposed a sparse
autoencoder-based malware detection paradigm for IoT applications. This approach characterizes network
behavior using statistics on the size and inter-arrival times of the first N packets in bidirectional TCP flow to
improve the attack detection rate. However, a limitation of this method is specific characteristics of the smart
home dataset, which was used for training, may not fully capture the diversity of IoT network behaviors in
real-world scenarios.

In [18], the authors checked the application of one-class classification for malware detection in IoT
applications using unsupervised learning techniques, while Almazroi [19] proposed a BERT-based feed-
forward neural network framework to resolve the malware vulnerabilities detection problems in IoT
applications. However, this model is complex and was checked on one dataset. Therefore, it is necessary to
evaluate the proposed model on different datasets. Ahmad et al. [20] an advanced classification model for
IoT malware detection using an optimized SVM algorithm. For optimization, they used nuclear reactor opti-
mization (NRO), Artificial rabbits optimization (ARO), and particle swarm optimization (PSO) collectively
to improve the classification accuracy. The authors claimed better results in the presence of state-of-the-art
schemes. However, it is difficult to implement this model at the edges of IoT applications, where sensors
and actuators will be working to collect and process data. In [21], the authors propose a serverless-based
intelligent framework known as “CloudIntellMal” for detecting Android malware, while Sharma et al. [22],
propose a multi-dimensional hybrid Bayesian belief network model to detect APT malware. This model is
useful in the redressal of evasion attacks missed by signature-based solutions. In [23], the authors propose
a graph-embedding framework known as IHODroid for Android malware detection. They evaluate it on
the DREBIN dataset and demonstrate excellent results compared to existing baseline models. Moreover, we
suggest the general readers to review article [24] to have a basic and advanced level understanding of malware
and what has been done so far in the field and what is needed in the future. Following this, we added Table 1
in the paper to provide a more comprehensive analysis of the state-of-the-art schemes.

Table 1: Comparison between recent malware detection methods

References Year of Machine learning/Deep learning Application area
publication algorithm
Shah 2023 Deep Learning-enabled malware Internet of Battlefield Things
etal. [25] detection system, using control flow Applications
graph (CFG)
Smmarwar 2023 (AI)-empowered zero-day malware Industrial Internet of Things
etal. [26] detection systems Applications
Zhang 2024 Neural architecture search via General Internet of Things
etal. [27] proximal iterations (NASP) based Applications
malware detection systems
El-Ghamry 2023 colony optimizer (ACO)-based General Internet of Things
et al. [28] malware detection systems Applications
Esmaeili 2023 GNN-based adversarial detector General Internet of Things
etal. [29] detects based malware detection Applications
systems

(Continued)
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Table 1 (continued)

References Year of Machine learning/Deep learning Application area
publication algorithm
Shafin 2023 Bidirectional long short-term memory;, Smart City Internet of
etal. [30] based malware detection systems Things Applications
Sharma 2023 Ensemble learning based malware General Internet of Things
etal. [31] detection systems (Logistic Applications
Regression(LR), K-Nearest
Neighbour(KNN), and eXtreme
Gradient Boosting(XGB))
Devi and 2024 Deep LSTM based malware detection ~ General Internet of Things
Arunacha- systems Applications
lam [32]

Bajao and 2023 Evaluation of CNNs, LSTM, and GRUs  General Internet of Things
Sarucam [33] based malware detection systems Applications
Mohammed 2023 An adaptive Malware Analysis Healthcare Internet of

etal. [34] Dynamic Machine Learning Things Applications

framework for malware detection

3 Proposed Model

In this section, we thoroughly talk about the proposed TwStDrl-enabled malware detection framework.
For visual illustration, we added Fig. | in the paper.

The primary goal of our proposed model is to enable malware detection directly at the network edge.
To achieve this, it combines static and dynamic analysis into a unified task-management framework, using a
presorting technique based on Johnson’s rule alongside deep-learning decision making. Detection tasks are
then distributed across N IoT devices and M = 2 processors (one for the static stage and one for the dynamic
stage), where N and M denote the total number of connected devices and processors, respectively.

We address the resulting NP-hard scheduling problem by incorporating Johnson’s rule optimization
with deep-reinforcement-learning-based adaptive weighting. Task durations (d;;,d;,) are estimated from
feature-importance scores produced in the first stage of the model. Since minimizing the total completion
time of these two-step tasks is NP-hard, the presorting step orders static and dynamic tasks into an optimal
sequence, setting the stage for efficient, dependency-aware scheduling across the IoT network.

Following this, a scheduling controller within the proposed model manages task execution at the
network edge by continuously monitoring the system’s state and selecting optimal scheduling actions based
on data processing and threat analysis. The controller comprises three coordinated components such as
Johnson’s Rule-based presorting, load monitoring, and DRL action selection, which together ensure efficient
task allocation. This framework is built on two key principles: Concept 1: It provides an optimal scheduling
solution for single-processor devices, ensuring real-time malware detection. Concept 2: It guarantees that
any subset derived from the task list remains optimally sequenced according to the model’s defined rules.

Following Concept 1, our model improves malware detection accuracy across multiple processors by
initially sorting them into a list. While Concept 2, allocates to each processor a task (dynamic data) to form
subsets of the initial list (static dataset). This presorting guarantees that the parallel processing of tasks on
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each processor is optimally arranged to identify malware patterns in the network. Moreover, these steps are
summarized in Algorithm 1.
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Figure 1: Architecture of the TwStDRL-enabled malware detection model, which integrates static and dynamic
detection. The incoming traffic is first filtered based on predefined rules before being processed by the traffic evaluator.
This evaluator, driven by a Q-network and a target network, continuously improves detection by balancing exploration
(discovering new threats) and exploitation (using known patterns). A reward function enhances learning, while a loss
function fine-tunes accuracy. IoT devices perform detection tasks according to a scheduled workflow by ensuring fast
and efficient malware identification

Algorithm 1: Malware detection through two-step rule

Require: Task set 7~ = { Tysx1, Taskzs - - - » Taskn }» €ach with two-stage durations {d;;, d;» }
Ensure: Sorted task list T/, for scheduling

1: Initialize Gy < {}, G, < {},and T, < {}

2: for each task T,r; € 7 do

3: if d;; < d;; then

4. G1 <« G1 @] {Taski}
5: else

6: Gy < Gy U{Tuei}
7: end if

8: end for

9: Sort G; by d;; in ascending order
10: Sort G, by d;, in descending order
1: T/, < Gy UG, — Append G, and G,
12: return Updated T, Results
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In Algorithm 1, we showed how tasks are divided into two groups, G; and G,, based on the duration of
their two operational phases. G; contains tasks where the first phase is shorter than or equal to the second
(d;, < d;,), while G, includes tasks where the first phase is longer than the second (d;, > d;,). Each group is
independently sorted into a predefined rule-based list before the two groups are strategically merged. This
process of presorting and merging is important because it ensures that the tasks are efficiently assigned to
IoT device processors. This approach not only improves individual processor efficiency but also enhances
real-time malware detection across the network.

3.1 Operational Steps of the Edge-IoT Devices

In IoT applications, detecting malware at the network edge is very important to ensure security.
To achieve this, we use a two-step deep reinforcement learning (DRL) model that works in two phases:
identification and mitigation of malware threats. The proposed model is formulated as a Markov Decision
Process (MDP), which is defined by the following four-tuple representation:

{S: A) P(Sta ag, St+l)7 Rt} (1)

« State Space (S): The state space at time t, denoted as S, encapsulates all possible malware detection
scenarios based on the system’s data. Each state transition is represented as s;, s¢41 € S.

« Action Space (A): The action space, A, comprises all feasible countermeasures against potential malware
threats, including responses deployed across the network connected IoT devices.

o Transition Probability (P): The function P(s, as, s+1) defines the probability of transitioning from
state s; to s;+; when executing action a,. This captures the dynamic interactions between malware
behavior and defensive responses.

« Reward Function (R): The reward, R; = R(s;, a;), quantifies the effectiveness of action a; at state s,. The
objective is to maximize security by minimizing malware impact through optimal policy learning.

In our proposed model, the state (s;) captures all the important details needed to detect and prevent
malware at the edge of the network. These details include the detection status of edge devices, network traffic
characteristics, and system health, which are defined as below:

st = (Dty, (1), Dty, (1), Cty, (1), Cty(2), Uty (1)) (2)

In (2), Dt (t) and Dt,,(t) represent the detection times at Step 1 and Step 2 during malware
identification process, while Ct,, (t) and Ct,,(t) denote the completion times for these steps. Initially, these
values are set to zero and are updated dynamically as tasks are initiated and completed. Moreover, the Ut,, ()
represents the overall network load on edge devices, which helps in assessing resource utilization during
malware detection.

Given the current network state, the action a, determines how a device should handle the next malware
threat based on the learned policy. The goal is to maximize malware detection and mitigation efficiency
by optimizing action selection across states. The reward function R, evaluates the immediate impact of
actions taken against malware threats by ensuring the network security. To further enhance optimization, we

*

introduce a global objective function (ct)

), which minimize the overall network load. First, we compute
the total network utilization at time ¢ as:

Ul(t) = guka) (3)
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In (3), uty(t) represents the load on node k in the network. This metric is important for assess-
ing real-time system performance to determine the instantaneous reward at time ¢. By integrating this
reward function into the proposed model, we ensure the dynamic and adaptive malware detection and
mitigation strategy.

For clarity, we added Algorithm 2 in the paper how the TwStDrl-enabled malware detection model
works during the training process.

Algorithm 2: Training process of TwStDrl-Enabled malware detection model

Require: 7 = {Tmskb Tiask2s e Ttaskn}
Ensure: M
1: Initialize Q(S, a;0), Q'(S, a; ®")
2:Seta, €,y
3: Initialize D
4: for eps = 1to MaxEpisodes do
5: for T, € T do
6: Task Scheduling via Johnson’s Rule
7: Sort T, based on:
If Ct,, (t) < Ct,, (t), execute detection first.
Else, execute mitigation first.

8: Select Action:
random action, €
= argmax, Q(S;,4;0), 1-e¢
9: Execute a;, observe S;i1, 1
10: Store (S, as, 71, Sg+1) in D
11: Sample (S;, at, 74, S¢41) from D
12: Compute:
Tt S;4+1 terminal
< re +ymax, Q'(St1,a’;50"), otherwise
13: Compute:
L(®) =E[(y: - Q(S1,a50))’]
14: Update:
O« 0®-aVeL(®)
15: Periodically update: @' < ©
16: end for
17: end for
18: return M

Model Initialization: The action-value function Q(S, a;0) and its target counterpart Q'(S, a; 8") are
initialized with weights 6 and ', respectively. The learning rate «, exploration rate €, and discount factor y
are set as hyperparameters to control the learning dynamics of the model. In addition, an experience replay
buffer D is used to store past transitions, and enable stable training by reusing historical experience.

Training Process:

The training occurs over multiple episodes, where the model learns from a series of tasks denoted by
T in batches of 32 samples. The learning process uses an Adam optimizer with a learning rate of 0.001 and
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discount factor y = 0.95 for future rewards. Exploration is controlled through an e-greedy strategy (initial
€ =1.0) that decays by a factor of 0.995 per episode until reaching eni, = 0.001, ensuring a progressive
transition from exploration to exploitation.

Before selecting an action, tasks are pre-sorted using Johnson’s Rule to optimize execution efficiency.
The task sequence is determined based on detection and mitigation times as follows:

{execute detection first,  if Ct,, (t) < Cty, (1), @)

execute mitigation first, otherwise.

The reward function combines binary classification accuracy (taking values of +1 or —1) with a load-
balancing term scaled by (1 — device_load) to prioritize underutilized devices. Empirical analysis compared
three variants—pure accuracy-based rewards (F1 = 0.89), load-scaled rewards (F1 = 0.92), and family-
weighted rewards (F1 = 0.91) —demonstrating that the load-scaled version achieves the best trade-oft between
accuracy and utilization. Action selection follows

_ {random action, with probability ¢, 5)

argmax, Q(S;,a;0), otherwise.

Upon selecting an action a;, the environment transitions to the next state S;,;, and a corresponding
reward r, is obtained based on the effectiveness of the malware detection response. The observed experience
tuple (S;, as, 74, S¢41) is stored in the replay buffer D for future learning.

Q-Value Update: To update the action-value function, a minibatch of stored transitions is sampled
from D. Before computing Q-values, the model applies Johnsons Rule to determine whether detection or
mitigation tasks should be prioritized, ensuring an optimal action sequence. The target Q-value is then
computed using the Bellman equation:

(6)

{rt, if S;,1 is a terminal state,
y =

re +ymax Q'(Sm, a’s 6'), otherwise.
a

Here, the reward r, is influenced by the efficiency of task execution, considering both detection and
mitigation completion times. By applying Johnson’s Rule, the model prioritizes tasks that reduce overall
malware response time, leading to more effective reinforcement learning.

Loss Computation and Optimization: The difference between the predicted Q-value and the target
Q-value y, is computed as the loss function:

L(0) =E[(y: - Q(S1, a1;6))]. -
A gradient descent step is then applied to update the model parameters:

6 « 0 — aveL(6). (8)

By incorporating Johnson’s Rule in task prioritization, this optimization ensures that the model learns
a task-aware policy, improving detection and mitigation efficiency.

Target Network Synchronization: To stabilize learning, the target network Q' is periodically synchro-
nized with the updated Q-network:

o' « 6. ©)
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Completion of Training: After executing the training process over multiple episodes, the optimized
TwStDrl-enabled malware detection model is trained with an adaptive scheduling mechanism.

3.2 Experiment Setup

In this section, we discuss the setup adopted for the implementation and evaluation of the proposed
TwStDrl model. For implementation, we used Laptop Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz
1.19 GHz, 32.0 GB (31.8 GB usable) with Google Colab Pro version. In addition, we employed the TensorFlow
and PyTorch frameworks to build and train the TwStDrl models. This framework’ architecture is flexible and
dynamic for the computation of random changes in the IoT traffic. The real-time learning process mitigates
the risk of overfitting and helps to improve the model results.

3.3 Dataset

For our experiments, we utilized the IoT-23 dataset, which comprises network traffic data of 23 different
scenarios, including three benign and 20 malicious traffic patterns that belong to 11 distinct IoT botnet
families. Specifically, it includes seven Mirai variants, two Torii instances, two Kenjiro samples, and one
capture each of Gafgyt, Okiru, Hakai, IRCBot, Linux.Mirai, Linux.Hajime, Muhstik, and Hide-and-Seek.
Given that diversity, it provides a comprehensive representation of real-world IoT network activities, which
makes it well-suited for evaluating the performance of the TwStDrl model. To ensure robust model training
and validation, we partitioned the dataset into three subsets such as 70% for training, 10% for validation, and
20%.

The benign data was collected from real-world IoT devices such as smart door locks, smart sensors,
smart LED lamps, and other actuators commonly used in IoT applications. These devices provide an accurate
representation of typical IoT network behavior, and form a baseline for detecting malicious activities. Given
the large size of the IoT-23 dataset, our analysis focuses on differentiating malicious and benign traffic to
ensure an effective evaluation of our proposed model. A detailed characterization of the dataset is provided
in Table 2.

Table 2: Detailed overview of IoT-23 dataset for selected scenarios

Scenario type Time duration in (h) Total No. of Packets Traffic flow
Malware analysis phase-1 112 1,686,000 1,008,749
Malware analysis phase-2 2 1,309,000 238
Malware analysis phase-3 36 496,000 156,104
Malware analysis phase-4 24 233,000 23,146
Malware analysis phase-5 24 23,000 10,404
Malware analysis phase-6 24 50,000 3287
Malware analysis phase-7 24 50,000 3210
Honeypot analysis phase-1 5.4 398,000 1383

Honeypot analysis phase-2 24 21,000 461

Honeypot analysis phase-3 1.4 8276 139
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3.4 Data Preparation

To achieve better results, it is important to prepare the data beforehand. First, we build a data pipeline
that handles both malware and normal traffic by utilizing a dataset containing multiple malware families.
We create a Label column (1 for malware, 0 for benign) for the binary classifier, and preserve each sample’s
family name in a separate Fami 1y column for auxiliary analysis. Unnecessary columns are removed, and
missing values are filled with zeros.

Next, we convert non-numeric fields into model-ready formats. IP addresses are encoded as f 1loat64
values by processing each octet. Protocol types (the proto field) are one-hot encoded. Port num-
bers (id.resp_p) are binned into the three standard IANA ranges—well-known (0-1023), registered
(1024-49,151), and ephemeral (49,152-65,535)—using quantile discretization. This preserves key network-
behavior patterns while reducing dimensionality.

To ensure a fair evaluation across all eleven malware families, we perform stratified splitting at two levels:
maintaining the malware-to-benign ratio for the binary task, and preserving each family’s relative proportion
for family-level analysis. Within each split, we apply Z-score normalization to continuous features only, using
training-split statistics to prevent data leakage.

Finally, we address class imbalance by (1) weighting malware samples three times more heavily than
benign ones during binary training; (2) sampling more frequently from rare families during the DRL phase;
and (3) adding dynamic rewards that penalize misclassifications of low-frequency families.

4 Comparative Analysis

In this section, we discuss the comparative performance of the proposed algorithm against other
established algorithms that have been considered in this research to practically check their results on the
[0T2023 datasets. In the first phase, we trained the selected algorithms, including our proposed model, to
ensure they were adequately prepared for evaluation.

4.1 Proposed Model Convergence Result Statistics

This training process included hyperparameter tuning and cross-validation to optimize model per-
formance and mitigate overfitting. Each algorithm was subjected to a consistent training process with the
utilization of the same training data split to ensure a fair comparison. This approach allowed us to assess the
generalization capabilities of each model under similar conditions by providing a robust basis for evaluation.
Following the training phase, we conducted a comprehensive evaluation of the algorithms based on several
things to see the model convergence. These metrics are crucial for understanding the effectiveness of each
model in detecting malware, particularly in the context of IoT environments where false positives can
lead to significant operational disruptions. The comparative analysis not only highlighted the strengths and
weaknesses of the proposed model relative to existing algorithms but also provided an understanding of the
specific characteristics of the datasets that influenced performance. By analyzing the results, we identified
areas for improvement in our model and gained a deeper understanding of the challenges associated with
malware detection in diverse IoT scenarios. The results obtained for TwStDrl are shown in Fig. 2.
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Figure 2: TwStDrl model convergence result statistics

4.2 SVM and Random Forest Algorithm Result Statistics

In this section, we discuss the training and validation accuracies of the Support Vector Machine
(SVM) and Random Forest algorithms, as well as their corresponding training and validation losses on the
I0T2023 dataset. This evaluation is important for getting a deep understanding of the performance of these
comparative algorithms in the context of our proposed model. By analyzing both accuracy and loss, we can
gain a sense of understanding how well each algorithm works against seen and unseen data, which are basic
elements to illustrate each model’s robustness for real-world IoT applications. Furthermore, the training
accuracy provides an indication of how well the model fits the training data, while validation accuracy serves
as a benchmark for performance on new, unseen data instances. In addition to accuracy, monitoring training
and validation losses throughout the training process allows us to evaluate the convergence behavior of each
algorithm. A decreasing loss indicates that the model is learning effectively, while fluctuations or increases
in validation loss can show potential issues with model stability or generalization. Moreover, the results
obtained from this process are shown in Fig. 3 for SVM and Random Forest algorithms.

4.3 CNN and K-Means Algorithm Result Statistics

In this section, we examine the training and validation accuracies of the Convolutional Neural Network
(CNN) and K-Means clustering algorithms, along with their respective training and validation losses on
the IoT2023 dataset. Getting the results of these metrics will help while evaluating the effectiveness of these
algorithms in comparison to our proposed model. Moreover, in the literature, we noted that CNNs perform
better on structured data like images and sequences, while K-means is useful in unsupervised learning
scenarios because it offers valuable results by grouping similar data points based on feature similarity.
Therefore, it is important to check and evaluate their results in the presence of the proposed model to
acknowledge why our model is better suited for IoT applications in the presence of these algorithms.
Furthermore, checking both training and validation losses is important for analyzing the learning process
of these models. Moreover, the decline in training loss indicates that the model is effectively learning from
the training data, while validation loss serves as an indicator of how well the model is likely to perform on
unseen data. Moreover, the results obtained during experiment analysis are shown in Fig. 4.
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Figure 3: SVM and random forest result statistics

4.4 Overall Result Statistics

In this section, we discuss the training and validation accuracies of the different algorithms considered
in our study, along with their corresponding training and validation losses. We present Table 3 in the paper to
summarize the performance metrics, including F1 score, precision, and recall, which are important for evalu-
ating the algorithms’ capabilities in handling imbalances in IoT applications. Moreover, incorporating these
metrics into our analysis allows for a more detailed comparison between different considered algorithms by
identifying strong and weak. This comprehensive evaluation not only helps in selecting the most suitable
model for IoT malware detection but also contributes to the ongoing discourse on improving algorithmic
performance in the context of evolving cybersecurity threats.
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Figure 4: CNN and K-Means algorithm result statistics

Table 3: Comparative analysis with implemented algorithms

Model /Algorithm Accuracy Precision Recall F1 Score
SVM 0.93 0.93 0.93 0.93
Random Forest 0.92 0.92 0.92 0.92
CNN 0.97 0.98 0.98 0.98
K-Means 0.96 0.95 0.96 0.95
TwST-DRL 0.99 0.997 0.998 0.993

4.5 Comparative Analysis with Rival Algorithms

In this section, we discuss the result statistics of the proposed model with rival algorithms as presented

in Table 4 by focusing on their performance metrics. Moreover, this comparative analysis highlights the

effectiveness of the proposed model in the presence of different malware detection models. This table also
provides a useful understanding of these different models’ performance in terms of accuracy, precision,
recall, and Fl-score. To explore, the accuracy metric shows the overall correctness of the model’s predictions,
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while precision demonstrates the proportion of true positive results among all positive predictions. Recall,
on the other hand, measures the models ability to identify all relevant instances, which is particularly
important for malware detection and can have serious consequences, while the Fl-score serves as a harmonic
mean of precision and recall to offer a balanced view of the model’s performance, especially in scenarios
where class distributions are imbalanced. The results from our proposed model, TwStDrl, demonstrate a
significant improvement in performance metrics compared to existing models, achieving an accuracy of
99.0%, precision of 99.70%, recall of 99.80%, and Fl-score 99.30%. These results indicate that our approach
not only excels in detecting malware but also minimizes false positives to improve the robustness of
the model.

Table 4: Comparative analysis with rival malware detection models on the IoT-23 dataset

Reference and year of Model or adopted Accuracy% Precision% Recall% Fl-score%
publications algorithm
Dzulqarnain [35], 2019 Hybrid machine learning 98.41% 97.56% 98.83% 98.60%
model
Xing et al. [36], 2022 Deep learning 96.22% 96.14% 96.20% 96.17%
(Auto-encoder)
Jamal et al. [37], 2022 Artificial neural network 97.08% 94.00% 93.00% 93.50%
based framework
Bhayo et al. [38], 2023 SVM, decision tree and 97.60% 96.30% 98.20% 97.40%
Naive Bayes
Sanchez et al. [39], Deep learning (LSTM) 96.20% 95.90% 96.50% 96.10%
2024
Sahu et al. [40], 2021 Deep learning (LSTM) 95.68% 95.31% 96.42% 95.86%
Zhu et al. [41], 2020 Ensemble learning 94.92% 97.04% 96.94% 96.99%
framework
Sun et al. [42], 2024 96.40% 96.80% 95.90% 96.40%
This Paper (TwStDrl) Two-Step-Deep 99.0% 99.70% 99.80% 99.30%

reinforcement learning

5 Conclusion

In this paper, we propose an advanced two-step deep reinforcement learning-enabled framework,
known as “TwStDrl” to resolve malware detection and prevention issues in IoT applications. Our TwStDrl
framework is capable of identifying malware at the network’s edge while protecting the user’s important
data privacy. We implement and evaluate well-known algorithms such as SVM, Random Forest, CNN,
and K-Means to verify the experimental performance of the proposed model. During analysis, we found
that the proposed model outperforms these algorithms in terms of comparative metrics. Additionally, we
benchmarked the TwStDrl model with state-of-the-art schemes and found that it is better than them in terms
of accuracy, precision, validation rates, etc. Based on these findings, we are confident that TwStDrl will be
useful for IoT applications to detect malware in real time with great efficiency.
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