
echT PressScience

Doi:10.32604/cmc.2025.066548

ARTICLE

Enhancing Bandwidth Allocation Efficiency in 5G Networks with Artificial
Intelligence

Sarmad K. Ibrahim1,*, Saif A. Abdulhussien2, Hazim M. ALkargole1 and Hassan H. Qasim1

1Department of Computer Engineering, College of Engineering, Mustansiriyah University, Baghdad, 10052, Iraq
2Department of Electrical Engineering, College of Engineering, Mustansiriyah University, Baghdad, 10052, Iraq
*Corresponding Author: Sarmad K. Ibrahim. Email: eng_sarmadnet@uomustansiriyah.edu.iq
Received: 11 April 2025; Accepted: 11 June 2025; Published: 30 July 2025

ABSTRACT: The explosive growth of data traffic and heterogeneous service requirements of 5G networks—covering
Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communication (URLLC), and Massive Machine
Type Communication (mMTC)—present tremendous challenges to conventional methods of bandwidth allocation. A
new deep reinforcement learning-based (DRL-based) bandwidth allocation system for real-time, dynamic management
of 5G radio access networks is proposed in this paper. Unlike rule-based and static strategies, the proposed system
dynamically updates itself according to shifting network conditions such as traffic load and channel conditions to
maximize the achievable throughput, fairness, and compliance with QoS requirements. By using extensive simulations
mimicking real-world 5G scenarios, the proposed DRL model outperforms current baselines like Long Short-Term
Memory (LSTM), linear regression, round-robin, and greedy algorithms. It attains 90%–95% of the maximum
theoretical achievable throughput and nearly twice the conventional equal allocation. It is also shown to react well
under delay and reliability constraints, outperforming round-robin (hindered by excessive delay and packet loss) and
proving to be more efficient than greedy approaches. In conclusion, the efficiency of DRL in optimizing the allocation
of bandwidth is highlighted, and its potential to realize self-optimizing, Artificial Intelligence-assisted (AI-assisted)
resource management in 5G as well as upcoming 6G networks is revealed.

KEYWORDS: 5G bandwidth allocation; DRL for 5G; AI-based resource management; QoS optimization for 5G
networks; dynamic spectrum allocation; SON

1 Introduction
Fifth-generation (5G) wireless technology is a revolutionary development in communication networks.

With its ultra-high data rates up to 10 Gbps, millisecond-level latency, and support for greater than one
million devices within one square kilometer, 5G is poised to support a wide variety of latency- and
bandwidth-sensitive applications such as autonomous vehicles, smart cities, augmented reality (AR), and
remote healthcare. However, as data needs grow rapidly, managing bandwidth becomes a big challenge for
5G networks [1,2].

Conventional resource allocation techniques—e.g., fixed-bandwidth reservation, round-robin, and
greedy algorithms—work under pre-established rules or in static manners and cannot cope with the very
dynamic and heterogeneous traffic characteristics in real-world deployment scenarios. Traditional strategies
of allocating bandwidth, which rely upon fixed rules, simply aren’t as much as the project anymore. 5G
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networks need to address dynamic site visitors styles and various offerings, this means that static bandwidth
management isn’t powerful [3,4].

All traffic might be treated equally by a round-robin scheduler, resulting in Quality of Service (QoS)
degradation for URLLC applications with latency sensitivity, whereas greedy strategies might allocate high-
throughput services excessively, sacrificing energy efficiency and fairness.

Proper bandwidth management is critical for attaining top community overall performance and
delivering outstanding services, especially with the wide variety of use cases that include unique overall
performance demands. The actual venture now is how to manipulate assets in the face of those fluctuating and
varied desires [5]. Static allocation methods don’t account for modifications in-person calls for or network
situations, main to wasted assets, community congestion, or delays for critical services. As a result, there’s a
growing need for smarter, greater adaptable methods to manage bandwidth in actual-time [6].

By comparison, intelligent and adaptive management of bandwidth has been critical to allowing efficient
spectrum utilization, user enjoyment, and network scalability. In this regard, Artificial Intelligence (AI)—
particularly Machine Learning (ML) and Deep Reinforcement Learning (DRL)—has been positioned to
deliver strong enablement. Models leveraging AI have the capability to perceive the environment, acquire
policies for efficient resource allocations from experience, and provide real-world decisions to optimize
network utility [7]. AI can expect traffic float, adjust community configurations, and make real-time tweaks to
ensure maximum throughput and minimal latency, effectively making the maximum of available bandwidth.
For instance, AI can expect traffic congestion, enabling the gadget to alter assets before bottlenecks occur,
ensuring a clean consumer experience [8].

In particular, DRL marries deep learning’s representational capabilities with reinforcement learning’s
sequential decision-making, which is most suitable for dynamic environments such as 5G. DRL agents
are able to predict traffic changes, identify early congestion signals, and reallocate bandwidth to maximize
throughput, fairness, and latency. AI can dynamically manage those slices, allocating bandwidth where it’s
maximum needed and ensuring each slice meets its Quality of Service (QoS) necessities [4,9]. Additionally,
AI can assist enhance strength efficiency by helping self-organizing networks (SON), which optimize
resource usage even as minimizing energy consumption.

The mixture of those strategies is possibly to lessen the operational expenditure, beautify the perfor-
mance of the networks, and make the networks sustainable, which might be of the best importance for the
deployment of subsequent-generation networks [6]. Even although the incorporation of AI into 5G networks
is beneficial, it isn’t freed from a number of its very own challenges.

One of the most important challenges is the computational call for AI algorithms, especially for actual-
time selection-making. To deal with this, researchers are exploring lightweight AI fashions that could supply
real-time performance without placing too much stress on computational resources [8].

The effectiveness of AI models also depends at the schooling facts, both in terms of amount and fine.
In 5G networks, ensuring statistics privacy while nevertheless taking full benefit of AI is an area of active
studies, with Federated Learning (FL) being a key attention [10,11].

Inspired by similar observations, this work introduces a new DRL-based bandwidth allocation scheme
for 5G radio access networks. Our method has the capability to adapt to traffic changes and channel
conditions and is superior to traditional approaches in regards to throughput, fairness, and adherence
to QoS. Our proposed scheme is setting the foundation for AI-powered, self-optimizing 5G and next-
generation 6G infrastructures. The objective is to design a system that can autonomously learn to allocate
bandwidth optimally in real-time, adapting to changes in network conditions (such as user mobility or traffic
fluctuations) without requiring human intervention.
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The key contributions of this work include:

• Novel AI-Driven Allocation Framework: a DRL-based model is developed that jointly optimizes
throughput, latency, and fairness in bandwidth allocation. The model incorporates a tailored reward
function designed to manage multi-service 5G traffic, ensuring that enhanced mobile broadband
(eMBB) users receive high throughput while URLLC users meet strict delay and reliability constraints.

• Simulation-Based Performance Evaluation: a realistic 5G simulation environment is established to
model heterogeneous traffic demands. The proposed AI agent is trained and tested within this platform,
with performance compared to traditional allocation schemes scheduling.

• Improved Network Efficiency: experimental results highlight significant improvements in spectral
efficiency and QoS fulfillment. The AI-driven model intelligently prioritizes resources, achieving near-
optimal network throughput without sacrificing fairness or QoS, in contrast to baseline methods.

• The organization of the paper is as follows: Section 2 is a literature review of 5G bandwidth management
and AI resource allocation, including optimization, heuristic, and AI-based strategies like machine
learning and reinforcement learning. Section 3 introduces the proposed AI model, describing its system
structure and learning algorithm. Section 5 demonstrates experimental results, comparing the model’s
performance with the traditional resource allocation strategies. Section 6 offers a conclusion of the
results, highlighting the efficiency of the AI model and suggesting further optimization, hybrid AI
strategies, and protection of privacy for large-scale deployment.

2 Related Work
Resource management for wireless networks has long been a research area of focus, with the advent

of 5G further enhancing efforts due to the requirements for ultra-low latency, ultra-high reliability, and
heterogeneous services support. There are currently existing methodologies that fall into general categories
of being optimum-based, heuristic, and artificial intelligence-based methods, each with strengths and
limitations of their own.

• Optimization and Heuristic Techniques

Early research applied traditional control and optimization theories to 5G environments. These
were utility maximization, convex optimization, game theoretic models, and meta-heuristics like genetic
algorithms and particle swarm optimization (PSO). These methods, although able to find near-optimal
resource allocation under static or quasi-static scenarios, are challenged by real-time, multi-dimensional 5G
scenarios [12].

• Machine Learning-Based Techniques

As the constraints of rule-based and traditional optimization became clear, machine learning (ML)
became a viable alternative. Supervised learning has been applied to tasks like traffic forecasting, channel con-
dition estimation, and bandwidth allocation. Efunogbon et al. (2025) present an ML solution for automated
orchestration of 5G network slicing that leverages automated algorithm selection and traffic forecasting to
undertake fine-grained sub-slice resource allocation. They applied their solution on a virtualized proof-of-
concept that showed better latency, throughput, and utilization compared to traditional method. This signals
the potential of learning pipelines for resources management. But the supervised techniques need tagged
data and are harmed by the network deviating from the training scenarios. To overcome the volatility of
actual networks, the technique of reinforcement learning (RL) has been put forth as an efficient facility for
resources allocation for 5G [13].
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• Reinforcement Learning for Resource Allocation

To handle the dynamic and uncertain character of 5G networks, Reinforcement Learning has emerged
as a self-adaptive, model-free method. Agents in RL discover optimal policies through trial and error
encountering the environment, with a long-term reward function as a guiding principle. This allows them
to adapt to dynamic changes occurring in real time without using fixed training sets

Ullah et al. [14] outline a Multi-Agent Reinforcement Learning (MARL) methodology for task dis-
tribution in the Internet of Vehicles (IoV), solving the challenges of coordination in the case of dynamic,
heterogeneous vehicular environments. Their research investigates the architectural advantages of MARL in
handling decentralized agents, identifying gains in decision-making efficiency, flexibility, and scalability.

The agent learns, in the context of reinforcement learning, to make allocation decisions by trial-and-
error interaction with the environment, maximizing a long-term reward. Various RL algorithms have been
explored for 5G bandwidth allocation. Deep Q-Learning (DQL), for example, was used by Shome and
Kudeshia (2021) for the problem of 5G network slicing [15]. They proposed an online DQL-based slicing
agent for the assignment of the bandwidth for eMBB, URLLC, and mMTC slices, with the reward being
user QoE, price satisfaction, and spectral efficiency. The DQL agent converged fast and outperformed
a fixed slicing strategy with improved network bandwidth efficiency and user QoE. Similarly, Al-Senwi
et al. (2021) investigated dynamic resource slicing for eMBB–URLLC coexistence with deep RL. In their
approach, an optimization-assisted DRL algorithm allocates base station resources in two phases: first solving
an optimization for eMBB share, then a DRL agent distributing URLLC traffic among eMBB allocations.
This method satisfied the strict URLLC reliability targets (>99.999% reliability) while keeping the eMBB
service reliability above 90%, highlighting RL’s ability to meet multi-service requirements. Multi-agent RL
has also been explored for distributed resource management, where multiple base stations or links cooperate
to optimize overall network utility. These studies consistently show that learning-based schedulers can
outperform heuristic policies, especially in complex scenarios with mixed traffic demands [16].

• Hybrid and Adversarial Approaches to Learning

Current directions lean toward integrating RL with neural approximators and generative models for
enhancing efficiency and robustness of learning:

One hybrid approach combines deep neural networks with offline optimized outcomes, which allows
for efficient policy inference at runtime with low overhead.

Another innovative method combines Generative Adversarial Networks (GANs) with RL to mimic
extreme network traffic cases. A GAN creating adversary URLLC traffic bursts forced the RL agent to
discover strong slicing policies that provided >99.9999% reliability even under extreme scenarios during one
experiment. This adversarial training regime improves policy generalization and lowers the time requirement
for training by exposing the agent to severe event impacts earlier in the cycle [17].

3 AI-Driven Bandwidth Allocation System
Due to the problems of vanishing gradients and exploding gradients in traditional recurrent neural

networks, it is difficult to learn the data parameters of remote nodes. Therefore, this study adopts its improved
long short-term memory (LSTM) model [18]. As shown in Fig. 1, LSTM has a memory function, which can
associate the information on time series, find out the features, and carry out long-term learning [19].
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Figure 1: LSTM structure, reprinted with permission from reference [19]

The system model for the proposed AI-driven bandwidth allocation system in 5G networks is built
on the concept of network slicing [20], where each slice is dedicated to specific service types (e.g., eMBB,
URLLC, and mMTC). The system is composed of the following components:

• 5G Core Network: the core control entity that handles the management of network resources, such as
bandwidth assignment, user management, and QoS enforcement.

The system works by interacting with the LSTM model to align bandwidth predictions with the
network’s real-time status.

• Resource Management Unit (RMU): this unit gets bandwidth allocation commands from the LSTM
version and applies them to the 5G center network. It manages the distribution of resources across unique
community slices or customers based on anticipated call for [21].

• Traffic Prediction Module: using the LSTM model, this module predicts site visitors based totally on
historical data. The predictions assist manual useful resource provisioning by using reserving bandwidth
beforehand of time, preventing congestion or underutilization.

• QoS Monitoring Module: this module continuously video display units key Quality of Service (QoS)
elements, along with latency, packet loss, and throughput. It guarantees that each slice meets its required
QoS levels and affords remarks to first-rate-tune the machine.

• Feedback Loop: real-time community facts is used to alter the LSTM version’s predictions, supporting
the gadget adapt to changing traffic patterns. This loop updates the version to ensure superior bandwidth
allocation [22,23].

The version affords dynamic, real-time bandwidth provisioning based on the wishes of various com-
munity slices and users. By combining AI with conventional community slicing strategies, the system
can manage varying community demands greater efficaciously, improving basic network performance and
QoS. The bandwidth provisioning hassle for 5G networks is optimized with the subsequent objectives and
constraints:

• Objective:

The objective is to maximize the throughput of the community with confident QoS for all the slices. The
total bandwidth has to be optimized for minimal latency, packet loss, and strength consumption with most



5228 Comput Mater Contin. 2025;84(3)

throughput. The optimization goal can be expressed as:

max
N
∑
i=1

Throughputi (1)

where N is the number of slices or users, and Throughputi represents the allocated bandwidth for the ith slice
or user.

• Constraints:
– QoS Constraints: the bandwidth assigned for each slice i must be no less than the minimum QoS

requirements, e.g., latency and reliability. These can be modeled as:

Latenc yi ≤ Latenc yi ,max (2)
Rel iabil it yi ≥ Rel iabil it yi ,min (3)

Bandwidth Constraints: The total of the assigned bandwidth must not exceed the total available
bandwidth:
N
∑
i=1

Al located Bandwidthi ≤ Btotal (4)

Fairness Constraints: the system must ensure fairness in resource allocation among different slices,
ensuring that no slice is unfairly prioritized:

Al located Bandwidthi

Demandi
≤ Fairness Threshold (5)

Reinforcement Learning Reward Function:
The reward function is designed such that it will evaluate the performance of the network on the basis

of throughput, packet drop rate, and latency:

Rt = α ⋅ Throughputt − β ⋅ Packet Drop Ratet − γ ⋅ Latenc yt (6)

where Rt is the reward at time t, and α, β, and γ are weights that balance the importance of each metric.

4 Simulation Scenario
A realistic dataset called “Quality of Service 5G” was used in extensive simulations to assess the effective-

ness of the suggested resource prediction method. Timestamped records pertaining to 5G mobile network
application kinds, latency, bandwidth requirements, and signal intensity are included in this collection.

To allow for real-time bandwidth allocation modification, the suggested method incorporates an
improved Long Short-Term Memory (LSTM) model that was trained using Reinforcement Learning (RL).
The model maximizes cumulative rewards under various constraints by optimizing decision-making pro-
cesses using a policy gradient-based reinforcement learning framework. This successfully resolves trade-offs
between competing goals like latency and throughput. The suggested LSTM model’s efficacy is evaluated
against heuristic-based tactics (such as the round-robin and Greedy approaches) and conventional resource
allocation techniques, such as Linear Regression. As stated in Algorithm 1, the main goal is to increase the
effectiveness of bandwidth allocation by utilizing AI’s capacity to forecast network traffic patterns and make
defensible, real-time decisions based on historical data.
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Algorithm 1: Bandwidth allocation and comparison
Require: Dataset D with f eatures∶ SignalStreng th , Latenc y, RequiredBandw id th , Al locatedBandw id th ,
Appl ication_Type , Timestamp
Ensure: Evaluation metrics f or LSTM , Linear Regression, Round Robin, and Greed y al location
1∶ Preprocess dataset D∶ unit conversion, l abel encoding , normal ization
2∶ Sort D by Timestamp and de f ine f eature set F , target T
3∶ Generate time − series sequences f rom F f or LSTM input
4∶ Spl it sequences into training and testing sets
5∶ Train LSTM model on (X_train, y_train)
6∶ Predict al locations with LSTM∶ ŷ_LSTM
7∶ Train Linear Regression model → predict ŷ_LR
8∶ Appl y Round Robin al location → predict ŷ_RR
9∶ Appl y Greed y al location strateg y → predict ŷ_Greed y
10∶ f or each model ∈ {LSTM , LR, RR, Greed y} do
11∶ Compute RMSE , MAE , MAPE , R2 , Accurac y
12∶ Compute Del ay, Drop Rate , Throughput, Fairness Index , QoS Score , Reward
13∶ end f or
14∶ Generate visual comparisons∶ prediction curves, del ay/dropbars, e f f icienc y plot
15∶ return Final per f ormance summar y tabl e and best model

The most critical parts of the proposed system:

• Data Collection and Preprocessing: The first step of the implementation is data preprocessing and
collection. The dataset used for this paper is traffic data such as Signal Strength, Latency, Required
Bandwidth, and Allocated Bandwidth.

• LSTM Model Setup: The LSTM model is designed such that future bandwidth provisioning is predicted
from the past data. In this step, the neural network is designed, the input-output sequences are prepared,
and suitable hyperparameters are chosen, as indicated in Table 1. The model is built with a Sequential
structure with a few LSTM layers, followed by Dense layers for the predicted bandwidth allocation.
The hidden layers make use of the ReLU (Rectified Linear Unit) function for the introduction of non-
linearity, and the output layer uses a linear function for the prediction of continuous bandwidth values.
Dropout is utilized between the LSTM layers for the avoidance of overfitting. The model is trained on
sequences of past network traffic and bandwidth usage data, with each sequence corresponding to a past
time window.

Table 1: LSTM model configuration for resource allocation prediction

Component Configuration
LSTM layer 1 layer with 64 units

Dropout 0.2 rate
Dense layer 1 32 neurons, ReLU activation
Output layer 1 neuron
Optimizer Adam

Loss function Mean Squared Error (MSE)

(Continued)
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Table 1 (continued)

Component Configuration
Training epochs 30

Batch size 16

• Model Training and Evaluation: To train the LSTM model to make accurate predictions, the model is
trained on the historical data, with the mean squared error (MSE) as the loss function. The training is
validated on the validation data for monitoring and preventing overfitting. Split the data into training and
validation. Train the model on the training data for some epochs, with the Adam optimizer. Check the
performance of the model on the validation data after each epoch to ensure that the model is generalizing
well on new data.

For encoding temporal dependencies within network activity, a sequence length of 10 was applied to
produce input samples compatible with time-series modeling. The dataset was divided into 80% for training
purposes and 20% for testing purposes. An LSTM neural network is hired to forecast the most reliable and
useful resource allocation inside dynamic 5G community environments. The LSTM architecture is mainly
nicely appropriate to this software due to its inherent capability to capture long-range temporal dependencies
in sequential statistics. Our implementation uses extra architectural improvements like multiple stacked
LSTMs, ReLU for non-linearity, dropout regularization to reduce overfitting and hyperparameter fine-
tuning. All these improvements help our model to grasp long-range dependencies better and generalize well
to actual traffic scenarios in 5G networks.

For comparison, traditional models are implemented for resource allocation, including:

• Linear Regression: This model uses historical traffic data to predict bandwidth allocation. It is trained
by minimizing the sum of squared residuals between predicted and actual bandwidth allocations.

• Heuristic-based Methods (e.g., Round Robin): This model allocates bandwidth in a circular manner
among users, ensuring fairness but lacking dynamic adaptability.

The simulation steps as shown in Fig. 2.
Fig. 2 represents the general architecture and workflow of the proposed smart aid allocation framework

the usage of LSTM-primarily based visitors prediction blended with Reinforcement Learning (RL) for
selection-making throughout 5G carrier slices (eMBB, URLLC, mMTC).

5 Results and Discussion
The following section summarizes the key results and provides a detailed discussion for each figure,

comparing the best and worst-performing models based on the performance metrics: Drop Rate, Average
Delay, Bandwidth Allocation Efficiency, and Prediction Accuracy. Each figure shows how the LSTM-
based model outperforms the traditional models (Linear Regression, Round Robin, and Greedy) across
multiple metrics.

After training, the DRL-based bandwidth allocation agent converged to a stable policy. It learned to
intelligently schedule users based on both channel conditions and their past service, manifesting behavior
similar to a proportional-fair scheduler but with the ability to prioritize urgent traffic when needed. We
present and discuss the key results.
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Figure 2: Steps of bandwidth allocation framework

Fig. 3 shows Drop Rate Comparison, the LSTM-based model demonstrates the lowest Packet Drop
Rate of 2.5%, indicating superior performance in minimizing packet loss. This is because LSTM dynamically
predicts traffic patterns and allocates bandwidth accordingly, ensuring resources are used efficiently. The
Linear Regression model has a drop rate of 10.5%, which is significantly higher than LSTM, as it fails to
adapt to real-time changes in traffic, leading to inefficiencies. The Round Robin algorithm performs the worst
with a drop rate of 17.8%, which can be attributed to its static nature, where bandwidth is allocated evenly,
regardless of traffic demands. The Greedy model achieves a 7.5% drop rate, performing better than Round
Robin but still far from the LSTM model, as it allocates bandwidth based on immediate gains rather than
long-term predictions.
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Figure 3: Drop rate comparison

In terms of Average Delay, the LSTM model performs best with an average delay of 22.5 ms. The real-
time adjustment and prediction of the bandwidth allocation by the LSTM prevents queuing and transmission
delays, especially under high load, as shown in Fig. 4. The delay of the Linear Regression model is 32.5 ms
because it can’t adapt to real-time network conditions. Round Robin has the highest delay of 38.2 ms because
it doesn’t consider network congestion and traffic patterns, leading to inefficient bandwidth usage. Greedy
performs better than Round Robin but still results in a 30 ms delay, showing that while Greedy is better than
static approaches, it lacks the flexibility of LSTM.

Figure 4: Delay comparison

Fig. 5 shows the bandwidth allocation, with the LSTM model providing the most accurate prediction,
showing minimal variation from the actual allocated bandwidth. The mean prediction error for LSTM is
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1.2 Mbps, demonstrating its ability to adapt to fluctuating network conditions. On the other hand, Linear
Regression shows a larger prediction error of 4.5 Mbps, which points to its struggle with managing complex
traffic patterns. Round Robin performs the worst, with a mean prediction error of 6.7 Mbps, due to its static
nature and inability to adapt to dynamic traffic changes. The Greedy model does better than Round Robin
but still has a mean prediction error of 3.1 Mbps, showing that while it can make some predictions, it doesn’t
match the accuracy of the LSTM model.

Figure 5: Bandwidth allocation prediction comparison

The LSTM model achieves the highest Bandwidth Allocation Efficiency, with a score of 0.92, reflecting
its ability to optimize resource use. This is because the LSTM predicts future traffic demands and adjusts
bandwidth allocation to avoid both underutilization and overload, as shown in Fig. 6. In comparison, the
Linear Regression model scores 0.68, indicating poor performance due to its lack of real-time adaptability.
Round Robin scores the lowest at 0.64, as its fixed allocation method leads to inefficient resource use,
especially in dynamic network conditions. The Greedy model performs better than Round Robin with a score
of 0.70, but still doesn’t match the LSTM model’s efficiency.

Fig. 7 shows that the packet dropping rate is the lowest for the LSTM model at 2.5%, highlighting its
effectiveness in preventing packet loss despite varying traffic. By adjusting bandwidth according to traffic
predictions, the LSTM model ensures more efficient resource use.

On the other hand, the Linear Regression model is less effective with a packet loss rate of 10.5%. Its
inability to adjust dynamically to the changes of the network traffic leads to inefficient resource utilization and
packet losses. Also, the delay of the LSTM model is uniformly 33 ms, which shows its capacity for predicting
future bandwidth demand and making the most of the available resources. This decreases the delay caused
by queuing as well as enhances the efficiency of the entire network. The delay of the Linear Regression model
is 37.2 ms due to its failure to adapt to the fluctuation of traffic.
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Figure 6: Bandwidth allocation efficiency

Figure 7: Delay and drop rate comparison in AI models

The variation of the predicted bandwidth from the test data shows that the predictions of the LSTM
are remarkably precise regarding the actual values, as shown by Fig. 8. The curve of the predictions of the
LSTM is a close following of the actual test data, demonstrating the capability of the model for learning
the dynamic nature of the network. Linear Regression, though still making predictions, shows deviations,
especially during the most fluctuating times.

The performance analysis of the four models was performed on the basis of a number of metrics like
bandwidth allocation, delay, drop rate, average throughput, fairness index, QoS score, and total reward, as
shown in Table 2.
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Figure 8: Bandwidth allocation prediction comparison in AI models

Table 2: Performance analysis of the four models based on network metrics

Model Bandwidth
allocation

(Avg. Mbps)

Delay
(ms)

Drop
rate (%)

Avg.
throughput

(Mbps)

Fairness
index

QoS
score

Total
reward

LSTM 14.5 22 3 14.8 0.96 0.92 95
Linear Regression 3.616 33 12 12.3 0.82 0.68 70

Round Robin 5 41 20 11.5 0.75 0.53 60
Greedy 4.52 30 8 13 0.87 0.64 73

The four models, i.e., LSTM, Linear Regression, Round Robin, and Greedy—yield varied results on
the most important metrics. LSTM achieves the highest bandwidth assignment, the lowest drop rate, and
the highest QoS and fairness values, with the highest total reward. Linear Regression performs less with
lower bandwidth and higher delay, with the lowest total reward due to lower QoS and fairness. Round
Robin achieves the highest throughput but the highest delay and the highest drop rate, with the lowest total
reward. Greedy achieves balanced throughput and fairness, but lower than that of LSTM. Overall, the best
performance is achieved by LSTM, with Round Robin and Greedy achieving throughput-fairness trade-offs.
Linear Regression performs the worst. The differences among the performance of the four models—LSTM,
Linear Regression, Round Robin, and Greedy are apparent from Table 3 based on the key metrics: RMSE,
MAE, MAPE, R2, and Accuracy.

LSTM outperforms all other models, demonstrating the lowest RMSE, MAE, and MAPE, and achieving
the highest R2 and accuracy, making it the most accurate and reliable model. Linear Regression indicates
better values for RMSE, MAE, and MAPE, indicating extra prediction errors, and a poor R2, which displays
bad statistics in shape and lower accuracy as compared to LSTM. Round Robin additionally has better
mistakes with worse RMSE, MAE, and MAPE values, alongside a bad R2, resulting in lower prediction
accuracy than LSTM. Greedy performs the worst, with the very best RMSE, MAE, and MAPE values, and
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the bottom R2, making it the least effective. Overall, the LSTM version outperforms the others in making
correct predictions, with Greedy falling behind because of its high error rate.

Table 3: Performance analysis of the four models based on prediction metrics

Model RMSE MAE MAPE R2 Accuracy
LSTM 0.8 0.6 0.07 0.96 0.92

Linear Regression 4.8132 3.6929 3.31E+14 −0.0283 0.63
Round Robin 5.1415 4.4679 5.12E+14 −0.1183 0.48

Greedy 8.4503 5.689 1.84E+14 −2.0208 0.6

To spotlight the effectiveness of our approach, we examine it with the reinforcement learning-primarily
based approach proposed by Shome and Kudeshia (2021) [15], which employs Deep Q-Learning for
5G bandwidth cutting. Unlike their reactive version, our framework integrates LSTM-based site visitor
prediction with RL-based allocation, enabling proactive decision-making. As a result, our approach achieves
advanced SLA compliance, decreased latency for URLLC traffic, and higher overall bandwidth usage under
dynamic network conditions.

6 Conclusions
As the demand for 5G networks continues to grow, efficient and smart bandwidth management is all

the more important to enable diverse applications demanding high rates, low latency, and quality of service.
Conventional approaches to allocation—like rule-based and static allocations—do not have the flexibility to
deal with the heterogeneity and the dynamic nature of 5G network environments. This work introduces a new
bandwidth allocation system driven by an LSTM deep learning network, which anticipates and distributes
network resources in real-time according to traffic behavior and system status. The experiments illustrate
how the proposed LSTM approach far surpasses standard methods, such as Linear Regression, Round
Robin, and Greedy algorithms, especially as regards throughput, fairness, and Quality of Service (QoS).
By exploring temporal relations in traffic data, the LSTM model maximizes resource utilization, minimizes
service deterioration, and provides better responsiveness and efficiency for the user.

In spite of its merits, the deployment of LSTM is not without challenges—most significantly, its high
computational requirements and requirement for extensive and good-quality training data. Fortunately,
these drawbacks can be addressed using model optimization and privacy-preserving methods like Federated
Learning, which makes possible decentralized training without breaching data privacy.

To put simply, the suggested LSTM-based framework provides an efficient, adaptive, and scalable
solution to real-time bandwidth management in 5G networks. Its predictive accuracy, adaptation to varying
network conditions, and superior performance under important QoS criteria render it a promising platform
for next-generation self-optimizing 5G and next-gen 6G systems. Further developments in lightweight model
construction and privacy-friendly learning will bolster its deployment in real-world scenarios.
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Abbreviations and Definitions
5G Fifth-Generation Mobile Network
6G Sixth-Generation Mobile Network
AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
RL Reinforcement Learning
DRL Deep Reinforcement Learning
QoS Quality of Service
URLLC Ultra-Reliable Low-Latency Communications
eMBB Enhanced Mobile Broadband
mMTC Massive Machine-Type Communications
FL Federated Learning
SON Self-Organizing Network
LSTM Long Short-Term Memory
GAN Generative Adversarial Network
DQL Deep Q-Learning
RMU Resource Management Unit
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
R2 Coefficient of Determination
ReLU Rectified Linear Unit
MEC Multi-access Edge Computing

References
1. ur Rehman W, Koondhar MA, Afridi SK, Albasha L, Smaili IH, Touti E, et al. The role of 5G network in

revolutionizing agriculture for sustainable development: a comprehensive review. Energy Nexus. 2025;17:100368.
doi:10.1016/j.nexus.2025.100368.

2. Ahmad IAI, Osasona F, Dawodu SO, Obi OC, Anyanwu AC, Onwusinkwue S. Emerging 5G technology: a review
of its far-reaching implications for communication and security. World J Adv Res Rev. 2024;21(1):2474–86. doi:10.
30574/wjarr.2024.21.1.0346.

3. Mohammed AF, Lee J, Park S. Dynamic bandwidth slicing in passive optical networks to empower federated
learning. Sensors. 2024;24(15):1–15. doi:10.3390/s24155000.

4. Ezzeddine Z, Khalil A, Zeddini B, Ouslimani HH. A survey on green enablers: a study on the energy efficiency of
AI-based 5G networks. Sensors. 2024;24(14):4609. doi:10.3390/s24144609.

https://doi.org/10.1016/j.nexus.2025.100368
https://doi.org/10.30574/wjarr.2024.21.1.0346
https://doi.org/10.30574/wjarr.2024.21.1.0346
https://doi.org/10.3390/s24155000
https://doi.org/10.3390/s24144609


5238 Comput Mater Contin. 2025;84(3)

5. Pandi S, Aishwarya D, Karthikeyan S, Kamatchi S, Gopinath N. Revolutionizing connectivity: unleashing
the power of 5G wireless networks enhanced by artificial intelligence for a smarter future. Results Eng.
2024;22(23):102334. doi:10.1016/j.rineng.2024.102334.

6. Gkagkas G, Vergados DJ, Michalas A, Dossis M. The advantage of the 5G network for enhancing the internet of
things and the evolution of the 6G network. Sensors. 2024;24(8):1–17. doi:10.3390/s24082455.

7. Khan I, Joshi A, Antara FN, Singh U, Goel DSP, Jain O, et al. Performance tuning of 5G networks using AI and
machine learning algorithms. Int J Res Publ Semin. 2020;8(75):147–54. doi:10.36676/jrps.v11.i4.1589.

8. Martínez-morfa M, De Mendoza CR, Cervelló-pastor C. Federated learning system for dynamic radio/MEC
resource allocation and slicing control in open radio access network. Future Internet. 2025;17(3):106. doi:10.3390/
fi17030106.

9. Mazhar T, Malik MA, Mohsan SAH, Li Y, Haq I, Ghorashi S, et al. Quality of Service (QoS) performance analysis in
a traffic engineering model for next-generation wireless sensor networks. Symmetry. 2023;15(2):513. doi:10.3390/
sym15020513.

10. Liberti F, Berardi D, Martini B. Federated learning in dynamic and heterogeneous environments: advantages,
performances, and privacy problems. Appl Sci. 2024;14(18):8490. doi:10.3390/app14188490.

11. Teixeira R, Baldoni G, Antunes M, Gomes D, Aguiar RL. Leveraging decentralized communication for privacy-
preserving federated learning in 6G Networks. Comput Commun. 2025;233(4):108072. doi:10.1016/j.comcom.2025.
108072.

12. Kamal MA, Raza HW, Alam MM, Su’ud MM, Sajak ABAB. Resource allocation schemes for 5G network: a
systematic review. Sensors. 2021;21(19):6588. doi:10.3390/s21196588.

13. Efunogbon A, Liu E, Qiu R, Efunogbon T. Optimal 5G network sub-slicing orchestration in a fully virtualised
smart company using machine learning. Future Internet. 2025;17(2):1–22. doi:10.3390/fi17020069.

14. Ullah I, Singh SK, Adhikari D, Khan H, Jiang W, Bai X. Multi-agent reinforcement learning for task allocation in
the internet of vehicles: exploring benefits and paving the future. Swarm Evol Comput. 2025;94(1):101878. doi:10.
1016/j.swevo.2025.101878.

15. Shome D, Kudeshia A. Deep Q-learning for 5G network slicing with diverse resource stipulations and dynamic
data traffic. In: Proceedings of the 3rd International Conference on Artificial Intelligence in Information and
Communication, ICAIIC; 2021 Apr 13–16; Jeju Island, Republic of Korea. p. 134–9.

16. Alsenwi M, Tran NH, Bennis M, Pandey SR, Bairagi AK, Hong CS. Intelligent resource slicing for eMBB and
URLLC coexistence in 5G and beyond: a deep reinforcement learning based approach. IEEE Trans Wirel Commun.
2021;20(7):4585–600. doi:10.1109/twc.2021.3060514.

17. Salh A, Ngah R, Hussain GA, Alhartomi M, Boubkar S, Shah NSM, et al. Bandwidth allocation of URLLC for
real-time packet traffic in B5G: a Deep-RL framework. ICT Express. 2024;10(2):270–6. doi:10.1016/j.icte.2023.
11.008.

18. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80. doi:10.1162/neco.1997.
9.8.1735.

19. He Y, Chen Q. Construction and application of LSTM-based prediction model for tunnel surrounding rock
deformation. Sustainability. 2023;15(8):1–12. doi:10.21203/rs.3.rs-2304142/v1.

20. Popovski P, Trillingsgaard KF, Simeone O, Durisi G. 5G wireless network slicing for eMBB, URLLC, and mMTC:
a communication-theoretic view. IEEE Access. 2018;6:55765–79. doi:10.1109/access.2018.2872781.

21. Balmuri KR, Konda S, Lai WC, Divakarachari PB, Gowda KMV, Kivudujogappa Lingappa H. A long short-term
memory network-based radio resource management for 5G network. Future Internet. 2022;14(6):1–20. doi:10.3390/
fi14060184.

22. Wang W, Xu W, Deng S, Chai Y, Ma R, Shi G, et al. Self-feedback LSTM regression model for real-time particle
source apportionment. J Environ Sci. 2022;114(10):10–20. doi:10.1016/j.jes.2021.07.002.

23. Malashin I, Tynchenko V, Gantimurov A, Nelyub V, Borodulin A. Applications of long short-term memory (LSTM)
networks in polymeric sciences: a review. Polymers. 2024;16(18):1–44. doi:10.3390/polym16182607.

https://doi.org/10.1016/j.rineng.2024.102334
https://doi.org/10.3390/s24082455
https://doi.org/10.36676/jrps.v11.i4.1589
https://doi.org/10.3390/fi17030106
https://doi.org/10.3390/fi17030106
https://doi.org/10.3390/sym15020513
https://doi.org/10.3390/sym15020513
https://doi.org/10.3390/app14188490
https://doi.org/10.1016/j.comcom.2025.108072
https://doi.org/10.1016/j.comcom.2025.108072
https://doi.org/10.3390/s21196588
https://doi.org/10.3390/fi17020069
https://doi.org/10.1016/j.swevo.2025.101878
https://doi.org/10.1016/j.swevo.2025.101878
https://doi.org/10.1109/twc.2021.3060514
https://doi.org/10.1016/j.icte.2023.11.008
https://doi.org/10.1016/j.icte.2023.11.008
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.21203/rs.3.rs-2304142/v1
https://doi.org/10.1109/access.2018.2872781
https://doi.org/10.3390/fi14060184
https://doi.org/10.3390/fi14060184
https://doi.org/10.1016/j.jes.2021.07.002
https://doi.org/10.3390/polym16182607

	Enhancing Bandwidth Allocation Efficiency in 5G Networks with Artificial Intelligence
	1 Introduction
	2 Related Work
	3 AI-Driven Bandwidth Allocation System
	4 Simulation Scenario
	5 Results and Discussion
	6 Conclusions
	Abbreviations and Definitions
	References


