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ABSTRACT: Next-generation 6G networks seek to provide ultra-reliable and low-latency communications, neces-
sitating network designs that are intelligent and adaptable. Network slicing has developed as an effective option for
resource separation and service-level differentiation inside virtualized infrastructures. Nonetheless, sustaining elevated
Quality of Service (QoS) in dynamic, resource-limited systems poses significant hurdles. This study introduces an
innovative packet-based proactive end-to-end (ETE) resource management system that facilitates network slicing
with improved resilience and proactivity. To get around the drawbacks of conventional reactive systems, we develop
a cost-efficient slice provisioning architecture that takes into account limits on radio, processing, and transmission
resources. The optimization issue is non-convex, NP-hard, and requires online resolution in a dynamic setting. We offer
a hybrid solution that integrates an advanced Deep Reinforcement Learning (DRL) methodology with an Improved
Manta-Ray Foraging Optimization (ImpMRFO) algorithm. The ImpMRFO utilizes Chebyshev chaotic mapping for
the formation of a varied starting population and incorporates Lévy flight-based stochastic movement to avert
premature convergence, hence facilitating improved exploration-exploitation trade-offs. The DRL model perpetually
acquires optimum provisioning strategies via agent-environment interactions, whereas the ImpMRFO enhances policy
performance for effective slice provisioning. The solution, developed in Python, is evaluated across several 6G slicing
scenarios that include varied QoS profiles and traffic requirements. The DRL model perpetually acquires optimum
provisioning methods via agent-environment interactions, while the ImpMRFO enhances policy performance for
effective slice provisioning. The solution, developed in Python, is evaluated across several 6G slicing scenarios that
include varied QoS profiles and traffic requirements. Experimental findings reveal that the proactive ETE system
outperforms DRL models and non-resilient provisioning techniques. Our technique increases PSSRr, decreases average
latency, and optimizes resource use. These results demonstrate that the hybrid architecture for robust, real-time, and
scalable slice management in future 6G networks is feasible.
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1 Introduction
5G is expected to facilitate a wide range of applications and use cases that fall under the categories

of massive machine-type communications (mMTC), ultra-reliable low-latency communications (uRLLC),
and improved mobile broadband (eMBB). Autonomous driving, smart homing, intelligent transportation,
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etc., are examples of use cases [1], and the main technological enablers are cloud computing, mobile edge
computing (MEC), network function virtualization (NFV) [2], and software-defined networking (SDN) [3].
Different radio access network (RAN) topologies, functionalities, and quality of service (QoS) requirements
are present in the use cases [4]. Consequently, new methods for network design, building, and maintenance
will be required to simplify network operations. One possible way to deal with these issues is by network
slicing [5]. Within the same physical network infrastructure, it changes the network build philosophy of
earlier generations’ monolithic design to create and operate logical/virtual networks that are customized
to meet the unique requirements of certain clients and services. In radio access systems, slice traffic and
inter-cell interference become more complicated and dynamic when new networks, including micro cells,
are deployed. The creation, modification, and deletion of slices as needed will provide flexible network
management and operation [6]. To ensure service level agreements (SLAs), the slices are segregated and can
be allocated to a use case with particular QoS requirements [7]. To avoid over-provisioning, the network
resources can be distributed to each slice according to specific needs and on-demand [8]. Model-based
techniques such as convex optimization and linear programming are weakening when resource management
becomes more sophisticated [9]. Reinforcement learning (RL) has been used to handle resource and
application management services associated with network slicing in 5G networks [10]. RL is a machine
learning (ML) technique that allows a bot to choose the optimal course of action by observing its performance
in various scenarios. RL with advanced learning capabilities, such as deep Q-networks, has been used
more and more in the management of complex networks [11]. Govern networked resources like storage,
computing, and network throughput as slices or discrete units, the majority of these initiatives have focused
on implementing adaptive resource allocation.

However, the end-to-end (ETE) resilience and proactive resource management in such slice enable
5G/6G networks is not taken into account by the majority of the effort [12]. Besides, the dynamic nature
of network conditions and user demands pose major challenges to maintaining optimal performance
and ensuring service continuity. Thereby, innovative methods are needed to dynamically adapt resource
allocation for varying traffic loads and potential network disruptions. To overcome this complexity, the
incorporation of deep RL (DRL) [13] and convergence of metaheuristic optimization algorithm provides a
promising way. Renowned for the capability to explore vast solution space as well as determine near-optimal
solutions, the metaheuristic algorithms can be employed to leverage the DRL agents. Meanwhile, the DRL
permits the advancement of intelligent resource management tactics that can adapt to real-time network
conditions with its ability to learn policies through interaction with the environment. This combination
offers a supportive framework for accomplishing ETE resilient and proactive resource management in slice-
enable 5G/6G networks. Through the incorporation of the metaheuristic’s global search ability with adaptive
learning of DRL, it is possible to introduce a system that not only optimizes current resource allocation but
also addresses potential future disruptions. The major contributions of the proposed method are provided
below as follows:

To propose an enhanced metaheuristic-DRL model, which offers proactiveness and resilience properties
for improving the efficiency of resource allocation in slice-enabled 6G networks. A metaheuristic, improved
manta ray foraging optimization algorithm (ImpMRFO) algorithm is incorporated into the proposed model
instead of solely relying on DRL to enhance the exploration and exploitation balance in RL training. This
improves the learning process and avoids suboptimal convergence. A Chebyshev chaotic map and levy flight
are incorporated into a standard manta ray foraging optimization (MRFO) algorithm to address local optima
issues and improve convergence performance. To compare the performance of the proposed method with
prevailing models for demonstrating the superiority in resource usage, minimization of resilience time and
improved performance.
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The proposed work’s remaining portions will be organized as follows: The review of relevant literature is
provided in Section 2. The proposed design for resource management in slice-enabled 6G network is stated
in Section 3. In Section 4, the proposed technique is examined and compared with existing methods Table 1.
The conclusion and future scope of the proposed model is exposed in Section 5.

Table 1: Comparison of ImpMRFO+DRL with State-of-the-Art RL-based resource management methods

Method Provisioning
Success

Rate (PSSR)

Convergence
speed

Adaptability
to dynamic
conditions

Energy
efficiency

Scalability Privacy
preserva-

tion
SAC Moderate Fast Low Moderate Moderate Low

DDPG Moderate Moderate Low Moderate Low Low
MADDPG High Slow Moderate Moderate High Low

Hierarchical
DRL (HDRL)

High Moderate High Moderate Moderate Low

Federated RL
(FRL)

High Moderate High High High High

Meta-RL
(MAML-Based)

High Fast Very High Moderate Moderate Low

Proposed
ImpMRFO+DRL

Very High Moderate Very High Very High High Moderate

2 Related Works
Khan et al. [14] emphasise security and reliability, this article delivers a comprehensive assessment

of resource allocation in integrated computer and networking systems. Based on resource categories,
technologies, situations, and solution features, the research groups the body of current work. Comparative
study reveals how few works either individually or in groups—address security and reliability. The study
emphasizes the need to concurrently evaluate these factors to enable important applications. Results expose
flaws in present methods and imply the requirement of intelligent, flexible, and strong allocation mechanisms
to improve the dependability of next computing and networking systems. Wang et al. proposed [15]
dependable, reasonably priced network slicing in IoT systems, combined with VNF partition and hybrid
backup strategy. The approach divides VNFs into smaller pieces to improve dependability with fewer
resources and employs a hybrid backup plan mixing local and remote backups. We frame the orchestration,
backup, and mapping issue as a dynamic MILP and model as an MDP. Solving the MDP using a multiagent
deep reinforcement learning method with action space reduction reduces conventional approaches and
simulation findings indicate better latency, dependability and network cost Table 2.

Table 2: Existing literature work compared with proposed work

Author Concept Methodology Dataset Disadvantage
Sefati et al. [16] Joint VNF

partitioning and
hybrid backup

scheme for reliable
network slicing in

IoT

Multiagent Deep
Reinforcement

Learning (DRL)
with action

space reduction

Simulation-
based

dataset

High
computational

complexity due to
DRL and MDP

modelling in large
state spaces

(Continued)
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Table 2 (continued)

Author Concept Methodology Dataset Disadvantage
Herrera
et al. [17]

Energy-efficient
microservice and
SDN controller

placement in
next-gen IoT using
Cloud Continuum

Q-NGINE
framework with

trade-off
mechanism

between energy
and latency

Internet of
Medical Things
(IoMT) use case

simulation

Slight increase in
response time
(~1.5%) while
optimizing for

energy
consumption

Cai et al. [18] Dynamic RAN
slicing for efficient
resource allocation

in 5G networks

Prediction-
aided Weighted
DRL (PW-DRL)

1548 Real-world
applicability may
require further

validation
Nawfel Saidi

et al. [19]
Dynamic resource
management in 5G

V2X network
slicing

Deep
Q-Learning

Simulated 5G
V2X scenarios

Static allocation
used as a baseline
lacks adaptability

in dynamic
conditions

Kaytaz et al. [20] Energy-efficient
RAN slicing for
B5G ITS edge

networks using
agent-controlled

intelligent
subnetworks

Lazy Skip
Markov
Decision
Process

(LS-MDP),
Bayesian

Optimization
(BO)

Logged data and
online agent
interactions

Potential
complexity in
real-time BO

integration and
policy selection

under high
variability

Ghafouri et al. [21] presented a network slicing and resource management strategy using multi-level
deep RL for O-RAN networks. To system capacity while ensuring the specified Quality of Service (QoS), this
RL-based scheme of O-RAN’s openness to offer two levels of centralized multi-agent decision-making and
decentralized single-agent execution for selecting appropriate service types. The simulation results showed
this user-experienced data rate, latency, and peak data rate. However, the complexity of this model was higher.
Mhatre et al. [22] recommended an Explainable Artificial Intelligence (XAI) framework intended for ORAN
architectures to simplify the process of deep RL (DRL). This system tackled the crucial problem of com-
prehending and optimizing the control of DRL agents for managing and allocating resources by providing
network-oriented explanations. The results demonstrated that a DRL agent’s capacity to make well-informed
multimodal decisions involving several control parameters significantly enhanced Key Performance Indi-
cator (KPI)-based rewards. However, the model would require more actionable and interpretable resource
management actions. Zangooei et al. [23] suggested a flexible RAN Slicing with constrained cooperative
multi-agent RL in Open RAN. To train this model, the advantage of a new constrained RL technique that
specifically took the SLA limitations was considered to lessen the SLA violation ratio. This method could
be implemented in future mobile networks because it was compatible with the Open RAN architecture.
For a variable number of slices, it utilized 19% less resources and had 8% fewer SLA violations. However,
it was difficult to design reward functions as well as constraint satisfaction mechanisms. The optimization
of resource management was examined by Ros et al. [24] using Markow decision problem (MDP)-assisted
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deep q-network-based priority/demanding resource management, or DQG-PD. The DQG-PD algorithm
was used to address energy efficiency and resource management in IIoT devices. The usage of deep Q-
network (DQN) simultaneously optimized energy computation and resource consumption for every service
request. To effectively adjust to a changing IIoT environment, DQN was separated into target and online
networks. Lastly, the experiments demonstrated better performance in terms of average service completion
ratio, reliability energy, resources, and cost. The DQG-PD algorithm could face issues in adapting quickly
to a dynamic IIoT environment. In multi-tier edge slicing networks, Nouruzi et al. [25] recommended a
unique cooperative method resilient to imprecise channel state information (CSI) brought on by the mobility
of user equipment (UEs). Here, a smart joint dynamic pricing and resources sharing (SJDPRS) system
was employed owing to the network’s limited resources, the UEs’ mobility, and the workload’s dynamic
requirement. The multi-objective optimization method was used to design an optimization problem. Further,
a deep reinforcement learning (DRL) technique was built depending on the reward function to address the
issue. According to the simulation results, the overall profit was improved as opposed to the non-cooperative
situation. However, the complex computation involved in this method would tend to be resource-intensive
and time-consuming.

Problem statement: In recent days, several existing methods have been introduced for effective resource
management in slice-enabled 6G networks. However, the existing models are hindered by various challenges
such as dynamic adaptations, scalability issues and complexity owing to rapidly varying network conditions
as well as the diversity of user needs. Moreover, they fail to guarantee optimal performance as well as
resource allocation, resulting in inefficient network utilization and operational costs. More significantly, the
existing models can not proactively manage resources as well as speedily recover from network failures,
tending to suboptimal QoS and resilience. The proposed method employs an enhanced metaheuristic DRL
model to resolve the existing issues. The proposed model can adapt to dynamic conditions, effectively
allocate resources and improve network performance. Besides, the proposed model minimizes resilience
time, enhances PSSPr, and guarantees robust QoS. By this means, the proposed method overcomes the
issues posed by prevailing techniques and meets the advanced requirements of slice-enabled 6G networks.
Deep reinforcement learning and metaheuristic optimization enhance algorithmic complexity, making it
computationally costly. Scalability is difficult when managing several slices in big, diverse 6G networks.

3 Proposed Methodology
This section introduces an advanced packet-based ETE resource management system with network

slicing support. The model utilizes an enhanced DRL (EDRL) model for allocation of optimal resources in
slice-enabled 6G networks. Initially, the system model is discussed, then the proposed EDRL is presented
with the optimization strategy.

3.1 System Model
3.1.1 Network and Infrastructure

In the proposed work, an ETE network design that includes transport, RAN, and core domains is
discussed. Here, an SDN controller is used to manage the network. Furthermore, it is presumed that the
design of this network is slice-enabled. Thereby, represents the set of slices having slices. Represents the
collection of users with users. Each time slot is designated to model and formulate the system model
according to the time. Let represent a user-slice indicator. The user requests a slice at the time slot. Multiple
user slices are created when a user requests over one slice. Consequently, there are always more user slices
in the network than the number of users. In this proposed work, “user” is used instead of “user-slice” for the
sake of conciseness. Here, indicates the user’s arrival time. Every slice has a unique virtual network function
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(VNF) and service function chain (SFC), with the set of VNFs for slice having functions denoted by Here, is
used to the VNF in SFC s to indicate each function’s order in SFC. For instance, network address translator
(NAT) VNFs are always executed before firewalls in a particular service, such as web browsing. Let resembles
the VNF of SFC of slice in CPU cycle per bits of packet/flow, which represents the processing requirement
for function. The maximum packet size and tolerable delay for each slice are denoted by in [Mbps] and in
[ms]. Moreover, the mean in packets per second indicates that the number of incoming packets for each slice
follows a Poisson process. Accordingly, gives the probability of creating packets by slice. Furthermore, and
signifies the size coefficients for a packet of slices in the transport, RAN, and core domains. RAN domain:
Here, represents the set of BSs included in the RAN domain, and indicates the sub-carrier sets having sub-
carriers. An SDN controller acts as the agent, coordinating and managing the network’s components, as seen
in Fig. 1.

SDN 

controller

Core 

network

Transport 

network

Radio 

access 

network

Node 

server

VM

Control 

link

Physical 

link

BS

Router

UE

Figure 1: Network with multiple domains based on the suggested system model

RAN Optimization qc , l
u ,v influence v slot u BS c on the sub-carrier l ϑc , l

u ,v assigned v and l BS c. In each BS,
each sub-carrier can be assigned to a single user using the orthogonal frequency multiple access (OFDMA)
approach. Furthermore, it is guaranteed that the total power allotted to the users is less than the maximum
preset transmit power of each c, Qc

max. Let, ic , l
u ,v the v’s channel gain on sub-carrier k in BS b through u.

The uncertainty in the channel gain exists because of factors including hardware limitations, estimate errors,
mobility, and feedback channel delay. The channel gain uncertainty model is expressed as follows: ĩ c , l

u ,v =
ic , l
u ,v+ ∈CSI , ĩ c , l

u ,v , ∈CSI estimated channel gain and estimation ic , l
u ,v . For v data rate in bps/Hz is given s̃c , l

v . The
interference between the BSs, the probabilistic constraint is considered as follows:

Pr (J̃ c , l ,u
v ≤ Jth) ∈ ϕ (1)

where, J̃ c , l ,u
v is the intrusion v, ϕ route. In the meantime, Jth is the threshold for the other BSs’

interference v.
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3.1.2 Core and Transport Domains
M∗, M̂ the set of links in the core and transport networks, P∗ besides P̂ nodes in the core and

transport (switch/router) networks. To model the transport and core networks, two connected graphs are
considered Ĵ (P̂, M̂) and J∗ (P∗, M∗). K̂ besides K the adjacency matrices of the network K̂ = [kp̂, p̂′]P̂×P̂ ,
K = [kp̂, p̂′]P×P′ . For the transport network k̂ p̂ , p̂′ = 1, if p̂, p̂

′

connected by a link, kp̂, p̂′ = 0 fundamental kp̂, p̂′ =
1, p besides p

′

connected kp̂, p̂′ = 0 otherwise. The Abilene from a popular data set SNDlib used to have a
unique graph and simulation repeatability for a core and transport network/graph topology with 15 links and
12 nodes. In the core network eu

p , p′ the link available capacity between s p besides p′, u, zu
p , p′ ,v the bandwidth

allotted to this link. It is ensured that the total bandwidth allotted p, p′ than eu
p , p′ provided by the following

∑v∈U∗ zu
p , p′ ,v ≥ eu

p , p′ , ∀p, p′ ∈ N∗, ∀u. êu
p , p′ capacity for the p, p̂′, (p̂, p̂′) P̂, u system. The zu

p , p′ ,v bandwidth
allotted to v, p, p̂′ time slot u transport network link. The subsequent ∑v∈U∗ ẑu

p , p′ ,v ≤ êu
p , p̂′ , ∀p̂, p̂′ ∈ N̂ , ∀u is

stated for the link between p, p′, p̂, p̂′ the limitations in the resources available.
Core and transport optimization variables:

The τhm ,n′
u ,v ∈ {0, 1} core hn . ,n′ user data n, n′, u. Furthermore, V m∗n = {1m, . . . , vmn , . . . , Vmn}denotes

the VM sets hosted n ∈ P∗ through Vmn VMs in the core network. Assume that the ot on virtual machine
(VM) vm for v on n, u as ψv m ,n ,ot

u ,v . au
v m ,n in Mbps represents the available processing capacity of VM vm

hosted on n, u. Furthermore, in the au
v m ,n buffer capacity available for p̂ ∈ P̂ through u. To γu

v m ,n ,v , γ̂u
p̂′ ,v

computational ability and reserved buffer capacity for v, p̂, VM vm node p. The following constraints are
taken into account owing to the resource boundaries of routers and VMs,

∑
v∈U∗

γu
v m ,n ,v ≤ au

v m ,n , ∀u,

∑
v∈U∗

γ̂u
p̂′ ,v ≤ â′p̂ , ∀u. (2)

3.1.3 Failure Model
Here, a failure can be interpreted differently in different network domains. A failure in the RAN domain

is an outage caused by CSI uncertainty. It designates router or link congestion in the transport network.
It mentions overloaded VMs in the core domain. The product of success probabilities in each area is the
probability of successful slice provisioning (PSSPr) because these faults are statistically independent and
unique. PSSPr has a multiplying formula since ETE slice provisioning entails successive operations. Also,
Pr (m)v the slice probability v and m packs. The outage probability of RAN is expressed as:

℘−1
M (μran) ≤

⎡⎢⎢⎢⎢⎢⎢⎣

ϑc , l
u ,v log

⎛
⎜⎜⎜
⎝

1 +
qc , l

u ,v℘−1
ĩ c , l ,u
v

( 1 − μran

L
)

∑t∈T∗ χu
v ,tbwtrt ,ran

⎞
⎟⎟⎟
⎠

⎤⎥⎥⎥⎥⎥⎥⎦

(3)

The ϑc , l
u ,v binary variable (0 or 1) is whether l BS c to v slot u. ρ2 clatter qc , l

u ,v allocated transmission power
to v, l period u. χu

v ,t demonstrating v, t, u, rt ,ran coefficient that normalizes the bandwidth based on RAN’s
nature t and bw the size coefficient that normalizes the [.] ceiling function, which rounds the value up to the
nearest integer. In the core domain PSSPr can be expressed as,

℘−1
M (μcore) ≤

minn ,v m (γu
v m ,n′ ,v)

∑t∈T∗ χu
v ,tbwtrt ,core

(4)
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where, maxn ,v m represents the maximum values over virtual machines vm physical e n, γu
v m ,n′ ,v the capacity

of vm, n to user v, u, as well rt , core coefficient associated the core network characteristics for service t. Further,
in the transport network, PSSPr m besides v is defined. The following are the closed forms of an uncongested
connection for the user v across the router p̂, the link between nodes p̂ besides p̂′:

℘−1
M (μrouter) ≤ min

p̂
γ̂ p̂ , v , p̂ ∈ P̂ (5)

℘−1
M (μl ink) ≤

min p̂ , p̂′ (ẑu
p̂ , p̂′ ,v)

∑t∈T∗ χu
v ,tbwtrt ,tran

(6)

where, min γ̂ p̂ the minimum values over all routers in the routers set, min p̂ , p̂′ the minimum values over
the node (p̂, p̂′) and ẑu

p̂ , p̂′ ,v bandwidth. Additionally, the constraint ∣K∗∣∣V∗∣ϑc , l
u ,v qc , l

u ,v℘−1
i c , l

u ,v
((1 − ε)

1
∣K∗∣∣V∗∣ ≤ Jth

which Jth is the inference threshold imposes the conditions on the transmitted power associated the outage
probability thresholds.

3.1.4 Delay Model
Two forms of delays namely the processing delay and transmission delay are considered in the proposed

work. The model computes the processing delay depending on the VMs engaged in processing network
functions, in which the overall processing delay of the summation of the delay over all relevant nodes and
VMs. The transmission delay is computed by the data rate in several network domains, comprising the
RAN domain, core domain, and transport domain. Besides, the model examines the total transmission
delay as an accumulation of delays experienced in these domains conferring to the packet transmission of
users and their respective service allocated to them. Accordingly, the total delay experienced by a user is
acquired by adding the processing and transmission delays and guaranteeing that the sum of delay does not
exceed the permissible limits for every service slice to ensure the desired Quality of Service (QoS) standards.
This comprehensive strategy enables efficient resource allocation and management in dynamic network
conditions to support proactive network operations.

3.1.5 Time-Based Constraints on Evaluation
In this section, two new constraints are deliberated to assess the network’s performance and guarantee

its resilience and proactiveness tendencies. The υ time duration after u the network’s performance. It is
important to note that the following restriction is established to guarantee the network’s proactivity:

min
u′

(Γu′
v (m)) ≥ μmin

PSS Pr, ∀u′ > u, u′ − u ≤ υ (7)

It indicates the next u′ minimum PSSPr v, m must surpass a minimal threshold μmin
PSS Pr. In addition, the

following restriction defines the network resilience,

∣ arg min
u′

(Γu′
v (m)) − ũ∣ ≤ Ures , u′ < ũ, u′

′

− ũ < υ (8)

where, ũ indicates the initial time that Γu
v (m) is equivalent μavr

PSS Pr where ũ = arg maxw′

(Γw′
v (m) ∣Γw′

v (m) = μavr
PSS Pr ) as well μavr

PSS Pr excepted threshold on average of PSSPr, Ures is the longest
amount of time that the network may return to its prior performance.
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3.1.6 Cost Model
In slice-enabled networks, the cost model involves the evaluation of the economic impact of using

network resources, with emphasis on two main cost categories migration cost and utilization cost. Utilization
cost encompasses the cost incurred during the deployment of network resources or elements, which may
fluctuate depending on parameters transmission speeds for various links and power usage for servers. Every
resource category, whether a link, a VM, or a sub-carrier in the RAN has a defined unit cost related to its
use. In contrast, the migration cost happens when there is a necessity to reassign resources to accommodate
developing network conditions or demands, comprising costs associated scheduling, synchronization, and
forwarding data associated with VMs. Through this cost, the model delivers efficiencies and trade-offs
of resource management, permitting operators to optimize their allocated resources both in terms of
performance and economic goals. Understanding facilitates decision-making intended to progress network
performance when reducing operational costs.

3.1.7 Problem Formulation
The RR, route, and VM selection variables are the primary variables of the issue. Since the goal is to

minimize the function that contains the imposed cost, the proposed method adds a novel objective function
that is stated as follows,

min
ϑ ,q ,τ ,ψ ,γ ,γ̂ ,Z , Ẑ

d̂1 ∑
t ∈ T∗
v ∈ V∗

Ω(u)uti l ,v + d̂2 ∑
t ∈ T∗
v ∈ V∗

Ω(u)mi gr ,v , ∀v ∈ V∗ (9a)

S.T: D(u ,m)
total ,v χu

v ,t ≤ dt , ∀t ∈ T∗, ∀v ∈ V∗, ∀u, (9b)

min
u′

(Γu′
v (m)) ≥ μn

PSS Pr, ∀u′ > u, u′ − u ≤ υ (9c)

∣ arg min
u′

(Γu′
v (m)) − ũ∣ ≤ Ures , u′ < ũ, u′

′

− ũ < υ (9d)

℘−1
M (μl ink) ≤

min p̂ , p̂′ (ẑu
p̂ , p̂′ ,v)

∑t∈T∗ χu
v ,tbwtrt ,tran

(9e)

℘−1
M (μrouter) ≤ min

p̂
γ̂ p̂ , v , p̂ ∈ P̂ (9f)

℘−1
M (μcore) ≤

minn ,v m (γu
v m ,n′ ,v)

∑t∈T∗ χu
v ,tbwtrt ,core

(9g)

∣K∗∣∣V∗∣ϑc , l
u ,v qc , l

u ,v℘−1
i c , l

u ,v
((1 − ε)

1
∣K∗∣∣V∗∣ ≤ Jth (9h)

∑
v∈U∗

ẑu
p , p′ ,v ≤ êu

p , p̂′ (9i)

∑
v∈U∗

zu
p , p′ ,v ≥ eu

p , p′ (9j)
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℘−1
M (μran) ≤

⎡⎢⎢⎢⎢⎢⎣
ϑc , l

u ,v log
⎛
⎜
⎝

1 +
qc , l
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v
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⎞
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(9k)

∑
v∈U∗

γu
v m ,n ,v ≤ au

v m ,n , ∀u, (9l)

∑
v∈U∗

γ̂u
p̂′ ,v ≤ â

′

p̂ , ∀u. (9m)

The coefficient factors for each component of the utilization function are denoted d̂1 besides d̂2. It is
ensured that the overall imposed delay for every user in constraint (9b) must be less than the tolerable
delay for every slice. The network’s proactivity property and capacity to maintain PSSPr above the minimal
amount needed for the upcoming time slots are guaranteed by constraint (9c). Besides the network can
reach the desired PSSPr in a constrained amount of time under constraint (9d). Constraint (9e) guarantees
that the threshold μl ink under consideration, the ratio of the minimum bandwidth allotted to v the
transport network’s connections to the packet size must be larger than the inverse function of the cumulative
distribution function (CDF) M. In the same way, constraint (9f) intends to router’s reserved the threshold
μrouter bigger than the inverse of CDF M for user v. The μcore (9g) for the core network the ratio of minimum
computing resources allotted to v the packet size must be more than the inverse of CDF M. Also, it is
confirmed that the derived closed-form of (1) must be less Jth (9h). The bandwidth allotted to users across the
transport and core networks’ links is kept below their capability by constraints (9i) and (9j). Eq. (9k) yields
the non-outage RAN with μran the ratio of data rate should be bigger than the inverse of the CDF random
variable M. Lastly, it is guaranteed that all computing resources are distributed and the user buffer is smaller
than the capacity of VMs and buffers under limitations (9l) and (9m).

3.2 Enhanced Deep Reinforcement Learning (DRL) Based Approach
The optimization problem is classified as a MINLP problem, which is known to be computationally

because it involves binary integer variables (ϑ and τ) for selecting path and allocating subcarrier, as well as
continuous non-linear variables (q) for power allocation. Since joint subcarrier and power allocation issues
have exponential complexity because of binary choice variables and non-linear couplings, their NP-hardness
has been thoroughly established. Problem (9) inherits the NP-hardness of these scenarios as a special case
since it generalizes them by including resource management and routing. Therefore, it is impossible to solve
(9) exactly in polynomial time. Furthermore, the proposed method seeks to ensure the network’s proactivity
and resilience for the upcoming time windows.

An online approach with proactiveness must be utilized. ML-based techniques perform well in resolving
online issues and forecasting behaviour in the future using historical data. As a result, an enhanced
DRL model is used in the network and problem. The online optimization problem is solved using an
improved manta ray foraging optimization algorithm (ImpMRFO) while preserving its proactive and robust
characteristics. The two-phase method assesses the efficacy of proactive and resilient properties across
episodes and resolves the resource management optimization problem in each time slot. Main Environment
and Agent: The proposed method examines an ETE network that consists of a core network with several
servers, a transport network with bandwidth-constrained links, and a RAN with BSs comprising limited sub-
carriers and power. Various slices are requested by various users. A deep neural network (DNN) is merged
with RL to empower agents to learn optimal networking with the environment. The architecture of Enhanced
DRL is provided in Fig. 2.
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Figure 2: Architecture of enhanced DRL

State: When using DRL techniques, the agent decides which agents or actions to take by considering
the system. For each time u network state is defined T∗(u) = [ic , l

u ,v , eu
p̂ , p̂′ , êu

p̂ , p̂′ , au
v m ,n , âu

p̂] , ∀u is the network’s
available resources and user channel gains. In terms of states, the agent or agents select the proper
action by shifting the network state to the subsequent state. The VM selector, path, RR, and resource
allocation in the transport and core networks are the optimization factors included in this action A∗(u) =
{ϑu , qu , τu , ψu , γu , γ̂u , Zu , Ẑu} , ∀u.

Reward function: Two categories of reward functions such as episodic reward and instance reward are
considered. By A(u) is the objective function and constraints, the instance reward function S(u) is achieved
as follows:

Re(u) (S(u), A(u)) =
⎧⎪⎪⎨⎪⎪⎩

d̂3Γ̃u − (d̂1 ∑v Ω(u)uti l ,v + d̂2 ∑v Ω(u)mi gr ,v) , i f constraint (9) satis f ies
−ϖ, otherwise

(10)

The coefficient factor and the number of successful arrival packet ratio at u, d̂3, Γ̃u . Furthermore, break-
ing the limits carries a large penal ϖ. The 0 < Γ̃u ≤ 1 continuous d̂3 is selected (d̂1 ∑v Ω(u)uti l ,v + d̂2 ∑v Ω(u)mi gr ,v).
It is important to remember that each time slot the number of packets successfully is determined. However,
E, the episodic reward is acquired by,

Re
(E)

E p =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑U
u=1

Re(u)

U
, i f constraint (9c) and (9d) satis f ies in ever y time slots o f episode E

−ϖ, otherwise
(11)

Then, the proposed method examines the specifics of the implemented ImpMRFO algorithm in the
following part. It is noted that the learning process is directly impacted by choosing the right value when the
constraints are not met. In this regard, the ImpMRFO is set in the proposed method.
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3.3 Improved Manta Ray Optimization
In slice-enabled 6G networks, resource management problems can be non-convex. The metaheuristic

optimization algorithm is well-suited to overcome such non-convex optimization problems by exploring
diverse solutions instead of converging to local optima. In the proposed DRL approach, an improved
manta ray foraging optimization algorithm (ImpMRFO) is used for handling the non-convex nature of the
optimization problem by optimizing the policy and enabling stable learning. A bio-inspired optimizer, the
manta ray foraging optimization algorithm (MRFO) mimics the manta ray’s motion of snatching prey. It
makes use of three foraging characteristics of manta rays: chain foraging, cyclone foraging, and somersault
foraging. The trials conducted under various test suits demonstrated MRFO’s ability to resolve optimization
issues. However, the standard MRFO occasionally encounters problems with local optima and convergence
issues. Thus, the concept of the chaotic map and Levy flight is applied by the ImpMRFO algorithm. In
ImpMRFO, the manta ray’s positions (potential resource allocations), current resource constraints, QoS
requirements and user demand patterns are considered as input. The outputs are the optimized policy,
resource allocation decisions for network slices, and mapped resource distribution profiles. The major steps
involved in MRFO.

3.3.1 Initialization Stage
The initialization of MRFO is c randomly to construct random locations Z. It initiates the population

size Q, maximum iteration IterMax i , and problem dimension F. The expression of the population initialized
in the initialization phase is provided as follows.

Q j = lbk + ubk − t1z j , j ∈ 1, 2, ....Q (12)

where, tk is the random number in the [0, 1] besides ubk addition lbk greater and lower bounds kth

component. For every manta ray in the solution space Fitn (Z), which is the maximization of Eq. (9)
calculated analytically and compared. Based on the fitness computation, a fitness score has been assigned to
each manta ray in the solution space.

3.3.2 Optimization Stage
As previously stated, the optimization phase can be divided into three categories: chain foraging, cyclone

foraging, and somersault foraging. To update the global best solution, the MRFO model uses this to calculate
and compare the fitness.

Chain foraging: The expression below has been used to update Zm of this foraging operation.

zu+1
m = {zu

m + t ∗ (zu
Best − zu

m) + χ (zu
Best − zu

m) m = 1
zu

m + t ∗ (zu
m−1 − zu

m) + χ (zu
Best − zu

m) m = 2, 3, ...., Q (13)

The zu
m characterizes mth of the agent in u, t resembles the random vector in [0, 1], χ designates the

weight zu
Best the high-concentration plankton.

Cyclone foraging: The following expression is used to update the Zm cyclone foraging.

zu+1
m = {zu

Best + t ∗ (zu
Best − zu

m) + δ (zu
Best − zu

m) m = 1
zu

Best + t ∗ (zu
m−1 − zu

m) + δ (zu
Best − zu

m) m = 2, 3, ...., Q (14)

where, δ indicates the weight coefficient. Additionally, to enhance the MRFO model’s exploration, the cyclone
foraging phase modifies the agents’ locations based on a random position inside the search area. As a result,
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the agent’s current position can be modified as follows.

zu+1
m = {zu

Rand + t ∗ (zu
Rand − zu

m) + δ (zu
Rand − zu

m) m = 1
zu

Rand + t ∗ (zu
m−1 − zu

m) + δ (zu
Rand − zu

m) m = 2, 3, ...., Q (15)

The zu
Rand random position in the search space.

Somersault foraging: The food position is perceived as a pivot in this performance. Every individual
tendency to swim around the pivot and somersault into a new location. As a result, they constantly update
their location to reflect the best location found so far. A mathematical formulation used in this stage can be
specified as follows.

The location of the food is thought to be crucial to this performance. Each individual has a propensity to
swim around the pivot and somersault into a different area. Therefore, they update their location frequently
to reflect the greatest spot found so far. The mathematical formulation utilized in this step to update the agent
can be described as follows.

zu+1
m = zu

m + w ∗ (t1 .zu
Best − t2.zu

m) (16)

where, t1 and t2 are the random number in the range [0, 1] as well w, the somersault factor equivalent to 2.

3.3.3 Termination Stage
The previous phase steps are repeated until the halting condition is met. Here, the stop condition is the

total number of iterations. The MRFO algorithm selects the optimal solution based on the higher fitness
function value.

3.3.4 ImpMRFO Based on Levy Flight and Chebyshev Chaotic Map
Chebyshev chaotic map: The convergence feature may be impacted by the random number sequence

utilized to differentiate parameters during the MRFO execution. The MRFO lacks specific analytical findings
that could improve its effectiveness, in contrast to other swarm-based intelligence algorithms. A random
state that rises during the development of a non-linear system is called chaos in deterministic systems. In
general, the Chebyshev chaotic map exhibits a greater uniform distribution range. It is distributed in [−1, 1]
sequence is ergodic, chaotic, and uncorrelated within the range of m ≥ 2 (m being the order). Thereby, the
distributed chaotic map is used in MRFO to initialize the position of manta rays. The equation of Chebyshev
chaotic map is specified as,

Rz+1 = cos (m cos−1 rz) rz ∈ [−1, 1] (17)

To initialize the manta ray position, MRFO utilizes the above Eq. (12) for generating uniformly dispersed
points.

Q j = lbk + Rz+1ubk − t1z j , j ∈ 1, 2, ...Q (18)

This increases the original population’s capacity for global searches and optimizes the solution
performance.

Levy flight, in this subsection, levy flight has been used to enhance the MRFO. Levy flying considerably
reduces the early convergence issue of MRFO. Levy suggested approach takes the random walk method
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provide suitable control over local search. The below equation is a quantification of this mechanism’s
representation,

Le (ε) ≈ ε−1−κ (19)

ε = N
∣Q∣ 1

κ
(20)

ρ2 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Γ (1 + κ)

κΓ ((1 + κ)
2

)

Sin (πκ/2)
2(1+κ)/2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

2
κ

(21)

where, 0 < κ ≤ 2 and N∼P (0, ρ2) Γ represents the gamma function, κ is describes the index, N/P∼P (0, ρ2)
expresses that the sample from Gaussian distribution in which the ρ2 is 0. Here, the value ε = 3/2. Eq. (16)
has been updated based on flight update MRFO solution. It is provided as follows (Table 3):

zu+1
m = zu

m + w ∗ Le (ε) (t1 .zu
Best − t2.zu

m) (22)

Table 3: Comparative analysis of ImpMRFO with existing improved MRFO algorithms

Algorithm Conceptual enhancement Strength Limitation
OBL-MRFO

(Opposition-Based
MRFO)

Introduces opposite
solutions during

initialization to improve
diversity

Faster initial
convergence

This May lead to
premature

convergence in later
stages

Gaussian Mutation
MRFO

Applies mutation using
Gaussian distribution to

increase exploration
capability

Improves diversity in
search space

Lacks control over
local/global balance

Adaptive MRFO
(AMRFO)

Uses adaptive parameters to
balance exploration and
exploitation dynamically

Good balance of
exploration and

exploitation

Complex parameter
tuning needed

MRFO-PSO Hybrid Combines PSO’s velocity
update with MRFO search

behaviour

Enhances convergence
speed

Increased
computational cost

and parameter tuning
ImpMRFO
(Proposed)

Uses Chebyshev chaotic map
for better initialization and

Levy flight for dynamic
search

High reliability, low
early convergence,

robust global
exploration

Lacks theoretical
convergence proof (a

common issue in most
metaheuristics)

Conversely, our methodology utilizes ImpMRFO not just for parameter optimization, but as an adaptive
support system coupled with DRL in real-time, specifically for resource allocation in 6G network slicing—
a highly dynamic, multi-constraint context. The innovation resides in: The twin function of ImpMRFO:
enhancing the initial selection of DRL policies and dynamically directing exploration informed by real-time
system status input.
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Algorithm 1 can offer the pseudocode of ImpMRFO algorithms.

Algorithm 1: Pseudocode of ImpMRFO algorithm
Input: Population size Q, maximum iteration IterMax i , upper bound ub, lower bound lb, and dimension F
Output: The best solution
Initialize the search agents’ population (manta rays)
Calculate the fitness of each individual
while the stop criterion has not been attained do
Employ Chebyshev’s chaotic map of the initial population

if f itnm < f itnQm then
zm = Qm

end if
for m = 1 to Q do

if Rand < 0.5 then \\ Cyclone foraging
if Coe f < Rand then

Update zm using Eq. (14)
else

Update zm using Eq. (15)
end if

else \\ Chain foraging
Update zm using Eq. (13)

end if
end for
Set U = 2
for m = 1 to Q do \\ Somersault foraging
Update zm using Eq. (22)
end for
for m = 1 to Q do
Update the fitness value of each individual

if f itn (zm) > f itn (zBest) then
zBest = zm

end if
end for

end while
Return the best solution
Stop

The use of Chebyshev chaotic initialization and Levy flight-enhanced local search enhances the learning
agent’s flexibility and minimizes the risk of local optima entrapment—attributes often absent in previous
meta-heuristic and deep reinforcement learning combinations. Focusing on a proactive and resilient solution
in delay-sensitive, resource-limited IoT situations, where the majority of current research emphasizes static
optimization or single-layer decision-making.
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4 Results and Discussion
In this section, the result obtained by the proposed method is discussed in detail. Using the metrics

such as PSSPr, utilization cost, migration (cardinality), robustness and relaxation time, the performance of
the proposed approach is compared to other baselines.

4.1 Stimulation Setup and Environment
The simulation setup and environment are offered to assess the proposed approach. The Spyder compiler

and Python language are utilized. For simulations, an Intel Core i7-10678K CPU with eight cores and 8 GB of
RAM is utilized. Initial UE locations are established through random uniform distribution in area with four
BSs of 5 W. Besides, in each time slot, there are ten users. For every BS, 16 sub-carriers are considered with a
200 kHz bandwidth. As a primary topology, the Abilene network topology with 15 links and 12 nodes from
SNDlib3 is utilized in the core and transport networks. Furthermore, the proposed method has considered
the computing capacity of 120 Mbps for every VM in the core domain. Every server node also includes six
VMs. In addition, each router buffer can accommodate up to 50 packets, and each link in the transportation
network has a 100 Mbps capacity. For each slice, packets per time slot indicate the average number of arriving
packets and the maximum acceptable time is fixed 100 (ms). Fixed to slots over a time period with 100 time
slots, and is fixed to 0.95. The proposed method deliberates 1000 episodes, each of which spans 100 time slots.
The optimizer is used to configure the proposed EDRL-based technique.

4.2 Comparison of Baselines with the Proposed Approach
The experimental outcomes and convergence are among the most crucial criteria for assessing the

proposed approach. Enhanced manta ray assisted DRL (EMR-DRL) is the primary algorithm used in
the proposed work, whereas the baselines are deep deterministic policy gradient (DDPG), distributed
algorithm, greedy, multi-agent DDPG (MADDPG), and soft actor critic-based RL (SAC-RL). In this regard,
an individual agent is suggested for directing each domain through an E2E network by modifying MADDPG.
Furthermore, each domain handles resource management independently by utilizing the distributed tech-
nique. The comparison of average reward achieved for the proposed and baseline methods over the episodes
is presented in Fig. 3. The result of the implemented EMR-DRL method is better than the baseline algorithms,
as shown in Fig. 4. This is due to the ability of improved MRFO that supports the DRL model to effectively
function in dynamic conditions with a high degree of uncertainty. Furthermore, the results obtained indicate
that the reward is lower and more variable in the distributed learning and MADDPG methods as a result of
the problem being solved disjointedly.

Figure 3: Comparison of average reward achieved
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Figure 4: Comparison of utilization cost imposed for scenarios

4.3 Comparison of Baselines with the Proposed Approach
The resilience time or the amount of time taken for the system to return to its intended performance after

a failure, is considered in this subsection to assess network performance. To evaluate the impact of network,
two scenarios such as resilient and non-resilient are considered. However, the proposed method accounts
for relaxation time in the non-resilience situation. The resilience time is different from the return time since
it pertains to a resilience, when the system aims to return its intended performance in a constrained amount
of time. On the other hand, the former relates to the non-resilience scenario, in which the system’s inherent
chance of failure may cause it to gradually return to its predicted performance. In Fig. 5, the saturated time
increases and the cardinality cost rises for the resilient and non-resilient scenarios. In comparison to the
non-resilient scenario, the resilient scenario’s average cardinality cost rises by up to 7%. Furthermore, the
utilization costs of the non-resilience and resilience scenarios are depicted over the number of episodes.
In Fig. 6, the average resilient time over the episodes is presented. It demonstrates how the resilience of the
system is enhanced with each episode.

Figure 5: Comparison of cardinality cost imposed for scenarios
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Figure 6: Average resilient time analysis over episodes

The graphical representation shows a minimizing trend in the resilience time, resembling that the system
becomes more effectual at improving from disruptions since it learns and adapts through the episodes.
This enhancement is attributed to the proposed EMR-DRL based method, which optimizes the response
of the system to failures and improves its capability to preserve performance. The overall performance
underscores the efficiency of EMR-DRL method in attaining proactive resource management and resilience
in slice-enabled 6G networks.

4.4 Assessment of Utilization and Cardinality Cost
In this section, the utilization and cardinality cost of the proposed method is assessed. The cost incurred

from utilizing network resources, like transmission power, computational capacity and bandwidth is referred
to as the utilization cost. On the other hand, the cardinality cost is related to the number of resources or
complexity involved in provisioning network slices. In 6G networks, both the cardinality and utilization
costs are signification to optimize resource allocated and ensure proactive, resilient and efficient network
performance. Fig. 7 deliberates the network topologie’s impact on cardinality and utilization costs of the
proposed method. The graphical representation shows that the imposed cost rises as the network size
maximizes. This is because the network is more extensive and widely distributed. However, the proposed
method accomplished greater performance than the existing method.

Figure 7: Impact of network architecture on cardinality and utilization costs
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4.5 Assessment of Average Arrival Packets and Tolerable Delay
This section examines the impact of the average number of slice arrival packets and maximum allowable

slice delay on the PSSPr for the proposed and baseline methods. Fig. 8 presents the comparison of average
arrival packets of slices for the proposed and baseline methods. As illustrated in Fig. 8, the PSSPr falls as
the number of generated packets rises because of resource limitations. Based on this, the network’s capacity
to compensate for its performance is diminished when the quantity of packets increases. The results show
that the proposed EMR-DRL-based approach can increase PSSPr by an average of 12% when the number of
arrival packets changes. Further, the proposed method inspects how the PSSPr is impacted by the maximum
allowable slice delay. Fig. 9 suggests the comparison of the maximum tolerable delay of slice for the proposed
and baseline methods. As exposed in Fig. 10, the PSSPr rises as the maximum allowable delay maximizes. The
experimental results display that the proposed EMR-DRL method can increase PSSPr by an average of 10%
when the maximum allowable delay is varied. A parameter sensitivity learning was performed to evaluate
the performance effects of fluctuations in learning rate, discount factor, manta ray population, Chebyshev
map order, and Levy index. The findings indicate that a learning rate of 0.005 and a discount factor of
0.95 produced steady training with elevated PSSPr. A population size of 40 and a Chebyshev order of 3
augmented explorations, while a Lévy index of 1.5 refined local search. The comparisons are now included
in the discussion to substantiate the robustness of our suggested strategy Fig. 10.

Figure 8: Training and validation accuracy vs. loss

Figure 9: Comparison of average number of arriving packets
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Figure 10: Comparison of maximum tolerable delay on

4.6 Assessment of Coefficient Factors Influence
In this sub-section, the coefficients and are altered and scrutinised to assess the coefficient factors in the

simulation results. Here, the coefficients and are set to 0.1. Table 4 shows the influence of the coefficients and
with varying values, on the objective function. In the tabular representation, it is perceived that each cost’s
objective function further declines as its coefficient factor rises.

Table 4: Analysis of the migration and utilization cost

d2 = 0.1 d2 = 0.25 d2 = 0.1 d2 = 0.5
d1 = 0.25 d1 = 0.1 d1 = 0.5 d1 = 0.1

Migration cost 49 59 45 61
Utilization cost 78 56 65 53

Objective function 18.1 18.6 28.2 31.8

Furthermore, the network topology’s influence on resilience time is offered in Table 5. In the graphical
representation, it is perceived that the proposed method has attained low resilience time in contrast to the
existing SAC-RL model. This resembles that the proposed system can speedily recover from disruptions as
well as return to its desired performance level. Moreover, the lower resilience time replicates better robustness
and efficiency to the desired performance level in managing unexpected events or network failures, which is
a critical aspect of handling optimal performance in slice-enabled 6G networks.

Table 5: Influence on average resilience time

SAC-RL Proposed
SNDlib1 0.76 0.71
SNDlib2 0.69 0.64
SNDlib3 0.51 0.47
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5 Conclusion
This research proposes a novel approach to ETE resource management in network slicing by deliberating

the qualities of resilience and proactivity. The optimization problem that mathematically models resilience
and proactivity has been included in this framework. Furthermore, a comprehensive function for the PSSPr
is constructed. An effective resource management framework is implemented by the suggested strategy
using ImpMRFO and DRL. The incorporation of Chebyshev’s chaotic map and levy flight into ImpMRFO
addresses the convergence and local optima issues. When comparing the proposed approach with other
approaches, the used ImpMRFO-based method increased the PrSSP by 12% according to an evaluation
of the data. Also, the proposed method reduced the costs associated with resource management while
guaranteeing a high level of QoS and accomplished a reduction in resiliency time in contrast to non-resilient
scenarios. In the future, the proposed method will focus on the incorporation of multi-agent RL methods
to boost efficiency and scalability. In addition, the application of federated learning can be investigated to
further enhance the robustness and adaptability of network management systems in heterogeneous and
highly dynamic network environments. Although current research has examined network slicing using
many optimization and learning methodologies, many studies fail to include both proactivity and resilience
in dynamic resource management. Previous methodologies often depend on static models or single-layer
optimization, limiting flexibility in real-time scenarios. We present an innovative packet-based proactive
end-to-end resource management system that integrates advanced deep reinforcement learning with refined
manta ray foraging optimization. This hybrid methodology efficiently addresses resource limitations while
enhancing slice provisioning efficacy. Our approach exhibits enhanced cost efficiency and reliability relative
to conventional, non-resilient models in dynamic network settings.
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