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ABSTRACT: Object detection plays a critical role in drone imagery analysis, especially in remote sensing applications
where accurate and efficient detection of small objects is essential. Despite significant advancements in drone imagery
detection, most models still struggle with small object detection due to challenges such as object size, complex
backgrounds. To address these issues, we propose a robust detection model based on You Only Look Once (YOLO)
that balances accuracy and efficiency. The model mainly contains several major innovation: feature selection pyramid
network, Inner-Shape Intersection over Union (ISIoU) loss function and small object detection head. To overcome the
limitations of traditional fusion methods in handling multi-level features, we introduce a Feature Selection Pyramid
Network integrated into the Neck component, which preserves shallow feature details critical for detecting small
objects. Additionally, recognizing that deep network structures often neglect or degrade small object features, we design
a specialized small object detection head in the shallow layers to enhance detection accuracy for these challenging
targets. To effectively model both local and global dependencies, we introduce a Conv-Former module that simulates
Transformer mechanisms using a convolutional structure, thereby improving feature enhancement. Furthermore, we
employ ISIoU to address object imbalance and scale variation This approach accelerates model conver-gence and
improves regression accuracy. Experimental results show that, compared to the baseline model, the proposed method
significantly improves small object detection performance on the VisDrone2019 dataset, with mAP@50 increasing by
4.9% and mAP@50-95 rising by 6.7%. This model also outperforms other state-of-the-art algorithms, demonstrating
its reliability and effectiveness in both small object detection and remote sensing image fusion tasks.

KEYWORDS: Drone imagery; small object detection; feature selection; convolutional attention

1 Introduction

Drone technology has seen rapid advancements in recent years, with these small, versatile devices
increasingly deployed for a wide range of domain-specific tasks due to their mobility and adaptability. As
a result, drones are being utilized across various applications, including intelligent traffic monitoring [1-4],
disaster detection, wildlife monitoring [5], and environmental surveillance [6,7]. With the rise of deep
learning, there have been significant advancements in general object detection. However, the detection of
small objects within drone imagery remains an ongoing challenge, particularly as small objects are often
obscured by noise, occlusions, and the complexity of dynamic environments.

Small Object Detection (SOD) focuses on detecting objects that are smaller in size. Two primary
definitions for small objects are commonly used: one based on relative size, as specified by the International
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Society for Optical Engineering, where an object is considered small if its size in the image is less than 0.12%
of the image; and another way is based on absolute size, it categorizes objects smaller than 32 x 32 pixels as
small objects, as defined in MS COCO dataset [8]. The progress in SOD is relatively slower due to the inherent
challenges posed by the low resolution and smaller pixel proportions of small objects. These factors make
it difficult to extract representation of features, and the downsample operations during feature extraction
often lead to critical information loss [9]. Moreover, drone images present unique challenges for small object
detection, including varying weather conditions, dense and cluttered environments, occlusion, and differing
viewing angles [10].

To address these challenges, this paper proposes the YOLOv8s-DroneNet framework, an efficient
model designed to improve the detection accuracy for small objects in Unmanned Aerial Vehicle (UAV)
imagery. Fig. 1 shows the overall architecture of the network, which consists of four key parts: feature
selection pyramid network, Conv-Former module, a specialized small object detection head and the
Inner-Shape IoU. The primary contributions of this paper are summarized as follows:

1. We propose a robust small object detection framework, aiming to improve the accuracy of small
object detection in complex environments. The framework includes a feature selection pyramid network that
effectively integrates features from different scales and enhances the fusion of features from the network.
To enhance the representation capability of small object features, a convolutional attention mechanism is
adopted to mimic the Transformer structure, achieving better balance between local and global feature
modeling. Additionally, a specialized small object detection head is introduced at the shallow layer of the
network architecture, further improving the performance of small object detection.

2. In order to strengthen the sensitivity of small object shapes and scale variation, this paper designs
Inner-Shape IoU. Using IS-IoU calculate loss is useful to increase the attention of the model to small targets.

Figure 1: YOLOv8s-DroneNet. This figure illustrates the architecture of the proposed YOLOv8s-DroneNet, designed
specifically for small object. The model integrates several advanced components aimed at improving the detection of
small objects

2 Related Work

SOD remains a significant challenge in computer vision. Recently, it has been widely applied in various
fields, including remote sensing images, medical images, and UAV-based scene analysis. There are two major
object detection algorithms: two-stage and one-stage methods. The two-stage approach generates a set of
candidate regions and then extracts features for subsequent classification and localization. Representative
two-stage detection models include R-CNN [11] and its improved variant, Faster R-CNN [12], which have
demonstrated strong detection performance but at the cost of higher computational complexity. Conversely,
one-stage methods, such as YOLOv8 [13], YOLOvI1O [I4], and SSD [I5], predict object categories and
bounding box coordinates directly in a single forward pass. These models are favoured for their lower



Comput Mater Contin. 2025;84(3) 5049

computational cost and real-time performance. However, despite their efficiency, one-stage detectors often
face challenges in achieving high detection accuracy, especially when dealing with objects of varying scales.
This problem is particularly evident in UAV imagery, where small objects are common, and the multi-scale
nature of objects further complicates detection.

2.1 Small Object Detection

Numerous small object detection algorithms have been optimized within the YOLO framework in
recent years. Khalili et al. [16] improved the model’s feature extraction capability by incorporating an
efficient multi-scale attention module, which adaptively redistributes weights to emphasize relevant features.
Ni et al. [17] redesigned the feature fusion network and optimized the detection layer architecture. To
address the size imbalance issue across datasets, Faraji and Chen [6] devised an enhanced feature pyramid
architecture. This architecture leverages attentive feature fusion factors to facilitate the integration of multi-
scale features. Further advancements have been made in the design of the backbone and detection head. Chen
et al. [18] introduced a custom MFSO structure, which expands objects’ feature pixels. Zhang [19] developed
a lightweight detection head combined with a Content-Aware Feature Reconstruction module, effectively
reconstructing semantically similar feature points to enhance detection accuracy. Similarly, Xiao et al. [20]
proposed an enhanced strategy to use inter-layer feature correlation, replacing the conventional FPN-based
fusion mechanism. Their approach integrates a Grouped Feature Focus Unit to strengthen contextual feature
relevance across different layers, further improving the detection performance.

Recent advancements in Transformer-based architectures have significantly contributed to small object
detection. Chen et al. [21] introduced a multi-scale neural network-integrated with a Transformer to enhance
the detection of tiny biomedical entities in medical images, achieving promising results. Kumar et al. [5]
developed a Transformer-based approach for wildlife monitoring, incorporating a high-frequency feature
generator, feature refiner, and query refiner to improve the localization and classification of eight animal
species. Liu et al. [22] tackled the challenge of noisy feature fusion by proposing a Trans R-CNN architecture
which contains the DN-FPN module. It leverages contrastive learning to mitigate feature noise at each layer
of the top-down path.

Super-resolution (SR) is the method that reconstructs high-resolution images, thereby increasing the
effective data available for object detection models. Zhang et al. [23] proposed a flexible SR branch that
learns high-resolution feature representations, enabling better differentiation of small objects from complex
backgrounds in low-resolution inputs. However, their approach did not consider the interaction between the
SR network and the detection model. Building upon this, Liu et al. [24] integrated the SR task directly into
the detection pipeline by introducing an SR sensing branch and sensing loss, allowing for joint optimization
of both SR and detection tasks through SR sensing association. While super-resolution can enhance image
quality, it also increases computational overhead, as background pixels-contributing minimally to object
detection is also enhanced, leading to ineflicient resource usage. The diffusion model, known for its stability
over Generative Adversarial Networks (GANs) in image generation, has shown potential to address this
issue. Zhang et al. [25] proposed the Bisecting Patch optimization algorithm, which segments an image into
patches and selectively applies a conditional diffusion model to reconstruct only high-resolution patches
containing objects. This approach significantly boosts detection performance while reducing unnecessary
computational costs.

Despite these advancements, existing studies primarily focus on feature fusion at different levels or
improving accuracy at the expense of increased computational complexity, highlighting the need for more
balanced solutions [26,27].
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2.2 Data Augmentation for Small Objects in Remote Sensing

Data augmentation is crucial in improving the robustness of deep learning models, particularly for
small object detection in remote sensing imagery. Due to the inherent limitations of small object datasets,
such as low object-to-background ratio and imbalanced class distributions—augmentation techniques are
essential to enhance generalization and feature diversity. Traditional augmentation methods, such as flipping,
rotation, mixup [28], and demosaicking, are often insufficient for small objects, as they do not address
the challenges posed by occlusion, scale variation, and environmental factors. Over the past few years,
data augmentation techniques have diversified into multiple categories. These span from conventional
image processing techniques to more advanced neural network-driven methods, including generative data
augmentation and style transfer [29,30]. Nevertheless, there is a relative lack of enhancement strategies
specifically designed for small objects. Researchers have explored remote sensing image fusion-based
augmentation to overcome these limitations, which synthesizes realistic training samples by integrating
multi-sensor data.

Another effective strategy is context-aware copy-paste augmentation, where small objects extracted
from one scene are blended into another while maintaining spatial and spectral consistency. In remote
sensing applications, this technique is beneficial for enhancing underrepresented classes, such as small ships
in maritime surveillance or aircraft in aerial reconnaissance. Faraji and Chen [6] proposed a new copy-paste
data augmentation scheme. Kisantal [31] introduced a random copy-paste method with a different strategy
for augmentation. However, this method does not increase the number of small objects, and this strategy can
lead to context mismatch. Chen et al. [32] proposed adaptive resampling during the pasting stage to sample
accurate locations, relies on a pre-trained network.

3 Method
3.1 Improved FPN for Multi-Level Feature Integration

The Feature Pyramid has long been a cornerstone in object detection models, as it allows for the fusion of
different scale features effectively. By leveraging features from multiple levels of a feature pyramid, detection
heads can identify objects across a wide range of scales. However, many current methods, including those in
the YOLO series, rely on deep network architectures to extract features at various scales. While this approach
is efficient at capturing high-level semantic information, it often leads to a loss of critical spatial details
as the network deepens. In particular, small objects, which are highly dependent on fine-grained spatial
information, tend to be underrepresented in the deeper layers of the network, making their detection a
significant challenge. Furthermore, the limitations in handling scale differences and feature extraction from
feature maps hinder the performance of these models in detecting small targets.

Many feature pyramid models in current research, such as PANet, BiFPN and so on, which are based on
the structure of attention mechanisms. PANet is the first model to propose a bottom-up secondary fusion,
adding a bottom-up fusion path based on the FPN in Faster RCNN. Many contemporary methods emphasize
feature interaction between different layers of the network but fail to address the refinement of features within
individual layers. This oversight results in suboptimal utilization of features at various scales, particularly
in shallow layers where spatial details are most abundant but are often discarded or diminished through
pooling operations.

Considering the above challenges, we propose a novel fusion method within the neck of the YOLOv8
that prioritizes feature selection. This approach is designed to improve the model’s capacity for feature
extraction and detection of small objects effectively by refining features at each layer before fusion. The core
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of this innovation lies in integrating a Channel Attention (CA) mechanism. In our proposed approach, low-
level features, rich in spatial details are first filtered through the CA module, which applies attention-based
selection to emphasize the most relevant features. The output of this process is then combined with high-level
features fj;gp, that contain more semantic information but are generally weaker in spatial precision.

To ensure compatibility between the low-level and high-level features, we select a 1 x 1 convolution to
adjust the channel dimensions, making the feature maps from both layers compatible for fusion. Although
rich in semantic understanding, the high-level feature maps lack the spatial resolution necessary for detecting
small objects accurately. In contrast, while preserving location information, shallow features often fail to
capture the complex semantic context. By refining and combining these features using the CA module, our
method bridges this gap. This feature fusion mechanism significantly improves the robustness, particularly
in UAV-based detection tasks. Moreover, challenging applications where scale variations and complex
backgrounds are prevalent.

Traditional approaches usually utilize a direct addition of upsampled high-level features with low-level
features, aiming to combine their strengths. However, this method often fails to perform effective feature
selection, leading to suboptimal results, especially when the low-level features contain a considerable amount
of redundant or irrelevant information. To overcome this limitation, a more selective fusion strategy is used
to leverage the high-level feature as a weight to guide the filtering of semantic information from the low-
level feature.

The difference of our method is that most of the other FPNs add a bottom-up or more complex
branches. The improved method in this section screens each other through features of different scales, which
is equivalent to performing multiple self-attention. ig. 2 shows the fusion process in detail. First, this module
applies transposed convolutions (T-Conv) to upsample the high-level feature fj;g), to the same size as the
low-level feature. The Channel Attention (CA) module then generates attention weights from the high-level
feature to filter out irrelevant parts of the low-level feature. Finally, the filtered low-level feature is fused with
the high-level feature, effectively combining semantic information and spatial details. This selective fusion
preserves key spatial features while integrating contextual understanding.

Max Pool Channel

Attention Input -
Avg Pool 69— 5 Output

Input
CA Feature Selection Module
f Transposed convolution
high ® Multiplication @ Add
f;lll
fow M . SR
low Selection =

Figure 2: Feature selection pyramid network
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3.2 Convolution Feature Enhancement Module Like Transformer Structure

It can be seen from Fig. 3, the convolution feature enhancement module is designed to integrate the
strengths of Convolutional Neural Network (CNN) and Transformer, balancing efficiency and performance.
While Transformers excel at capturing long-range dependencies through self-attention, their large archi-
tectures pose challenges for deployment on UAV platforms with limited computational resources [33,34].
In contrast, CNN efficiently extracts local features but struggles with global context modelling. To address
this, Conv-Former mimics the Transformer encoder structure while leveraging lightweight convolutional
operations to implement the attention mechanism. Inspired by SCTNet, this hybrid approach enhances
feature extraction by incorporating global dependencies while maintaining a compact model size. The
Conv-Former framework incorporates a convolution-based self-attention mechanism, capable of effectively
gathering spatial and contextual data, and a feed-forward network (FFN) for feature transformation. This
architecture enables improved detection accuracy with fewer parameters, making it suitable for real-time
UAV applications. The structure of ConvFormer closely resembles the classical Transformer encoder.

f = Norm(x + ConvAttention(x)) (1)
y = Norm(f + FFN(f)) @

In this module, Norm refers to batch normalization, and x, f and y represent the input, hidden features,
and output, respectively. The Feed-Forward Network (FEN) consists of two standard 3 x 3 convolutional
layers, effectively capturing local spatial dependencies and enhance feature transformation.
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Figure 3: Conv-Former block

To improve efficiency and scalability, we introduce ConvAttention, a GPU-friendly attention mecha-
nism that balances computational cost and feature representation. The process begins with strip convolutions
equipped with learnable kernels, which preserve critical spatial details while reducing unnecessary computa-
tions. Instead of conventional k x k convolutions, we employ k x 1and 1 x k convolutions, which approximate
the receptive field of standard convolutions while significantly improving efficiency.



Comput Mater Contin. 2025;84(3) 5053

Dual-path normalization is used in two key dimensions to further refine attention distribution. First,
softmax normalization is performed in the H x W spatial dimension, ensuring that the sum of similarity
scores within the K-region equals 1, thereby enhancing local feature discrimination. Second, Group L,
normalization is applied in the N-channel dimension, which increases the contrast between different feature
points, making it easier for the model to distinguish relevant object regions. This approach effectively
improves small object detection by strengthening spatial awareness while maintaining a lightweight and
computationally efficient structure. The detailed implementation is illustrated in the accompanying figure.

X =GDN(X %K) %V (3)

In the context of our model, these dimensions represent the structure of the feature maps as they pass
through the network, with C representing the depth, and H and W corresponding to the spatial dimensions.
The term N refers to the kernel size of the learnable parameters, which dictates the receptive field of the
convolutional operation applied at each layer. The GDN (Grouped Double Normalization) is a normalization
technique used to stabilize the learning process by normalizing the feature maps across spatial and channel
dimensions. This method ensures that the feature activations are appropriately scaled, facilitating better
convergence during training. Finally, the * symbol represents convolution, using the learnable kernels to
extract relevant spatial features. The convolution operation is central to feature extraction in deep learning
models, enabling the network to capture patterns and structures from the input data at multiple levels
of abstraction.

3.3 Detection Heads and Loss Functions

In the feature extraction process, Deep neural networks frequently result in the disappearance of
essential details of small objects, while complex background elements can further degrade detection
performance. Given the difficulties in identifying small objects, preserving shallow, high-resolution features
is critical. To mitigate these issues, we propose the integration of a dedicated small object detection head at
the shallow P2 level of the network. This addition significantly enhances the model’s performance by focusing
on the finer details in the early layers, which contain essential spatial information for accurate localization.
Furthermore, to improve object localization, we employ a novel loss function that quantifies the discrepancy
between the predicted and ground truth bounding box. This loss is calculated using the Intersection over
Union (IoU), which measures the overlap between the predicted and true boxes. While the IoU-based
loss function is practical in cases with substantial overlap, its performance deteriorates when the bounding
boxes do not overlap, as is often the case with small objects. The CloU loss used in YOLOVS considers
both the distance and aspect ratio differences between bounding box centres, enhancing its robustness
for many cases. However, this approach has limitations when the bounding boxes have identical aspect
ratios but differ significantly in size. To address these limitations, various alternatives have been proposed,
such as InnerloU [35], MPDIoU [36], ShapeloU [37], and NwdIoU [38]. While these methods improve the
performance of bounding box regression in general object detection, none are specifically designed with
small objects in mind, which are often subject to significant scale variations.

To fill this gap, we introduce ISIoU (Inner and Shape-based IoU), which combines the advantages of
both the InnerloU and ShapeloU methods. By doing so, our loss function emphasizes the shape and scale
during the loss calculation. The process of calculating the ISIoU loss function is detailed in Algorithm 1. In
this formula, (x%", ys ) and (x., y.) represent the centre points of the ground truth and predicted bounding
boxes, respectively. The parameters wé’, h8', w, h are the widths and heights of the respective bounding
boxes, while ratio refers to the scale of the auxiliary box. The scale factor is associated with the object size,
and c denotes the distance between the centre points.
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Algorithm 1: ISIoU Bounding Box Regression
1 Input:
2 -(x‘f[,y‘f[),( xeye), w88 w,h, ratio, scale,c
3 Output:
4 -ISIoU
5 Steps:
1) Calculate the coordinates of the vertices of the target box and the auxiliary box of the predicted box in

the x, y direction.
b8 = x8 — (w8 % ratio) /2, bS' = x8' + (W' x ratio)/2
b8 = y8' — (k8" % ratio) )2, b8’ = y8' + (&' * ratio)/2
by = x. — (w * ratio)[2, by = x. + (w * ratio)/2
by = y. — (h * ratio)/2, by =y, + (h * ratio)/2
2) Calculate IoU"e",
inter = (min(bS', by) — max (b, by)) x (min(bS', by) — max(b$', bs))
union = (w8'  h8") x (ratio)* + (w  h) * (ratio)* — inter
ToU™™" = inter/union
3) Calculate the weight coefficients on the horizontal and vertical direction.

2_(Wgt)scale hh _ 2.(hgt)scule
(Wgt)scale+(hgt)scale > - (Wgt)scale+(hgt)scale

_ 812 L 8t\2
distance™™® = pp . ) 1y, Gy
4) Calculating parameters Qshape,

(Qshape _ Zt:w,h(l _ ew[)e) Q=4

o0t _
wy = {hh max(w,ws")’ b=w

ww =

_h=h*] _
ww max(h,hst)> t=h

5) Calculating parameters Lisyou.
Lisiou = 1= IoU™" + distance’"*P¢ + 0.5 » Qhare

By leveraging both Inner-IoU and Shape-IoU, ISIoU provides a comprehensive approach to bounding
box regression, placing more emphasis on small objects. A comparison of ISIoU with existing loss functions
demonstrates that our method outperforms previous approaches, offering superior accuracy. The results
underline the effectiveness of ISIoU in mitigating the challenges.

4 Experiments
4.1 Datasets

To ensure the validity, this paper selects two widely used public datasets, VisDrone2019 [8] and RSOD
as the primary sources for evaluation in our experiments. These datasets offer diverse challenges in object
detection, making them ideal for assessing the performance of our model.

The VisDrone2019 dataset [8], collected by the AISKYEYE team at the Machine Learning and Data
Mining Laboratory of Tianjin University, is designed explicitly for small object detection. This dataset
includes 288 video clips, comprising 261,908 frames, along with 10,209 still images captured from various
UAV-mounted cameras under various environmental conditions. The pictures of VisDrone2019 cover a
variety of scenarios, including diverse weather and lighting conditions, as well as complex backgrounds. It
consists of 10 object classes: pedestrian, person, car, van, bus, truck, motor, bicycle, awning-tricycle, and
tricycle. Given the prevalence of small objects and the presence of intricate, often occluded backgrounds,
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VisDrone2019 is a robust benchmark for assessing object detection algorithms, especially in practical and
demanding scenarios. In Fig. 4, we show some dataset examples.

7y L 1M
/ ;_-‘::;Ix-

(c) Street scene (d) Traffic scene

Figure 4: The figure shows scenes captured under different lighting conditions and viewpoints in VisDrone2019. The
objects in the image are generally small and numerous, especially the scene in subfigure (d) is particularly complex and
challenging

The RSOD dataset, published by Wuhan University, is an open-source collection tailored for object
detection in remote sensing imagery. It consists of four object categories: 4993 aircraft images (446 images),
191 playground images (189 images), 180 overhang images (176 images), and 1586 oil barrel images (165
images). Despite the smaller number of object classes, the dataset is dominated by tiny objects, which present
significant detection challenges. These small-scale objects are often difficult to detect due to their size. They
can be easily missed by detection algorithms, making the RSOD dataset an essential resource for testing the
sensitivity and accuracy of models in detecting tiny objects in remote sensing imagery.

VisDrone2019 and RSOD are both small object detection datasets and do have some similarities in terms
of sensor viewpoints and categories. However, there are differences. VisDrone2019 is taken from the UAV
perspective is a slanted top-down view, while RSOD is a remote sensing image from a vertical view from top
to bottom. In terms of categories, VisDrone2019 covers pedestrians to vehicles, etc. In addition, RSOD also
contains categories of special scenes, such as playgrounds and overpasses. Both datasets, with their unique
characteristics and challenges, provide a comprehensive foundation for testing and refining object detection
models, particularly in handling small objects and complex backgrounds.
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4.2 Experimental Environment

In this research, YOLOvV8s was chosen as the baseline model for analysis and improvement. The
implementation was carried out using Python 3.8 and developed within Visual Studio Code, with the
PyTorch framework utilized for model construction. The training was performed on an Ubuntu 20.04 system
equipped with an NVIDIA RTX3060 GPU (16 GB). The model underwent 200 training epochs, with the
learning rate starting at 0.01 and gradually decaying to 0.0001, facilitating stable convergence. A batch size
8 was employed to optimize memory usage and ensure efficient training. This configuration allowed for
effective model training while maintaining computational efficiency.

4.3 Evaluation Metrics

The criteria to gauge the model’s effectiveness include precision, mean Average Precision (mAP), FPS
and model parameters. To conduct a more detailed analysis of the model’s performance across various object
sizes, we additionally incorporate size-specific Average Precision metrics: AP;, AP,,, and AP;. These metrics
correspond to small, medium, and large objects, respectively.

4.4 Comparison of Experimental Results

First, we comprehensively compared our proposed model, the baseline YOLOV8s, and other represen-
tative models from the YOLO series, specifically evaluating detection performance on the VisDrone2019
dataset. Considering fair and meaningful comparison, the small versions of the YOLO models are used, as
they are more suitable for small targets, which are the primary challenge in this study. Table I presents the
detection accuracy for each category and mAP for all the models tested. The proposed model consistently
outperforms all other models across every category, demonstrating superior detection accuracy and con-
firming its effectiveness in handling small objects. In addition, the confusion matrix exhibited in the Fig. 5
shows that our proposed model outperforms the baseline model.

Table 1: Comparison of YOLO series (The best-performing outcomes are highlighted in bold)

Model Pedes® People Bicycle Car Van Truck Tricycle Aw-trc® Bus Motor Parameter FLOPs

v8s' 45.2 38.3 512 741 757 76.9 70.8 71 84.2 557 11.12 28.5
vi0s' 481 43.5 56.5 777 794 795 75 73.6 863 60.3 8.07 245
vils! 472 41.6 556 771 78.6 78.8 73.4 733 86.2 598 9.41 215
vi2s' 485 41.8 56 773 785 79 74.3 734 86.6 60.2 9.23 21.2

SOD' 5511 52.8 609 778 79.7 79.4 751 759 855 644 12.14 59.4
Ours 55.7 534 61.8 78.2 79.9 78.6 75.6 76.4 86.1 64.7 19.02 48.8

Note: *The special note are respectively abbreviations for the categories of pedestrian and awning-tricycle; ' The special
note indicates different versions of the YOLO series.
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Figure 5: (a) and (b) represent the confusion matrix of YOLOvV8s and the proposed model on the VisDrone2019

Additional comparative experiments, including comparing ISIoU with other commonly used loss
functions, are conducted to evaluate the impact of the proposed loss function on the RSOD dataset. The
results, shown in Table 2, highlight that ISIoU delivers the best detection performance in terms of mAP@0.5.
Specifically, ISIoU improves mAP@0.5 by 0.6%, mAP@0.5:0.95 by 0.3%, precision by 0.7%, and recall by
0.9% compared to the standard CIoU loss. Moreover, ISIoU outperforms alternative loss functions such
as MPDIoU, NwdIoU, and ShapeloU. These results emphasize the efficiency of the ISIoU loss function,
which not only enhances detection performance but also simplifies model tuning, making it an effective and
efficient method for bounding box regression.

Table 2: Comparison of different bounding box regression methods (The best-performing outcomes are highlighted
in bold)

Metrics mAP50 mAP50-95 Precision Recall FPS

CloU 91.9 64.3 92.8 86.1 169.5
InnerloU 92 64.8 92.8 86.6 185
MPDIoU 91.8 64.2 92.7 86.1 175
ShapeloU 92 64.5 92.9 86.3 163
NwdloU 92.3 64.4 92.7 86.9 185

Ours 92.5 64.6 93.5 87 188

Many researchers utilize COCO metrics to provide a more detailed detection performance analysis,
offering a detailed evaluation across different scales. Table 3 compares the proposed model with several
other mainstream models, revealing that the model excels in detecting small objects and shows a significant
advantage in detecting medium and large objects. While the Dino model achieves slightly higher APs than
our model, its performance gain is marginal—just 0.7%—despite having 2.5 times the number of parameters.
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In contrast, our model achieves a 10.6% improvement in APs over the baseline, largely driven by our
approach’s novel features rather than an increase in model size. The data demonstrate that our method
achieves substantial performance gains without the need for excessive model complexity. It maintains a
relatively small number of parameters when compared to other models.

Table 3: Comparison in COCO metrics. This table presents a comparative analysis of detection performance across
various models using COCO metrics (The best-performing outcomes are highlighted in bold)

Model AP, (;‘_'95 APSV(;” AP, AP,, AP, Parameter
YOLOvVSs 60.0 90.1 395 62.6 834 11.12
Dino 65.1 94.6 51.8 669 784 4755
Faster-RCNN 60.8 87.0 45.0 64.2 773 41.39
Retinanet 59.6 82.7 36 63.6 799 36.51
RTMDet-Tiny 63.5 92.3 47.2 65.1 80.6 4.96

UAV-DETR 65.7 94.5 495 679 834 20

Ours 65.5 94.8 501 675 83.1 19.02

4.5 Ablation Experiment and Visualization

To thoroughly assess the efficacy of each proposed module, we carried out a set of experiments
with the baseline model as a benchmark. As shown in Table 4, each optimization brings about a notable
enhancement in performance across different evaluation metrics. The visualized heatmaps also emphasize
the strength and benefits of our proposed model. In Fig. 6, it presents the heatmap result using three UAV
images from different scenes. The heatmaps are overlaid on the original images, with brighter regions
indicating areas where the model focuses more attention. The proposed model exhibits a pronounced
ability to focus on small objects, critical for improving detection accuracy in complex environments. The
red boxes in the visualization mark regions where our model successfully detects objects, demonstrating
its superior performance. In contrast, the white boxes highlight areas that the baseline model fails to
detect. These visual comparisons effectively demonstrate our approach’s enhanced feature representation and
attention mechanisms, underscoring its ability to enhance the performance of small and occluded objects in
real-world scenarios.

Table 4: This table presents the results of ablation experiments to evaluate the impact of different components

Baseline ISIoU FSFPN CFBlock mAP 5 mAP 59_ogs5 Parameter

v 91.2 64.3 11.12
v 4 92.5 64.6 11.12
v 4 94.6 68.9 15.47
v v 4 94.8 67.4 12.47
v v 4 4 96.1 71 19.02
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Baseline Ours

. SARRRRNN

Baseline

Figure 6: This figure illustrates the heatmap results. From left to right, the image sequence shows: the original input
image, the heatmap output from the baseline model and the proposed model

5 Conclusion

This paper presents a robust architecture for detecting small objects in complex scenarios. It incorpo-
rates multi-scale feature fusion to enhance detection capabilities. A convolutional attention module inspired
by Transformer mechanisms improves the model’s feature representation, especially for UAV applications
where efficiency is critical. Additionally, introducing a novel loss function that focuses on small objects
improves regression accuracy. Although the method significantly enhances small object detection perfor-
mance, challenges like cluttered backgrounds and low-resolution imagery persist. When the background
is complex, objects’ severe overlapping and interweaving pose significant challenges. Additionally, low-
resolution results in smaller sizes of small objects, thereby reducing detection performance. Further research
is needed to refine feature fusion, attention mechanisms, and handling of complex environments, aiming to
improve performance and robustness in practical scenarios.
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