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ABSTRACT: Network traffic classification is a crucial research area aimed at improving quality of service, simplifying
network management, and enhancing network security. To address the growing complexity of cryptography, researchers
have proposed various machine learning and deep learning approaches to tackle this challenge. However, existing
mainstream methods face several general issues. On one hand, the widely used Transformer architecture exhibits high
computational complexity, which negatively impacts its efficiency. On the other hand, traditional methods are often
unreliable in traffic representation, frequently losing important byte information while retaining unnecessary biases.
To address these problems, this paper introduces the Swin Transformer architecture into the domain of network traffic
classification and proposes the NetST (Network Swin Transformer) model. This model improves the Swin Transformer
to better accommodate the characteristics of network traffic, effectively addressing efficiency issues. Furthermore, this
paper presents a traffic representation scheme designed to extract meaningful information from large volumes of traffic
while minimizing bias. We integrate four datasets relevant to network traffic classification for our experiments, and the
results demonstrate that NetST achieves a high accuracy rate while maintaining low memory usage.
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1 Introduction
Network traffic classification plays a crucial role in network security and management. In the context

of network services and supervision, tasks such as Internet resource allocation, network troubleshooting,
and quality analysis are essential. However, the encryption of traffic data renders the original plaintext
information inaccessible, posing a significant challenge to the normal operation and oversight of the network.
Consequently, effectively analyzing and managing traffic without decrypting the data has become a critical
issue that academics urgently need to address. Furthermore, by categorizing network traffic, operators can
respond swiftly to diverse business needs, thereby enhancing service quality and user experience. Addition-
ally, traffic classification is a vital component of intrusion detection systems, aiding in the identification of
potential threats and ensuring system security.

With the increasing popularity of traffic encryption technologies, such as Tor and Virtual Private
Networks (VPNs), which are designed to protect user privacy and anonymity, traditional traffic classification
methods face new challenges. These technologies enable malware and cybercriminals to bypass conventional
monitoring mechanisms, rendering traffic classification techniques that rely on port-based methods and
deep packet inspection (DPI) less effective. On one hand, emerging technologies like port masquerading and
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Network Address Translation (NAT) protocols diminish the efficacy of port-based classification methods; on
the other hand, DPI depends on pattern and keyword recognition within packets [1], and encrypted traffic
obstructs such recognition. Furthermore, the ongoing advancement of encryption technology complicates
the ability of classification methods tailored for specific encrypted traffic to adapt to new environments
or respond to evolving encryption policies. Consequently, identifying stable and concealed patterns within
diverse encrypted traffic to achieve accurate and generalized traffic classification has become crucial for
enhancing network security and improving network management efficiency. In recent years, to address these
challenges, traffic classification techniques, particularly those utilizing deep learning, have made significant
strides in the realm of encrypted traffic classification.

CNNs and Transformers have demonstrated exceptional performance in various areas of artificial intel-
ligence, including computer vision [2–5] and natural language processing [6,7]. In recent years, researchers
have introduced advanced techniques into the field of network traffic classification, achieving remarkable
results. For instance, they have employed CNN-based methods to develop classification techniques based
on visual representations [8,9], as well as Transformer-based, self-encoder, and multimodal classification
approaches [10–13]. However, CNNs encounter limitations due to their small receptive fields, which hinder
their ability to effectively process long sequences and capture distant dependencies. In contrast, Transformers
exhibit significant advantages in traffic classification tasks, as they can handle long sequences and more
effectively capture remote dependency information more effectively. However, the Transformer architecture
has quadratic complexity [14], and when processing large-scale data, the demand for computational resources
increases significantly, leading to a decrease in efficiency. Although Transformer can effectively process long
sequences of dependencies, when the length of the network traffic data is very long, Transformer may still face
processing efficiency and memory usage problems. Therefore, this paper introduces the Swin Transformer
architecture into the field of network traffic classification. Swin Transformer utilizes hierarchies and windows
instead of long sequences, a feature that enables it to capture both local details and global context information
with low computational complexity and superior performance accuracy. The primary contributions of this
paper are as follows:

1. Construct a multilevel flow matrix representation of raw traffic. This representation generates a two-
dimensional matrix from raw traffic data, capable of illustrating information across byte, packet, and flow
levels. It offers a comprehensive view of traffic features, in contrast to most existing methods that only
intercept a fixed number of bytes at the beginning of the flow.

2. Introducing the four-stage Swin Transformer architecture in the vision domain for network traffic
classification, we propose the three-stage Net Swin Transformer (NetST). By preserving the benefits of
window attention and the shift mechanism, the original four-stage hierarchical structure is streamlined
into three stages. This modification reduces the downsampling depth of late feature maps, enhances the
retention of mesoscale contextual information, and improves the ability to detect key traffic behavioral
patterns. NetST significantly decreases the number of model parameters and accelerates inference speed
while maintaining classification accuracy, resulting in higher deployment efficiency.

3. In the field of image classification, several advanced models have been extensively researched and applied.
This paper introduces these advanced models from image classification into the domain of network
traffic classification, demonstrating their potential in this new context. Furthermore, the paper provides
a comprehensive comparison of various advanced image classification algorithms through experimental
analysis, offering insights into cross-domain learning for these models.
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2 Related Work
In order to enhance the efficiency and accuracy of network traffic classification, this paper proposes

a more comprehensive scheme for traffic feature representation, drawing on the Swin Transformer archi-
tecture utilized in image classification. This section will focus on related research in four areas: commonly
used datasets and traffic representation schemes in cryptographic network traffic classification, prevalent
classification methods, and the application of image classification algorithms in network traffic classification.

2.1 Datasets and Network Traffic Representation Schemes
In recent years, research in the field of network encrypted traffic classification has encountered several

challenges. First, current studies often rely on one or two classes of datasets, resulting in insufficient
coverage of network scenarios and limited generalization capabilities of the models. These issues can
adversely affect the performance and adaptability of the models in various environments. Second, the traffic
feature representation schemes are not yet comprehensive enough. Due to limitations in feature extraction,
models may struggle to effectively capture the key characteristics that differentiate various traffic classes,
leading to decreased classification accuracy. Additionally, this reliance on specific datasets can hinder the
model’s ability to transfer across different datasets. Statistical features (e.g., number of packets, packet size,
minimum interval time, etc.) often fail to capture the specific content of the packets. This lack of contextual
information regarding the actual content can lead to inaccurate classification results when these statistical
features are employed. In contrast, combining header and payload data for traffic classification allows for the
extraction of more comprehensive traffic features, thereby enhancing classification accuracy. However, many
studies have not anonymized IP addresses and MAC addresses. When these addresses are used directly for
classification, the model tends to rely excessively on these features, which negatively impacts the accuracy of
the classification results.

To address the limitations of existing studies, which often rely on small datasets and lack comprehensive
traffic characterization schemes, this study integrates datasets from five distinct network traffic domains for a
more in-depth analysis. We not only extract the headers and payloads from the raw traffic but also anonymize
the IP and MAC addresses. The header and payload contain critical information for data transmission; the
header provides metadata about the network communication (e.g., source address, destination address, port
number), while the payload contains the actual transmitted data. By combining these two components, we
can achieve a more comprehensive traffic characterization, thereby enhancing the accuracy of classification.
In this paper, we analyze the number of datasets and feature representation schemes employed by common
methods in the field of traffic classification, as well as the datasets and input features utilized in this study.
The relevant statistical information is presented in Table 1.

Table 1: Dataset and input features used by different methods

Dataset Method Input features

ISCXVPN2016
[15] Relative time and data packet length
[16] Delete the IP and mac address, 32 × 32 image
[17] Statistical features on the data package

ISCXVPN2016, ISCXTor2016
[18] Packet size, arrival time
[19] Remove IP and mac addresses, top 15 packets
[20] 30 × 30 image, and the IP were not anonymous

(Continued)



5282 Comput Mater Contin. 2025;84(3)

Table 1 (continued)

Dataset Method Input features

ISCXVPN2016, USTC-TFC2016 [21] No head, 28 × 28 image, and Payload 784 B
[22] Packets 10, Payload 784 B, and IP were not anonymous

CrossPlatform-Android,
CrossPlatform-iOS

[23] Packets 6, Payload 60 B, and IP were not anonymous
[24] Packets N, Payload 256 B, and IP were not anonymous

CrossPlatform-Android,
CrossPlatform-iOS,

USTC-TFC2016,
ISCXVPN2016, ISCXTor2016

NetST
(ours)

40 × 40 image, Payload B, and IP were anonymous

2.2 Encryption Traffic Classification Method
2.2.1 Network Traffic Classification Based on Traditional Methods

Traditional traffic classification methods fall into two main categories: port-based and DPI tech-
niques. The port-based network traffic classification technique represents one of the earliest classification
approaches. Since each application is assigned a unique port number by the Internet Assigned Numbers
Authority (IANA) (e.g., FTP protocol applications default to port 21, SSH protocol applications to port 22),
this technique distinguishes network traffic types by analyzing transport layer port information. Cheng and
Wang [25] proposed a port-number-connection-pattern method for differentiating server application traffic.
However, emerging technologies like port camouflage techniques and NAT protocols have rendered dynamic
port traffic unmappable to specific applications, significantly reducing classification accuracy.

Deep Packet Inspection (DPI)-based approaches classify traffic by analyzing the application-layer
payload of packets. DPI identifies various protocols using predefined patterns and regular expressions [1].
However, DPI is ineffective against emerging protocols, as it requires periodic updates to its pattern library
to accommodate new protocols. Furthermore, DPI struggles to efficiently handle encrypted traffic because
the content of encrypted data cannot be analyzed directly.

2.2.2 Network Traffic Classification Based on Machine Learning Methods
To address the limitations of traditional network traffic classification techniques in handling encrypted

traffic, researchers have integrated machine learning approaches by labeling traffic data with specific charac-
teristics and training models with these annotated datasets, thereby enabling more accurate pattern matching
and identification. Machine learning-based classification algorithms primarily fall into two categories:
supervised and unsupervised learning. In the realm of supervised learning, Kong et al. [26] developed an
Attack Traffic Identification System (ATIS) applying Support Vector Machines (SVM) for IP network traffic
identification and multi-attack traffic detection, whereas He [27] introduced a weighted feature SVM method
that mitigates sample distribution bias, enhances computational efficiency, and improves classification
accuracy through better generalization. Within unsupervised learning paradigms, Chen et al. [28] proposed
an enhanced density peak clustering algorithm for cryptographic malware traffic detection, while Celik
et al. [29] conducted comparative evaluations of K-means, One-Class SVM (OCSVM), Least Squares
Anomaly Detection (LSAD), and K-nearest neighbors (KNN) algorithms.
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2.2.3 Network Traffic Classification Based on Deep Learning Method
Although machine learning algorithms address the shortcomings of port-based and deep packet

detection techniques to a certain extent, their performance is limited by the construction of the feature set,
which directly affects the accuracy of recognition. In contrast, deep learning methods can directly input
data into neural networks for training after data preprocessing, and the advantage of this method is that
it can automatically extract features, reducing the workload of manual feature extraction. Therefore, deep
learning not only improves the efficiency of network traffic classification, but also provides a new direction
for research in this field.

The most classical deep learning-based traffic classification model is to use CNN to extract the spatial
features of traffic, the most typical one is proposed by Wang et al. [30] to convert the traffic data into
grayscale images, and use CNN to classify the malicious traffic without manually designing the feature set;
after that, Wang et al. [31] proposed an end-to-end based on a one-dimensional convolutional neural network
end-to-end encrypted traffic classification method, which integrates the three key steps of traffic feature
extraction, feature selection and classification into a unified end-to-end framework and automatically learns
the nonlinear relationship between the original input data and the expected output, which is the first time
that an end-to-end method has been applied to the encrypted traffic classification task. Okonkwo et al. [8]
designed an 11-layer CNN and trained it using a series of images generated from metadata of encrypted traffic;
and literature [32] treats each packet as a two-dimensional picture and connects multiple packets (pictures)
are connected to form video frames that constitute a 3D video using three convolutional layers and three
pooling layers to extract high-level features. Since CNN is weak to the interaction information of different
time steps when capturing network flow features, its effect is limited when used alone, to solve this problem,
researchers combined with the RNN model, by first extracting the spatial features of the flow with CNN, and
then capture the temporal features of the packets by LSTM or RNN [33–37], so as to effectively obtain the flow
feature vector, this combination method can to some extent improve the accuracy of feature representation.

2.2.4 Application of Image Classification Algorithm in the Field of Network Traffic Classification
The application of image classification algorithms in the field of network traffic classification is mainly

based on the image classification method in computer vision, by converting the network traffic features
into the form of “image” to carry out classification, this method combines deep learning and network
traffic analysis techniques, and utilizes deep neural networks (such as Convolutional Neural Networks,
CNN) and other. This approach combines deep learning and network traffic analysis techniques, and utilizes
deep neural networks (e.g., convolutional neural networks, CNN) and other image processing methods
to efficiently classify network traffic data. In recent years, most researchers have converted the data of
network traffic into image format through certain conversion methods, and then applied image classification
algorithms, which are able to deal with multidimensional and large-scale network traffic data, especially
when the traffic data volume is large and the changes are complex, and the model is able to show strong
robustness. The most representative of them are based on convolutional neural network, based on Transform
architecture, although CNN is good at capturing the local features of the image [31,32], it does not have
the advantage of capturing the global contextual information, while Transformer’s self-attention mechanism
is able to capture the dependencies between different positions in the input sequence, which can help the
model to understand the relationship between different parts of the image. relationships between them
Therefore, researchers have proposed to introduce the Transformer architecture into the field of traffic
classification [34–36] and have achieved some research results. However, due to the model efficiency problem
of the Transformer architecture due to secondary complexity, it is difficult to meet the real-time requirements
in the field of network traffic analysis, for this reason, this paper proposes to apply the Swin Transformer
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architecture to the task of network traffic categorization. Swin Transformer [14] is a highly efficient variant of
Transformer for visual tasks. An efficient variant of Transformer, it significantly reduces the computational
effort by introducing a local windowing mechanism, which enhances the application of Transformer in the
visual domain.

Unlike Vision Transformer (ViT), which is based on global image block processing, Swin Transformer
adopts the sliding window approach to image segmentation, a feature that enables it to capture both local
details and global contextual information, and has become one of the mainstream technologies in the field
of computer vision by virtue of its low computational complexity and excellent performance accuracy. With
low computational complexity and excellent performance accuracy, Swin Transformer has become one of
the mainstream technologies in the field of computer vision. In this paper, we use the Swin Transformer
architecture to study its applicability in the field of network traffic classification.

3 NetST Traffic Classification Model
NetST method consists of three main steps. First, in the Input Layer, the captured raw traffic (PCAP

packets) is transformed into a multilevel flow matrix (MFM), which is represented as a two-dimensional
grayscale image. Next, the traffic data processed in the Input Layer is input into the NetST layer for model
training. Finally, the data trained in the NetST layer is passed through the Output Layer, where the Softmax
function is applied to generate the final classification results. The model architecture is illustrated in Fig. 1.

Figure 1: Architecture of network encrypted traffic classification method based on Swin Transformer
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3.1 Input Layer
The NetST-based network traffic classification method models raw traffic by creating a MFM generated

from raw packet bytes and formatted to contain traffic information at different levels of granularity through
a formatting matrix. First, the raw traffic is split into streams based on IP address, port number, and protocol
type; then, to avoid introducing bias interference, the Ethernet header of the stream is removed, the port
number is set to zero, and the IP is replaced with a random address but its direction is retained; finally, M
neighboring packets in the stream are captured and formatted into a two-dimensional matrix of size H ×W
as a representation of the stream. This is shown in Fig. 2. The traffic representation matrix includes byte-level,
packet-level and data-flow level information, as detailed below:

1. Byte-level: Each matrix row exclusively encodes a specific traffic byte type, with explicit partitioning into
header rows (protocol metadata) and payload rows (application data).

2. Packet-level: Individual packets are represented through dual matrices—a header matrix and payload
matrix—constituting packet-level matrices with dimensions (H/M) ×W.

3. Stream-level: Ordered packet sequences form streams through spatial stacking of M consecutive packet-
level matrices along the vertical axis, generating final Multi-level Flow Representation matrices.

Figure 2: Multi-level flow matrix construction

We follow previous research [10], the MFM is designed as a fixed-size 40× 40 matrix for normalizing the
protocol headers and payloads of the first 5 packets in a characterized network flow. Each packet is encoded
into 8 lines:

1. The header section consists of 2 rows, totaling 40 bytes: the IP layer (20 bytes) and the TCP/UDP layer
(20 or 8 bytes), along with optional headers. These components are specifically reserved to ensure that
essential network and transport layer features, such as the IP Time to Live (TTL) and TCP flag bits, are
encoded independently, thereby preventing confusion with load noise.

2. Payload section (6 lines × 40 bytes): truncated or zero-complemented to 240 bytes, emphasizing initial
application layer features such as the HTTP request header and TLS handshake parameters. Experiments
have demonstrated that the first 240 bytes are highly discriminative for classification.

3. Dimension design: 5 packets are stacked vertically (5 × 8 = 40 rows), with each row fixed at 40 bytes,
which is compatible with the maximum standard header length of IP and TCP. This configuration forms a
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40 × 40 matrix. The design accommodates models such as CNN by maintaining a fixed input dimension
while balancing information integrity and computational efficiency through protocol-layered coding and
the extraction of load-critical segments.

3.2 Net Swin Transformer Layer
The input image is initially divided into several small patches by the Patch Partition layer. Each patch is

then mapped to a high-dimensional feature space by the Linear Embedding layer, forming the initial token
sequence. In Stage 1, multiple Swin Transformer Blocks are stacked for feature extraction. In Stages 2 and 3,
the Patch Merging layer is employed at the beginning of each stage for downsampling neighboring patches
and channel splicing, thereby constructing multi-scale hierarchical features. Within each Swin Transformer
Block, the Window-based Multiple Self-Attention (W-MSA) and Shift-Window Self-Attention (SW-MSA)
mechanisms are alternately utilized. This approach significantly reduces computational complexity while
enhancing information interaction between windows. Finally, the multi-scale features are integrated and
utilized for subsequent downstream classification tasks.

Swin Transformer Block
Swin Transformer consists of two consecutive Swin Transformer Blocks, which are used to improve

the computational efficiency and ultimately the classification accuracy through Multi-head Self-Attention of
Windows and Shifted Windows. The architecture of the Swin Transformer Block is illustrated in Fig. 3.

Figure 3: Swin Transformer block

(1) Windows Multi-Head Self-Attention (W-MSA)

In the visual Transformer model, the traditional Multi-Head Self-Attention (MSA) mechanism com-
putes the self-attention weights for each pixel in the feature map in relation to all other pixels. This results
in a computational complexity of O(h2w2.C), where h, w, and C represent the height, width, and depth
of the feature map, respectively, as illustrated in Fig. 4a. Therefore, the Swin Transformer introduces the
Windows Multi-Head Self-Attention (W-MSA) mechanism to optimize computation. W-MSA segments
the feature map into multiple non-overlapping sub-regions (windows) based on a window size of M × M.
Within each window, self-attention is computed independently, as illustrated in Fig. 4b. This method
reduces the computational complexity from global O(h2w2.C) to O( h

M . W
M . (M2)2.C) = O(M2hw.C) within

each window, thereby achieving linear computational complexity and significantly decreasing the overall
computational load.
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Figure 4: Multi-Head Self-Attention (a) and Windows Multi-Head Self-Attention (b)

(2) Shifted Windows Multi-Head Self-Attention (SW-MSA)

With the W-MSA module, each window computes self-attention solely within its own boundaries,
resulting in no direct information transfer between different windows. To address this limitation, the SW-
MSA module is introduced, which offsets windows in neighboring layers. As illustrated in Fig. 5, when the
standard W-MSA is applied in layer L, layer L + 1 shifts the window to the right and downward by M

2 pixels
each. This adjustment allows patches that were originally separated into different windows to overlap in
the new window, thereby facilitating cross-window information exchange. For instance, a window in the
first row and second column after the offset (e.g., 2 × 4) enables information sharing between two windows
in the first row of layer L, while a window in the second row and second column (e.g., 4 × 4) allows for
information sharing among four windows. By utilizing the W-MSA and SW-MSA modules interchangeably,
the efficiency of local self-attention computation is preserved while overcoming the challenge of limited
information transfer between windows.

Figure 5: The SW-MSA mechanism

Through patch segmentation, linear embedding, and hierarchical construction of images, the Swin
Transformer achieves CNN-like multi-scale feature extraction. Additionally, computational complexity
is significantly reduced by employing W-MSA, while the introduction of SW-MSA effectively facilitates
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information exchange across windows. These innovations render the Swin Transformer highly effective in
representation and transfer learning, all while maintaining high efficiency.

3.3 Patch Merging
In the Swin Transformer, each stage, except for the first, begins with downsampling through the

Patch Merging layer. As illustrated in Fig. 6, this layer divides the input feature map into 2 × 2 non-
overlapping regions, extracts the corresponding pixels from each region, and concatenates them along the
depth dimension to create a new feature map with four times the number of channels. Subsequently, the
number of channels is linearly mapped from 4C to 2C using LayerNorm normalization and a fully connected
layer. This process not only halves the spatial size of the feature map but also doubles the number of channels,
effectively constructing a hierarchical representation while reducing computational complexity.

Figure 6: Patch merging layer feature map processing

In this paper, the input image is denoted as X ∈ R40×40. First, the image is divided into several small,
non-overlapping regions (patches), each with a spatial size of 2 × 2 pixels. Consequently, 20 patches can be
created along both the vertical and horizontal directions, resulting in a total of 400 patches generated. For
each patch Pi (where i = 1, 2, . . . , 400) it is represented as a one-dimensional vector xi ∈ R4(xi = vec(Pi)),
where vec(.) denotes the arrangement of the two-dimensional patches in a fixed order). This is followed
by the introduction of a linear embedding layer characterized by a parameter matrix We ∈ Rd×4 (where d
is the embedding dimension), which maps the flattened vectors to a high-dimensional feature space Zi =
Wexi ∈ Rd. In this manner, the entire image is transformed into a sequence of tokens, each with a length
of 400, following patch segmentation and embedding. The dimension of each token is denoted as d. The
Patch Merging layer reduces computational effort by halving the spatial size while simultaneously enhancing
feature representation through the reorganization of channel information and linear transformation. This
process provides hierarchical input features for the subsequent Swin Transformer Block module.

The hierarchical processing flow of our proposed model achieves progressive equilibrium between
spatial information compression and semantic enhancement through phased feature transformations. The
input layer ingests single-channel 40× 40 grayscale images, which undergo patch embedding to partition the
input into 2 × 2 non-overlapping patches (resolution reduced to 20 × 20), while simultaneously expanding
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channel dimensions to 192 via linear projection, thereby establishing an initial high-dimensional feature
representation (400 × 192). Stage 1 maintains the 20 × 20 resolution through local window attention
mechanisms, conducting fine-grained feature modeling within 192-channel space. Stage 2 implements
patch merging to halve spatial resolution to 10 × 10 while doubling channels to 384, effectively expanding
receptive fields for mid-level pattern capture. Stage 3 further compresses resolution to 5 × 5 with 768
channels, employing global attention to aggregate high-level semantic representations. The output layer
ultimately maps these 5 × 5 × 768 features to n-dimensional class probabilities via global pooling. This
architectural progression systematically decouples spatial resolution (40 → 5) from channel dimensions
(1→ 768), achieving efficient semantic abstraction with local detail preservation, while providing multi-scale
feature support for small-image classification. Critical tensor transformations are quantitatively summarized
in Table 2.

Table 2: Key tensor changes during the training phase

Processing stage Tensor shape Spatial resolution Channels
Input layer (B, 1, 40, 40) 40 × 40 1

Patch Embedding (B, 400, 192) 20 × 20 192
Stage 1 (B, 400, 192) 20 × 20 192
Stage 2 (B, 100, 384) 10 × 10 384
Stage 3 (B, 25, 768) 5 × 5 768

Output layer (B, n) – n

4 Experiment
In this section, we conduct four tasks related to encrypted traffic classification (Section 4.1) to demon-

strate the effectiveness of NetST in addressing various encryption scenarios. Subsequently, we compare our
model with nine different methods (Section 4.2) and analyze the model’s hyperparameters (Section 4.3).
Finally, we further examine the impressive performance achieved by NetST (Section 4.4).

4.1 Experimental Setup
All experiments were conducted in a consistent environment using the following experimental equip-

ment configuration: AMD R© Epyc 7302 16-core processor (×64), NVIDIA GeForce RTX 3090, and Ubuntu
22.04.5 LTS.

4.1.1 Dataset
In order to evaluate the effectiveness and generalization ability of the NetST model, this paper collects

raw data samples from five publicly available datasets for experimentation. It conducts four encrypted traffic
classification tasks across these datasets and divides each dataset into a training set, a validation set, and a
test set in a ratio of 8:1:1, as shown in Table 3.
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Table 3: Dataset information

Assignment Dataset Class Training set Validation set Test set

Task 1 CrossPlatform-Android 181 44,700 4655 4656
CrossPlatform-iOS 124 40,379 4203 4205

Task 2 USTC-TFC2016 20 37,323 6692 6692
Task 3 ISCXVPN2016 7 13,281 1383 1384
Task 4 ISCXTor2016 8 11,655 1456 1458

Task 1: Categorization of Cryptocurrency Applications.
CrossPlatform-Android category comprises 196 applications, while the CrossPlatform-iOS category

includes 215 applications. The applications for both iOS and Android were sourced from the top 100
applications in the United States, China, and India.

Task 2: Classification of Cryptocurrency-Related Malware.
The USTC-TFC2016 dataset comprises a collection of encrypted network traffic generated by both

malware and benign applications. It encompasses ten distinct categories of benign traffic and ten categories
of malicious traffic.

Task 3: Classification of Applications Utilizing Virtual Private Network (VPN) Encryption.
ISCXVPN2016 dataset comprises encrypted communication traffic transmitted via VPN tunnels.

VPNs are frequently employed to bypass censorship and conceal geographical locations through protocol
obfuscation.

Task 4: Classification of Encryption Applications Utilizing Onion Routing (Tor).
ISCXTor2016 dataset encompasses application traffic that employs encrypted communication via the

Tor. This method introduces an additional layer of obfuscation to the communication by utilizing a
distributed routing network.

4.1.2 Assessment Indicators and Experimental Parameterization
Evaluation Metrics: To comprehensively assess the performance of various models, this paper utilizes

Accuracy (AC), Precision (PR), Recall (RC), and the F1 score (F1) as evaluation criteria. The formulas for
these calculations are as follows:

Accurary = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

TP represents the number of normal data points accurately classified by the model, while TN denotes
the number of abnormal data points correctly identified. FP refers to the number of anomalies incorrectly
classified as normal data, and FN indicates the number of normal data points misclassified as anomalous.
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Experimental Parameters: The number of training rounds is set to 100, with a batch size of 64. The
AdamW optimizer is employed, and the learning rate is dynamically adjusted using the ReduceLROnPlateau
scheduler, with a base learning rate of 0.0001. The proposed method is implemented using the PyTorch
deep learning framework on a NVIDIA GeForce RTX 3090 GPU server, utilizing a single graphics card for
training. The parameter settings are presented in Table 4.

Table 4: Experimental parameter setting

Parameter Set up
Batch size 64

Epoch 100
Scheduler ReduceLROnPlateau
Optimizer Adam
Criterion CrossEntropyLoss

Patch_size 2
Mlp_ratio 1

Hidden_dim 192
Layers (2,6,2)
Heads (3,6,12)

4.2 Comparison Experiment
4.2.1 Comparison of Existing Encrypted Traffic Classification Algorithms

In this paper, we present the experimental results from reference [10], which are analyzed in comparison
with several commonly used methods in the field of network traffic classification. These methods include
FS-net [1], YaTC [10], ET-BERT [12], 2D-CNN [31], Deeppacket [38] and PERT [39]. The experimental
results, obtained from representative datasets such as USTC-TFC2016, ISCXVPN2016, ISCXTor2016, and
CICIoT2022, demonstrate that the NetST model proposed in this study achieves significant improvements
in both AC and F1 score F1. NetST achieves an accuracy of 99.91% and an F1 score of 99.03% on the
USTC-TFC2016 dataset, representing a 2.05% improvement in accuracy compared to YaTC, which has the
next best performance (Accuracy: 97.86%, F1: 97.86%). On the ISCXVPN2016 dataset, NetST attains an
accuracy of 98.48% and an F1 score of 98.15%, outperforming YaTC (Accuracy: 98.07%, F1: 87.74%) with a
0.41% improvement in accuracy and a 10.41% improvement in F1 score. In the ISCXTor2016 dataset, NetST
demonstrates exceptional performance with an accuracy of 99.93% and an F1 score of 99.92%, significantly
surpassing other methods. Additionally, on the CICIoT2022 dataset, NetST performs admirably with an
accuracy of 99.85% and an F1 score of 99.78%, which is considerably higher than the suboptimal model
YaTC (Accuracy: 96.58%, F1: 96.58%). The experimental results clearly indicate that the NetST model
outperforms existing mainstream methods in terms of both accuracy and F1 score across various network
traffic classification datasets, as illustrated in Table 5.
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Table 5: Performance comparison of existing models on different datasets

USTC-TFC2016 ISCXVPN2016 ISCXTor2016 CICIoT2022

AC F1 AC F1 AC F1 AC F1
Deeppacket 0.8849 0.8883 0.8021 0.8017 0.3681 0.2681 0.8828 0.8808

2D-CNN 0.9226 0.9205 0.8126 0.8064 0.3462 0.3366 0.9007 0.9000
FS-net 0.8705 0.9602 0.8764 0.873 0.5203 0.5164 0.8537 0.853
PERT 0.9663 0.9664 0.8862 0.8861 0.8022 0.7999 0.9052 0.9049

ET-BERT 0.9695 0.9695 0.8774 0.8747 0.6538 0.6498 0.9035 0.9031
YaTC 0.9786 0.9786 0.9807 0.8774 0.9972 0.9972 0.9658 0.9658
NetST 0.9991 0.9903 0.9848 0.9815 0.9993 0.9992 0.9985 0.9978

The NetST model demonstrates exceptional performance across all test datasets, as illustrated in Fig. 7.
On the USTC-TFC2016 dataset, NetST achieves the highest accuracy and F1 score, showcasing its superior
classification capabilities. Similarly, on the CICloT2022 dataset, NetST performs remarkably well, further
validating its strong generalization ability. Additionally, NetST excels in accuracy and F1 scores on both the
ISCXVPN2016 and ISCXTor2016 datasets. In contrast, other models such as YaTC, ET-BERT, PERT, FS-net,
2D-CNN, and Deeppacket exhibit relatively weaker performance on certain datasets. Overall, the NetST
model surpasses its competitors in terms of accuracy and F1 scores, particularly across a diverse range of
datasets. These results indicate that NetST possesses significant advantages in addressing the task of network
encrypted traffic classification, providing a more accurate and efficient classification capability across various
datasets and application scenarios.
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Figure 7: Star chart comparison of different model performance

4.2.2 Comparison with Advanced Classification Algorithms
To verify the effectiveness of the model proposed in this paper for the task of encrypted traffic

classification, we designed and conducted several sets of comparative experiments. In these experiments, we
compared the models presented in this paper with algorithms that have demonstrated strong performance in
image classification tasks. These algorithms are of significant reference value due to their broad applicability
and exceptional performance. To ensure the fairness and accuracy of the experimental results, all models
were tested using the same dataset, preprocessing steps, and evaluation metrics. The results indicate that the
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model proposed in this paper outperforms the other models across all evaluation metrics in the encrypted
traffic classification task, thereby confirming its superiority in this domain. The experimental results are
presented in Tables 6 and 7.

Table 6: Results of datasets CrossPlatform-Android, CrossPlatform-iOS and USTC-TFC2016

CrossPlatform-Android CrossPlatform-iOS USTC-TFC2016

AC PR RC F1 AC PR RC F1 AC PR RC F1
ResNet101 0.9682 0.9676 0.9670 0.9656 0.9767 0.9733 0.9746 0.9718 0.9991 0.9903 0.9906 0.9903

EfficientNet 0.9680 0.9684 0.9660 0.9658 0.9757 0.9771 0.9723 0.9698 0.9981 0.9864 0.9882 0.9869
ViT 0.9691 0.9691 0.9679 0.9666 0.9743 0.9697 0.9724 0.9700 0.9990 0.9935 0.9920 0.9927

NetST 0.9774 0.9758 0.9749 0.9749 0.9769 0.9701 0.9734 0.9710 0.9995 0.9964 0.9959 0.9960

Table 7: Results of datasets ISCXVPN2016, ISCXTor2016

ISCXVPN2016 ISCXTor2016

AC PR RC F1 AC PR RC F1
ResNet101 0.9812 0.9738 0.9708 0.9722 0.9904 0.9904 0.9895 0.9898

EfficientNet 0.9781 0.9621 0.9585 0.9602 0.9986 0.9988 0.9982 0.9985
ViT 0.9776 0.9764 0.9648 0.9704 0.9986 0.9986 0.9986 0.9986

NetST 0.9863 0.9780 0.9815 0.9797 0.9993 0.9994 0.9990 0.9992

The NetST model demonstrates strong performance across several datasets. On the CrossPlatform-
Android, CrossPlatform-iOS, and USTC-TFC2016 datasets, NetST’s Accuracy (AC), Precision (PR), Recall
(RC), and F1 scores are either higher than or comparable to those of other models. Notably, on the USTC-
TFC2016 dataset, the Accuracy reached 0.9995, and the F1 score was 0.9960. Additionally, the NetST
model performs well on the ISCXVPN2016 and ISCXTor2016 datasets, particularly on the ISCXTor2016
dataset, where all metrics are nearly perfect, with an accuracy rate of 0.9993 and an F1 score of 0.9992.
The USTC-TFC2016 and ISCXTor2016 datasets exhibit higher training accuracies, primarily because they
contain more consistent and easily distinguishable features, enabling the model to effectively extract relevant
characteristics and enhance performance. In contrast, the CrossPlatform dataset encompasses multiple
platforms with diverse and complex features, which complicates the classification task and adversely affects
the model’s training outcomes. Consequently, a more specialized and distinct dataset leads to improved
model performance in terms of accuracy and other metrics. As illustrated in Fig. 8.

4.3 Comparison of Various Optimizers and Schedulers
Table 8 presents a comparison of ACC among different optimizers (Adam and AdamW) and learning

rate scheduling strategies (ReduceLROnPlateau, MultiStepLR, and CosineAnnealingLR) across five datasets:
CrossPlatform-Android, CrossPlatform-iOS, USTC-TFC2016, ISCXVPN2016, and ISCXTor2016. The results
indicate that the combination of Adam with ReduceLROnPlateau yields strong performance. The Adam opti-
mizer effectively accelerates convergence through its adaptive learning rate, while the ReduceLROnPlateau
scheduler automatically reduces the learning rate when the model’s training stagnates. This mechanism helps
prevent overfitting and further enhances model performance.
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Table 8: Comparison of different optimizers and schedulers

Optimizer Scheduler AC

Cross
Platform-
Android

Cross
Platform-

iOS

USTC-
TFC2016

ISCXVPN2016 ISCXT-
or2016

Adam
ReduceLROnPlateau 0.9774 0.9769 0.9995 0.9863 0.9993

MultiStepLR 0.9721 0.9741 0.9987 0.9769 0.9992
CosineAnnealingLR 0.9590 0.9703 0.9976 0.9783 0.9990

AdamW
ReduceLROnPlateau 0.9755 0.9750 0.9991 0.9805 0.9987

MultiStepLR 0.9693 0.9662 0.9988 0.9762 0.9979
CosineAnnealingLR 0.9723 0.9710 0.9958 0.9574 0.9963

4.4 Model Performance Analysis
In this section, we analyze model performance using ISCXVPN2016, a representative dataset for

network encrypted traffic classification. Table 9 presents a performance comparison of four commonly used
deep learning models: ResNet, EfficientNet, ViT, and our proposed model, NetST. The comparison focuses on
the number of parameters (Params), floating-point operations (FLOPs), and throughput (FPS), highlighting
significant differences in computational efficiency and inference speed among the models. Among these,
the ResNet101 model has the highest number of parameters, totaling 42.51 million, which contributes to
its relatively high computational complexity. Its floating-point operation count is 3.95 GMac. In contrast,
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the EfficientNet model has 22.61 million parSameters, which is lower than that of ResNet101, and its
computational demand is only 0.14 GMac, significantly less than that of the other models, resulting in higher
computational efficiency. EfficientNet achieves a throughput of 2159.34 images per second, surpassing that of
ResNet101. The ViT model has 37.84 million parameters, which is close to ResNet101, but its computational
demand is considerably higher at 15.16 GMac, far exceeding that of the other models. Due to this extremely
high computational requirement, the throughput of ViT is only 289.56 images per second, the lowest among
all models. This indicates a slower inference speed in practical applications, making it more suitable for
scenarios with ample computational resources and less stringent inference time requirements. The NetST
model, with a parameter count of 14.36 million and a computational demand of 1.41 GMac, achieves a
maximum throughput of 2704.45 images per second. It demonstrates strong performance with the smallest
number of parameters and low computational demand, indicating that the model can operate efficiently on
resource-constrained devices while maintaining superior inference speed and performance.

Table 9: Comparison of Params, FLOPs, FPS of different models

Method Params (M) FLOPs (GMac) FPS—Throughput (image/s)
ResNet101 42.51 3.95 1597.05

EfficientNet 22.61 0.14 2159.34
ViT 37.84 15.16 289.56

NetST(ours) 14.36 1.41 2704.45

As illustrated in Fig. 9, the four models—NetST, EfficientNet, ResNet101, and ViT—demonstrate varying
throughputs (measured in frames per second, FPS) during the training process. NetST and EfficientNet
maintain high throughputs throughout the training, stabilizing at approximately 2500 FPS and 2000 FPS,
respectively. In contrast, ResNet101 exhibits a relatively lower throughput, yet still achieves a commendable
level of around 1500 FPS. ViT, however, shows the lowest throughput, with only about 200 FPS, highlighting
its disadvantage in computational efficiency. In summary, the NetST model strikes a better balance between
computational efficiency and throughput, making it suitable for application scenarios that demand efficient
reasoning while operating within limited computational resources.
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5 Conclusion
In this paper, we propose a method for classifying encrypted network traffic that integrates the Swin

Transformer with a multilevel flow matrix representation. This approach addresses the complexity of
network traffic data by comprehensively capturing traffic features through the multilevel flow matrix while
leveraging the Swin Transformer’s robust feature extraction capabilities to significantly enhance classification
performance. Experimental results on multiple public datasets demonstrate that our method outperforms
traditional machine learning and deep learning techniques in terms of accuracy, recall, and F1 score, exhibit-
ing high classification accuracy and strong adaptability. Meanwhile, the NetST method offers significant
advantages in terms of the number of parameters, computational efficiency, and throughput. Specifically,
it utilizes only 37.9% of the parameters of the ViT, requires just 9.3% of the computational resources,
and achieves a throughput that is 9.3 times greater than that of ViT. This makes it highly efficient and
lightweight, making it suitable for scenarios with stringent resource and efficiency requirements in practical
applications. However, with the ongoing evolution of HTTP/3 and QUIC-based multipath protocols, it is
challenging to effectively capture their dynamic characteristics using fixed-size flow matrices and static
model structures. In the future, we will integrate unsupervised learning techniques to enhance the feature
representation of encrypted traffic by leveraging potential patterns in unlabeled data. Additionally, we will
introduce a lightweight online incremental learning mechanism that allows the model to continuously adapt
to new protocols and traffic distributions post-deployment, thereby further improving the performance and
reliability of network encrypted traffic classification.
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