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ABSTRACT: In recent decades, brain tumors have emerged as a serious neurological disorder that often leads to death.
Hence, Brain Tumor Segmentation (BTS) is significant to enable the visualization, classification, and delineation of
tumor regions in Magnetic Resonance Imaging (MRI). However, BTS remains a challenging task because of noise,
non-uniform object texture, diverse image content and clustered objects. To address these challenges, a novel model is
implemented in this research. The key objective of this research is to improve segmentation accuracy and generalization
in BTS by incorporating Switchable Normalization into Faster R-CNN, which effectively captures the fine-grained
tumor features to enhance segmentation precision. MRI images are initially acquired from three online datasets: Dataset
1—Brain Tumor Segmentation (BraTS) 2018, Dataset 2—BraTS 2019, and Dataset 3—BraTS 2020. Subsequently, the
Switchable Normalization-based Faster Regions with Convolutional Neural Networks (SNFRC) model is proposed for
improved BTS in MRI images. In the proposed model, Switchable Normalization is integrated into the conventional
architecture, enhancing generalization capability and reducing overfitting to unseen image data, which is essential due
to the typically limited size of available datasets. The network depth is increased to obtain discriminative semantic
features that improve segmentation performance. Specifically, Switchable Normalization captures the diverse feature
representations from the brain images. The Faster R-CNN model develops end-to-end training and effective regional
proposal generation, with an enhanced training stability using Switchable Normalization, to perform an effective
segmentation in MRI images. From the experimental results, the proposed model attains segmentation accuracies of
99.41%, 98.12%, and 96.71% on Datasets 1, 2, and 3, respectively, outperforming conventional deep learning models used
for BTS.

KEYWORDS: Brain tumor segmentation; computer-aided system; deep learning models; magnetic resonance imaging;
medical images; switchable normalization

1 Introduction
Over the past few decades, brain tumors have become a leading cause of death in cancer patients [1]. In

2020, the American cancer society reported that around 23,000 new brain tumor cases were identified [2,3].
Brain tumors are divided into two categories: primary brain tumors, which originate in the brain cells, and
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secondary brain tumors formed by malignant cells spreading from other parts of the body to the brain [4]. For
BTS, MRI modality is extensively used to diagnose and investigate the intra-and inter-operative treatment
of brain tumors [5,6]. Additionally, MRI images provide detailed information about tumor vascularity and
cellularity using multimodal protocols [7,8]. However, manual BTS requires clinical experts to precisely
locate tumor types [9]. Manual segmentation is labor-intensive, dependent on the clinician’s expertise, and
is therefore a time-consuming and tedious procedure [10,11]. To address this, automated computer-based
segmentation models have been developed to reduce the surgeon’s workload while providing reliable and
accurate segmentation results [12,13]. These automatic models minimize the effort required from clinicians
in the disease diagnosis process. Several machine learning models have been implemented for segmenting
healthy and unhealthy brain tissues in MRI brain images [14]. Nonetheless, selecting fully automated
features remains challenging and requires a combination of medical expertise and computer engineering
knowledge [15]. To address these challenges, an improved deep learning model is proposed in this article for
effective BTS.

The key contributions of this study are given as follows:

• The proposed model incorporates switchable normalization in the conventional Faster R-CNN model for
stabilizing and effectively learning multi-scale fine-grained segments. Furthermore, this model includes
morphological gradient and dice loss functions for precise segmentation of tumor types, and for reducing
loss of feature information in the max-pooling layer.

• During backpropagation, switchable normalization aids in handling a stable gradient flow that leads
to effective training. Moreover, the SNFRC has the ability to train end-to-end with effective regional
proposal generation and handling of different object scales and ratios, thereby enabling the efficient
execution of complex tasks like BTS.

• The depth of the proposed model is increased in this manuscript to obtain active semantic feature vectors
that help in improving BTS performance. The model’s efficiency is validated based on six evaluation
measures: Hausdorff Distance (HD), recall, f1-measure, Dice Similarity Coefficient (DSC), accuracy,
and precision.

The remainder of this manuscript is formatted as follows: existing models suggested for BTS are
surveyed in Section 2. The mathematical derivations and simulation outcomes of the proposed model
are presented in Sections 3 and 4, respectively. Finally, the model’s future extensions and findings of the
manuscript are displayed in Section 5.

2 Literature Survey
Zeineldin et al. [16] implemented a modular decoupling model, DeepSeg, for effective brain lesion

segmentation using MRI data. The DeepSeg model comprised two major parts: decoding and encoding.
The encoder section used a Convolutional Neural Network (CNN) to extract spatial features from MRI
brain images. The extracted feature maps were passed to the decoder module, which included NASNet,
DenseNet, and ResNet to obtain full-resolution probability maps. The DeepSeg model achieved improved
segmentation performance on an online dataset in terms of Hausdorff distance score and Dice similarity
coefficient. However, the segmentation accuracy of the DeepSeg model relied heavily on the patch size.

Chen et al. [17] implemented a dual force CNN model for accurate BTS in MRI brain images. This dual
force CNN model’s performance was tested on two online datasets. In this study, the training patches required
were higher than the training samples, therefore requiring a larger number of computational cycles, which
resulted in higher time consumption. Havaei et al. [18] developed a novel deep-learning model that exploited
global contextual and local features from MRI brain images for BTS. The simulation experiments conducted
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on a benchmark dataset confirmed that the developed model attained effective segmentation performance,
in contrast to the existing models in terms of accuracy and speed. Nonetheless, brain lesion segmentation
remained challenging to the model due to image noise, occlusions, and cluttered objects.

Pereira et al. [19] integrated a CNN with the bat optimization algorithm for automatic BTS. In
addition, the skull stripping technique was deployed to improve visibility in MRI brain images. Extensive
experimentation revealed that the developed model attained better performance related to the existing
models on a benchmark dataset in terms of dice coefficient value, accuracy, recall, and precision. Nonetheless,
the CNN model required an enormous number of MRI brain images for training, which increased the
system’s running time.

Abdel-Maksoud et al. [20] deployed a Fuzzy C means (FCM) algorithm with k-means clustering
for effective image segmentation. Additionally, the level set and thresholding segmentation phases were
followed to achieve precise brain lesion segmentation. The developed model included the benefits of k-means
clustering and FCM algorithm, with respect to computational time and accuracy. Nevertheless, the developed
model achieved lower segmentation performance due to the factors like noise, poor contrast, and diffusive
or missing boundary. Zhao et al. [21] integrated a conditional random field and Fully CNNs (FCNNs) for
effective brain lesion segmentation. The experimental analysis on three benchmark datasets confirmed the
model’s efficacy in light of Hausdorff distance scores and dice similarity coefficient. But, the model suffered
from computational complexity as it used an enormous number of MRI brain images for model training.

Zhang et al. [22] developed a novel cross modality deep learning method for brain lesion detection
in MRI brain images. The developed model included two learning processes: cross modality feature fusion
and cross modality feature transitions for learning rich feature vectors from dissimilar modality data. The
experimental evaluation showed that this cross-modal deep learning approach superiorly enhanced BTS
performance on the BraTS datasets, but suffered from overfitting due to multiple network parameters.

Alqazzaz et al. [23] implemented the SegNet approach for automatic BTS on multi-modal MRI images.
The SegNet model achieved better segmentation results on a BraTS dataset in terms of f-measure score.
Zhou et al. [24] introduced a 3D residual neural network for BTS in MRI images. The developed model
consumed limited graphics processing unit memory and computational complexity. However, both the
SegNet approach and the 3D residual neural network faced the shortcomings of overfitting and gradient
vanishing. Nema et al. [25] implemented a RescueNet model for BTS through unpaired adversarial training
for tumor segmentation. The performance metrics of sensitivity and dice similarity coefficient demonstrated
the model’s effectiveness, but enormous labelled data was required for model training, making it tedious and
time-consuming.

Iqbal et al. [26] implemented a CNN model for BTS in multi spectral MRI images. In this study, the CNN
utilized an interpolation technique with convolutional maps for promising segmentation results. As stated
earlier, the CNN model required an enormous number of MRI brain images, thereby increasing the run-
ning/training time. Hu et al. [27] developed a hybrid deep learning model which integrated multi-cascaded
CNN model and Fully Connected (FC) Conditional Random Fields (CRF). In this study, the multi-cascaded
CNN model extracted the local dependencies of labels, after which the fully connected CRF considered
spatial contextual information for final segmentation. That said, the hybrid deep learning model showcased
suboptimal segmentation performance due to blurred boundaries and invading surrounding tissues.

Zhang et al. [28] introduced an attention gate ResU-Net model for automatic MRI BTS. The developed
model attained significant performance on the benchmark BraTs datasets. However, the attention gate ResU
Net model was ineffective due to class imbalance and multi-task training problems. Furthermore, Abolenein
et al. [29] introduced a Hybrid Two Track U-Net (HTTU-Net) integrated with a hybrid loss function



5754 Comput Mater Contin. 2025;84(3)

(generalized focal loss and dice loss functions) for alleviating the class imbalance problem. Nonetheless, the
HTTU-Net model suffered from irregular tumor shapes and positions in MRI images.

Zhang et al. [30] initially used an adaptive Wiener filter and morphological operations for denoising and
eliminating non-brain tissues from MRI brain images. The K-means clustering algorithm was integrated with
Gaussian kernel-based FCM algorithm for BTS. The experimental analysis confirmed that the developed
model obtained better performance in light of recall, specificity, and accuracy, but experienced unstable
clustering which arose due to improper cluster centroid initialization. Ding et al. [31] implemented a novel
multi-path adaptive fusion network for multi-model BTS. Hence, the developed model attained superior
performance on an online dataset, but the numerical results revealed the model’s higher computational costs.

Saeed et al. [32] developed a Residual-Mobile U-Net (RMU-Net) for significant BTS. The implemented
model achieved superior performance than the prior methodologies with lower computational cost and
running time. On the other hand, Zhang et al. [33] developed a multi-encoder Net model which was
investigated on a benchmark dataset in terms of the dice similarity coefficient. Akbar et al. [34] introduced
a single-level U-Net model with residual attention block for effective BTS. However, the multi-encoder Net
and single-level U-Net models struggled with background and foreground voxel imbalance.

Ali et al. [35] developed the BTS based on the progressively growing (PG) One-shot learning CNN,
namely PG-OneShot-CNN, along with the semantic segmentation network. The principle of PG was used to
improve the learning process by concentrating on simpler and common features and gradually refining them
to obtain highly explicit and complex patterns. Additionally, PG was used to improve the generalization and
fine-grained feature learning of BTS. The adaptability to different brain tumor statistics was mandatory for
further improving the segmentation.

Al Hasan et al. [36] designed the Dual-Stream Iterative Transformer UNet (DSIT-UNet), which included
the Iterative Transformer (IT) along with a dual-stream encoder-decoder for segmentation. The Transformed
Spatial Hybrid Attention Optimization (TSHAO) was incorporated into the DSIT-UNet to appropriately
integrate the hierarchical features, retain local details, and preserve global context. This helped achieve
precise tumor boundary segmentation while maintaining anatomical awareness. The generalization of the
DSIT-UNet had to be evaluated across different data distributions to justify its efficiency.

Rahman et al. [37] developed a lightweight CNN approach, namely GliomaCNN, used to classify brain
tumors as Low-Grade Gliomas (LGG) and High-Grade Gliomas (HGG). GliomaCNN was trained based
on the gradient-boosting algorithm, which served as the base estimator of GliomaCNN. Furthermore, the
explainable AI techniques SHAP and Grad-CAM++ were used to understand the predictions and identify
the important regions. The imbalance between LGG and HGG affected the classification performance of
GliomaCNN. In order to overcome the aforementioned issues, this study introduces a SNFRC model for
enhanced segmentation accuracy, generalization, and training stability.

3 Methodology
The proposed SNFRC model functions in two phases: Data collection from the BraTS datasets, and

Brain Lesion Segmentation using switchable normalization based SNFRC model.
The steps followed in the proposed research are outlined as follows:

• Input Acquisition and Preprocessing: First, the images from the dataset are collected and resized to a
fixed size of 64 × 64 to standardize the inputs.

• Feature Extraction: The VGG16 model with switchable normalization layers from SNFRC is used to
extract the features.
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• Candidate Region Generation: Candidate tumor regions are created using the Region Proposal Net-
work (RPN), which generates potential bounding boxes in various scales and aspect ratios to localize
the tumor.

• Segmentation: Features obtained from the candidate regions are passed through RoI pooling, followed
by the application of segmentation layers to precisely outline the tumors.

• Post-Processing: Duplicate detections are eliminated using Non-Maximum Suppression (NMS) after
the segmentation layers to generate the final segmented output.

A detailed explanation of data collection and the functioning of the proposed model are given below.

3.1 Description of the Datasets
The proposed model’s effectiveness is validated on the BraTS datasets. Initially, the Dataset 1 (BraTS 2018)

comprising of 75 lower and 210 higher-grade gliomas images is considered. The training dataset consists of
285 subjects with data from four modalities, while the validation dataset contains 66 subjects’ data without
manual segmentation. The MRI images in Dataset 1 have pixel dimensions of 240 × 240 × 155. These MRI
images are segmented by experienced neuro-radiologists. In Dataset 1, the tumor regions are classified into
four types: necrosis, non-enhancing tumors, edema, and enhancing (or active) tumors [38]. A sample of the
MRI brain scans from Dataset 1 is shown in Fig. 1.

Figure 1: Sample MRI brain scans of Dataset 1

The Dataset 2 (BraTS 2019) is made of 76 lower and 259 higher-grade glioma images. The ground truth
in this dataset is manually created using an annotation protocol carried out by neuro-radiologists [39]. The
dataset contains MRI brain scans from four modalities: T2, T1, T2-FLAIR and T1-CE. The sample MRI brain
scans of Dataset 2 are given in Fig. 2.

Figure 2: Sample MRI brain scans of Dataset 2
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Additionally, Dataset 3 (BraTS 2020) comprises of 369 subject data with four modalities which are, Post
Contrast T1 weighted (T1CE), T2 weighted (T2), native (T1), and T2 Fluid Attenuated Inversion Recovery
(FLAIR) segmented manually, alongside 125 subject data segmented without manual intervention [40].
Furthermore, the sample MRI brain scans of Dataset 3 are illustrated in Fig. 3.

Figure 3: Sample MRI brain scans of Dataset 3

3.2 Brain Lesion Segmentation
After collecting MRI scans, an SNFRC model is proposed for effective BTS, with the MRI scans

initially resized to 64 × 64. Based on existing literature, traditional deep learning models offer improved
segmentation performance and greater computational robustness compared to conventional sliding window-
based models. However, when dealing with larger input images, the Faster R-CNN model [41] requires
significantly more graphics processing unit memory for training. Moreover, traditional Faster R-CNN
struggles with fine-grained segmentation, especially in images with complex textures and varying shapes.
To overcome these limitations, the proposed SNFRC model incorporates switchable normalization [42],
enabling the effective learning and stabilization of multi-scale fine-grained segments. As illustrated in Fig. 4,
switchable normalization integrates Layer Normalization (LN), Instance Normalization (IN), and Batch Nor-
malization (BN), allowing dynamic adaptation to varying brain tumor image statistics by learning optimal
normalization weights. This results in enhanced generalization, training stability, and better adaptability to
heterogeneous tumor textures. In the SNFRC, switchable normalization is critical for accurate multi-scale
segmentation, as normalization significantly impacts the detection of fine-grained details across all layers.
The model combines a Region Proposal Network (RPN) and a Fast R-CNN detector. The features are first
extracted using VGG16, followed by candidate region generation via RPN. These proposals are then aligned
with VGG16’s final convolutional layer output and passed through a Region of Interest (ROI) pooling layer
to standardize feature dimensions. The resulting features are fed into a fully connected layer to perform the
final segmentation, effectively reducing the number of region proposals, improving proposal quality, and
enhancing overall detection performance.

The important module in the SNFRC is RPN, which significantly reduces the number of generated
region proposals. The RPN identifies pixels using a sliding window applied over the feature representation.
Each pixel point lies at the center of a 3 × 3 convolutional kernel in the sliding window. A receptive region is
employed to map the pixel to the image, and this pixel serves as the midpoint for generating nine rectangular
regions with three scales (1282, 2562, 5122) and three aspect ratios (1∶ 3, 1∶ 2, 1∶ 1), referred to as anchors. These
anchors address the challenge of detecting multi-scale objects. The feature map contains multiple pixels,
with each pixel corresponding to nine anchors, resulting in a large number of anchors overall. As it is
impractical to include all anchors in the training process, a subset is selected for training. The classification
probability and anchor’s bounding box regression parameters are obtained by generating region proposals
through the integration of the input image into the RPN. Subsequently, the region proposal coordinates are
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computed, and the proposals refined by Non-Maximum Suppression (NMS) yield high-quality potential
regions, contributing to the final outcome of the object identification phase.

Figure 4: Architecture of SNFRC

The loss function is expressed in Eq. (1).

L ({pi} , {ti}) =
1

Ncl s
∑

i
Lc l s (pi , p∗i ) + λ 1

Nre g
∑

i
p∗i Lre g (ti , t∗i ) (1)

where, the anchor’s index is denoted as i, prediction probability is denoted as pi , ground truth label is denoted
as p∗i , the vector with four parameterized coordinates of the discovered box are denoted as ti , ground truth
box is depicted as t∗i , weighting parameter is λ, and regression loss and classification loss are denoted as
Lcl s(pi , p∗i ) and Lre g(ti , t∗i ). Eqs. (2) and (3) express the classification and regression losses.

Lcl s (pi , p∗i ) = −log [p∗i pi + (1 − p∗i ) (1 − pi)] (2)
Lre g (ti , t∗i ) = R (ti − t∗i ) (3)

where, the L1 function is denoted as R, the regression loss enabled only for positive anchors (p∗i = 1)
is denoted as p∗i Lre g , and it is inactivated when p∗i = 0. The classification and regression layer outputs
are denoted as {pi} and {ti}. The conventional batch normalization function is replaced with switchable
normalization in segmentation. Additionally, the dice loss function L is used in the proposed model for
balancing the prediction correction, and thereby enabling segmentation to stabilize the acquired fine-grained
segments in multi-scale data. During model training, a switchable normalization layer S computes mean μS
and variance σ 2

S which is the layer’s input, as specified mathematically in Eqs. (4) and (5).

μS =
1
∣mS ∣

mS

∑
(n ,c , i , j)=1

xnc i j (4)

σ 2
S =

1
∣mS ∣

mS

∑
(n ,c , i , j)=1

(xnc i j − μS)
2 (5)
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where, every batch has m samples, xi denotes the switchable normalization layer’s input, which is the original
pixel in 4D input tensor, S ∈ {IN , LN , BN} is used to differentiate different methods, 4D tensor considers
the width, height, number of channels and number of samples (W , H, C , N), and n, c, i and j are the values
taken from 1 to N , 1 to C, 1 to H and 1 to W , respectively. This switchable normalization expressed in Eq. (6),
offers a balance of learning and enhances the model’s generalization capacity.

x̂nc i j = γ
xnc i j −∑S∈Ω wS μS√
∑S∈Ω w′

S σ 2
S + λ

+ β (6)

where, x̂nc i j is a normalized pixel, a group of valuated statistics is denoted as Ω, scale and shift parameters
are denoted as γ and β, respectively, and λ is a small constant used to preserve numerical stability, and wS
and w

′

S are scalar variables denoting significant rations used to weigh the mean and variances. Here, γ is used
to differentiate IN, LN and BN methods.

Furthermore, the layer’s inputs are normalized utilizing the previously computed batch statistics ε as
denoted in Eq. (7). The output of the layer is obtained by performing scale and shift operations as mentioned
in Eq. (8).

xi =
xi − μS√

σ 2
S+ ε

(7)

yi = γxi + β (8)

where, the parameters γ and β are learned during model training along with the original network parameters.
As discussed earlier, the dice loss function L is mathematically stated in Eq. (9).

L = Ld ice + 0.1 × LL2 + 0.1 × LKL (9)

where, Ld ice denotes a soft-dice-loss function that improves the decoder Ppred ’s output to match the ground-
truth masks Ptrue , as represented in Eq. (10).

Ld ice = 1 −
2 ×∑Ppred × Ptrue

∑P2
pred +∑P2

true
(10)

where, LL2 represents L2 loss function and LKL specifies KL divergence which is deployed to induce the
Gaussian distribution. The L2 loss and KL divergence functions are mathematically stated in Eqs. (11)
and (12).

LL2 = ∑(INpred − INin put)2 (11)

LKL =
1
N ∑ μ2 + σ 2 − logσ 2 − 1 (12)

where, N denotes the number of image pixels μ2 and σ 2 respectively represent mean and variance.
The multi-scale feature maps from VGG16 are aggregated and passed through switchable normalization

layers before being fed to the RPN. The regions generated by the RPN are refined through RoI pooling
and subsequently forwarded to the tumor-type-specific classifiers and bounding box regressors. The feature
representations are stabilized across stages by switchable normalization, which integrates Batch Normal-
ization (BN), Instance Normalization (IN), and Layer Normalization (LN), and is continuously regulated
throughout the training process. The feature mapping is illustrated in Fig. 5, along with the corresponding
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spatial dimensions and normalization operations. At each stage, the depiction of features is enhanced by
switchable normalization, which adaptively balances local and global context.

Figure 5: Output image of the proposed model

4 Experimental Results
The proposed segmentation model is executed on Python 3.7 software environment, implemented on

a system with 4-TB hard drive, 128-GB random access memory, windows 11 (64-bit) operating system, and
Intel i7 12th generation processor. The training of SNFRC is carried out using NVIDIA RTX 2090Ti GPUs,
enabling convergence within a reasonable timeframe in accordance with modern deep learning practices
in the medical imaging field. Although the computational requirements are higher compared to simpler
architectures, this is justified by the improved segmentation performance and enhanced generalizability.
Additionally, SNFRC maintains efficient inference speeds, supporting real-time deployment once training
is complete. The libraries named TensorFlow, Keras, Numpy, and OpenCV are used to investigate the
proposed model’s efficacy. In the acquired datasets, tumor structures are categorized into three sub-regions,
namely, Whole-Tumors (WTs) regions, Enhancing Tumors (ETs) regions, and Tumor-Cores (TCs) regions.
The ET regions contain label 4, the WT regions exclude ‘edema’ region and comprise the labels 1, 3 and
4, and the TC regions consist of four sub-tumoral classes, such as labels 1, 2, 3, and 4. For each dataset,
the training, testing, and validation sets are divided in a 70%, 15%, and 15% ratio, respectively. In this
manuscript, the model’s effectiveness is evaluated using the following performance metrics: Hausdorff
Distance (HD), recall, F1-measure, Dice Similarity Coefficient (DSC), accuracy, and precision. In brain
tumor segmentation (BTS), HD, DSC, Intersection over Union (IoU), and volume similarity are the primary
evaluation measures used to validate the efficacy of the segmentation model. The DSC quantifies the overlap
between the actual labeled area and the predicted lesion area, and is mathematically defined in Eq. (13).
HD is a mathematical metric used to measure the dissimilarity between two sets of points (T and P) in a
metric space, as represented in Eq. (14). In segmentation tasks, the correctness of each sample’s identification
is related not only to classification but also to localization. Localization accuracy is assessed using IoU, as
defined in Eq. (15). Additionally, the overlap among segmented regions is evaluated using volume similarity,
expressed in Eq. (16).

DSC = 2 ∗ ∣T ∩ P∣
∣T ∣ + ∣P∣ (13)
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HD(T , P) = max{supt∈T in fp∈P d(t, p), supp∈P in ft∈T d(t, p)} (14)

IoU = P⋂G
P⋃G

(15)

Volume Simil arity = 1 − P −G
P +G

(16)

where, in f indicates infimum, sup represents supremum, P represents predicted lesion region, T denotes
ground truth region, t and p represents the points on the surface P and T . The term d (t, p) estimates the
distance between points t and p. In addition, recall assesses the capability of the proposed segmentation
model to correctly identify tumor regions from the reference or ground-truth segmentation. Accuracy is also
a critical performance measure in BTS and is defined as the proportion of correctly detected observations to
the total number of observations. The evaluation measures: recall and accuracy are represented in Eqs. (17)
and (18). In these equations, TP indicates the pixels segmented as a tumor region, TN refers to the pixels
correctly segmented as background, FP denotes background pixels incorrectly segmented as tumor regions,
and FN represents positive pixels incorrectly segmented as background regions.

Recal l = TP
TP + FN

(17)

Accurac y = TP + TN
TP + TN + FP + FN

(18)

Additionally, precision is defined as the ratio of true positive (TP) predictions to the total number
of positive predictions made by the proposed segmentation model. Furthermore, the F1-measure is the
harmonic mean of recall and precision. The formulas used to calculate precision and the F1-measure are
numerically represented in Eqs. (19) and (20).

Precision = TP
TP + FP

(19)

F1 −measure = 2TP
2TP + FP + FN

(20)

4.1 Performance Evaluation
In this context, the proposed segmentation model is analyzed on three online BraTS datasets. On

viewing Table 1, it is seen that the proposed segmentation model achieves impressive outcomes compared
to the conventional models: CNN, DenseNet and Faster R-CNN. A graphical comparison of the existing
and the proposed model is presented in Figs. 6–8 for all three datasets. This SNFRC model achieves
F1-measure of 99.82%, recall of 99.63%, precision of 99.57%, and accuracy of 99.41% on Dataset 1, whereas
the comparative models, CNN, DenseNet and Faster R-CNN attain a limited performance in comparison
to the SNFRC. The end to end training and efficient region proposal generation of SNFRC helps the model
in performing an effective segmentation. The switchable normalization included in the SNFRC helps adapt
to normalization for managing changes in brain tumor images, enhancing tumor segmentation with diverse
and complex characteristics. Here, the proposed model achieves a higher segmentation performance on a
smaller training set as it replicates the feature maps of down sampling which is then integrated with an
up-sampling convolutional process for extracting the rich image pixel context information. Similarly, the
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proposed segmentation model obtains an f1-measure of 97.86%, recall of 98%, precision of 97.63%, and
accuracy of 98.12% on Dataset 2. Additionally, on Dataset 3, the model achieves an F1-measure of 96.74%,
recall of 96.86%, precision of 96.56%, and accuracy of 96.71%. These numerical results are superior to those
of the conventional models.

Table 1: Experimental outcomes using four different evaluation measures

Dataset 1

Models Accuracy (%) Precision (%) Recall (%) F1-measure (%)
CNN 94.72 94.98 95.57 95.83

DenseNet 96.15 96.55 96.65 97.06
Faster R-CNN 97.91 98.35 98.32 98.48

SNFRC 99.41 99.57 99.63 99.82

Dataset 2

Models Accuracy (%) Precision (%) Recall (%) F1-measure (%)

CNN 93.64 93.12 93.90 92.99
DenseNet 94.91 94.27 95.12 94.88

Faster R-CNN 96.30 95.70 96.52 96.38
SNFRC 98.12 97.63 98 97.86

Dataset 3

Models Accuracy (%) Precision (%) Recall (%) F1-measure (%)

CNN 93.36 92.19 93.12 92.86
DenseNet 94.40 93.86 94.26 94.08

Faster R-CNN 95.70 95.02 95.42 95.59
SNFRC 96.71 96.56 96.86 96.74

Figure 6: Achieved results of the existing and proposed model on the Dataset 1
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Figure 7: Achieved results of the existing and proposed model on the Dataset 2

Figure 8: Achieved results of the existing and proposed model on the Dataset 3

On the other hand, the overfitting issue in deep learning approaches trained on limited datasets,
particularly in medical imaging where annotated data is often scarce, is a well-recognized challenge. In
this research, the SNFRC addresses this issue through several strategies: switchable normalization enhances
training stability and mitigates covariate shift across feature scales, while edge priors are introduced to
promote spatial consistency. These strategies contribute to reliable generalization across the BraTS 2018, 2019,
and 2020 datasets, as demonstrated by the model’s performance. Furthermore, the SNFRC is trained on
the BraTS 2018 dataset and tested on the BraTS 2019 and BraTS 2020 datasets to evaluate the overfitting
risk. This analysis yields accuracies of 97.57% and 94.93% when testing with the BraTS 2019 and BraTS 2020
datasets, respectively.

Fig. 9 shows the performance analysis of accuracy and loss curves for Datasets 1, 2 and 3, respectively
used in this research. The accuracy curves validate steady increase throughout the training process and
stabilizing at high values which is near to convergence, thus representing that the model efficiently learns the
underlying patterns of the respective datasets. Especially, marginal gaps among the training and validation
curves prove that the proposed SNFRC model does not experience the overfitting issue. Similarly, the
corresponding loss curves display a stable decrease, further confirming the robustness and stability of the
training. The stated segmentation accuracies such as 99.41%, 98.12%, and 96.71% are validated by these
accuracy and loss curves, providing robust experimental evidence of the model’s effectiveness over various
data distributions.
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Figure 9: Performance analysis of accuracy and loss curves for (a) Dataset 1, (b) Dataset 2, (c) Dataset 3

Furthermore, Cross-fold validation is performed, as shown in Table 2, for different fold configurations,
including 2-Fold, 3-Fold, 5-Fold, and 7-Fold. Recall is specifically emphasized, as it measures the model’s
ability to accurately identify tumor regions, which is crucial for effective tumor segmentation. The SNFRC
consistently achieves higher recall across all datasets and fold configurations, demonstrating its superior
capacity for brain tumor segmentation (BTS). Even with smaller training splits (e.g., 7-fold), the SNFRC
maintains high recall, illustrating its robustness in reliably identifying tumor regions. Larger training sets
allow the SNFRC to capture more appropriate tumor features, further enhancing its performance.
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Table 2: Analysis of recall under cross fold validation

Dataset Model 2-Fold 3-Fold 5-Fold 7-Fold

BraTS 2018

CNN 89.36 88.62 92.48 88.67
DenseNet 92.37 92.82 94.99 90.50

Faster R-CNN 95.56 96.59 97.32 92.74
SNFRC 96.45 97.02 99.26 94.63

BraTS 2019

CNN 87.90 88.64 92.92 86.47
DenseNet 89.62 90.65 93.73 87.96

Faster R-CNN 91.77 93.68 95.00 90.20
SNFRC 93.15 95.90 97.80 94.25

BraTS 2020

CNN 88.59 90.68 92.05 86.68
DenseNet 89.84 91.98 92.38 86.90

Faster R-CNN 91.80 92.36 93.49 89.85
SNFRC 93.50 94.83 95.34 91.41

In Tables 3 and 4, the proposed segmentation model’s effectiveness is validated on three online datasets
namely, DSC, HD, IoT and volume similarity. From Tables 3 and 4, it is evident that the proposed SNFRC
model attains higher segmentation results compared to the CNN, DenseNet and Faster R-CNN on three
tumor types (ET, WT, and TC) in terms of DSC, HD, IoT and volume similarity. For example, the proposed
SNFRC model obtains a mean DSC of 84.70%, 84.68%, and 84.66%, correspondingly on the Datasets 1, 2,
and 3, proving superior to the existing models. The post-processing performed by SNFRC involves applying
Non-Maximum Suppression (NMS) after the segmentation layers to eliminate duplicate segmentations while
generating the final segmented output.

Table 3: Experimental outcomes by means of DSC and HD score

Dataset 1

DSC (%) HD (%)

Models ET WT TC ET WT TC

CNN 79.40 91.82 82.72 79.46 91.55 82.37
DenseNet 79.41 91.83 82.74 79.48 91.57 82.39

Faster R-CNN 79.43 91.85 82.76 79.49 91.59 82.40
SNFRC 79.45 91.87 82.78 79.51 91.61 82.42

Dataset 2

DSC (%) HD (%)

Models ET WT TC ET WT TC

CNN 79.38 91.80 82.71 79.45 91.54 82.35
DenseNet 79.40 91.82 82.73 79.46 91.55 82.36

Faster R-CNN 79.42 91.83 82.75 79.48 91.57 82.38
SNFRC 79.43 91.85 82.76 79.49 91.59 82.40

(Continued)
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Table 3 (continued)
Dataset 3

DSC (%) HD (%)

Models ET WT TC ET WT TC

CNN 79.36 91.79 82.70 79.43 91.53 82.34
DenseNet 79.37 91.80 82.72 79.44 91.55 82.36

Faster R-CNN 79.39 91.82 82.73 79.46 91.56 82.37
SNFRC 79.41 91.83 82.75 79.47 91.58 82.38

Table 4: Experimental outcomes by means of IoU and Volume similarity

Dataset 1

IoU (%) Volume similarity

Models ET WT TC ET WT TC
CNN 83.23 83.86 83.76 0.9593 0.9683 0.9599

DenseNet 92.42 93.24 92.30 0.9704 0.9771 0.9734
Faster R-CNN 88.06 88.76 88.64 0.9797 0.9824 0.9726

SNFRC 96.57 96.62 96.40 0.9759 0.9791 0.9735

Dataset 2

IoU (%) Volume similarity

Models ET WT TC ET WT TC

CNN 92.07 92.57 91.69 0.9753 0.9810 0.9799
DenseNet 95.17 95.94 95.54 0.9851 0.9926 0.9892

Faster R-CNN 92.43 93.05 92.58 0.9881 0.9947 0.9887
SNFRC 96.29 97.07 96.31 0.9951 0.9987 0.9967

Dataset 3

IoU (%) Volume similarity

Models ET WT TC ET WT TC

CNN 91.42 92.21 91.54 0.9832 0.9871 0.9828
DenseNet 94.69 95.22 94.23 0.9806 0.9891 0.9799

Faster R-CNN 96.60 96.75 95.92 0.9806 0.9892 0.9859
SNFRC 97.46 98.44 98.12 0.9971 0.9992 0.9902

Next, the effectiveness of Switchable Normalization (SN) is analyzed in comparison with other normal-
ization functions such as Layer Normalization (LN), Batch Normalization (BN), and Instance Normalization
(IN). Table 5 presents a comparison of SN with these different normalizations using Intersection over
Union (IoU), demonstrating that SN outperforms LN, BN, and IN. The complexity analysis in terms of
memory usage and computational time required to segment a single image is provided in Table 6. This
analysis is specifically conducted due to the increased network depth, which enhances feature differentiation
and accuracy. SN offers superior segmentation performance because it adapts to normalization, effectively
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managing variations in brain tumor images. As a result, SN improves tumor segmentation for images with
diverse and complex characteristics. Moreover, the complexity of the SNFRC is lower than that of other
approaches such as CNN, DenseNet, and Faster R-CNN. Despite incorporating the additional Switchable
Normalization component, the complexity analysis shows that the SNFRC utilizes less computational
time and memory than the other approaches. This improved performance is attributed to the optimized
normalization and region proposal approach, which minimizes redundant calculations.

Table 5: Experimental outcomes for SN with different normalizations in terms of IoU

Dataset 1

Models ET WT TC
LN 82.00 83.28 82.42
BN 92.48 92.40 92.77
IN 87.07 88.57 87.45
SN 96.57 96.62 96.40

Dataset 2

Models ET WT TC

LN 91.32 91.70 91.70
BN 95.38 95.67 95.33
IN 92.20 92.54 91.45
SN 96.29 97.07 96.31

Dataset 3

Models ET WT TC

LN 91.72 91.43 91.53
BN 94.62 94.69 94.04
IN 95.72 95.98 95.38
SN 97.46 98.44 98.12

Table 6: Complexity analysis

Dataset 1

Models Memory usage (MB) Computational time
(ms)

CNN 472 132
DenseNet 368 141

Faster R-CNN 354 125
SNFRC 315 115

Dataset 2

Models Memory sage (MB) Computational time
(ms)

CNN 456 138

(Continued)
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Table 6 (continued)
DenseNet 347 142

Faster R-CNN 326 125
SNFRC 305 109

Dataset 3

Models Memory usage (MB) Computational time
(ms)

CNN 438 132
DenseNet 328 141

Faster R-CNN 302 128
SNFRC 281 114

4.2 Analysis on Generalizability
In this section, the generalizability of the proposed SNFRC is evaluated using the Br35H dataset [43].

This dataset consists of 3000 images, including 1500 tumor and 1500 non-tumor images. The results presented
in Table 7 indicate that SNFRC generalizes effectively on the Br35H dataset. Specifically, SNFRC achieves
high accuracy (96.84%) and recall (95.68%), reflecting improved segmentation quality and boundary
precision. The consistent performance of SNFRC highlights the effectiveness of switchable normalization in
adapting to varying data distributions.

Table 7: Generalizability analysis over SNFRC

Performances CNN DenseNet Faster R-CNN SNFRC
Accuracy (%) 91.82 93.65 95.12 96.84
Precision (%) 90.25 92.41 94.32 96.18

Recall (%) 89.78 91.95 93.74 96.69
F1-measure (%) 90.01 92.17 94.02 95.89

DSC (%) 92.94 95.50 96.35 98.56
HD (%) 12.80 11.25 9.34 7.92
IoU (%) 86.55 89.39 92.14 94.75

Volume similarity 0.9361 0.9514 0.9708 0.9816

4.3 Comparative Analysis
An evaluation between the proposed model and comparative models is given in Tables 8 and 9.

Zeineldin et al. [16] presented a DeepSeg model for BTS in MRI brain images. The DeepSeg model attains a
significant segmentation performance on Dataset 2 in terms of the DSC and HD score. The DeepSeg model
obtains 84% of DSC and 9.8% of HD score on the Dataset 2. Zhang et al. [28] introduced an attention gate
ResU-Net model for automatic MRI based BTS. This model obtained 87.20%, 77.20%, and 80.80% of DSC
for three individual brain tumor types on the Dataset 1. Correspondingly, this model achieved 87%, 70.90%,
and 77.70% of DSC value for individual brain tumor types on the Dataset 2.

Additionally, Saeed et al. [32] developed RMU-Net for brain tumor segmentation (BTS), which achieved
DSC values of 91.35%, 83.26%, and 88.13% on Dataset 3. Similarly, Zhang et al. [33] proposed a multi-encoder
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network for effective BTS, and extensive experimental analysis showed that this model achieved DSC values
of 70.24%, 73.86%, and 88.26% on Dataset 3. Furthermore, Akbar et al. [34] introduced a single-level U-Net
model incorporating a residual attention block for improved BTS in MRI brain images. This model achieved
DSC values of 89.59%, 77.71%, and 79.77% on Dataset 1 for WT, ET, and TC tumor types, respectively. On
Dataset 2, the same model achieved DSC values of 88.48%, 74.91%, and 80.98%, and 88.57%, 72.91%, and
80.19% on Dataset 3. Finally, studies by Ali et al. [35] and Al Hasan et al. [36] are used to compare the
proposed SNFRC in terms of accuracy, precision, and recall. This comparative analysis demonstrates that
SNFRC consistently outperforms the existing approaches across all evaluation metrics.

Table 8: Comparative valuation between the proposed model and the comparative models

Models Dataset DSC (%)

ET WT TC

Attention gate ResU-Net model [28] Dataset 1 77.20 87.20 80.80
Dataset 2 70.90 87 77.70

RMU-Net [32] Dataset 3 83.26 91.35 88.13
Multi encoder Net model [33] Dataset 3 73.86 70.24 88.26

Single level U-Net model with residual attention block [34]
Dataset 1 77.71 89.59 79.77
Dataset 2 74.91 88.48 80.98
Dataset 3 72.91 80.19 88.57

SNFRC
Dataset 1 79.45 91.87 82.78
Dataset 2 79.43 91.85 82.76
Dataset 3 79.41 91.83 82.75

Table 9: Comparison between proposed and existing approaches in terms of accuracy, precision and recall

Models Dataset Accuracy (%) Precision (%) Recall (%)

PG-OneShot-CNN [35]
Dataset 1 94.28 92.46 96.58
Dataset 2 94.95 93.73 94.78
Bra35H 95.20 92.35 95.72

DSIT-UNet [36] Dataset 2 NA 95.34 95.55
Dataset 3 NA 96.21 96.44

SNFRC

Dataset 1 99.41 99.57 99.63
Dataset 2 98.12 97.63 98
Dataset 3 96.71 96.56 96.86
Bra35H 96.84 96.18 96.69

The SNFRC employs switchable normalization to dynamically adapt to varying feature distributions
across layers, enhancing its ability to generalize across distinct tumor morphologies. This model is further
integrated with morphological gradient enhancement and multiscale region proposal mechanisms, which
contribute to improved segmentation outcomes for WT, ET, and TC regions. These tumor subtypes exhibit
varied structural and textural characteristics. For instance, ET often presents sharp boundary enhancements,
while WT is typically associated with diffuse edema, presenting distinct segmentation challenges. However,
the improvement is not consistently significant across all cases. Specifically, the DSC for the ET class in
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Dataset 3 is lower than that achieved by RMU-Net. The recurrent multiscale architecture of RMU-Net is
particularly effective in capturing localized patterns within irregular tumor regions such as ET. Nonetheless,
SNFRC demonstrates superior overall performance compared to the other existing approaches.

4.4 Discussion
In comparison to the previous models (Attention Gate ResU-Net [28], RMU-Net [32], Multi-Encoder

Net [33], and Single-Level U-Net with Residual Attention Block [34]), the proposed model achieves higher
BTS performance across Datasets 1, 2, and 3. As discussed in earlier sections, the SNFRC consistently
delivers superior BTS results on all three online datasets. However, the reduction in accuracy from Dataset
1 (99.41%) to Dataset 3 (96.71%) highlights the impact of domain shifts caused by temporal and institutional
variability, including differences in MRI protocols, patient demographics, and scanner hardware. These
factors reflect real-world clinical heterogeneity and present ongoing challenges for model generalization.
Switchable normalization combines the strengths of instance normalization, layer normalization, and batch
normalization, with the ability to switch among these normalization modes, enabling SNFRC to adapt to the
specific characteristics of the image data. In this context, the adaptability of switchable normalization leads to
improved feature representation within the traditional Faster R-CNN architecture. Therefore, the proposed
model is robust and well-suited for accurate brain tumor segmentation, effectively capturing subtle patterns
and variations in MRI medical images.

5 Conclusion
This paper proposed SNFRC to enhance the segmentation accuracy and generalization of brain tumor

segmentation (BTS) by integrating switchable normalization (SN) into the Faster R-CNN framework. The
inclusion of SN enables dynamic adaptation to varying brain tumor image statistics. The extraction of
multiscale fine-grained segments contributes to improved generalization, training stability, and adaptability
to different tumor textures, particularly in heterogeneous image scenarios. Additionally, the incorporation
of the morphological gradient function and Dice loss function enhances tumor pixel segmentation and
reduces feature information loss. For experimental analysis, three BraTS datasets are utilized. The proposed
segmentation model demonstrates robustness, achieving accuracies of 99.41%, 98.12%, and 96.71% on
Datasets 1, 2, and 3, respectively. These numerical results are significant when compared to traditional
models such as CNN, DenseNet, and Faster R-CNN, based on evaluation metrics including HD, recall, F1-
measure, DSC, accuracy, and precision. The generalization capability of SNFRC is further validated through
its effective segmentation performance on the Br35H dataset. This highlights the model’s potential, although
certain challenges remain. Future work may focus on integrating an appropriate classification model to
classify medical image subtypes. To address the issue of overfitting in low-data scenarios, future research
can explore self-supervised pretraining and uncertainty-aware learning to enhance robustness. Furthermore,
the model’s performance under real-world imaging artifacts can be investigated using multi-center data and
noise-augmented conditions.
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