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ABSTRACT: In today’s digital era, the rapid evolution of image editing technologies has brought about a significant
simplification of image manipulation. Unfortunately, this progress has also given rise to the misuse of manipulated
images across various domains. One of the pressing challenges stemming from this advancement is the increasing
difficulty in discerning between unaltered and manipulated images. This paper offers a comprehensive survey of
existing methodologies for detecting image tampering, shedding light on the diverse approaches employed in the
field of contemporary image forensics. The methods used to identify image forgery can be broadly classified into
two primary categories: classical machine learning techniques, heavily reliant on manually crafted features, and deep
learning methods. Additionally, this paper explores recent developments in image forensics, placing particular emphasis
on the detection of counterfeit colorization. Image colorization involves predicting colors for grayscale images, thereby
enhancing their visual appeal. The advancements in colorization techniques have reached a level where distinguishing
between authentic and forged images with the naked eye has become an exceptionally challenging task. This paper
serves as an in-depth exploration of the intricacies of image forensics in the modern age, with a specific focus on the
detection of colorization forgery, presenting a comprehensive overview of methodologies in this critical field.

KEYWORDS: Image colorization; image forensic; digital image forgery; machine learning; convolutional neural
network; deep learning; generative adversarial network

1 Introduction

The speedy development of editing tools in the modern period has dramatically aided the simplicity
with which photos can be altered. As a result, it is now more difficult to tell the difference between real
and manipulated photos. Digital images have become the prominent origin of information, attributable
to not only sophistication but also accessibility [1] because of the extensive utilization of digital image
forgery in diverse areas, namely military, law, medical images, media, worldwide web publications, and
news photography. Other distinctive image editing techniques are available compared to traditional ones,
namely image generation [2] and colorization [3]. Colorization typically involves adding plausible colors
to grayscale images based on visual realism, which leads to errors when a particular object is required to
be tracked. Eventually, the image generation approach typically builds a proper image out of a noise vector

with or without the supplementary information, for instance, a class label. Li et al’s [4] work is suitable for
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color blind persons. They used a self-adapting recoloring strategy with an improved octree quantification
method to detect significant color elements in an image adaptively. A screening platform for Color Vision
Deficiency (CVD) datasets is then used to merge different recoloring methods. Through the assistance of
this screening platform, a CVD dataset is constructed, containing 2313 sets of training images and 771
sets of test images. Different GANS, including pix2pix-GAN [5], Cycle-GAN [6], and Bicycle-GAN [7], are
utilized for data conversion and are color-blind. Experimental results indicate that pix2pix-GAN effectively
recolors unrecognizable colors for individuals with CVD, and it is predicted that this dataset will contribute
to advancements in color-blind image recoloring. However, the traditional approaches can have substantial
entertainment value or be utilized for other malicious purposes. For instance, the image retouching approach
usually alters images using various systems. Copy-move and splicing approaches generally manipulate a part
of a particular image and then perform object-level alterations.

To address the challenges above, a novel field called digital image forensics (DIF) has emerged, aiming
to provide measurable evidence regarding the integrity and origin of digital images. DIF employs two distinct
approaches: active and passive. The active approach involves implementing various processes, such as digital
watermarking or signature embedding, to safeguard digital images against tampering [8,9]. This approach
ensures that if a digital image has been tampered with, certain information cannot be extracted from it. On
the other hand, the passive DIF technique is more demanding [10]. It involves authenticating and detecting
the source of digital images without relying on any pre-embedded or pre-extracted information. While not
applicable in every situation, the passive method offers a different approach to detecting specific instances
of image tampering. This technique analyzes raw images by examining different statistical properties within
the image content to identify the potential image manipulation [11,12]. A survey for forged colorized image
detection (CID) is proposed by Salman et al. [13]. There are two widely used approaches to forged CID
systems. The first approach utilizes traditional machine learning (ML) techniques that involve hand-crafted
features extracted from the images for the discrimination of real and fake images. The second method
employs deep learning (DL) methods as “end-to-end” architectures where manually designed features are not
needed because the models learn them from the images directly. This work deals with different techniques
and methods employed in detecting fake colorized images (CIs). The manuscript’s main contribution is as
follows:

«  Exploration of image forensics approaches and techniques: This research paper investigates and presents
an overview of existing image forensics approaches. It delves into various methods and techniques
to detect image manipulations and forgeries. It offers valuable perspectives on the cutting-edge
technologies employed in this domain.

« Focus on fake image colorization detection: This research paper covers general image forensics tech-
niques and emphasizes fake image colorization detection methods. By providing a comprehensive
overview of these techniques, the study addresses the growing concern of distinguishing between
genuine and artificially colorized images.

The paper focuses on forgery detection methods, which are reviewed in Section 2. Moreover, other
aspects of DIF are discussed in the same section. Section 3 analyzes detection approaches tailored explicitly
for fake image colorization. These approaches can be broadly classified into ML-based and DL-based
techniques. The section extensively explores the practicality and limitations of each category, offering
valuable insights into the field. Finally, Section 4 serves as the paper’s conclusion, summarizing the essential
findings and limitations.
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2 Digital Image Forensic Approaches

DIF examines the authenticity and integrity of images that have undergone retouching and colorization.
Their other types are computer-generated images, fake images, and anti-forensic images. This involves
analyzing whether some aspects of the image have been altered or enhanced, potentially to mislead viewers
or present a modified version of reality. Experts in DIF use various techniques to detect and quantify the
extent of retouching, helping to reveal whether the changes were legitimate or intended to deceive. Cls are
scrutinized in DIF to ensure that adding color to a black-and-white or grayscale image has been carried
out accurately and consistently. By analyzing color distribution, matching hues in the intended context,
and assessing the overall coherence of colors, forensic experts can determine if the colorization aligns with
the original scene or has been altered to manipulate perceptions. DIF addresses the distinction between
images captured in the physical world and digitally generated through computer graphics. Forensic analysts
employ specialized tools and techniques to identify telltale signs of computer-generated images, such as
inconsistencies in lighting, shading, and patterns that might differ from what’s expected in real-world images.
This verification process is essential for assessing the credibility and provenance of CGI content. Anti-forensic
refers to techniques used to subvert or evade digital forensic analysis. In DIF, it’s crucial to understand anti-
forensic methods that adversaries might employ to erase or alter traces of manipulation, thereby hindering
the efforts of forensic experts. Understanding anti-forensic techniques is essential for developing more robust
and reliable forensic tools and methods. DIF encompasses the detection and analysis of various types of
image forgery. This includes detecting instances of copy-move forgery (where parts of an image are duplicated
and placed in different areas), splicing (combining portions of different images), and other manipulations
intended to deceive viewers. Forensic investigators use advanced algorithms and visual analysis to identify
these forgeries, supporting the integrity of digital imagery. DIF covers multiple aspects, as presented in Fig. 1.

Image

Retouching Image Forgery

Copy-move
Forgery

Image

Splici
Image R

Colorization

Computer
Generated Image Antiforensics

Figure 1: Categorical representation of digital image forensics

In general, research regarding image forgery implies that crimes of such particular kinds are conducted
to publicize counterfeit information and take political advantage of bad publicity, which requires immediate
attention. As a developing methodology, image forgery attempts to create the origin and validate digital
media. DIF confirms the morals and legitimacy of massive data. It is used in diverse situations, such as
medical fields, social media, and courts of law, which are becoming increasingly crucial.

Moreover, image forgery detection is classified into two categories: active image forgery and passive
image forgery, also called blind image forgery detection. The active category comprises two sub-class
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approaches: digital signature and watermarking. However, both of these methodologies necessitate prior
knowledge of the image, which possibly happens to be embedded in the picture when it was captured
or during image acquisition. Hence, the active forgery-based approaches are not entirely applicable when
the images come from an unknown source. Instead, these approaches are pretty valuable for the forensic
examination of digital images, such as crime scenes and fingerprint images, because such photos do
not have signatures or watermarks. Alternatively, passive forgery-based approaches will unlikely need
any pre-embedded knowledge regarding the picture. These approaches work by evaluating the different
characteristics of the picture based on the determination of the source of the picture [14]. It established the
notion of image forgery, including its types, datasets, schemes, constraints, and applications.

Fig. 2 depicts an extensive Mind map representing the intricate landscape of DIFE. It provides a
thorough overview of the demographic facets of the work conducted in this field. Mind map determines
key participants and trends within the field of digital image forensics. It covers publication trends, sources
of publications, research dimensions, keywords, key authors, organizations, and countries. The field of
publication defines the number of papers published per year, the level of citation, and publication types. The
Research Dimensions & Keywords section evokes some of the most notable areas like computer science,
engineering, and telecommunications, and the visibility of the research to the community of academicians.
The Key Authors, Organizations & Countries section focuses on efficient researchers and institutions. The
illustration encompasses crucial information related to four distinct components:

2.1 Research Dimensions and Keywords

In this section, the Mind map highlights prominent research areas, indexing practices, and frequently
used keywords within the realm of DIF. It covers a broad spectrum of research interests and author-associated
keywords. According to the Web of Science (WoS), the top 5 significant research areas in the field of DIF are
‘Computer Science’ (1189 publications, 69.9%), ‘Engineering’ (926 publications, 54.44%), ‘Telecommunica-
tion’ (205 publications, 12.05%), Imaging Science Photographic Technology’ (184 publications, 10.82%), and
‘Optics’ (53 publications, 3.12%). The top 5 WoS indexing categories are ‘Science Citation Index Expanded’
(SCI-Expanded) (845 publications, 49.68%), ‘Conference Proceedings Citation Index-Science’ (CPCI-S) (734
publications, 43.15%), ‘Emerging Sources Citation Index” (ESCI) (130 publications, 7.6%), ‘Social Sciences
Citation Index’ (SSCI) (7 publications, 0.41%), and ‘Book Citation Index-Science’ (BKCI-S) (5 publications,
2.9%). The most prevalent keywords in the domain of DIF are ‘digital image forensics, ‘image forgery
detection, ‘copy-move forgery, ‘deep learning, and ‘convolutional neural networks’

2.2 Key Authors, Organizations, and Countries

This segment provides insights into the primary contributors, countries of origin, and institutions that
play pivotal roles in advancing the field of DIFE. The top 5 key authors in the DIF domain over the last decade
are ‘Shi YQ' (33 publications, 1.94%), ‘Zhao Y’ (29 publications, 1.71%), ‘Barni M’ (26 publications, 1.53%), ‘Lu
W’ (25 publications, 1.47%), and ‘Piva A’ (25 publications, 1.47%). The top 5 major contributing organizations
to the DIF domain include the Chinese Academy of Sciences, Beijing, China (69 publications, 4.06%); Sun
Yat-Sen University, Guangzhou, China (66 publications, 3.88%); Indian Institute of Technology System,
India (59 publications, 3.7%); National Institute of Technology System, India (48 publications, 2.82%); and
University of Florence, Florence, Italy (39 publications, 2.29%). Furthermore, the top 5 contributing countries
are ‘China; ‘India; ‘USA, ‘Ttaly; and ‘South Korea.
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Figure 2: Mind map landscape of DIF

2.3 Publications

In this part, the Mind map provides comprehensive insights into the diverse types of publications
resulting from research in DIF. It presents annual publication counts, shedding light on the field’s growth
and activity over time. Additionally, it furnishes information about citations spanning from 2012 to 2023,
reflecting the influence and impact of the research. The highest citation count, 4981, was achieved in the year
2022. The major publication types encompass articles, conference proceeding papers, review articles, early
access materials, book chapters, and editorial content. As depicted in the figure, the number of publications
in the DIF domain has gradually increased, with 59 publications in 2012 and 188 in 2022. The maximum
count of 205 publications was recorded in 2018 over the past decade.
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2.4 Publication Sources

Within this component, the Mind map highlights significant publishers and source titles that play a
crucial role in the field of DIFE. This component assists in identifying key platforms where research findings
are shared. Among the top publishers shown in the figure, the top 5 publishers in the domain of DIF are
‘IEEE’ (664 publications, 39.04%), ‘Springer Nature’ (353 publications, 20.75%), ‘Elsevier’ (215 publications,
12.64%), ‘MDPT (57 publications, 3.35%), and ACM’ (54 publications, 3.16%). Similarly, the top 5 source
titles are ‘ MT&A, ‘LNCS, ‘IEEE TIFS, TEEE ACCESS, and ‘ICIP.

In summary, Fig. 2 serves as a visual representation of DIF’s multifaceted demographic landscape. It
offers an in-depth insight into research dimensions, influential authors, institutions, publication trends, and
authoritative sources within this dynamic field.

Image forensics, also termed passive image forensics, ascertains the picture authenticity along with the
source, without relying on any pre-extraction data [15]. Image tampering tactics (device-independent) are
utilized to modify a picture to achieve criminal intent [16]. A diverse range of image editing tools is used to
create a fake image that, despite looking original, comprises complex hints of contradictions, for instance,
distortions and overlapping loss of information, as evidence for image forensics. Passive forgery is generally
divided into two categories: copy-move and splicing. In spite of the two categories, several other factors need
to be considered in image forensics.

2.5 Copy-Move

This scheme of passive authentication is the most common picture tampering method. Still, it is also
quite challenging to spot because a fraction of the picture is cloned and pasted into another section of the
same image. The technique [17] encompasses four phases: pre-processing of the image, feature extraction,

2

matching of image blocks, and visualization of the blocks, as illustrated in Fig. 3.
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Figure 3: Workflow of copy-move

Moreover, a feature-based copy-move forgery detection (CMFD) scheme is presented by Yang et al. [18].
An adapted scale-invariant feature transform (SIFT) detector is employed to discover key points. A
strategy based on key-point circulation was formed by circulating key-points over the picture. Eventually,
the enhanced SIFT descriptor acknowledged key-points aimed at CMFD. Also, it grants comprehensive
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experimental results to endorse efficiency. To detect the mistreatment of this kind, it also recognizes copied
regions [19]. The SIFT relies upon that approach. It is an eminent, robust method that is proficient in detection
and has identical features that apply to cloned areas. These coordinated features are positioned under a
2-level clustering scheme to ensure features are utilized for the geometric transformation of duplicated
regions about specific clusters describing the comprised areas in the picture. For localization and detection
of copy-move image forgery, a stationary wavelet transform (SWT) technique is utilized along with the
discrete cosine transformation [20]. SW'T is used considering its characteristics, such as spectral and spatial
domain translation invariance and localization. Boundaries in CMFD are set forth by introducing a CNN
design [21] that is sensitively crafted for the detection of even the subtlest manipulations, even for intricate
image situations. In-depth knowledge of the properties of some key datasets—MICC-F220, MICC-F600,
and their union variant—is furnished through rigorous study, thereby enlightening their influences on
detection efficacy in previously untold ways. An all-around approach [22], a CMFD DRNet is given by
Wang et al. The method aims to detect a pair of completely similar-structured regions in the copy-move
fake image by ensuring complete extraction of semantically non-relevant shallow information. The DRNet is
composed of two coupled modules: the coarse similarity and the shallow suppression similarity. Additionally,
a higher-order self-correlation scheme is suggested to address the issue of noise introduction during the
usage of shallow features. The experiments are conducted on the USC-ISI CMFD, CASIA [23] CMFD and
CoMoFoD [24] public datasets, and 2.27%, 3.82%, and 4.60% improvement in the pixel-level F1 score,
respectively, is observed when tested using DRNet. Li et al. [25] introduced an end-to-end CMFD framework,
which combines the best of classical and DL techniques. More specifically, a strong cross-scale PatchMatch
method designed for CMFD is built to detect copy-move regions. Compared with existing deep models, this
technique utilizes features from high-resolution scales to scan for explicit and stable point-to-point matching
between target and source regions. Moreover, a pairwise rank learning model is given to separate source and
target regions. With the utilization of strong point-to-point prior, small variations are identified, and target
vs. source discrimination is successfully achieved even if the target regions blend well with the background.
Three main types of image forgeries are discussed [26]: recolouring, image splicing, and copy-move picture
forgery detection. The copy-move image detection dataset applied in this study is MICC-220 and consists of
220 images captured in varying illumination conditions and camera settings. SIFT, the DBSCAN algorithm,
and a deep convolutional neural network architecture are used in this study to identify recolored images. The
CASIA V2 dataset of 4795 images is used to detect image splicing for the classification of tampered images
and to identify different types of image forgery. Error level analysis in images and compression of images,
along with a CNN, are included for identifying manipulated images.

2.6 Image Splicing

This approach, also termed image composition, is relatively tampering, clearly defined as a scheme
that creates a single picture by copying and pasting different regions from different pictures [27]. There
are two extensive splicing classifications: boundary-based and region-based [28]. Five low-level statistics-
based algorithms [29] are introduced to evaluate the illuminance of horizontal and vertical bands. These
algorithms leverage irregularities in illuminant color within the object area to identify area splicing fraud.
Another approach focuses on illumination analysis, which proves effective in detecting image splicing [30].
Furthermore, a passive detection scheme for image splicing is presented in [31], utilizing the local binary
pattern (LBP) in the discrete cosine transform (DCT) domain. Features are extracted from the chromatic
channel to capture the tampered objects. Three key components are the backbone of the network [32]: feature
extraction, augmented attention feature extraction, and tampered region detection. First, original tampered
image features are mixed with the image residual features and then input into the backbone network to
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extract features through the backbone network feature extraction module. Second, the tampered region area
of the higher and lower layers is achieved through hierarchical encoding and decoding operations by the
improved attention feature extraction module. Finally, the feature maps of each layer, which are derived,
are input to the tampered region detection module, in which the loss of each feature map is collected to
update the network parameters. Besides, a power image tampering dataset consisting of 552 samples has
been created. Experiments demonstrate that the designed method compares favorably to current state-of-
the-art approaches, with an improvement of 1% to 31% over evaluation measures, and is very insensitive to
noise and JPEG compression attacks. A dual-encoder network for forgery detection from image splicing is
presented by Yang et al. [33] to address these issues, employing an unfixed encoder and a fixed encoder.
The unfixed encoder automatically learns the image fingerprints to separate tampered and non-tampered
regions. The fixed encoder is utilized by design to embed structural information that is beneficial for
understanding and forgery identification. The subsequent spatial pyramid global-feature extraction module
is utilized to enlarge the global understanding of D-Net and further enhance discrimination among tampered
and non-tampered regions. It is seen that D-Net, without pre-training or long training on a large set of
forgery images, performs better than the other methods in pixel-level forgery detection. Additionally, it is
demonstrated to be stably robust against various anti-forensic attacks. A dual-branch Multi-Scale Noise-
Guided Progressive Network [34] is introduced by Zhang et al. The multi-resolution branch is utilized to
extract the deep semantic image features and suppress redundant noise. A multi-scale noise-guided branch
is utilized to identify more subtle tampering evidence and to lead the network to learn the spatial structure
features better. The two branches are designed to constrain and complement each other. The properties of
different scales are integrated through a progressive process, and the spatial channel feature aggregation
module sums up feature expression. Various experiments show that it achieves better completeness and fewer
false alarms in spliced image detection and localization. More precise detection results are achieved, and
stability and robustness are shown. The method shows considerable performance relative to other state-of-
the-art methods. The source code is available at https://github.com/Swag-Jiang/MSNP-Net (accessed on 01
January 2025). The approach [35] focuses on improving the accuracy of forged image classification. Enhanced
DenseNet201 and VGGI19 models are trained and fine-tuned for the CASIA 1.0 and CASIA 2.0 datasets,
consisting of real and spoofed images. These models are used to identify instances of splice and copy-move
forgeries. Leveraging the deep features learned by these models, the method is capable of achieving superior
performance in identifying manipulated and real images. The summary of the above-discussed scheme is
presented in Table 1. More studies of image splicing can be found in various survey papers [36,37].

Table 1: Image splicing detection schemes

Approach Method/Model Techniques used Key features
Statistical analysis 5 Low-level [llumination inconsistency =~ Detects tampering using
algorithms [29] in horizontal & vertical irregularities in illuminant
bands color
[lumination- Passive splicing [lumination analysis Effective for splicing
based detection [30] detection
detection
LBP in DCT Passive detection LBP feature extraction in Captures tampered objects
domain scheme [3]1] DCT uses chromatic through local texture
channels analysis

(Continued)
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Table 1 (continued)

Approach Method/Model Techniques used Key features
Deep learning Backbone Feature extraction, Shows 1%-31%
network network [32] attention module, improvement over other

tampered region detection methods; robust to noise
and JPEG compression

Dual-encoder D-Net [33] Fixed & unfixed encoder; High performance without
network spatial pyramid feature pre-training; robust against
extraction anti-forensic attacks
Multi-scale MSNP-Net [34] Multi-resolution & High accuracy, low false
dual-branch multi-scale noise-guided positives, stable, and robust
network branches; progressive

spatial feature aggregation
Transfer learning ~ DenseNet201 &  Fine-tuned on CASIA 1.0 &  Accurately classifies splice
with deep CNNs VGGI9 [35] 2.0 and copy-move forgeries

2.7 Image Retouching

Image retouching is quite productive for photography in films and magazines. At the same time, such
adjustments are meant to beautify pictures and thus are not reckoned as forging. However, this technique
is also included in this review because it comprises manipulations with the originality of the photo. Only
specific areas of the photo are enhanced or beautified, such as removing wrinkles to have a better final
shot. Fig. 4a illustrates the original photo, whereas Fig. 4b displays the retouched photo.

(b)

Figure 4: Image retouching

These techniques are moderately inoffensive and are measured as less malicious compared to other
forgery approaches. Such manipulation is for good image retouching tools to help improve the whole photo
or some parts. Retouching works, such as saturation, tone correction, noise corrections, and sharpness, are
so detailed that such disparities cannot be recognized unless sophisticated tools are utilized to check. Xu
et al. [38] suggest an algorithm based on a technique of 8-neighborhood quick sweeping. The study’s results
demonstrate a significant improvement in the rate of photo inpainting while preserving the overall effect
quality. Kumar et al. [39] examine various pixel-based and physics-based forgery detection algorithms and
compares these techniques. Additionally, despite variations in processing procedures and imaging devices, a
consistent structure in the photo undergoes alterations when tampered with, deviating from its original state.
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2.8 Image Resampling

Image resampling is basically a geometric alteration, such as flipping, stretching, rotation, scaling, and
skewing. These modifications are done in specific areas requiring an astonishingly manipulated photo. The
interpolation step is key in the resampling procedure. Meanwhile, it is familiar with substantial statistical
variations. The image is resampled, which is familiar with exclusive periodic correlations. Liu and Sung
consider [40] the association between the surrounding DCT coefficients. The implied procedure for enlarged
JPEG and spliced pictures is frequently utilized in image forging. The adjacent joint density features of
DCT coefficients are thoroughly removed. Also, features are detected by an SVM, besides the detection
of resampling through integrating new tools and notions from random matrix theory (RMT) [41]. The
RMT delivers valuable tools to model the performance of eigenvalues and singular values of random
matrices. A way to detect and resample counterfeits in pictures with a linear parametric model was also
suggested. First, resampling was detected in the 1-D signal and extended for the 2-D image. A primary
quantization steps estimation method [42] for resized and double JPEG compressed images is presented. The
distribution of DCT coefficients is examined first according to the inverse resized image. Then, a maximum
likelihood function and a filtering scheme are designed to accomplish the primary quantization step on
AC bands. Additionally, a prominent peak in the DFT spectrum of the DC coeflicient distribution that
depends nonlinearly on the step is discovered. Based on this observation, a geometric fitting-based mapping
function is outlined to estimate the step in the DC band. An inexpensive feature extraction approach [43] for
resampling detection in post-JPEG compressed images is suggested. In this strategy, the compression features
are combined with resampling features and fed into various traditional conventional machine learning (ML)
techniques like logistic regression, K-nearest neighbors, SVM, decision tree, and random forest to locate and
classify tampered images in the scenario of re-compression. Table 2 presents a comprehensive comparison of
various image forgery techniques, showcasing their respective performances and the datasets utilized in the
corresponding research studies. This comparative analysis provides valuable insights into the effectiveness
and suitability of different approaches in image forensics.

Table 2: Comparison of image forgery detection approaches

Forgery detection Source Approach Datasets Performance
Image forgeries, along [44] Multibranch COVERAGE [45], 81.7%
with anomalous Input-Feature: Pixel NIST [46], ad-hoc, accuracy &
features, and a values Filter: SRM, CASIA, Dresden [47], (CASIA),
manipulation tracing Bayar Columbia color 79.5%
system
Copy-move forgery [48] Input-Feature: Key Ad-hoc, CoMoFoD, Accuracy of
detection points background ROME patches [49] 97.1%
structure is its own
location (pixel)
Image forgery [50] LSTM NIST, COVERAGE, Accuracy of
detection and hybrid Ad-hoc, IEEE 94.8% (NIST)
LSTM Forensics challenge

(Continued)
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Table 2 (continued)

Forgery detection Source Approach Datasets Performance
Based on LSTM and [51] Input-Feature (Pixel UCID dataset [52] Accuracy of
CNN values) background and an Ad-hoc dataset 93.6%

structure is its own
location: Pixel with a

box
Source-to-target [53] Input-Feature: Pixel CASIA, CoMoFoD, Accuracy of
localization, along with values) background Ad-hoc, SUN 2012, 78%
copy-move image structure is VGG-16 MS COCO
manipulation location (pixel)
Patch-based photo [54] Input-Feature: High MIT Place dataset Accuracy of
inpainting pass) background Ad-hoc dataset 97.8%

Structure is own
location (pixel)

2.9 Computer Graphics Image Detection

The approaches based on computer graphics usually create visually plausible photos of mythological
scenes. Computer graphics images (CGI) are primarily utilized in 3D animation and virtual reality. Still, it
might be used to manipulate information that can cause difficulties in real-life verdicts. Thus, the problem
of discerning between a CGI and a real image has been investigated by many researchers in the past few
years. Fig. 5 shows how difficult it is to differentiate these images with simple visual analysis [55].

.

Figure 5: The Image on the left is taken with a camera, and the image on the right is CGI

A deep neural network with a transfer learning-based approach was presented in [56]. Scheme [56]
used the ResNet-50 model to categorize small patches of CGIs along with real photos taken with the camera,
followed by another approach [57] that utilizes a CNN without pooling layers to cope with the CGI forensics
issue. Maximal Poisson-disk Sampling was employed to extract patches from full-size photos in an end-
to-end scheme, losslessly [58]. Another study [59] examined the application of an Attention-Recurrent
Neural Network in a local-to-global fashion for categorizing computer graphics images under a sliding
window scheme. Recently, a CNN-based method was introduced in [60] featuring a hybrid correlation
module at the input stage, comprising a 1 x 1 convolution layer and three successive convolutional layers.
This technique leverages pixel and channel correlations to detect CGIs. A shallow attention-based dual-
branch CNN is presented [61], employing two inputs preprocessed with a Gaussian low-pass filter for
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CGI classification. This preprocessing step enhances the network’s ability to learn generalized patterns. An
architecture combining a CNN with SRM filters and Gaussian random weights is outlined [62]. These filters
and weights initialize the first layer within a two-branch framework. The research proposes creating negative
samples through gradient-based distortion to enhance generalization for test images produced by unfamiliar
graphic rendering engines.

Additionally, the CGI-based methods summarized in Table 3 demonstrate performance compar-
isons on the following datasets: Columbia CGI [63], Web-fetched images, ImageNet [64], Artlantis [65],
Rahmouni [66], He [67], Corona [65], Vision [68], VRay [69], Autodesk [70], Tokuda [71], RAISE [72].
Patch-level accuracy is employed as the performance metric for both datasets, as it provides researchers with
a controlled experimental setting featuring a balanced class distribution of natural images (NIs) and CGI
patches. Larger patch sizes, as seen in [66], generally enhance CGI detection performance at the cost of
increased computational requirements. However, in [62], HTER (half the total error rate, in %) is employed
for performance evaluation [66].

Table 3: Summary of CGI-based approaches

References Networks Datasets Input sizes Performances

[57] CNN Columbia CGI, 32 x 32 98.0%
ad-hoc

[56] CNN-SVM Tokuda, ImageNet 224 x 224 94.1%

(58] CNN Columbia CGI, 30 x 30, ...,240 x 240 94.8%
RAISE

[59] A-RNN Columbia CGI, 30 x 30, ...,240 x 240 94.9%
RAISE

[60] CNN He 96 x 96 94.2%

[61] Two-input He 32 x 32,64 x 64 87.8%

AD-CNN
[62] Two-branch Corona, Autodesk, 233 x 233 HTER 1.31%
CNN RAISE, VRay,

Vision, Artlantis

2.10 Camera Identification Issues

There are various approaches to addressing the challenge of determining the originality of a photo. One
way is to consider whether it is possible to determine which camera model was utilized to capture the picture.
The JPEG header or EXIF data typically contains information such as the camera model, date, and time.
However, it is essential to note that this metadata is not always considered reliable or authentic, as it can
be easily modified. Therefore, relying solely on this information may not provide a conclusive indication of
the photo’s originality. Moreover, the image acquisition process outlined in Fig. 6 consists of seven distinct
steps. The initial step involves the lens capturing and redirecting the incoming light rays, possibly applying
additional filters such as anti-aliasing. Subsequently, the color filter array (CFA) divides the light into red,
green, and blue components for each pixel. Eventually, the de-mosaicing process reassembles the full-color
scene using data collected in the prior step. Depending on the camera’s software and model, diverse post-
processing operations might be implemented after de-mosaicing. These operations can include gamma
correction, JPEG compression, and color balancing. These post-processing steps are crucial in providing
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specific characteristics and important cues within the forensic analysis of images. The final stage of the
camera’s image creation process involves fabricating a forgery, where intentional modifications are made to
deceive the viewer. Consequently, traces of these post-processing steps can serve as significant indicators for
the authentication and identification of the image’s origin in image forensics research. Examining the hints
and evidence left behind by the post-processing procedures executed by different cameras becomes a crucial
source of information in determining the authenticity and source of an image.

- )

Figure 6: Representation of forgery along with image acquisition

The initial approaches to camera identification based on DL were mainly focused on classifying patches
generated via different camera models. The Bondi et al’s model [73] based on CNN and SVM, was introduced
to classify patches from unidentified cameras. The framework utilized the CNN output to identify photo
anomalies and detect forgeries. Likewise, in the Tuama et al. method [74], a high-pass filter was employed
at the initial CNN layer to limit the image’s content. It enabled obtaining photo residuals as input, which
favored training a shallow CNN model for learning and classifying different camera models. To ease the
camera models issue, which can be difficult due to new models and requires an updated database, an
open-set condition was presented [75] to predict an unseen camera. For the first layer, the methodology
utilized a limited initialization to help infer, irrespective of the photo taken via an unknown camera model.
Moreover, Cozzolino and Verdoliva [76] utilized a Siamese CNN model to extract the distinct fixed-
pattern noise of a camera from the image’s photo response non-uniformity. This technique helps classify
cameras and identify device fingerprints for image forgery detection. A few-shot learning approach is
utilized where annotated data, such as image samples, is limited [77]. This approach centers on acquiring
a model through limited examples per class. A Siamese network is utilized to improve the classification
accuracy of diverse camera models. The Siamese network forms pairs of photo patches from identical camera
models for training enhancement. Both techniques harness the Siamese network, featuring multiple inputs
with comparable architecture and initial weights for each sub-network. The core aim of this framework is
to grasp the resemblance between inputs, with parameter updates synchronized across all sub-networks.
Additionally, Table 4 summarizes the camera identification methodologies. The Dresden dataset [47] is
utilized to compare the accuracy of the performance. The patch size was not the same for a similar number
of cameras, making it complicated to pitch a reasonable compression of different approaches. Thus, the
methods with 32 x 32 patch size or even smaller, merged with a wide range of camera models, exhibit a much
more complex challenge because each patch offers inadequate information and a larger number of classes
to classify.

Table 4: Summary of camera identification approaches

References Network Datasets Input size Input features  Performance
[73] CNN-SVM Ad-hoc, 64 x 64 Pixel values 93.00%
Dresden
[74] CNN Dresden 256 x 256 High-pass 98.00%
residuals

(Continued)
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Table 4 (continued)

References Network Datasets Input size Input features Performance
[75] CNN-SVM, Dresden 256 x 256 High-pass 93.90%
CNN-ET residuals
[76] Siamese Ad-hoc 48 x 48 Pixel values 100.00%
[77] Siamese Dresden 64 x 64 Pixel values 87.03%

2.11 Anti-Forensics

Anti-forensics, also known as counter-forensics, is a practice that primarily focuses on thwarting
forensic analysis methods used by determined adversaries. Its goal is to prevent photo alteration so that
image forensics tools cannot provide valuable clues regarding falsification, tampering, and identifying source
devices. Anti-forensics aims to make it difficult for forensic investigators to uncover evidence or trace the
origins of a manipulated image by employing techniques that hinder traditional forensic analysis methods.
The research presented in [78,79] suggested that CNNs are easy to target for adversarial attacks. The anti-
forensic methods that relied on DL have been recapitulated rather than utilizing GANs to hide or reconstruct
cues with the help of visually imperceptible distortions. A white-box condition is suggested by Chen et al. [80]
in which the information on the camera model and the forensic tool is known. A proposal was made
to use a GAN to modify traces used for camera model identification. A loss function was introduced to
minimize photo distortion while simultaneously deceiving a CNN-based detector to distinguish between
different camera models. In a follow-up work [81], the authors presented a GAN for two conditions: a data-
independent requirement with no information and a data-dependent one with a known camera model. In
addition, a GAN-based framework was created by Cui et al. [82] to assist in limiting the ability to detect
CGIs and NIs accurately. Two Sobel filters were incorporated as the discriminator to direct the network’s
focus toward the texture information of the input image. The transferability of anti-forensic attacks was
investigated by Barni et al. [83]. It was noted that most attacks could not be transferred, simplifying the
development of appropriate countermeasures against anti-forensics. Table 5 concisely summarizes anti-
forensic methodologies that leverage DL techniques. It highlights the critical components employed by these
methods and the specific forensic issues they aim to address. This summary offers valuable information on
using DL to combat various challenges in image forensics.

Table 5: Summary of anti-forensic approaches

References Input size Issues Datasets Strategy
[80] 256 x 256 Camera identification Dresden GAN
[81] 64 x 64,227 x 227 Camera identification Dresden GAN
[82] 178 x 218 CGI detection CelebA [84] GAN
[83] 128 x 128 Attack transferability =~ Vision, RAISE GAN

3 Overview of Fake Image Colorization Detection Approaches

The image holds a substantial role in several fields of the real world, such as surveillance systems, crime
investigation, forensic investigation, sports, medical imaging, journalism, intelligence systems, and legal
services. Image forgery is about fabricating illegitimate modifications in an original photo to closely mimic
its legitimacy, making it difficult for the human visual system to differentiate between original and tampered
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photos. To work on image forgery detection, determine whether the picture is authentic or tampered with.
The most vital task is to localize the tempered section affected by different forgery operations executed by
a forger. Image colorization is a new method of photo editing where grayscale pictures are colored with
realistic colors, or, instead, the natural color picture is recolored for different purposes. Moreover, recent
advancements in DL techniques have introduced a wide range of colorization models that have demonstrated
innovative capabilities, including the successful utilization of Generative Adversarial Networks (GAN) [85]
and brute force networks [86] to tackle the challenge of colorization. Colorization methods vary significantly,
particularly in how data is handled and acquired. This is crucial for modeling the relationship between Cls
and grayscale images. Techniques designed for detecting artificial CIs are also on the rise. Additionally,
colorization extends beyond its practical applications in graphics and holds considerable potential. However,
it remains a challenging problem due to the diverse conditions of images that require a single algorithm to
handle. This challenge is particularly acute considering that two out of three image dimensions are missing,
despite the inherent knowledge of scene semantics like green grass, blue sky, and white clouds, which are
uncommon in human-made objects. In addition, the challenges of colorization are similar to those of image
enhancement, such as changes in viewpoint, occlusion, and illumination variation. Recently, there have
been two ways of detection, namely traditional and more modern ML-based and DL-based. The difference
between these methods is illustrated in Fig. 7.
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Figure 7: Fake colorization detection in traditional and DL comparison

3.1 Traditional Colorization Detection Approaches

In the traditional method, statistical data is taken from the photo during the feature extraction proce-
dure, which is performed separately before the classification phase. In contrast, in the DL-based method,
the classification and feature extraction are performed in the same step. Furthermore, adaptation to the
appropriate luminance-chrominance color space is exploited by Welsh et al. [87]. However, in most scenarios,
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no such color is available that might be suitable to relate to a specific gray object, such as clothing, balloons,
or objects made from plastic. Hence, several objects that might have various colors and forms of colorization
are a big challenge. This sort of complication offers consistent attention in the research community. In the
initial phase of colorization methods [88], the approaches from that era comprised coloring a daguerreotype
and a blend of pigments and gum Arabic [89]. After the digital revolution, colorization was moved to the
computer domain after the advancement brought by the ML and DL approaches, and its usefulness in
several applications of image processing and computer vision [90]. ML and DL can efficiently deal with
an enormous amount of data, uncover hidden patterns, and produce an adequate estimation of potential
knowledge. However, ML determines the rules of data by extracting features concerning a particular way of
acquiring previous knowledge. In contrast, DL regularities can be extracted independently with the help of
categorized-level artificial neural networks.

Hand-crafted methods like fake-colorized image detection (CID), which is based on histogram and
feature encoding, outlined generalization issues, and utilized four features [91] for forgery detection, such
as hue, dark channel, bright channel, and saturation features. The work substantially declines internal and
external validation performance results. An LBP is utilized [92] by Agarwal et al. for feature extraction.
However, a histogram of the resulting photo is used as a feature vector, and for binary classification, linear
discriminant analysis is used as a classifier. The results offer an error value of 3.47%, but the outcomes were
not compared with previous detection methods, a critical issue of the scheme. A different technique based on
lateral chromatic aberration (LCA), along with histogram features, is applied for fraudulent detection [93].
A suggestion was made that recolored images (RIs) have fewer local color adaptation properties than NIs. A
five-dimensional vector was employed to train SVM, resulting in promising but disparate outcomes.

Zhang et al. [94] extract chrominance texture features using the LBP operator. The LBP operator is used
to extract local texture features from an image’s chrominance components. The chrominance components
are the color components that represent an image’s hue and saturation, and they are often more sensitive
to recoloring than the luminance component. A polycolor model binary pattern (PMBP) [95] is introduced
to obtain good internal statistical features. Various color models like RGB, YUV, YCbCr, and HSV are
investigated to achieve notable statistical information from an image. A PMBP is generated by utilizing
the effective channels of different color models. The approach here produces promising results for non-
compressed and highly compressed Cls. To detect imitated generated paintings by Bai et al. [96], imitated and
original paintings are compared in the Fourier frequency domain, where statistical variations and artifacts
appear. Based on these findings, fake-generated painting detection via frequency analysis is suggested by
extracting three kinds of frequency-domain features. A digitally imitated painting detection database is also
suggested for the method’s evaluation. The directory of the original image by Castro et al. [97] contains 15
color images and 85 grayscale images. The tampered image directory contains 1050 images created by one of
the four types of tampering: copy-move, cut-paste, retouching, and colorizing. For every pair of the original
and tampered images, the corresponding true mask is provided in the mask directory (1380 masks). In the
description file, image names (i.e., original, tampered, and mask), image description, photo location, type of
tampering, and manipulated objects in the image are recorded.

An inter-channel correlation-based recolored image detection method [98] is suggested for both regular
and hand-crafted recoloring scenarios. The inter-channel correlation of NIs is assumed to be disrupted
by recoloring operations, as significant differences between the camera imaging model and recolored
image modeling methods have been observed. Numerical analysis reveals that inter-channel correlation
difference disparity can serve as an effective discriminative measure for distinguishing RIs from NIs. Based
on such previous knowledge, a feature set of inter-channel correlation is computed from the first-order
differential residues’ channel co-occurrence matrix of the differential image. Besides, three detection modes
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are considered based on real conditions, which are the appearance of matching and mismatching situations
between training data and testing data, and a hand-crafted recoloring situation. The summary of traditional

colorization detection approaches is presented in Table 6.

Table 6: Summary of traditional colorization detection approaches

S. No. Scheme Techniques used Remarks
1 Welsh et al. [87] Luminance-chrominance  Limited by the unavailability of
space adaptation color references for gray objects
2 Daguerreotype + Manual blending The primitive approach before the
pigments/gum techniques digital era
Arabic [88,89]
3 Histogram & Feature =~ Hue, dark/bright channel, ~ Suffers from generalization; poor
Encoding [91] saturation features validation results
4 Agarwal et al. [92] Histogram of image -  3.47% error, but lacks comparison
LBP — LDA for to baseline methods
classification
5 Histogram + LCA [93] 5D vector for SVM Recolored images show reduced
classification local color adaptation
6 LBP on LBP on hue/saturation Sensitive to color tampering;
Chrominance [94] components effective in detecting recoloring
7 Polycolor Model RGB, YUV, YCbCr, HSV  Good performance for both non-
Binary Pattern fusion and highly-compressed images
(PMBP) [95]
8 Fake Painting Fourier domain artifacts Compares real vs fake paintings
Detection [96] via three frequency features
9 Inter-Channel Co-occurrence matrix of Differentiates RIs from NIs

Correlation [98]

differential image
channels

effectively based on disrupted
correlation

3.2 DL-Based Colorization Detection Approaches

A CNN-based fake image detection process [99] was conducted based on the distribution factor by
Pillai et al. Hue, darkness, brightness, saturation, and the alpha channel were utilized. The estimation of the
distribution factor of these features was performed using a Gaussian distribution. The model also employed
Pearson correlation to ascertain whether the brightness of the synthetic and original edges correlates. To
identify fake CIs, color information from three different color spaces—HSV, Lab, and YCbCr—is combined,
and the most dissimilar channels from each color space are chosen to rebuild the image by Salman etal. [100].
Features are extracted from this representation using transfer learning with a pre-trained ResNet50 model.
The SVM is employed for classification. A fuzzy classification model was employed to categorize the Pearson
correlation, enhancing the overall model. A neural network-based methodology is presented in [101] with
three phases to detect fake images. The work applies normalized histograms generated for value, red, green,
blue, saturation, and hue channels during the first phase. It validates and assesses statistical changes between
fake CIs and relevant originals. In the second phase, a cosine similarity scheme was applied to normalized
histogram distributions of authentic and fake images in different channels for feature extraction. The model



4212 Comput Mater Contin. 2025;84(3)

is formed and trained in the last phase to identify tempered Cls. The outcomes demonstrate that the projected
model excels in the approach presented in [91].

It is seen that the frequency spectrum of spurious visual data includes discriminative features that can
be used for spurious content detection. In addition, the retained information in the frequency domain is
seen to be dissimilar to that of the spatial domain. Based on these aspects, a two-stream CNN architecture
is developed [102] to combine frequency and spatial domain features. The improved generalization of the
suggested two-stream architecture to various unseen generation frameworks, datasets, and approaches is
reported. The fusion of frequency and spatial domain streams enhances the detector’s generalization further.
The research work discussed [103] focuses on the development of an advanced network by leveraging DL
methodology. Image preprocessing is done through DCT and YCrCb color space. It is a two-layered network,
and pair-wise information is utilized as input. The network is trained to discriminate between fake and
authentic images. Apart from this, a classification layer is inserted into it in order to classify an input image
as forged or original. The flood fill algorithm is applied to stamp forged objects in images, and a DL-based
method is introduced [104] for identifying fake images. A Twitter dataset is collected and used as input for DL
models, which are trained to classify images as fake or real. To solve this problem, two models [105], namely a
personalized architecture and a transfer-learning-based model, are designed based on CNNss to identify CIs
(or colorized videos) rapidly. In experiments, the influence of three hyperparameters on the performance of
a classifier is investigated by HTER. The best result is obtained with the Adam optimizer, a dropout rate of
0.25, and an input image size of 400 x 400 pixels. In terms of inference times per image, the custom model
is 12 times faster than the transfer-learning-based model, yet in terms of precision, recall, and Fl-score, the
transfer-learning-based model is better than the custom model. Both models generalize better than other
models reported in the literature.

Yang et al. [106] introduce a color tampering-based image detection method using Vector of Locally
Aggregated Descriptors (VLAD) to represent multiple color channel features without watermarking. Several
sets of common color channels in computer vision are tested, and the optimal one is selected. These features
are then represented using VLAD, and an SVM model is learned based on the features represented. It is
further observed that detection proves to be difficult for a massive group of image classes. DL is, therefore,
applied to train a ResNet-based classification model and is used as a starting point to classify the dataset.
Quan et al. [107] first automatically constructed negative samples through linear interpolation of NI and
CI pairs. These adverse examples are progressively incorporated into the original training set, and learning
in the network proceeds. Experimental results confirm that the enhanced training significantly improves
the generalization performance of many CNN models. In another paper by Quan et al. [108], a sequence
of experiments explores the impact of data preparation and the initial layer settings of an innovative CNN-
based method on the forensic performance of the detector, particularly its generalization capability. Several
intriguing conclusions are drawn, which are useful for designing image forensics experiments. A simple
method is also presented to improve the generalization performance of CID by combining the decision
results of CNN models with different first-layer configurations.

The study [109] investigated the shared correlations among various CFA algorithms instead of focusing
on specific CFA patterns. Previous research demonstrates strong and similar correlations between high-
frequency components across image color channels, typically ranging from 0.98 to 1. This correlation
property is commonly utilized in CFA de-mosaicking techniques and leveraged in the method to detect
RIs using the difference of images. The method also employs the Generalized Grayworld Estimates as the
illuminant color estimator, based on the Grey-Edge hypothesis that assumes the average edge difference
within a scene is achromatic. For image evaluation, the difference images (DI) and illuminant map (IM)
are initially computed. Subsequently, the original image in RGB channels, the difference images, and the



Comput Mater Contin. 2025;84(3) 4213

illuminant map serve as inputs in the network. The network’s backbone architecture is based on the 16-
layer model of the VGGnet. In a similar approach [110], the input image undergoes an HSV color space
transformation, and DI and IM are derived as evidence. The difference image represents inter-channel
correlation and is essential for biased proposals and channel connections. RGB calculation is performed
in the image, and it is incorporated into the method as a single information part. The illuminant mapping
reflects the illumination color and is the same size as the original RGB image. Each pixel value indicates the
estimated illuminant tone, aiming for consistency in illuminant colors. However, this objective may not be
achieved after the recoloring process, as inter-channel relations and illuminant consistency are disrupted. All
three image features are extracted and fused. The resulting fused image is fed into the input layer of the CNN
as the initial step. Quan et al. [111] employ ensemble learning with multiple CNNs trained on the same dataset,
each with different hyperparameters and initializations. It ensures diversity in learning features. A voting
scheme combines CNN predictions, classifying an image as colorized if most CNNs agree. Negative sample
insertion is also used, creating artificial images that resemble CIs but are natural. By training CNNs on NIs
and negative samples, they effectively distinguish between the two image types and generalize to colorization
techniques. Negative samples are generated by linearly interpolating between a natural and colorized image,
controlled by an interpolation factor. A modified DenseNet architecture [112] is utilized in the first stage to
extract features from the input image’s hue, saturation, and value color channels. It modified the DenseNet
architecture, fine-tuned on a dataset of genuine and forged Cls, demonstrating its effectiveness for image
classification tasks. An ensemble learning approach is employed in the second stage to fuse the features
extracted in the first stage. The fusion is performed using a voting classifier that predicts the image’s class
based on majority voting by individual models. The summary of deep learning-based colorization detection
approaches is offered in Table 7.

Table 7: Summary of DL colorization detection approaches

S. No. Scheme Techniques used Remarks
1 CNN-based detection [99] Gaussian dist. of hue, Feature distribution used to
brightness, alpha; Pearson detect inconsistencies
correlation
2 ResNet50 + SVM [100] HSV, Lab, YCbCr fusion; Best channels fused, improves
transfer learning SVM classification
3 NN with Histogram & Normalized histograms + Outperforms earlier CID
Cosine similarity [101] cosine similarity
4 Two-Stream CNN [102] Combines frequency & spatial Improves generalization to
domain unseen datasets
5 Two-layer DL with DCT &  Pairwise input + classification =~ Detects forged vs authentic;
YCrCb [103] layer flood fill used
6 DL on Twitter dataset [104] Flood fill algorithm, DL Social media-specific training
7 Custom CNN vs transfer ~ Input size, dropout, optimizer Transfer learning = better
learning [105] tuning precision; custom CNN = faster
inference
8 VLAD + SVM [106] VLAD on color channels; Detection is hard for large
ResNet fallback image classes
9 Negative sample Interpolation of NI-CI pairs Boosts CNN robustness to
insertion [107] recolored images

(Continued)
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Table 7 (continued)

S. No. Scheme Techniques used Remarks

10 CNN layer configuration ~ Data prep + initial layer setup First-layer fusion improves
study [108] performance

11 VGGI6 + Grayworld CFA-based, inter-channel Uses color channel correlation

estimator [109] difference, illuminant map & illuminant consistency

12 HSV-Based difference HSV transformation + fused  Disrupted illuminant mapping
image [110] features helps detect recoloring

13 CNN Ensemble + Multiple CNNs + negative Voting increases classification
Voting [111] sample insertion accuracy

14 Modified DenseNet + HSYV feature extraction + Two-stage system with strong

Voting [112] ensemble voting classification results

Image colorization detection confronts sophisticated Al-based methods, highly realistic manipulations,
limited training data, generalization issues, vulnerability to adversarial tactics, evolving forgery techniques,
complexities in model interpretability, human-authentic forgeries, sensitivity to minor alterations, waste-
fulness of resources, and ethical issues. These are addressed by ongoing research directed toward the
development of robust detection methods that can evolve according to changes in manipulation practices.

4 Conclusion

In the present day, advancements in image editing technologies have catapulted the ease of image
manipulation to unprecedented levels. Unfortunately, this progress has also paved the way for the misuse of
fabricated images for various purposes. A fundamental challenge arising from this situation lies in the ability
to distinguish between unaltered and modified images. This paper has provided a comprehensive survey of
the established methods for detecting image forgery, shedding light on the diverse methodologies employed
in this field. The paper has also explored a recent challenge in the domain of image forensics, with a primary
focus on the detection of manipulated colorization. The process of image colorization involves predicting
colors for grayscale images, thereby enhancing their aesthetic appeal. The advancements in colorization
techniques have reached a point where it has become increasingly difficult for the human eye to differentiate
between authentic and counterfeit images. Digital fake colorization can distort historical accuracy and
influence public opinion. Its unethical use is a cause for concern about misinformation, cultural integrity,
and the authenticity of visual evidence. It may be handled by explicitly labeling colorized images, using
digital watermarks, and promoting ethical practices for transparency and preventing misinformation. In
photojournalism and social media, imitative colorizations need to be traceable to uphold visual integrity and
combat disinformation. In forensic science, accurate identification of pictures manipulated for misleading
purposes can help establish proof. In medical imaging, color constancy is paramount to reliable diagnosis.
Such enhancements aim to strengthen the technical applicability and societal value of reviewed methods.
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