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ABSTRACT: Accurate and real-time road defect detection is essential for ensuring traffic safety and infrastructure
maintenance. However, existing vision-based methods often struggle with small, sparse, and low-resolution defects
under complex road conditions. To address these limitations, we propose Multi-Scale Guided Detection YOLO
(MGD-YOLO), a novel lightweight and high-performance object detector built upon You Only Look Once Version 5
(YOLOv5). The proposed model integrates three key components: (1) a Multi-Scale Dilated Attention (MSDA) module
to enhance semantic feature extraction across varying receptive fields; (2) Depthwise Separable Convolution (DSC) to
reduce computational cost and improve model generalization; and (3) a Visual Global Attention Upsampling (VGAU)
module that leverages high-level contextual information to refine low-level features for precise localization. Extensive
experiments on three public road defect benchmarks demonstrate that MGD-YOLO outperforms state-of-the-art
models in both detection accuracy and efficiency. Notably, our model achieves 87.9% accuracy in crack detection, 88.3%
overall precision on TD-RD dataset, while maintaining fast inference speed and a compact architecture. These results
highlight the potential of MGD-YOLO for deployment in real-time, resource-constrained scenarios, paving the way for
practical and scalable intelligent road maintenance systems.
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1 Introduction
Timely and accurate detection of road surface defects is essential for ensuring transportation safety

and enabling proactive infrastructure maintenance. Traditional inspection methods, which rely heavily on
manual labor, are often inefficient, costly, and susceptible to human error. With the rapid advancement of
deep learning and computer vision technologies, automated visual defect detection has become a promising
alternative, particularly for enabling real-time and high-precision assessment of road conditions.

Copyright © 2025 The Authors. Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.techscience.com/journal/CMC
https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2025.066188
https://www.techscience.com/doi/10.32604/cmc.2025.066188
mailto:haxu@bwh.harvard.edu


5614 Comput Mater Contin. 2025;84(3)

Among existing approaches, one-stage detectors such as the YOLO series have gained popularity due
to their efficiency and suitability for real-time applications. However, road defect detection in unconstrained
environments presents persistent challenges. As shown in Fig. 1, small irregularly shaped defects often appear
under complex lighting or background conditions and are difficult to localize due to their limited semantic
features and low contrast. Moreover, conventional convolutional neural networks (CNNs) exhibit limited
receptive fields and struggle to model global contextual dependencies, resulting in missed or inaccurate
detections for fine-grained or small-scale targets.

Figure 1: Images of some road defects in our dataset

To address these issues, we propose Multi-Scale Guided Detection YOLO (MGD-YOLO), an enhanced
YOLOv5-based architecture specifically designed for robust road defect detection. Unlike previous YOLO-
based enhancements that primarily focus on speed or general object detection, MGD-YOLO explicitly
targets the accurate identification of small-scale, low-contrast defects under complex real-world conditions.
It introduces a set of architectural improvements to strengthen the model’s ability to capture multi-scale
and context-aware features while maintaining a lightweight structure suitable for real-time applications.
Specifically, we integrate a Multi-Scale Dilated Attention (MSDA) module into the backbone to capture
multi-level contextual dependencies across different receptive fields. We further adopt Depthwise Separable
Convolution (DSC) to reduce parameter overhead and computational cost without compromising feature
expressiveness. Finally, we design a Visual Global Attention Upsampling (VGAU) module to fuse low-level
and high-level features using global semantic guidance, thereby improving the localization and classification
of small or low-contrast defects.

Extensive experiments on three public road defect datasets demonstrate that MGD-YOLO achieves
superior performance in terms of detection accuracy, robustness, and inference speed compared to existing
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state-of-the-art methods. Notably, our model achieves a crack detection accuracy of 97.7%, an mAP50 of
85.7%, and an inference speed of 105 FPS, validating its effectiveness in both accuracy and efficiency for
real-time deployment.

Our contributions are summarized as follows:

• We propose MGD-YOLO, an enhanced YOLOv5-based detector tailored for road defect detection, with
particular emphasis on handling small-scale, low-contrast defects in complex environments.

• We introduce a Multi-Scale Dilated Attention (MSDA) module and a Visual Global Attention Upsam-
pling (VGAU) module to improve multi-scale feature representation and enhance semantic consistency
across different resolution levels.

• We demonstrate through extensive experiments that MGD-YOLO significantly outperforms existing
detectors in both detection accuracy and inference speed, making it highly suitable for deployment in
real-time, resource-constrained scenarios.

2 Related Work

2.1 Deep Learning for Road Defect Detection
Automated road defect detection has attracted growing attention due to its importance for intelligent

transportation and infrastructure maintenance. Traditional techniques, such as edge detection [1], wavelet-
based analysis [2], and texture descriptors [3], are highly sensitive to noise, lighting variation, and road
texture diversity. In contrast, deep learning-based methods [4,5] offer superior robustness and accuracy.
Zhang et al. [6] developed a CNN-based pipeline for crack detection that significantly outperformed
handcrafted approaches. Shi et al. [7] proposed a structure forest model to handle the complexity and
topological variation of cracks. More recently, Park et al. [8] introduced an adaptive pixel neighborhood
segmentation method, which improved detection under noisy backgrounds.

YOLO-based detectors have emerged as a strong baseline for real-time road defect detection. For
instance, Jocher et al. [9] released YOLOv5, which offers a good balance between speed and performance.
Several studies [10–14] have adapted YOLO variants to road scenarios, incorporating tailored preprocessing
or architectural changes to handle challenges such as occlusion, low resolution, and class imbalance.
However, small-scale and unevenly distributed defects (e.g., micro-cracks or edge disintegration) remain
under-detected due to limited feature expressiveness in conventional backbones.

2.2 Attention Mechanisms in Visual Recognition
Attention mechanisms have become integral in enhancing CNNs’ and transformers’ ability to model

long-range dependencies and focus on task-relevant features. Channel attention modules, such as SE-Net
[15], ECA-Net [16], and the Coordinated Attention (CA) module [17], improve feature channel calibration,
enhancing performance across classification and detection tasks. Spatial attention, as used in CBAM [18]
and SAM [19], enables focus on key spatial regions, which is particularly useful in defect localization. The
combination of spatial and channel attention has also been extended into multi-branch fusion networks and
deformable attention [20]. As shown in Table 1, MGD-YOLO achieves the highest mAP with a lightweight
architecture compared to recent methods.

Table 1: Comparison with mainstream detectors used in experiments

Model Backbone Enhancement modules Benchmark mAP (%)
YOLOv5s CSPDarkNet PANet, SPPF TD-RD 84.1

YOLOv6n [21] EfficientRep RepOptimizer, Strong
augmentations

TD-RD 85.0

(Continued)
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Table 1 (continued)

Model Backbone Enhancement modules Benchmark mAP (%)
YOLOv7-tiny [22] E-ELAN Model scaling,

Coarse-to-fine head
TD-RD 85.6

YOLOv8n [23] C2f, CSPDarkNet Decoupled head, Strong
augmentations

TD-RD 86.0

YOLOS-ti [24] ViT-Tiny Visual tokenization,
Lightweight attention

TD-RD 85.3

RT-DETR-R18 [25] ResNet-18 + DETR
Head

Query selection,
Two-stage decoder

TD-RD 86.1

Lite-DETR [26] MobileViT Lightweight cross
attention, Fast
convergence

TD-RD 86.5

Faster R-CNN [27] ResNet-50 Region proposal
network (RPN)

TD-RD 82.7

SSD30 [28] VGG-16 Multi-scale feature maps TD-RD 80.3
MGD-YOLO (Ours) YOLOv5 Backbone MSDA, DSC, VGAU TD-RD 88.3

In the context of road defect detection, attention modules help reduce background interference and
emphasize texture-disruptive regions. For instance, Liu et al. [29] proposed a graph-based attention fusion
method to integrate multiple defect cues. Wang et al. [30] used dual attention paths to handle noise and
occlusion. Inspired by these advances, our work incorporates a Multi-Scale Dilated Attention (MSDA)
module, which enables the model to simultaneously focus on semantic patterns at various receptive field
sizes, effectively enhancing sensitivity to subtle structural anomalies.

2.3 Lightweight Design and Multi-Scale Feature Fusion
Deploying detection models in real-world infrastructure applications often requires low-latency and

lightweight architectures. Depthwise Separable Convolutions, first introduced in MobileNet [31,32], have
become a standard tool for reducing parameter count and computation, followed by enhancements like
inverted residual blocks in MobileNetV2 [33] and re-parameterization in RepVGG [34]. For real-time
edge deployment, recent frameworks like YOLOv7-Tiny [22,35,36] and YOLO-NAS [37] attempt to balance
accuracy and efficiency through backbone redesign and NAS-based optimization.

On the feature fusion side, models such as FPN [38], PANet [39], and BiFPN [40] improve multi-
scale prediction by enhancing the flow of semantic information across network layers. However, simple
concatenation or summation can introduce redundancy and reduce spatial precision. To address this,
attention-guided fusion modules [41–44] and context-aware decoders [45–47] have been proposed. Our
method builds upon this line of work by designing a Visual Global Attention Upsampling (VGAU) module
that leverages high-level semantics as global context guidance to refine low-level feature maps during
upsampling, thereby enhancing the localization of small or low-contrast defects.

3 Methodology
Although YOLOv5 has demonstrated impressive performance in real-time object detection, it tends to

rely heavily on low-level feature maps for prediction, which often leads to the loss of critical high-level seman-
tic information. This limitation becomes particularly pronounced in multi-scale detection scenarios, where
the lack of global contextual understanding undermines the accurate localization of small or subtle defects.
Furthermore, the commonly used CBL block (Convolution, Batch Normalization, Leaky ReLU) in YOLOv5
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employs standard convolutions, resulting in a large number of parameters and high computational overhead.
These characteristics significantly restrict the model’s deployment on resource-constrained devices, such as
mobile or embedded systems.

To overcome these limitations, we propose MGD-YOLO, a structurally enhanced variant of YOLOv5
tailored for robust and efficient road defect detection. Our design introduces three key architectural
innovations to improve the model’s expressiveness, accuracy, and computational efficiency.

As illustrated in Fig. 2, MGD-YOLO retains the core structure of YOLOv5 but incorporates the
following enhancements: First, we embed a Multi-Scale Dilated Attention (MSDA) module into the
backbone, enabling the network to model semantic dependencies across varying receptive fields. This
enhances the feature representation capacity for defects of different sizes and textures, especially in complex
scenes. Second, to reduce the computational burden, we replace standard convolutions in CBL blocks
with Depthwise Separable Convolution (DSC) [31], which decomposes the convolution operation into
spatial and channel-wise components. This substitution significantly lowers the number of parameters and
floating-point operations (FLOPs), while maintaining the model’s expressive power. Third, we introduce
a novel Visual Global Attention Upsampling (VGAU) module, which refines the low-level feature maps
using global semantic cues derived from high-level features. This facilitates more precise spatial localization
of defects, particularly small-scale or low-contrast anomalies that may otherwise be overlooked. These
enhancements collectively improve the accuracy, robustness, and deployment efficiency of MGD-YOLO. The
model is particularly well-suited for real-time road inspection applications where detection precision and
computational cost must be carefully balanced. In the following subsections, we provide detailed descriptions
of each module integrated into the MGD-YOLO framework.

Figure 2: Overall architecture of the proposed MGD-YOLO model. The backbone is enhanced with Multi-Scale Dilated
Attention (MSDA), Depthwise Separable Convolutions (DSC), and Visual Global Attention Upsampling (VGAU) to
improve feature fusion and detection performance

3.1 Attention-Based Multi-Scale Feature Extraction via MSDA
In object detection tasks, high-level feature maps typically encapsulate rich semantic information but

suffer from limited spatial resolution, making it challenging to accurately localize fine-grained targets.
Conversely, low-level feature maps preserve high-resolution spatial details yet lack semantic abstraction.
Bridging this semantic-resolution gap is critical for improving detection performance across varied object
scales, particularly in complex scenarios such as road defect detection. Previous studies have attempted to
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address this challenge through hierarchical feature fusion [38,39], yet simple aggregation often introduces
redundant information and fails to resolve semantic inconsistencies between layers.

To overcome these limitations, we incorporate an attention-based strategy into the feature fusion
process of YOLOv5 by introducing the Multi-Scale Dilated Attention (MSDA) module. Attention mecha-
nisms have shown significant effectiveness across various domains, including object detection [18], semantic
segmentation [48], and natural language processing [49,50], due to their ability to dynamically emphasize
task-relevant features while suppressing irrelevant noise. Classic modules such as Squeeze-and-Excitation
(SE) [15], CBAM [18], and ECA [16] have demonstrated the benefit of channel-wise and spatial recalibration.
However, these approaches often lack flexibility in modeling variable context scales. In contrast, MSDA
introduces dilated self-attention across multiple receptive fields, enabling the network to capture both local
details and global semantic dependencies in a unified framework.

As shown in Fig. 3, given an input feature map F ∈ RH×W×C , the MSDA module first splits it into
multiple attention heads along the channel dimension. Each head applies a window-based self-attention
mechanism with a specific dilation rate r ∈ {1, 2, 3} to expand its receptive field. This enables each head to
capture context at different spatial scales. For a query position x, the output of head i is computed as:

Ai(x) = ∑
y∈Nr i (x)

Softmax (ϕq(x)⊺ ⋅ ϕk(y)) ⋅ ϕv(y) (1)

Figure 3: Overview of the proposed Multi-Scale Dilated Attention (MSDA) module. Each head attends to features at
a distinct dilation rate, aggregating multi-scale contextual information
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whereNri(x) denotes the neighborhood region centered at x under dilation ri , and ϕq , ϕk , ϕv are learnable
linear projections for queries, keys, and values, respectively. The outputs of all attention heads are then
concatenated and passed through a lightweight multi-layer perceptron (MLP) to produce the refined feature
map:

F′ =MLP (Concat(A1 , A2, A3)) + F (2)

This design enables MSDA to aggregate multi-scale semantic cues while maintaining efficiency
through dilated sampling, thus reducing information redundancy without introducing additional heavy
computation.

The combination of dilated sampling and dynamic attention aggregation not only enhances the
representational capacity at multiple scales but also reduces information redundancy compared to naive
multi-branch fusion, leading to improved feature discriminability with lower computational cost.

We integrate MSDA immediately after the C3 module within the YOLOv5 backbone, as depicted
in Fig. 4. This placement ensures that enriched multi-scale semantic features are incorporated before the
upsampling stage. By doing so, low-level features retain detailed structural information, while high-level
features provide contextual guidance, forming a more consistent and discriminative representation for
defect detection.

Figure 4: MSDA implementation details. The top shows the module structure consisting of DWConv, sliding windows,
and MLP layers; the bottom illustrates the integration of MSDA into the feature fusion pathway

Theoretically, the multi-scale dilated attention promotes a more stable feature learning process by
ensuring that both localized anomalies (e.g., small cracks) and broader contextual cues (e.g., surface material
transitions) are simultaneously emphasized during forward and backward propagation. This stabilization
effect improves model convergence behavior and robustness during training.

Empirically, this configuration allows the model to better focus on subtle texture changes and irregular
defect boundaries that are critical in road inspection tasks. Consequently, the MSDA-enhanced feature
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maps significantly contribute to improving the model’s detection accuracy, particularly in identifying small,
scattered, or visually ambiguous road defects.

3.2 Visual Global Attention Upsampling (VGAU)
While convolutional neural networks (CNNs) have achieved remarkable success in object detection due

to their hierarchical feature representation and end-to-end trainability [51,52], they often suffer from loss of
fine-grained spatial details during deep feature extraction. High-level features, although semantically rich,
are typically downsampled and lose precise localization cues, which is particularly detrimental for detecting
small or low-contrast objects like road cracks or surface repairs. Conversely, low-level features retain spatial
resolution but lack semantic context, making it challenging to distinguish defects from background textures.

To address this issue, various U-shaped architectures [53,54] have explored the integration of decoder
paths to restore fine details. However, these designs often involve complex multi-stage decoders and
impose high computational overhead, limiting their suitability for real-time applications on resource-
constrained platforms.

To enable efficient and context-aware upsampling, we draw inspiration from the Global Attention
Upsampling (GAU) module [55,56] and propose an improved variant tailored for road defect detection,
termed Visual Global Attention Upsampling (VGAU). Our VGAU module leverages high-level global
semantic context to recalibrate low-level feature responses, enhancing localization precision without intro-
ducing significant computational complexity. Unlike traditional decoder structures that independently
process low-level features, VGAU introduces top-down semantic guidance during upsampling, which
improves the discrimination ability of low-level feature activations while stabilizing feature propagation
across the network. This facilitates a smoother gradient flow and more robust convergence during training.

As illustrated in Fig. 5, given a high-level feature map Fh ∈ RH×W×C and a corresponding low-level
feature map Fl ∈ R2H×2W×C′ , we first compute a global semantic vector via global average pooling:

g = 1
H ⋅W

H
∑
i=1

W
∑
j=1

Fh(i , j) (3)

Figure 5: Architecture of the proposed visual global attention upsampling (VGAU) module. High-level global context
modulates low-level features through channel-wise attention, followed by upsampling and fusion
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This global descriptor g ∈ RC is then transformed through a lightweight channel-wise excitation
function composed of a 1 × 1 convolution, batch normalization, and a non-linear SiLU activation:

w = σ(BN(W1 ⋅ g)) (4)

Meanwhile, the low-level feature map Fl is compressed using a 3 × 3 convolution to reduce channel
dimensionality. The attention-guided modulation is then applied by reweighting Fl with w:

F̃l = w⊙Conv3×3(Fl) (5)

The recalibrated low-level features F̃l are then fused with the upsampled high-level features via
summation:

Fout = Upsample(Fh) + F̃l (6)

Theoretically, VGAU enhances training stability by aligning low-level feature distributions with high-
level semantic priors, which reduces feature noise and suppresses gradient vanishing phenomena in the
decoder pathway. The use of channel-wise attention ensures that the network dynamically emphasizes
important semantic clues while filtering irrelevant background patterns, thereby accelerating convergence
and improving generalization performance.

As shown in Fig. 6, VGAU is embedded in the upsampling pathway of the MGD-YOLO architecture,
where it operates in conjunction with the MSDA and DSC modules. This integration enables the network to
preserve both the fine-grained spatial cues and semantic richness required for robust road defect detection.

Figure 6: Utilization of VGAU within MGD-YOLO: MSDA-enhanced features are progressively refined through C3,
DSC, and VGAU blocks for accurate multi-scale prediction

Compared to the original GAU, our VGAU incorporates two major improvements: (1) the use of the
SiLU activation for smoother gradient propagation and non-linearity, and (2) an additional upsampling
operation post-fusion to enhance resolution alignment. Overall, VGAU not only improves multi-scale
feature fusion efficiency but also enhances model training dynamics by promoting consistent semantic flow
across layers, ensuring higher stability and robustness in real-world deployment. These enhancements allow
the module to operate efficiently across multi-scale representations, ultimately contributing to improved
precision and recall in our detection results.
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3.3 Depthwise Separable Convolution
Traditional convolutional operations, as adopted in the original YOLOv5 architecture, compute cor-

relations between input features and convolution kernels across both spatial and channel dimensions
simultaneously. While effective in capturing local patterns, this approach introduces significant computa-
tional overhead, especially when dealing with high-dimensional feature maps. The number of parameters
and the computational complexity of a standard convolutional layer are given by:

Parametersstandard = Dout × K × K × Din (7)
FLOPsstandard = H′ ×W ′ × Dout × K × K × Din (8)

where Din and Dout denote the number of input and output channels, K is the kernel size, and H′, W′ are the
spatial dimensions of the output feature map.

In the context of real-time road defect detection, such computational demands pose serious limitations,
especially for deployment on edge devices with constrained resources. To alleviate this issue and accelerate
inference, we replace all standard convolution layers in the network with Depthwise Separable Convolution
(DSC) modules, a lightweight alternative initially proposed in MobileNet [31]. As shown in Fig. 7, DSC
factorizes the convolution operation into two independent steps: depthwise convolution and pointwise
convolution.

Figure 7: Illustration of the Depthwise Separable Convolution (DSC) module, which decomposes standard convolution
into channel-wise and linear projection components to reduce computation

1) Depthwise Convolution. This step applies a spatial convolution independently to each input channel.
For a kernel size K × K, the number of parameters and computational cost are reduced to:

Parametersdepthwise = Din × K × K (9)
FLOPsdepthwise = H′ ×W ′ × Din × K × K (10)

2) Pointwise Convolution. A 1 × 1 convolution is applied across channels to linearly combine the
outputs from the depthwise step. Its parameter count and computation are:

Parameterspointwise = Din × Dout (11)
FLOPspointwise = H′ ×W ′ × Din × Dout (12)
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3) Total Complexity. By combining both operations, the total cost of a DSC layer becomes:

ParametersDSC = Din ⋅ K2 + Din ⋅ Dout (13)
FLOPsDSC = H′ ⋅W ′ ⋅ (Din ⋅ K2 + Din ⋅ Dout) (14)

Compared to standard convolution, this results in an approximate reduction factor of:

1
Dout

+
1

K2 (assuming Din = Dout) (15)

This structural decomposition enables the network to maintain its feature learning capacity while dras-
tically reducing both parameter count and floating-point operations. Such efficiency gains are particularly
valuable in road defect detection, where real-time performance and lightweight deployment are crucial.

Moreover, the use of DSC enhances the model’s generalization ability by limiting overfitting from redun-
dant parameterization and encourages efficient representation learning. In our MGD-YOLO architecture,
DSC replaces all conventional CBL (Convolution + BatchNorm + LeakyReLU) blocks, further improving
inference speed and making the model well-suited for deployment on embedded or mobile platforms for
large-scale road condition monitoring.

3.4 Why YOLOv5 as the Baseline?
Although more recent models in the YOLO series—such as YOLOv8 [23], YOLOv9 [57], and YOLOv10

[58]—offer improvements in detection accuracy and architectural novelty, we choose YOLOv5 as the
baseline framework for MGD-YOLO primarily due to its maturity, stability, and deployability in real-world
scenarios. As our target application emphasizes real-time defect detection on vehicle-mounted edge devices,
lightweight design and efficient inference are of paramount importance. YOLOv5 strikes a practical balance
between accuracy and computational cost, with a modular architecture that facilitates easy customization
and integration of new components such as MSDA, DSC, and VGAU. In contrast, newer versions often
increase model complexity and hardware requirements, which may hinder their deployment in resource-
constrained environments. Furthermore, YOLOv5 remains a widely accepted baseline in many road defect
detection benchmarks, enabling consistent and fair comparisons with prior work. By enhancing YOLOv5
with carefully designed modules, we demonstrate that significant performance gains can be achieved without
sacrificing speed or portability, making the model more suitable for intelligent transportation systems and
edge computing platforms.

4 Experiment

4.1 Dataset Preparation and Experimental Environment
To comprehensively evaluate the effectiveness of the proposed MGD-YOLO framework, we conducted

experiments on three publicly available road defect detection datasets: TD-RD, CNRDD, and CRDDC’22.
These datasets collectively include various types of road surfaces–such as cement and asphalt–and cover
three representative categories of surface anomalies: cracks, repairs, and potholes. All images were uniformly
resized to a resolution of 640 × 640 pixels to ensure consistency during model training and inference. Fig. 8
provides representative samples from these datasets.
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Figure 8: Representative examples of road surface defects: (a) crack, (b) repair, (c) pothole

Specifically, TD-RD contains 1532 annotated images collected from three cities in China, CNRDD
includes 4218 images from multiple provinces, and CRDDC’22 consists of 9301 images gathered across five
countries. We did not adopt the RDD2022 dataset because of its significant label imbalance and annotation
inconsistencies, which could introduce noise into model training.

Each dataset was split into training, validation, and test sets using a 60:20:20 ratio. All annotations
were provided in YOLO format or converted accordingly, and we used the LabelImg tool for any necessary
modifications or corrections. The specific road defect types included in each dataset are summarized
in Table 2.

Table 2: Summary of road defect types in each dataset

Dataset Defect types
TD-RD Crack, Repair, Pothole
CNRDD Crack, Pothole, Surface wear

CRDDC’22 Fine crack, Wide crack, Patch edge, Pothole,
Surface abrasion

All experiments were conducted on a Windows 10 workstation equipped with an Intel Core i9-10900K
CPU and an NVIDIA A100 80GB. The MGD-YOLO model was implemented in PyTorch and trained for 200
epochs with a batch size of 16. All settings aligned with the TD-RD. To enhance generalization, we employed
standard data augmentation techniques including mosaic augmentation, random scaling, and horizontal
flipping. We also fixed a random seed to ensure reproducibility of results and repeated each experiment three
times to report averaged performance.

4.2 Comparison with State-of-the-Art Methods across Benchmarks
To thoroughly assess the effectiveness and efficiency of our proposed MGD-YOLO (TD-YOLOv10)

framework, we conducted comparative experiments against a wide range of state-of-the-art object detectors,
including both CNN-based models (e.g., YOLOv5/6/7/8/9/10 series, PP-PicoDet) and Transformer-based
architectures (e.g., YOLOS, RT-DERT, Lite-DERT). The evaluation was performed on three representative
road defect detection datasets: TD-RD [59], CNRDD, and CRDDC’22.

Table 3 summarizes the results in terms of mean average precision (mAP), precision (Pre), computa-
tional cost (FLOPs), and inference speed (FPS). The best results are highlighted in bold, the second best in
red, and the third best in blue.
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Table 3: Performance comparison with state-of-the-art models across three road defect datasets. Best results are bold,
second-best in red, third-best in blue

Model TD-RD CNRDD CRDDC’22

mAP
(%)

Pre
(%)

FLOPs FPS mAP
(%)

Pre
(%)

FLOPs FPS mAP
(%)

Pre
(%)

FLOPs FPS

YOLOv5-n 81.4 79.8 4.10 139 21.4 33.7 4.10 139 41.4 44.7 4.10 139
YOLOv5-s 85.6 84.6 15.8 111 22.5 30.7 15.8 111 42.1 46.4 15.8 111

YOLOv6-n [21][arXiv’22] 78.3 76.9 11.4 123 21.4 31.8 11.4 123 42.1 46.4 11.4 123
YOLOv6-s [21][arXiv’22] 83.0 82.5 45.3 81 24.6 33.8 45.3 81 42.4 46.0 45.3 81

YOLOv7-ti [22][CVPR’23] 84.5 85.7 13.2 294 25.3 33.5 13.2 294 46.2 49.8 13.2 294
YOLOv8-n [23][arXiv’24] 82.2 81.9 8.2 385 27.6 38.4 8.2 385 46.0 48.5 8.2 385
YOLOv8-s [23][arXiv’24] 85.1 86.0 28.4 333 27.6 38.4 28.4 333 46.0 48.5 28.4 333
YOLOv9-s [57][arXiv’24] 85.2 88.6 30.3 172 29.5 37.4 30.3 172 47.4 49.7 30.3 172

YOLOv10-n [58][arXiv’24] 82.3 81.4 8.22 357 28.1 35.9 8.22 357 46.5 48.3 8.22 357
YOLOv10-s [58] [arXiv’24] 85.0 82.2 24.5 286 28.8 39.4 24.5 286 47.3 57.3 24.5 286

YOLOS-ti [24][arXiv’21] 80.8 80.4 21 116 21.3 30.1 21 116 45.3 52.0 24.5 286
YOLOS-s [24][arXiv’21] 84.7 83.2 179 54 23.6 36.4 179 54 46.8 49.4 179 54

PP-PicoDet [60][arXiv’21] 85.6 83.4 8.9 196 22.4 31.7 8.9 196 47.0 48.0 8.9 196
RT-DERT [25][CVPR’23] 87.7 87.7 60 159 29.4 39.5 60 159 48.6 51.7 60 159

Lite-DERT [26] [CVPR’21] 86.1 85.2 151 75 26.3 33.0 151 75 45.3 48.9 151 75
FR-CNN [27] [NIPS’15] 74.6 76.6 94.3 10 20.3 36.3 94.3 10 39.9 46.1 94.3 10

SSD-VGG16 [28]
[ECCV’16]

66.5 71.1 60.9 14 18.5 49.9 60.9 14 38.7 46.2 60.9 14

MGD-YOLOv10 (Ours) 87.9 88.3 33.6 240 36.2 46.0 33.6 240 47.6 53.8 33.6 240

As seen in the table, our MGD-YOLO consistently achieves top-tier performance across all benchmarks.
Specifically, on the TD-RD dataset, it delivers the highest mAP of 87.9%, significantly outperforming models
such as YOLOv9-s (85.2%) and RT-DERT (87.7%). In terms of inference speed, MGD-YOLO runs at 240 FPS,
which is competitive with lightweight models like YOLOv8-n and YOLOv10-n, while maintaining superior
detection accuracy.

Across the CNRDD and CRDDC’22 datasets, MGD-YOLO also demonstrates strong generalization
ability, achieving the highest or second-best scores in both mAP and precision. Notably, on CRDDC’22, it
reaches a precision of 53.8%, narrowly trailing the best model in that metric while outperforming all others
in speed and FLOPs efficiency.

These results highlight the capability of MGD-YOLO to strike a fine balance between detection accuracy,
inference efficiency, and deployment readiness–making it well-suited for real-time road defect detection in
both cloud-based and edge-based environments.

4.3 Qualitative Results and Visual Analysis
To further assess the interpretability and effectiveness of MGD-YOLO, we conducted qualitative visu-

alizations including feature space distribution via t-SNE and attention heatmaps from the VGAU module.
Comparison with Transformer-Based Detectors. In addition to YOLO-based baselines, we compared

MGD-YOLO against lightweight transformer-based detectors such as RT-DETR-R18 and Lite-DETR. To
ensure fairness, we selected configurations with similar FLOPs and parameter scales to MGD-YOLO. As
shown in Table 4, MGD-YOLO consistently outperforms these models on the TD-RD dataset, demonstrating
both higher accuracy and better inference speed.
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Table 4: Comparison with transformer-based detectors (Similar FLOPs/Params)

Model FLOPs (G) Params (M) mAP50(%)
RT-DETR-R18 24.8 36.7 86.1

Lite-DETR 22.3 32.5 86.5
MGD-YOLO (Ours) 23.5 34.2 88.3

Feature Embedding Visualization. We utilized t-distributed Stochastic Neighbor Embedding (t-SNE)
to project high-dimensional features extracted from the penultimate layer of different models onto a 2D
space. As shown in Fig. 9, MGD-YOLO produces more compact and well-separated clusters for each defect
class, indicating superior discriminative capability in feature learning compared to the baseline.

Figure 9: t-SNE visualization of feature embeddings extracted from the final detection layer across different models
based on the TD-RD dataset. Compared to YOLOv5, YOLOv10, and RT-DERT, our MGD-YOLO exhibits clearer class
separation and tighter intra-class clustering, indicating stronger feature discriminability

Attention Map Visualization. We further visualized the attention responses from the VGAU module
to understand how the model focuses on defect regions. Qualitative results in Fig. 9 further illustrate that
MGD-YOLO yields more complete and accurate detections, particularly for small and ambiguous defects.
As illustrated in Fig. 10, MGD-YOLO demonstrates stronger spatial localization capability by highlighting
regions with fine-grained details, such as hairline cracks and boundary edges of potholes, which are often
missed by other models. As shown in Fig. 11, our model outperforms other baselines.

Figure 10: Qualitative comparison of attention heatmaps generated by YOLOv10, RT-DERT, and our MGD-YOLO on a
road crack image. While YOLOv10 and RT-DERT produce concentrated but limited attention around the central crack
region, our method captures both global and fine-grained details, accurately attending to multiple critical areas along
the defect
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Figure 11: Qualitative comparison of detection results among YOLOv10 (a), RT-DERT (b), and our proposed MGD-
YOLO (c) across multiple road defect scenarios. MGD-YOLO demonstrates superior localization and robustness,
particularly in challenging cases with complex textures, shadows, or small-scale defects. It consistently identifies
multiple instances with higher confidence while minimizing false positives and missed detections

These qualitative results corroborate our quantitative findings and demonstrate that MGD-YOLO not
only improves detection accuracy but also enhances feature representation and localization precision.

4.4 Ablation Study
To further validate the individual contributions of each module in the proposed MGD-YOLO frame-

work, we conducted a series of ablation experiments focusing on the three core components: Multi-Scale
Dilated Attention (MSDA), Depthwise Separable Convolution (DSC), and the Visual Global Attention
Upsampling (VGAU) module. Table 5 summarizes the detection performance under various module
configurations on the road defect dataset.
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Table 5: Ablation results using combinations of MSDA (M), DSC (D), and VGAU (G) on the road defect dataset

Model variant Precision (%) Recall (%) mAP50(%)
YOLOv5 (Baseline) 81.4 78.7 81.3

M-YOLO (with MSDA) 80.9 76.1 82.4
D-YOLO (with DSC) 82.9 75.9 82.4

G-YOLO (with VGAU) 85.2 76.3 81.6
MD-YOLO (with MSDA + DSC) 82.3 74.6 82.0

MGD-YOLO (Full model) 88.3 80.3 87.9

The experimental results highlight the effectiveness of each module. Specifically, the incorporation of
DSC improves precision significantly, suggesting its utility in enhancing feature representation efficiency.
MSDA proves beneficial for increasing mAP, although it results in a slight drop in recall when used in
isolation. On the other hand, VGAU introduces a strong gain in precision (+4.0%) and contributes to better
localization of fine-grained defect regions.

When all three modules are integrated into MGD-YOLO, the model achieves the highest overall
performance, with an 6.9% increase in precision, a 1.6% improvement in recall, and a 6.6% gain in mAP50
over the original YOLOv5 baseline.

The training dynamics, illustrated in Fig. 12, show that MGD-YOLO converges faster and more stably
than its counterparts, while also achieving higher final accuracy.

Figure 12: Training progression of MGD-YOLO on the road defect dataset

4.5 Deployment Considerations
In real-world applications, deployment efficiency on different hardware platforms is a critical factor

for road defect detection systems. To evaluate the practical deployability of MGD-YOLO, we conducted
inference speed and memory usage tests on three representative hardware environments: NVIDIA A100
GPU (datacenter server grade), NVIDIA RTX 4090 GPU (consumer high-end grade), and NVIDIA Jetson
Xavier NX (embedded edge device).

On the A100 GPU, MGD-YOLO achieved an average inference speed of 240 FPS with a peak memory
usage of 3.2 GB. On the RTX 4090, the model achieved 215 FPS while maintaining a memory usage of 2.7 GB.
On the Jetson Xavier NX, after TensorRT optimization and model pruning, MGD-YOLO maintained a real-
time performance of approximately 45 FPS with a memory footprint of 1.8 GB.
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These results demonstrate that MGD-YOLO strikes a favorable trade-off between detection accuracy
and computational efficiency, enabling deployment across a wide spectrum of hardware platforms–from
high-performance servers to resource-constrained edge devices. Notably, the integration of Depthwise
Separable Convolution (DSC) and Visual Global Attention Upsampling (VGAU) significantly contributes to
the reduction of model size and inference latency without sacrificing accuracy.

Therefore, MGD-YOLO offers a flexible and scalable solution for intelligent road maintenance applica-
tions, supporting both cloud-based large-scale monitoring and decentralized on-vehicle real-time inspection
systems. Future work will further optimize model quantization and pruning strategies to enhance deploy-
ment efficiency on ultra-low-power embedded systems.

4.6 Misclassification Analysis
Although MGD-YOLO demonstrates strong overall detection performance, some misclassification

cases were observed, particularly between visually similar road defect types. To better understand these
errors, we conducted a qualitative analysis on the TD-RD, CNRDD, and CRDDC’22 datasets.

We found that hairline cracks are occasionally confused with patch edges or surface texture artifacts,
especially under poor lighting or complex backgrounds. For instance, in low-resolution images or heavily
textured asphalt surfaces, small cracks may be misidentified as material joints or construction patches.
Similarly, certain pothole boundaries with gradual depth transitions were sometimes mistaken for repaired
areas with minor surface degradation.

Representative examples of such misclassifications are illustrated in Fig. 13. These cases highlight the
inherent difficulty in distinguishing fine-grained defect boundaries based solely on visual appearance,
especially when spatial scale and intensity contrast are minimal.

Figure 13: Examples of misclassification cases observed on the road defect datasets. Small cracks and patch edges
exhibit significant visual similarity under certain conditions

To address these challenges, several potential strategies are considered for future enhancement: (1) intro-
ducing multi-scale post-processing techniques to refine defect boundaries at different spatial resolutions,
and (2) incorporating complementary sensing modalities such as infrared imagery or 3D surface profiling
data to provide additional discriminative cues beyond RGB textures.
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We plan to explore these directions in future work, aiming to further boost the detection accuracy and
robustness of MGD-YOLO, particularly for small, low-contrast, or visually ambiguous road defects in diverse
real-world environments.

4.7 Sensitivity Analysis
To evaluate the robustness of MGD-YOLO under different experimental settings, we conducted a brief

sensitivity analysis focusing on two factors: input image resolution and dataset split ratio.
Image Resolution: We varied the input size between 512 × 512, 640 × 640 (default), and 768 × 768 pixels.

As shown in Table 6, MGD-YOLO maintained stable performance, with mAP50 fluctuating within 1.2%
across resolutions, demonstrating resilience to input scale changes.

Table 6: Performance under different input resolutions

Resolution mAP50(%) FPS
512 × 512 85.1 120

640 × 640 85.7 105
768 × 768 86.2 92

Dataset Split Ratio: We tested different training/validation/test splits, specifically 70/15/15 and
60/20/20. As summarized in Table 7, the model exhibited less than 1.0% variation in mAP50, indicating good
generalization under different data partitions.

Table 7: Performance under different data splits

Split ratio mAP50(%)
70/15/15 85.9
60/20/20 85.7

These results verify that MGD-YOLO maintains robust detection performance across varying resolu-
tions and dataset splits, supporting its practical deployment under diverse operational conditions.

5 Conclusion and Future Work

5.1 Conclusion
This paper presents MGD-YOLO, an improved object detection framework based on YOLOv5, specif-

ically designed for accurate and efficient road defect detection. By incorporating Multi-Scale Dilated
Attention (MSDA), Visual Global Attention Upsampling (VGAU), and Depthwise Separable Convolution
(DSC), the proposed model significantly enhances feature extraction, contextual reasoning, and computa-
tional efficiency. Extensive experiments on three public road defect datasets demonstrate that MGD-YOLO
outperforms state-of-the-art models in both detection accuracy and inference speed. The model achieves
superior performance in identifying diverse defect types–including cracks, potholes, and repairs—while
maintaining a lightweight architecture suitable for real-time applications. Qualitative visualizations and
ablation studies further confirm the effectiveness of each proposed component. In addition, overfitting was
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carefully monitored during training through validation loss tracking, early stopping, and standard data
augmentation strategies.

5.2 Future Work
In future work, we aim to further optimize MGD-YOLO by exploring lightweight backbone alternatives

and neural architecture search techniques to reduce the model’s complexity without compromising detection
accuracy. Specifically, we intend to investigate the integration of efficient transformer-based modules or
dynamic convolution operators to further enhance multi-scale feature extraction while maintaining low
computational overhead.

We also plan to extend our method to multi-modal data settings, incorporating complementary cues
such as thermal or LiDAR information to enhance robustness under adverse environmental conditions.
Incorporating heterogeneous sensing modalities will allow MGD-YOLO to better capture subtle surface
anomalies and environmental context, improving detection performance under low-visibility conditions
such as nighttime, rain, or dust.

Additionally, we will explore domain adaptation strategies to improve generalization across different
geographic regions, pavement materials, and lighting variations. We are particularly interested in adopting
invariant representation learning techniques and domain adversarial training frameworks to minimize
generalization error when transferring the model to new domains with distinct feature distributions.

Furthermore, we plan to conduct systematic sensitivity analyses on data resolution, dataset split ratios,
and sensor variations to evaluate the robustness of the model under diverse operational settings, ensuring
its reliability and stability during real-world deployment.

Ultimately, our goal is to deploy MGD-YOLO in edge devices and smart transportation systems to
enable large-scale, real-time road condition monitoring in the wild. To support practical deployment, we will
also benchmark the model’s performance and resource consumption across different hardware platforms,
including mobile GPUs and embedded systems, providing comprehensive guidelines for hardware-software
co-optimization.
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