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ABSTRACT: In response to the increasing global energy demand and environmental pollution, microgrids have
emerged as an innovative solution by integrating distributed energy resources (DERs), energy storage systems, and
loads to improve energy efliciency and reliability. This study proposes a novel hybrid optimization algorithm, DE-HHO,
combining differential evolution (DE) and Harris Hawks optimization (HHO) to address microgrid scheduling issues.
The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational
costs and environmental impacts. The DE-HHO algorithm demonstrates significant advantages in convergence speed
and global search capability through the analysis of wind, solar, micro-gas turbine, and battery models. Comprehensive
simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5% reduction in total
cost compared to PSO and a 5.4% reduction compared to HHO. Specifically, DE-HHO attains an optimal total cost
of $20,221.37, outperforming PSO ($21,184.45) and HHO ($21,372.24). The maximum cost obtained by DE-HHO is
$23,420.55, with a mean of $21,615.77, indicating stability and cost control capabilities. These results highlight the
effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable
microgrid operation.
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1 Introduction

With the global demand for energy steadily increasing, the depletion of traditional fossil fuel resources
and worsening environmental pollution have presented significant challenges to power grid systems [1].
Conventional grids, which depend heavily on large-scale centralized generation and long-distance transmis-
sion, suffer from low energy efficiency. Additionally, they are vulnerable to natural disasters and equipment
failures, compromising the reliability of power supply [2,3].

Microgrids, as an innovative power system, are composed of distributed generation (DG), energy
storage systems, and loads, and can operate flexibly in both grid-connected and islanded modes [4]. They
enable the effective integration and utilization of clean energy sources such as wind and solar power, while
leveraging energy storage systems to smooth energy fluctuations and ensure stable and reliable electricity
supply [5-7]. The advantages of microgrids in various aspects are shown in Table 1 [8,9].
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Table 1: Advantages of microgrids in various aspects
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Energy efficiency

Power supply
reliability

Sustainability

Flexibility

By generating power
locally and consuming
it on-site, microgrids
minimize
transmission losses
and enhance energy

Microgrids have the
capability to operate
autonomously when
disconnected from the
main grid, ensuring a
stable power supply

By integrating clean
energy sources and
implementing
efficiency
enhancements,

microgrids contribute

Microgrids can be
customized and scaled
to meet the specific
needs of diverse
application scenarios
and load demands.

utilization efficiency. for critical loads. to the reduction of
greenhouse gas
emissions and other

pollutants.

Energy optimization scheduling in microgrids involves coordinating the output of distributed energy
resources and managing energy exchange between the microgrid and the main grid under various sys-
tem constraints [10]. This process seeks to achieve multiple objectives, including minimizing operational
costs and emissions, improving reliability, and enhancing energy efficiency [11]. From the demand-side
perspective, optimized scheduling reduces electricity costs for consumers. From the supply-side perspec-
tive, it improves grid stability, decreases generation-related energy losses, and mitigates environmental
pollution [12].

Given the increasing penetration of renewable energy sources and the challenges posed by their inherent
variability and intermittency, energy optimization in microgrid scheduling has emerged as a critical research
focus. This study seeks to explore advanced scheduling strategies and optimization methods to address these
challenges, ensuring the efficient, economical, and sustainable operation of microgrid systems. The findings
are expected to contribute to a broader transition toward greener and more resilient energy systems.

The configuration and optimization of energy storage (ES) systems have long been a major research
focus in the context of microgrids [13]. Nayak et al. [14] employed probabilistic and statistical methods
to analyze system output characteristics and developed mathematical probability models to determine ES
capacity allocation and reliability metrics. However, these models exhibited significant stochasticity, leading
to discrepancies between simulation results and actual data. Sultan et al. [15] proposed an economic model to
optimize ES capacity under system output fluctuations, yet these approaches lacked specificity for different
ES types and relied on relatively simplistic economic frameworks.

To address these limitations, Wang et al. [16] developed an optimization model aimed at minimizing
the variance of load fluctuations, thereby effectively improving the voltage stability and economic efficiency
of distribution networks. However, these studies overlooked critical ES characteristics, focusing primarily
on the isolated aspects of energy storage without fully addressing the integration and synergy of multiple
energy resources. The lack of a comprehensive approach limits the applicability of these models in real-world
scenarios, where effective management of different energy systems is crucial. To overcome these challenges,
recent research has shifted toward exploring microgrid configurations that integrate various energy resources
through advanced Energy Management Systems (EMS) and optimization techniques. For instance, Mehleri
et al. utilized a mixed-integer nonlinear programming (MINLP) method to minimize an objective function
that includes investment, operation, maintenance, and environmental costs [17]. Although MINLP provides
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a systematic framework for microgrid optimization, its application in large-scale nonlinear problems is
constrained by computational inefficiency.

As a result, many researchers have adopted intelligent optimization algorithms to solve microgrid
optimization scheduling problems. Among these, particle swarm optimization (PSO) has been widely
applied due to its simplicity and ease of implementation. For example, Abood et al. proposed a novel energy
management method called accelerated PSO [18]. Abualigah et al. and Zermane et al. [19,20] developed
quantitative models for battery lifespan in ES systems and solved these models using PSO. Additionally,
Guo et al. designed an ES system model with economic indicators and achieved optimal solutions through
PSO [21].

In addition to the PSO algorithm, researchers have explored various other intelligent optimization
methods. For example, Zhao et al. used particle swarms with automatic parameter configuration to optimize
hierarchical parallel search [22]. Furthermore, some scholars have proposed intelligent EMS based on
Genetic Algorithms (GA), incorporating forecasting modules, energy storage management modules, and
optimization modules [23].

However, traditional optimization algorithms exhibit inherent limitations in practical applications,
including susceptibility to local optima, limited global search capability, slow convergence, and constrained
applicability [24-28]. To address these shortcomings, the HHO algorithm has recently emerged as a
promising solution for microgrid optimization problems [29]. Inspired by the cooperative hunting behavior
of Harris hawks, HHO is notable for its simplicity, low parameter dependence, and ease of implementation.
It has been successfully applied in various fields, including numerical and engineering optimization, image
recognition, fault diagnosis, and power grid optimization design [30]. To further improve optimization
performance, researchers have integrated HHO with the Differential Evolution (DE) algorithm [31]. DE
employs differential mutation and crossover operations, using the differences among individuals in the
population to generate new candidate solutions. This method is conceptually simple, requires few control
parameters, and demonstrates strong robustness [32]. By combining the global search capability of DE with
the local exploitation strength of HHO, the hybrid DE-HHO algorithm significantly improves convergence
speed, enhances global search efficiency, and effectively avoids entrapment in local optima.

This study focuses on optimizing the scheduling of a microgrid comprising wind, solar, and energy
storage systems, with the objective of minimizing both operational and maintenance costs as well as envi-
ronmental economic costs. A comprehensive optimization model is developed, incorporating mathematical
representations of each component and defining relevant constraints to analyze the energy consumption
of critical loads within the microgrid. The hybrid DE-HHO algorithm is employed to solve the model,
determining the optimal output of each component to minimize total cost. Finally, case studies are conducted
to verify the feasibility and effectiveness of the proposed algorithm.

The contributions of this study are summarized as follows:

« A hybrid optimization algorithm, DE-HHO, is proposed, which combines the global search capability
of DE and the local exploitation capability of HHO. This algorithm noticeably enhances the convergence
speed and stability of microgrid scheduling and effectively reduces operational costs.

« A multi-objective optimization model for microgrids is constructed, covering wind, solar, micro-gas
turbine, and energy storage systems. This model considers both operational costs and environmental
impacts, ensuring the stability and reliability of the system.

o The effectiveness of the DE-HHO algorithm is verified through simulation experiments. The results
show that the algorithm can effectively reduce operational costs and optimize energy dispatch strategies
for microgrids.
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The rest of this paper is organized as follows: Section 2 introduces the modeling of microgrids with
wind, solar, micro-gas turbine, and energy storage systems. Section 3 presents the operational optimization
strategies for microgrids. Section 4 elaborates on the design and implementation of the DE-HHO hybrid
optimization algorithm. Section 5 demonstrates the simulation results and analysis. Finally, Section 6
summarizes the research findings and proposes future research directions.

2 System Models

Microgenerators are renewable or unconventional power generation units integrated within microgrids,
commonly referred to as DERs. The application of microgenerators is anticipated to expand significantly in
the future [33]. In a microgrid, these power sources not only provide electrical energy to the system but also
play a pivotal role in ensuring system stability and maintaining power quality. This study examines several
common types of microgenerators, including wind turbines, photovoltaic (PV) systems, micro gas turbines,
and energy storage batteries, as shown in Fig. 1. The subsequent sections provide an analysis of the output
models for each of these four microgeneration technologies.
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Figure 1: A microgrid with an EMS
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2.1 Wind Power Generation Modeling

The principle of wind power generation involves converting natural wind energy into usable electrical
energy through wind turbines (WT) [34]. As a form of renewable energy, wind power is environmentally
friendly and does not consume any fuel. However, the inherent randomness of natural wind makes it
challenging to precisely predict the output of wind power generation.

The following section presents an analysis of widely applied wind power generation models, along with
the calculation formula for wind power output P,,;,,4.

0 0<v < Vi, v2 Vour
Pying = Py Vo <v < Vour o
h(v) Vin <v<V,

In Eq. (1), v represents the real-time wind speed; V;, denotes the cut-in wind speed of the turbine; V,,;
is the cut-out wind speed; V, indicates the rated wind speed of the turbine; and P, represents the rated output
power of the turbine. When the real-time wind speed lies between the cut-in and rated wind speeds, the
relationship between the turbine’s output power and the real-time wind speed can be expressed as h (v):

h(v)=ky-v*+ki-v+k (2)

In the equation, kg, kj, and k; represent the characteristic parameters of the wind turbine.
The operating states of the wind turbine can be summarized into the following three cases:

1. No Power Generation: When 0 <v < Vj,,v > V,;, the turbine does not generate power as the real-
time wind speed is below the cut-in speed or above the cut-out speed.

2. Rated Power Generation: When V, <v <V,,;, the turbine generates power equal to its rated
output power.

3. Variable Power Generation: When V;, <v <V, the turbine’s output power follows a functional

relationship as defined in Eq. (2).

2.2 Photovoltaic (PV) Power Generation Modeling

The fundamental principle of photovoltaic (PV) power generation involves the absorption of solar
energy by PV modules, which convert it into electricity for practical use. As the process requires no fuel
consumption, PV power generation effectively eliminates emissions associated with fossil fuel combustion,
thereby reducing air pollution and mitigating the greenhouse effect.

A PV power generation system consists primarily of PV modules that absorb solar radiation and
generate direct current (DC) electricity. Since PV modules output DC power while most electrical grids and
devices operate on alternating current (AC), a DC-to-AC conversion is necessary to adapt the generated
electricity. Energy storage devices are used to store excess electricity produced during periods of low demand,
which is particularly critical in large-scale PV power plants to ensure a stable power supply. The configuration
of PV cells, whether in series or parallel, enables flexible adjustment of system voltage and current to optimize
power output. By employing advanced inverter control strategies, Maximum Power Point Tracking (MPPT)
can be achieved to maximize energy utilization. Additionally, optimizing the tilt angle of the PV panels
further enhances generation efficiency [35].
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The output power of a PV system P, is strongly influenced by solar irradiance and ambient temperature,
and its performance can be described using the mathematical expression provided in Eq. (3).

va:qpv-n-S'I(l—(D(T—Tbase)) (3)

The equation, #,, represents the conversion efficiency of the PV modules; n denotes the number of
PV panels; S is the area of each PV panel; I represents the solar irradiance; @ is the temperature sensitivity
coefficient; T refers to the ambient temperature; and Tj,;. is the reference temperature, typically set at 25°C.

The operating characteristics of PV power generation can be summarized as follows:

L. In solar cells, photon energy is used to excite electrons, generating current. A higher number of
photons (i.e., greater solar irradiance) results in more electrons being excited, thereby producing higher
current and power output. Consequently, the greater the solar irradiance, the more solar energy the PV
modules can absorb, leading to a higher maximum power output.

2. During operation, PV modules generate heat, and elevated temperatures reduce the efficiency of
semiconductor materials, thus diminishing the overall performance of the PV modules. As the temperature
increases, the internal resistance of the PV modules may rise, leading to a decrease in their maximum
power output.

2.3 Micro Gas Turbines (MGTs) Modeling

Micro Gas Turbines (MGTs) are small-scale, gas-powered devices primarily employed in distributed
power generation systems. The core operating principle involves the combustion of natural gas or other fuels
to generate high-temperature, high-pressure gases. These gases drive a turbine, which subsequently powers
a generator to produce electricity. Compared to conventional large-scale gas turbines, MGTs offer several
advantages, including compact size, high efficiency, and rapid response times, making them particularly
well-suited for integration into distributed generation systems such as microgrids [36].

The operating mechanism of an MGT involves three key processes: air compression, fuel combustion,
and gas expansion. Air is compressed by a compressor, then mixed with fuel and ignited in the combustion
chamber to produce high-temperature gases. These gases expand to drive the turbine, which, in turn,
converts mechanical energy into electrical energy via a generator.

In microgrids, MGTs are commonly utilized for load regulation and grid stabilization. The mathematical
model governing their operation can be expressed by the following equations:

Por =161 Myyel (Mout = hin) (4)

In the equations, Pg T represents the output power of the micro gas turbine, m ¢, is the fuel flow rate.
hout and h;, are the enthalpy values of the gas at the inlet and outlet, respectively. Additionally, we have
simplified the variations in load and environmental conditions during the operation of the turbine, setting
the turbine’s efficiency #gr to a constant value to facilitate analysis and calculation. Micro gas turbines
generate electricity by consuming fuel, which incurs operational and maintenance (O&M) costs, fuel costs,
and pollutant treatment expenses. The mathematical expressions for these costs are detailed as follows:

Co (t) = Ao - Por (1) (5)

In the equation, C, (t) represents the O&M cost at time #; 1, denotes the O&M cost coefficient,
indicating the cost per unit of power; and Pout, Pt (¢) is the active power output of the micro gas turbine
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at time ¢.

Cfuel ) Pgr (t)
Vin leky

Cr(t) = (6)

In the equation, Cy (t) represents the fuel cost at time t; Cy,,; denotes the cost of fuel, typically priced
per unit of energy (e.g., per kilowatt-hour); and V, j refers to the Lower Heating Value of the fuel, indicating
the energy released per unit of fuel during complete combustion.

Ce(t) =3 (Ch- Qi) - Por (1) -

k=1

In the equation, C, (t) represents the pollutant treatment cost at time #; C denotes the cost coefficient
for treating the k-th type of pollutant; Qy is the emission amount of the k-th pollutant produced by the micro
gas turbine during operation; and » represents the total number of pollutant types.

2.4 Energy Storage Batteries Modeling

Energy storage systems (ESS) play a critical role in microgrids by balancing the disparity between power
generation and load demand, optimizing power utilization, and enhancing grid stability and reliability. ESS
stores excess electricity and releases it during peak load periods or when renewable energy sources, such as
wind or PV systems, have insufficient output. Common types of energy storage batteries include lithium-
ion, lead-acid, and sodium-sulfur batteries, among which lithium-ion batteries are widely used in microgrid
systems due to their high energy density and long lifespan [37-41].

Energy storage batteries operate by storing electrical energy during the charging process and releasing
it back to the grid during discharge. The efficiency of an ESS is closely related to factors such as battery
charge/discharge efficiency and lifespan. To effectively manage the charge and discharge processes, a
mathematical model is essential for optimizing battery operation strategies [42].

The state of charge (SOC) of a battery represents the ratio of the currently stored energy to the maximum
stored energy [43]. The SOC is calculated based on the battery’s charge and discharge processes, with its
mathematical expression given as follows:

dr’ (8)

" Ppatter t') - ar— P r t') - nai r
SOC(t) = SOC(t—l) + f batte y( ) fch batte )’( ) Ndischa
-1 Char

In the equation, SOC (t) represents the battery’s state of charge at time #, Pyasrery (t') denotes the
charging or discharging power during the time interval [t — 1, t]. par and f4ischar are the efficiencies of
the charging and discharging processes, reflecting the energy losses in the battery. C;,; refers to the total
capacity of the battery.

3 Capacity Optimization Strategy
3.1 Objective Function

The planning and design of microgrids need to consider system economics, power supply reliability,
and environmental sustainability. This paper aims to minimize the operation and maintenance costs of
microgrids, along with environmental and economic costs, by constructing a multi-objective function as
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shown in Eq. (9). The objective of the scheduling model is to minimize total costs while maximizing
economic and environmental benefits.

min F = ZT:(fsys+ env) 9)
t=1

In the equation, f;, represents the operation and maintenance costs of the microgrid system, while f,,,
denotes the environmental and economic costs of the microgrid.

The operational and maintenance costs of the microgrid system

The operational and maintenance costs of the microgrid system consist of three components: the total
operational costs of interactions between the microgrid and the main grid Csr, the maintenance costs of
energy storage Cpqrery» and the total operational costs of micro gas turbines C 1. These components satisfy
the following relationship:

T
fsys = Z (Cgrid (t) + Cbuttery (t) +Cor (t)) (10)

t=1

(1) Operational and maintenance costs of the power grid system.

The calculation formula is as follows:

Cgrid (t) = Pbuy - Phuy (t) + Psell “ Per (t) (11)

where py,, represents the purchase price of electricity, Py,, is the purchased power, and their product
represents the cost of purchasing electricity from the main grid at time ¢. Similarly, p;.;; denotes the selling
price of electricity, P;.;; is the amount of electricity sold to the grid at time ¢, and their product represents
the revenue from selling electricity back to the main grid at time .

(2) The total operational cost of the micro gas turbine

The calculation formula is as follows:

Cor (t) = Coro (t) + Corm (1) (12)

where Cgro (t) and Cgra (t) represent the operational and maintenance costs and the fuel costs of the
micro gas turbine, respectively.

(3) The maintenance cost of energy storage
Chattery (t) = CE,OM * QE,OM (t) +Cp,oM* WP (t) + Miabor * Clabor (13)

The calculation formula is as follows:

where cg op represents the maintenance cost per unit of energy storage capacity, and Qg o (t) is the
energy storage capacity (MW-h). Their product represents the capacity maintenance cost. Similarly, cp om
is the maintenance cost per unit of power capacity, and Wp (t) is the installed power capacity (MW). Their
product represents the power capacity maintenance cost. Additionally, #,4,, is the number of maintenance
personnel, and c¢;,p,, is the annual cost per person, with their product representing the labor operational cost.
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(4) Battery degradation cost

In addition to the maintenance costs of the energy storage system, this study further considers battery
degradation cost, which reflects the long-term economic impact of battery cycling. The degradation cost is
modeled as a function of the cumulative charge and discharge throughput as shown in Eq. (14).

T

Cdeg = Cdeg . Z |PESS,t| (14)
-1

where Cyeq is the total battery degradation cost ($), cqeg is the unit degradation cost ($/kWh), Pgss, s

represents the charge or discharge power at time step ¢, and T denotes the total number of scheduling periods.

This degradation model has been widely adopted in recent studies to improve the economic accuracy of

long-term energy storage scheduling [44].

The environmental and economic costs of the microgrid system

In microgrid optimization problems, environmental protection costs C,,, (t) and carbon taxes Cy,y ()
are two critical cost components, typically used to assess the environmental impact of power system
operations. These components satisty the following relationship:

fenv = Cenv (t) + Ctax (t) (15)

(1) Environmental Protection Costs

Environmental protection costs primarily include the external costs caused by pollutant emissions and
energy production methods, such as the combustion of fossil fuels. These costs are typically quantified by
the amount of carbon emissions and the corresponding unit cost, such as the environmental cost of carbon
emissions. The formula for calculating environmental protection costs can be expressed as:

T
Cenv:Z(“'PCOZ(t)+/—’)'PSOZ(t)) (16)

where Pco; (t) represents the carbon dioxide emissions, primarily resulting from the combustion process of
gas turbines; Pso, (t) denotes the sulfur oxide emissions from gas turbines; « and f3 are the environmental
cost coeflicients corresponding to these pollutants.

(2) Carbon Tax

The carbon tax is a fee imposed by the government on carbon emissions, designed to incentivize the
reduction of greenhouse gas emissions through economic measures. The carbon tax is typically calculated
based on the amount of carbon dioxide emissions. The formula for calculating the carbon tax can be
expressed as:

T
Ctax = T'ZPCOZ(t) (17)
=1

where C;,, represents the carbon tax, 7 is the carbon tax rate, and Pco; (t) is the carbon dioxide emissions
(in tons) at time .

Thus, the environmental and economic costs can be expressed as Eq. (18).

T T
fenv=Z(‘X'Pcoz(t)+/3'Psoz(t))+T'ZPcoz(t) (18)
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3.2 Operational Constraints

(1) Power Balance Constraint

In the microgrid system, the generated power and load demand must remain balanced:
Pwind (t) + va (t) + PGT (t) + Pbuttery (t) + Pgrid = Pload (t) (19)

(2) Micro Gas Turbine Output Constraint

The output of the micro gas turbine must remain within its allowable range:

PR < Por (t) < PGY™ (20)
|PGT (t) - Pgr (f - 1)| <rgr

where P2" and P24" are the minimum and maximum output limits of the micro gas turbine, respectively,
and rg represents the ramp rate limit of the micro gas turbine.

(3) Energy Storage System Constraints

The charging and discharging power, as well as the state of the energy storage system, must satisfy the
following conditions:
Pl%ltntery < Pbﬂ””)’ (t) < nglzat);ery

SOCpin < SOC (t) < SOCpnax (21)

|Phattery (t) - Phattery (t - 1)‘ < Tbattery
where PR , and ppin , are the lower and upper limits of the energy storage system’s output power,
with positive values indicating charging power (input) and negative values indicating discharging power
(output). Similarly, SO Cyyax and SO Cyyip, represent the lower and upper limits of the energy storage capacity.
Additionally, ry4¢ser, represents the ramp rate limit of the micro gas turbine.

(4) Main Grid Power Exchange Constraint

The power exchange with the main grid must remain within its allowable range:

< Pyia (1) < PR @)

where P;ii‘; and Py represent the minimum and maximum power exchange with the main grid,

respectively.

The optimization strategy for the microgrid, as depicted in Fig. 2, encompasses a comprehensive set of
equations and constraints that facilitate the achievement of the objective function outlined in the model.
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Figure 2: Strategic framework for optimal operation of microgrids

4 Microgrid Optimization Operation Based on DE-HHO

In this section, we have provided a detailed description of the microgrid optimal operation mechanism
based on the DE-HHO hybrid algorithm. By integrating the global search capability of DE and the local
exploitation capability of HHO, the hybrid algorithm leverages the strengths of both to address complex
issues in microgrid optimal scheduling. The DE algorithm generates a diverse population through its
mutation and crossover strategies, rapidly covering the solution space to identify potential optimal solutions.
In contrast, the HHO algorithm employs its Lévy flight mechanism and dynamic hunting strategies to
conduct refined searches in the regions of potential optimal solutions. This combination of mechanisms
enables the hybrid algorithm to effectively balance global search and local search capabilities, thereby
significantly enhancing optimization performance.

In Section 4.1, we elaborated on the principles of the HHO algorithm, including its characteristics and
strategies in the global exploration, transition, and local exploitation phases. In Section 4.2, we analyzed
the mutation, crossover, and selection strategies of the DE algorithm, as well as its advantages in the
optimization process. In Section 4.3, we described in detail the collaborative mechanism of the DE-HHO
hybrid algorithm, including how DE and HHO complement each other in the global exploration and local
exploitation phases, and how this collaboration improves the adaptability and robustness of the algorithm.

4.1 Principle of Harris Hawks optimization

With the growing complexity of microgrid systems, traditional optimization algorithms increasingly
struggle with multi-objective and multi-constraint optimization problems, exposing limitations such as
susceptibility to local optima, insufficient global search capabilities, and low computational efficiency. In
response, the HHO algorithm has emerged as a promising intelligent optimization method. Its unique
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mechanisms and high efficiency have attracted significant attention, leading to successful applications in
microgrid optimization.

Inspired by the cooperative hunting behavior and sudden attack strategies of Harris hawks, HHO
combines strong global search abilities with effective local exploitation [45]. The algorithm divides its
optimization process into three phases: global exploration, transition from exploration to exploitation,
and local exploitation. During global exploration, it simulates random search behaviors to thoroughly
explore the solution space and locate potential optima. In the transition phase, the algorithm mimics
pursuit behaviors, narrowing the search area and moving closer to optimal solutions. Finally, during local
exploitation, it emulates the sudden attack strategy of Harris hawks to refine the solution and achieve
high-precision optimization.

Throughout the process, the positions of the Harris hawks represent candidate solutions, while the
best solution at each iteration is treated as the prey [46-48]. This innovative structure allows HHO to
effectively balance exploration and exploitation, making it a powerful tool for addressing the complexities of
microgrid optimization.

Global Exploration Phase

Harris hawks population is randomly distributed across the solution space, performing global searches
for the prey (i.e., the optimal solution) using two strategies:

Strategy 1: When the probability ¢ < 0.5, each hawk updates its position based on the positions of other
members and the prey.

Strategy 2: When the probability ¢ > 0.5, Harris hawks randomly perch at a location within the
population’s range.

The position update formulas are as follows:

(Xprey (t) = X (t)) = rand; x (1b + rand, (ub - 1b)) ¢ <0.5

X(t+1) = { Xyana (t) —rands x |X,guq (t) —2-randy - X (t+1)] ¢ >0.5 23)

where X, represents the position of the prey (current optimal solution), X,, is the average position of the
current Harris hawks population, ub and /b denote the upper and lower bounds of the search space, and
rand; is a random number in the interval [0, 1].

Transition from Global Exploration to Local Exploitation

The HHO algorithm divides the hunting process of Harris hawks into exploration and exploitation
phases based on their predatory habits. As the prey attempts to escape, its energy gradually depletes. The
algorithm dynamically selects either exploration or exploitation behavior depending on the prey’s escape
energy. The prey’s escape energy is defined by Eq. (24).

t
E=2-Ejnitiat x|1- T (24)

where E;, i, represents the prey’s initial escape energy, with a value range of [0, 1]; ¢ is the current iteration
number; and T is the maximum number of iterations. When |E| > 1, the algorithm enters the exploration
phase, while |E| < 1 indicates a transition to the exploitation phase.

Local Exploitation Phase

Harris hawks hunt by besieging the prey and launching sudden attacks. However, the prey may escape
during the siege, requiring Harris hawks to dynamically adjust their hunting strategies based on the prey’s
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behavior. To simulate this process, the HHO algorithm incorporates four strategies: soft besiege, hard besiege,
soft besiege with progressive rapid dives, and hard besiege with progressive rapid dives.

The selection of these strategies depends on the prey’s escape energy |E| and the escape probability r,
where r is a random number in the range (0, 1), indicating the probability of the prey escaping successfully. If
r < 0.5, it indicates that the prey has an opportunity to escape; otherwise, the prey is unlikely to escape. Based
on|E|and r, the HHO algorithm dynamically adjusts the hunting behavior using the following four strategies:

1. Soft besiege: Strategy when 0.5 < |[E| <land r > 0.5

When the prey still has escape ability, Harris hawks adopt a soft besiege strategy to gradually deplete
the prey’s energy while waiting for the optimal moment to attack. The position update formula is given by:

{X(t+1):AX(t)—Ex\]-Xprey(t)—X(t)\ (25)

AX (t) = Xprey (t) = X (1)

where AX (t) represents the difference between the prey’s position and the current hawK’s position. The
introduction of ] simulates the random jump intensity of the prey during its escape process. The value of
J changes randomly in each iteration to mimic the prey’s movement characteristics and is generated as a
random number U (0, 2) following a uniform distribution.

2. Hard besiege: Strategy when |E| < 0.5 and r > 0.5

When the prey is unable to escape, Harris hawks launch a hard besiege attack to swiftly capture the prey.
The position update formula is given by:

X (£+1) = Xprey (1) ~ E x|AX (1) 26)

3. Progressive rapid dive with soft besiege: Strategy when 0.5 < |E| < 1and r < 0.5

When the prey has an opportunity to escape but is under gradual pressure, Harris hawks adopt a
progressive rapid dive strategy. This involves progressively adjusting their positions and optimizing the attack
trajectory. The strategy is implemented using two approaches:

Y = Xprey (1) = Ex|J - (Xprey (1) = X (1))] (27)

Harris hawks assess the potential outcome of this movement compared to the previous dive result to
determine whether it is an effective dive strategy. If the result is suboptimal (e.g., the prey exhibits more
deceptive movements), they switch to the second strategy.

When Harris hawks encounter deceptive behavior from the prey, they employ irregular, sudden, and
rapid dive behavior based on the Lévy flight pattern. The mathematical expression for this strategy is as
follows:

Z=Y+SxLF(D) (28)

where Y is the position calculated based on Strategy 1, S is a random vector of the same dimension as the
problem space D, and LF (D) is the Lévy flight function, used to simulate the irregular and rapid diving
behavior of Harris hawks. The calculation formula for the Lévy flight function is as follows:

1
. B
uxo 1"(1+ﬁ)><sm(”2—ﬂ)

LF=0.01x —,0 = | —
Iv]? [ (52) % px 28112

(29)
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where u and v are random values uniformly distributed in the interval (0, 1); 8 is a default constant, typically
set to 1.5; and o is a constant related to f3.

Thus, the final strategy for progressive rapid dive with soft besiege can be expressed by Eq. (30):

[ Y if F(Y)<F(X(1)
X(”l)‘{z if F(2)<F(X(1) G0
Through these two strategies, the HHO algorithm can flexibly adjust its hunting approach in response to
different behaviors exhibited by the prey. This adaptability enhances the algorithm’s global search capability
and local exploitation efficiency, leading to improved optimization performance.

4. Progressive rapid dive with hard besiege: Strategy when |E| < 0.5 and ¢ < 0.5
Although the prey is exhausted, Harris hawks continue to employ the progressive rapid dive strategy to
further reduce the distance to the prey, ensuring a successful hunt.

The position update formula for this strategy is similar to that of the progressive rapid dive with soft
besiege, and is consistent with Eq. (30) in form. When F (Z) < F (X (t)), the update formula for Z is
consistent with Eqs. (28) and (29); whereas when F (Y) < F (X (t)), the update formula for Y differs from
the definition of “progressive rapid dive with soft besiege,” and this formula is derived from Eq. (31).

X(t+1) =Y = Xppe, (£) - E x 31)

1 N
J- Xprey (t) - N ZXJ' (t)
i=1

The following Fig. 3 illustrates the various strategies employed by the HHO algorithm across differ-
ent phases.

Figure 3: Different phases of HHO
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4.2 Principle of Differential Evolution Algorithm

The HHO algorithm is renowned for its unique Lévy flight mechanism and exceptional global search
capability, while the DE algorithm holds a prominent position in the optimization domain due to its
effective mutation strategies and population diversity maintenance mechanism. Combining the strengths
of these two algorithms can result in a novel hybrid optimization strategy aimed at achieving superior
optimization performance.

First, integrating DE’s mutation strategy enhances population diversity, helping to prevent the algorithm
from getting trapped in local optima and thereby improving HHO’s global exploration capability. Second,
leveraging HHO’s Lévy flight mechanism significantly boosts the algorithm’s jumping ability, enabling it
to escape local optima swiftly. When combined with the DE framework, this further enhances the hybrid
algorithm’s global optimization performance. Additionally, to better balance the exploration and exploitation
capabilities of the algorithm, some studies have introduced multi-strategy approaches (e.g., chaotic strategies,
multi-population strategies) in conjunction with DE and HHO to achieve collaborative multi-strategy
optimization [49,50]. This hybrid strategy not only retains the advantages of both algorithms but also
leverages the complementarity between strategies to improve the algorithm’s performance and adaptability in
solving complex optimization problems. In the following section, we delve deeper into the working principles
of the differential evolution algorithm.

1. Mutation Strategy

In the mutation step, three distinct individuals X,;, X,,, X,3 are randomly selected from the population
to generate a new solution V;. Starting from the current solution space, the new solution is calculated using
the following expression:

Vi = Xpest +f(Xrl - XrZ) (32)

Vi=Xit + V(Xbest_Xrl)+ V(XrZ_Xr3) (33)
where X,,; represents the best solution in the current population, and V is the mutation factor that controls
the mutation step size.

2. Crossover Strategy

The crossover strategy combines the corresponding mutant vector V;; and target vector X;; to generate
a trial vector Uj;;. The process is governed by the following expression:

| Vij ifrand (0,1) <7,j= jrana
Uij = {Xij else (34)

where r is the crossover rate, j,,,,4 is a random value in the range [1, D], and D represents the dimensionality
of the problem.
3. Selection Strategy

The selection strategy chooses between the trial vector X; and the target vector U; based on their fitness
values. The selection for the next generation is performed according to the following rule:
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The algorithm selects the individuals for the next generation based on their fitness values. If the fitness
value of the trial individual is better than that of the original individual, the trial individual is selected;
otherwise, the original individual is retained.

By integrating DE with HHO, an effective hybrid optimization strategy is formulated, which offers
several advantages over individual algorithms, as detailed in Table 2.

Table 2: Advantages of the proposed algorithm

Enhanced global search capability Improved convergence Adaptability to complex
speed optimization problems
The combination of DE’s mutation By appropriately designing The hybrid algorithm
strategy and HHO’s Lévy flight mutation and crossover performs exceptionally well
mechanism noticeably enhances strategies, the hybrid in various complex
the algorithm’s global exploration algorithm can converge to optimization problems,
ability, enabling it to search the the global optimum more particularly in scenarios
solution space more effectively. quickly. requiring a balance between

exploration and exploitation.

Thus, through these steps, the DE algorithm effectively explores and exploits the search space to identify
the optimal solution to the problem. Fig. 4 illustrates the flowchart of our proposed algorithm.

| Initialize population I

P— - I

Differential Evolution Calculate fitness,

"| determine the best individual

1
1
Check termination condition | 1
T 1 Update E and ¢
I
1
1
1

iterate for optimization
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|
|
|
|
i Evaluate fitness,
i
|
l

+ + Exploitation phase | +

I

Progressively fast Progressively fast
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maximum number of
iterations or not

Yes Output the
optimal solution Riig

Figure 4: The flowchart of the proposed algorithm
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4.3 DE-HHO Collaborative Mechanism

The collaborative optimization mechanism of the DE-HHO hybrid algorithm is reflected in the multi-
level complementarity of the algorithm structure. In the initial stage of the algorithm, DE generates
diverse candidate solutions through its unique mutation and crossover strategies. By leveraging stochastic
search behavior, DE broadly covers the solution space, thereby preventing the algorithm from prematurely
converging to local optima. This process provides a rich set of initial solutions for subsequent optimization,
thereby enhancing the algorithm’s global search capability. Subsequently, the HHO algorithm dynamically
adjusts its search strategy based on the prey’s escape energy mechanism. It employs Lévy flight and four
hunting behaviors to conduct refined searches in the regions of potential optimal solutions. The local
exploitation capability of HHO effectively compensates for DE’s deficiency in fine-grained search within
the solution space, while the population diversity of DE provides better initial solution distributions for
HHO. The synergistic effect of these two algorithms significantly improves the convergence speed and
optimization accuracy. During the transition from the exploration phase to the exploitation phase, DE’s
mutation strategy introduces population diversity, effectively preventing premature convergence of the
algorithm. The mutation operation of DE involves randomly selecting individuals from the population and
introducing new mutation information, thereby maintaining a high level of population diversity throughout
the iterative process. This diversity helps the algorithm avoid falling into local optima during the global
search phase and provides a broader search space for the local exploitation phase of HHO. By integrating DE’s
mutation strategy with HHO’s dynamic search mechanism, the DE-HHO algorithm can better balance global
exploration and local exploitation capabilities, thus demonstrating stronger adaptability and robustness in
solving complex optimization problems.

To ensure that the power balance constraint (Eq. (19)) is always satisfied, we have introduced a penalty
mechanism to handle constraint violations or infeasible solutions. When a candidate solution generated by
the algorithm violates the power balance constraint, we incorporate a penalty term into the objective function
to reduce the fitness value of that solution. The magnitude of the penalty term is proportional to the degree
of constraint violation, thereby guiding the algorithm to search for feasible solutions that meet the constraint
conditions. The calculation formula of the penalty term is shown in Eq. (36).

Penalty = a x ‘ZPgen(t) —ZPload(t)| (36)

where « is the penalty coefficient, which is used to adjust the weight of the penalty term; P,., (t) represents
the total power output of all generating units at time #; Pj,,4 (t) represents the total load demand at time
t. Through this approach, the DE-HHO algorithm can effectively avoid generating infeasible solutions and
maintain the satisfaction of the power balance constraint throughout the optimization process. This penalty
mechanism not only enhances the robustness of the algorithm but also improves the feasibility and reliability
of the optimization results.

Moreover, the DE-HHO collaborative mechanism is suitable for addressing model simplification issues
in microgrid optimization. In practical applications, due to the complexity of system dynamic characteristics,
it is often difficult to construct fully accurate mathematical models. In this study, our model neglects
the pitch control dynamics of wind turbines, simplifies the nonlinear characteristics of micro-turbine
efficiency variations with load, and assumes a fixed charge-discharge efficiency for energy storage systems,
to avoid excessive computational costs that would affect the real-time performance of the optimization
algorithm. While these simplifications enhance computational efficiency, they inevitably introduce modeling
errors. However, the stochastic nature introduced by the DE-HHO algorithm can effectively cope with the
uncertainties arising from such simplifications and provide a certain degree of “compensation.” During the
global exploration phase, the DE-HHO algorithm employs stochastic search behavior to effectively explore
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the solution space and identify potential optimal solutions. This stochasticity can to some extent offset the
deficiencies caused by model simplifications, thereby enhancing the adaptability and robustness of the model.
Although this approach cannot eliminate the impact of model simplifications, the DE-HHO algorithm can
balance global and local search capabilities effectively in the optimization process, thereby mitigating this
impact to a certain extent. Experimental results demonstrate that this collaborative mechanism not only
improves the robustness of the optimization results but also achieves a good balance between computational
efficiency and solution quality.

5 Simulation Results and Analysis

As previously mentioned, this study examines a microgrid system located in an industrial park in
the southern region of China, which is composed of wind power generation, photovoltaic (PV) systems,
micro gas turbines, and energy storage batteries. The unit parameters of the system are presented in Table 3.
Specifically, the maximum power interaction with the main grid, the charge/discharge power of the battery,
and the maximum generation power of the gas turbine are all limited to 30 kW. Additionally, negative power
values for the battery represent the stored energy in the battery [51]. Furthermore, the power generation
of the wind turbine and PV system is influenced by environmental factors and is therefore considered an
uncontrollable micro-source, with the rated power reference value used in place of the maximum power. The
operating and maintenance (O&M) costs for each distributed generation component are adopted based on
empirical values commonly reported in recent literature and industry assessments [52-54].

Table 3: Detailed description of the microgrid system

WT PV MGT  ESS Load
Minimum power (kW) 0 0 3 -30 50 (oft-peak)
Maximum power (kW) 20 40 30 30 90 (on-peak)
Operation and maintenance cost ($/kWh) 0.1195 0.0910 0.3743 0.2114 /

To validate the effectiveness of the proposed DE-HHO in optimizing microgrid tasks, we first con-
structed models for PSO [51], HHO [29], GWO [55], WOA [56], and the proposed algorithm in the
MATLAB R2024a environment. The fitness curves were then compared, as shown in Fig. 5. The y-axis
represents the total operational cost of the microgrid system, which is the optimization objective of our study.
The parameters for the traditional algorithms are provided in Table 4. Parameter values were determined
through grid search and population size and iteration count were kept consistent across all tested algorithms.
From Fig. 5, it is evident that DE-HHO converges the fastest, reaching convergence around the 10th
generation. In contrast, HHO, PSO, GWO, and WOA tend to get trapped in local optima and take more than
20 iterations to reach their optimal solutions.
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Figure 5: Convergence curves of different algorithms

Table 4: Introduction to parameters of different intelligent optimization algorithms

PSO
Number of particles (N) Iteration count Inertia weight (w)  Self-learning Social learning
factor (cl) factor (c2)
40 30 0.8 2 2
HHO
Search agent number (N) Iteration count  The lower limit of the ~ The upper limit of the
solution space (Ib) solution space (ub)
40 30 0 1
GWO
Number of wolves (N)  Iteration count Grid inflation Leader selection
parameter pressure parameter
40 30 0.1 4
WOA
Population size (N) Iteration count Probability of Spiral factor
encircling mechanism
40 30 0.5 1

Fig. 6 displays the optimal total cost achieved by different optimization algorithms after 30 repetitions of
sampling. As shown in Fig. 5, after multiple experiments, the minimum optimal cost reached by DE-HHO is
$20,221.37, significantly lower than the $21,184.45 achieved by PSO, $21,372.24 by HHO, $21,291.43 by GWO
and $20,687.68 by WOA. Moreover, the maximum optimal cost achieved by DE-HHO is $23,420.55. Despite
the existence of extreme values, the distribution of DE-HHO is concentrated around the mean of $21,615.77,
which is notably lower than those of the other four optimization algorithms.
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Figure 6: Optimal cost control diagram of different optimization algorithms

Fig. 7 displays the error bars for all compared optimization algorithms. It can be observed that both
HHO and DE-HHO exhibit relatively small errors for their optimal values, with little difference between
them. However, the average optimal value achieved by DE-HHO is significantly lower than that of HHO.
This demonstrates that the DE-HHO algorithm outperforms the others in finding the optimal solution, with
the ability to achieve lower cost values, stronger stability, and superior cost control capabilities.
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Figure 7: Error bar plot of the optimal solution

In addition to convergence behavior, we also evaluated the computational efficiency of each algo-
rithm. Table 5 presents the average execution time and standard deviation across multiple runs. As shown,
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although DE-HHO introduces a hybrid structure, its execution time (90.90 s) remains competitive—only
slightly higher than PSO and HHO, and significantly lower than WOA (135.21 s). This demonstrates that
DE-HHO achieves a favorable trade-off between optimization performance and computational cost.

Table 5: Execution time of different base algorithms

Algorithm PSO HHO DE-HHO GWO WOA
Average execution time (s) 87.83  84.35 90.90 104.47 135.21
Standard deviation 1.28 1.93 1.49 1.57 2.02

To assess the individual roles of DE and HHO in the proposed algorithm, we conducted an ablation
study, with results shown in Fig. 8. DE-HHO achieved significantly better best ($20,181.64) and average
($21,573.30) solution values than either DE or HHO alone. Although the worst-case and standard deviation
are similar between DE-HHO and HHO, the hybrid approach demonstrates clear optimization advantages.
These results highlight a synergistic effect, where the exploration of DE complements the exploitation of
HHO. Standalone DE showed the weakest performance.

Best solution ($)
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210007 @ DE-HHO
; 208007
5 y :
o . 80 23600 ;
Standard deviation ®——9= @——=—  Worst solution (§)
600 450 < 5
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22200

Average of solutions ($)

Figure 8: Radar chart of ablation study results

Fig. 9 illustrates the contribution of different DG resources to the microgrid’s power supply during each
period under the optimized energy management scheme. The load profile of the microgrid is characterized
by fluctuating demands throughout the day, with peak loads occurring during the daytime hours (10:00-
18:00) and lower demands during the night. Environmental conditions, such as solar irradiance and wind
speed, play a crucial role in the generation capabilities of renewable energy sources within the microgrid. The
solar irradiance data used in our simulations reflect typical daily patterns, with maximum values occurring
around midday (12:00-14:00). Similarly, wind speed profiles show higher values during the early morning
and evening hours, which align with common wind patterns in many regions. During periods of high solar
irradiance, photovoltaic (PV) systems contribute significantly to the power supply, while wind turbines
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provide additional power during the early morning and evening when wind speeds are higher. The micro gas
turbines and energy storage systems are utilized to balance the load during peak hours and to ensure a stable
power supply when renewable sources are insufficient. Through optimized scheduling, the microgrid can
better coordinate the generation and storage strategies of various DG resources to meet electricity demand
while minimizing operational costs.

| ©— WT e
o PV F i |
MGT e
—e— ESS -k . -~ -
AW g Load ’,3"’ Ak “‘\‘

50

20F

Power/kW

Timeh

Figure 9: Scheduling results under the DE-HHO strategy

6 Conclusion

This study introduced the DE-HHO optimization strategy for microgrid energy management, which
integrates renewable energy sources such as wind, solar, and micro gas turbines, along with energy storage
systems. Through comprehensive simulations, the DE-HHO algorithm consistently demonstrated notable
performance, outperforming both PSO and HHO in terms of optimal cost efficiency. It achieved the lowest
total optimal cost of $20,221.37, significantly reducing operational costs, and exhibited stronger stability and
improved cost control compared to the traditional algorithms. The DE-HHO algorithm proved particularly
effective in coordinating the operation of distributed generation resources, optimizing both generation and
storage strategies to efficiently meet electricity demand.

Despite these promising results, certain limitations warrant attention. The current system modeling
simplifies real-world dynamics by omitting factors such as component degradation, ramp rate constraints,
start-up/shutdown behaviors, and inverter efficiencies. Incorporating these aspects would enhance the
model’s realism and applicability. Additionally, the model does not account for uncertainties inherent
in renewable energy generation and load demand. Future work should integrate stochastic modeling
techniques, such as scenario-based or probabilistic approaches, to better capture these uncertainties by
conducting sensitivity and parametric analysis. Moreover, the absence of demand response strategies and
dynamic grid interactions limits the model’s responsiveness to real-time conditions. Incorporating demand-
side management and adaptive control mechanisms could improve system flexibility and resilience. Lastly,
the current model lacks dynamic constraints like time-coupling and SOC considerations for energy storage
systems. Addressing these factors in future research will contribute to more robust and comprehensive
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microgrid optimization frameworks. Furthermore, future studies will aim to validate the proposed method
on experimental microgrid platforms to further demonstrate its practical applicability.
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