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ABSTRACT: X (formerly known as Twitter) is one of the most prominent social media platforms, enabling users

to share short messages (tweets) with the public or their followers. It serves various purposes, from real-time news

dissemination and political discourse to trend spotting and consumer engagement. X has emerged as a key space

for understanding shi�ing brand perceptions, consumer preferences, and product-related sentiment in the fashion

industry. However, the platform’s informal, dynamic, and context-dependent language poses substantial challenges

for sentiment analysis, mainly when attempting to detect sarcasm, slang, and nuanced emotional tones. �is study

introduces a hybrid deep learning framework that integrates Transformer encoders, recurrent neural networks (i.e.,

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)), and attention mechanisms to improve the

accuracy of fashion-related sentiment classi�cation. �ese methods were selected due to their proven strength in

capturing both contextual dependencies and sequential structures, which are essential for interpreting short-form text.

Our model was evaluated on a dataset of 20,000 fashion tweets. �e experimental results demonstrate a classi�cation

accuracy of 92.25%, outperforming conventional models such as Logistic Regression, Linear Support Vector Machine

(SVM), and even standalone LSTM by a margin of up to 8%. �is improvement highlights the importance of

hybrid architectures in handling noisy, informal social media data. �is study’s �ndings o�er strong implications for

digital marketing and brand management, where timely sentiment detection is critical. Despite the promising results,

challenges remain regarding the precise identi�cation of negative sentiments, indicating that further work is needed to

detect subtle and contextually embedded expressions.
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1 Introduction

X has become a powerful platform for consumers to share their opinions and engage with brands

in real time. Millions of tweets (posts) are generated on X daily, o�ering valuable insights into public

sentiment about products, services, and brands. Digital marketers face the challenge of extracting actionable

information from these unstructured data [1].�is research uses advanced text mining techniques to analyze

consumer sentiment data obtained fromX in order to provide insights that can help digitalmarketers to track

sentiment and adjust their strategies accordingly. However, challenges arise due to short-form noisy data
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and rapidly changing sentiments due to product launches or controversies. Overcoming these challenges is

essential for marketers to stay agile in the modern digital landscape.

Sentiment analysis is increasingly important due to its applications in product reviews, education, and

politics [2,3]. �e rapid growth of social media has further strengthened the demand for e�cient sentiment

analysis tools that are capable of processing large-scale user-generated content [4]. Sentiment analysismerges

computer science and linguistics to evaluate the sentiment expressed in text data [5]. In particular, sentiment

analysis focuses on detecting and classifying sentiments [6], generally categorizing text as positive, negative,

or neutral [7], with standardmethods includingmachine learning, lexicon-based, and hybrid approaches [8].

Sentiment analysis can be used for the assessment of product reviews, social media monitoring, and political

sentiment, helping companies to better understand customer feedback and make data-driven decisions.�e

associated process generally includes pre-processing, feature extraction, and classi�cation steps. Notably,

challenges relating to the analysis of context, sarcasm, and multilingual content persist [9]. Future research

should aim to improve the accuracy of relevant methods in these areas.

Sentiment analysis techniques can be classi�ed into Natural Language Processing (NLP)-based

approaches—which focus on text feature extraction, topicmodeling, and document frequency analysis—and

machine learning-based approaches—which employ supervised and unsupervised statistical models [10,11].

Recent research on sentiment analysis has highlighted various methodologies, including machine learning-

based, lexicon-based, and hybrid strategies. Machine learning approaches, especially supervised learning

models, have shown high classi�cation accuracy, including algorithms such as Support Vector Machines

(SVMs), Neural Networks, and Naïve Bayes. NLP approaches can also be integrated with such models to

enhance their precision [12]. Machine learning models, including SVM and Naïve Bayes, have demonstrated

promising classi�cation performance [13]. However, heterogeneous datasets and model generalization pose

signi�cant challenges in this context [14]. Additionally, sentiment analysis faces issues including domain

adaptation, limited availability of labeled data, and complex linguistic structures. Moreover, developing

accurate sentiment models across multiple languages remains a persistent challenge. Sentiment analysis of

fashion-related tweets has garnered attention. Researchers have employed lexicon-based techniques and

machine learning algorithms (e.g., Naïve Bayes and SVMs) to assess public sentiment regarding brands and

retailers [15,16], facilitating comparisons in terms of brand popularity and customer happiness [17]. �e

process starts with collecting tweets, preparing the data, and performing sentiment analysis to understand

consumers’ feelings. Analyzing fashion tweets is a cost-e�ective way to gather feedback, compared to

traditional customer surveys [18].

User-generated content on social media has accelerated advancements in automated sentiment analysis

[19–21]. Automated sentiment analysis methods detect and classify sentiment within textual content,

including posts, comments, and reviews. Utilizingmachine learning andNLP techniques, sentiment analysis

can help to interpret public opinions, forecastmarket trends, and assess public sentiment during global events

[22].�is encompasses the gathering and pre-processing of data, followed by feature extraction, labeling, and

implementing NLP andmachine learning algorithms [23]. Analyzing unstructured data from blogs, reviews,

and social networks is challenging. Furthermore, as the volume of digital information grows, the need for

e�ective sentiment analysis techniques becomes even more crucial.

Despite extensive work having been carried out in the �eld of sentiment analysis, there are still several

critical gaps in the literature:

1. Limited focus on fashion-speci�c sentiment: Although general sentiment analysis has been studied

across domains, few works have targeted the fashion industry on platforms such as X, where consumer

behaviors are highly trend-driven and visually in�uenced.
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2. Inadequate handling of short-form noisy text: Traditional methods o�en fail when applied to tweets,

due to sarcasm, abbreviations, and lack of contextual cues.

3. Lack of hybrid model exploration: Few studies have combined Transformer-based contextual modeling

with recurrent structures (e.g., Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU)) to

leverage global and sequential features for tweet classi�cation.

4. Insu�cient comparative benchmarks: Existing works o�en do not clearly report their performance

improvements over baseline models using similar datasets or data splits, thus limiting their repro-

ducibility and impacting the assessment results.

Although machine learning approaches are e�ective, direct comparative analysis is necessary. Hybrid

methodologies that combinemore than one deep learningmodel have also shown promise for consideration

in future research. Sentiment analysis is a key tool for businesses and researchers, helping them to better

understand public opinion and identify trends in the digital landscape [24].

�is study presents a hybrid deep learning framework for sentiment classi�cation in fashion-related

tweets which integrates Transformer encoders with Recurrent Neural Networks (RNNs)—namely, LSTM

andGRU—along with attentionmechanisms.While sentiment analysis has been widely explored in general-

purpose datasets, there remains a lack of specialized approaches targeting short-form, fashion-centric

content on social media.

�e contributions of this research are as follows:

1. We propose a text mining framework that extracts tweets about brands for e�ective sentiment analysis.

2. We integrate advanced deep learning techniques (i.e., Transformers and RNNs) to classify consumer

sentiment as positive, negative, or neutral, ensuring high accuracy across diverse and noisy X data.

3. We address the unique challenges posed by short, informal, and event-driven X posts by employing

specialized pre-processing strategies and adaptive modeling approaches.

4. Weo�er insights for digitalmarketers by connecting shi�s in sentiment tomarketing events and product

launches, enabling data-driven engagement strategies.

�e remainder of this paper is structured as follows. Section 2 surveys the related work. Section 3

presents the information regarding the dataset. Section 4 introduces the proposed method. Section 5

discusses the results. Section 6 concludes the paper.

2 RelatedWork

Researchers have explored diverse methodologies for improved sentiment classi�cation, ranging from

traditional lexicon-based techniques to advanced deep learning andmultimodal frameworks such as Bidirec-

tional Encoder Representations from Transformers (BERT) [25]. Early Twitter sentiment analysis research

relied on lexicon-based approaches, such as the study by Sarlan et al. [26], who used Python dictionaries to

assign polarity scores to tweets. However, subsequent research has commonly leveraged machine learning

methods. For example, initial research employed machine learning methods such as logistic regression and

SVM for sentiment categorization [27]. A recent systematic literature review by Mao et al. [28] provides an

extensive analysis of sentiment analysis methodologies, comparing feature-based, deep learning, and hybrid

approaches. �is study collectively illustrate the advancements in sentiment analysis and its expanding

capability to capture nuanced consumer opinions.

Sentiment analysis in the fashion domain presents unique challenges due to its multimodal nature,

requiring the integration of text, images, and domain-speci�c attributes. To address these challenges, Yuan

and Lam [29] have proposed a framework that integrates image, text, and fashion attributes for enhanced

sentiment analysis of fashion-related social media posts. Unlike existing works, which focused on general
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multimodal sentiment analysis, their approach leverages fashion-speci�c attributes to improve sentiment

classi�cation. �e framework consists of three modules—a fashion-aware vision composition module, a

fashion-aware text composition module, and a vision-text composition module—which are combined to

more e�ectively capture sentiment. To support their study, they constructed a dataset of more than 12,000

fashion-related posts from social media, which were manually annotated for sentiment analysis.

Other studies have explored di�erent aspects of fashion sentiment analysis. Abdel Fattah et al. [30]

investigated image analysis techniques and proposed metrics such as social value to assess the e�cacy of

fashion images on platforms such as Instagram. Despite substantial progress, obstacles persist, including

the identi�cation of sarcasm, clarifying ambiguous statements, and handling multilingual analysis [25,31].

�erefore, future works should concentrate on augmenting contextual comprehension, advancing the

elucidation ability ofmodels, and fostering real-time adaptability across various domains. Sentiment analysis

has extensive applications outside of fashion, for example, in�uencing e-commerce, healthcare, and �nance.

Moreover, some studies have adopted deep learning to enhance the accuracy of sentiment analysis. Tran

et al. [32] integrated deep learning with rule-based approaches to attain a competitive Root Mean Square

Error (RMSE) score in a beauty–fashion review competition. Kavi Priya et al. [33] attained 93.4% accuracy

utilizing an RNN model for fashion-related data. While Twitter sentiment analysis can help the fashion

industry, research gaps reduce its e�ectiveness. In particular, it is di�cult to accurately capture consumer

sentiment due to the complex language and visual nature associated with fashion.

A key challenge in sentiment analysis is dealing with sarcasm, which is common in social media and

poses signi�cant obstacles for sentiment analysis [34]. Researchers have explored various approaches, includ-

ing lexical, syntactic, and a�ective feature analyses [35], pre-processing techniques, and word frequency

analysis. Emoji-based sentiment detection and machine learning models have also been applied to improve

the identi�cation of sarcasm. However, accurately detecting sarcasm remains challenging, even for humans.

Enhanced sarcasm detection approaches are crucial for improving the accuracy of sentiment analysis and

e�ectively interpreting social media conversations [36].

Fashion is visual, making multimodal sentiment analysis vital for understanding the insights gained

through social media. We can better capture sentiment by merging image and video analysis with text

mining. Recent studies have emphasized the importance of integrating multiple modalities—including

visual imagery, textual data, and fashion-speci�c attributes—to enhance sentiment classi�cation [29,37].

Researchers have also examined the social value of fashion-related Instagram content [30] and the signi�-

cance of visual elements in in�uencing consumer sentiment. However, e�ectively fusing diverse data sources

and extracting meaningful insights from visual content remains a developing research area [38].

Context is essential for sentiment classi�cation in fashion, with terms o�en having speci�c meanings.

Traditional sentiment analysismodels struggle with the evolving language used in this industry. Research has

explored various methodologies to capture this context, such as dual Gaussian visual–semantic embedding

models for abstract fashion concepts [39], NLP techniques for fashion trend identi�cation [40], and fashion

entity augmentation through synonymdiscovery [41].�ese approaches highlight the complexity of fashion-

related terminology and the need for more sophisticated computational techniques to improve contextual

comprehension. Addressing such research gaps is vital for improving sentiment analysis in the fashion sector.

Enhancements in sarcasm detection, multimodal analysis, and contextual understanding can be expected to

improve consumer insights and trend forecasting. Our research utilizes hybrid Transformers and RNNs to

analyze sentiment on X better, with the aim of obtaining more accurate insights into the fashion industry.

BERTweet [42] is a transformer-based language model pre-trained speci�cally on English tweets.

Developed as a RoBERTa-based architecture, BERTweet has demonstrated exceptional performance in
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sentiment analysis tasks involving social media data due to its ability to capture informal language,

slang, abbreviations, and emojis. Similarly to many other general-purpose models, such as RoBERTa [43],

BERTweet can be considered suitable for fashion-related sentiment analysis.However, its performance comes

with increased computational costs, motivating the search for more e�cient alternatives or hybrid models

for scalable deployment.

To summarize the key �ndings with respect to the reviewed literature:

• Lexicon-based and traditional machine learning techniques laid the foundation for early sentiment

analysis, but lack contextual depth.

• Deep learning models such as BiLSTM, BiGRU, and Convolutional Neural Network (CNN)—especially

when integrated—o�er superior performance in sentiment prediction tasks.

• Multimodal frameworks that combine text, image, and fashion-speci�c attributes signi�cantly enhance

fashion sentiment analysis.

• SVMs trained on semantically enriched document vectors showed good performance (88% accuracy)

in fashion review classi�cation.

• Sarcasm and irony detection remains a major challenge, with a�ective features and word/sub-word

frequencies proving more e�ective than basic pre-processing.

• Emerging metrics such as Social Value link textual sentiment with visual popularity (likes, shares), in

order to provide actionable insights for marketing.

• Several studies have underlined the importance of domain-speci�c lexicons and evolving fashion

terminology to maintain accuracy in dynamic linguistic environments.

• visual data integration with text has been increasingly emphasized for comprehensive trend forecasting

and emotion recognition in fashion media.

• Supervisedmachine learningmethods such asNaïve Bayes and SVMare still widely used, but are limited

in capturing nuanced or context-dependent sentiments.

We shortlisted RNNs and Transformers among the various deep learning architectures for several

reasons. First, RNNs—particularly the LSTM and GRU variants—are pro�cient in handling sequential

dependencies and capturing temporal patterns in short-form texts such as tweets. Second, Transformers

(with their self-attention mechanisms) can e�ectively model long-range dependencies and contextual

relationships, o�ering advantages over RNNs regarding parallel processing and scalability. �ird, hybrid

architectures that combine RNNs and Transformers leverage the strengths of both approaches, achieving

higher performance in complex sentiment tasks that involve sarcasm, abbreviations, and non-standard

syntax, which are typical of fashion-related social media content.

3 Dataset Information

We collected tweets using hashtags focused on fashion, couture, and luxury themes. Our collected

dataset comprises 20,000 samples with 41 features each.�ese entries primarily include textual content, such

as the tweet and hit sentence, along with metadata columns describing the source (e.g., Uniform Resource

Locator (URL), source name, source domain), author information (e.g., author name, author handle), and

various engagement metrics (e.g., shares, likes, replies). Basic descriptive statistics indicate that several

columns—such as title, social echo, editorial echo, and comments—predominantly contain missing or null

values, whereas others (e.g., date, time, document ID, URL, tweet) are fully populated. Numerical columns

such as reach, engagement, and views display wide variability, with means, medians, and high standard

deviations characteristic of user-driven online data. �e sentiment column, which was fully populated

manually across all rows, denotes each entry’s sentiment (e.g., positive, negative, or neutral) and served as

the principal label in our classi�cation task. �e dataset consists of several content types and contains a
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large number of null values in somemetadata �elds.�us, it needed to undergo pre-processing to e�ectively

extract relevant information for sentiment analysis. All samples are in the English language. �e complete

work�ow of the proposed approach, from data collection to sentiment prediction, is illustrated in Fig. 1.
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Figure 1: Overview of the proposed methodology for fashion sentiment analysis

3.1 Pre-Processing

We removed irrelevant noise and stop words using Natural Language Toolkit (NLTK)’s stop word

corpus, in order tominimize non-essential tokens during training. Each tweet was split intowords, and terms

appearing in the NLTK stop word list were discarded. Next, we numerically encoded the sentiment labels

(e.g., positive, negative, neutral) using label encoding. We then split the data into 80% training and 20%

testing sets to evaluate the generalization ability of the tested model. To handle tokenization, we speci�ed a

vocabulary limit (i.e., 10,000) and �t a tokenizer on the training set. �is tokenizer converts each tweet into

a sequence of integer indices representing the most frequent words. We shortened each sequence to a length

of 100, thus creating a uniform input for the deep learning model.

3.2 Tweet Labeling

Asmentioned at the beginning of this section, we collected tweets about fashion using speci�c keywords

and hashtags. A�er gathering the data, we labeled each tweet as positive, negative, or neutral. We labeled

tweets that express positive feelings, such as appreciation or satisfaction, as positive. We labeled tweets

that showed negative feelings, such as dissatisfaction or criticism, as negative. Tweets that neither clearly

expressed positive nor negative sentiments, or which were factual and objective in nature without emotional

context, were classi�ed as neutral.

We independently labeled tweets to ensure the reliability and accuracy of the annotations, and dis-

agreements were resolved through consensus discussion. We manually labeled our data to understand

social media language, such as sarcasm, idioms, and common abbreviations, used on X. �is dataset helped

us to train and evaluate our sentiment analysis model, allowing for the subsequent accurate analysis of

fashion-related content.

4 Proposed Method

�is section outlines themethodological framework for the proposedTwitter sentiment analysis system.

Our approach merges pre-trained word embeddings (i.e., GloVe [44]) with a Transformer Encoder [45],

an LSTM layer [46], a GRU layer [47], and an Attention mechanism [45] in order to capture contextual

dependencies and sequential patterns. �rough combining these components, we aim to accurately classify

tweets as positive, negative, or neutral.
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We consider a dataset of the form

D = {(t i , c i)}
S
i=1 , (1)

where S is the total number of instances. Each tweet t i ∈ N
L is a sequence of token indices of length L, and

each sentiment label c i ∈ {1, 2, 3} indicates a positive, negative, or neutral sentiment. To represent tokens, we

de�ne an embedding matrix

P ∈ R∣W ∣×ed , (2)

where ∣W∣ is the vocabulary size and ed is the embedding dimension. For each token w, P provides a vector

vd ,w ∈ R
ed . An embedding layer maps a tweet

t = [w1 ,w2 , . . . ,wL ], (3)

to

X = [ vd ,w1
, vd ,w2

, . . . , vd ,wL
] ∈ Red×L . (4)

Tomitigate over�tting, we apply a spatial dropout function S(X , γ) to the embeddingsX, where γ is the

dropout rate. �is step randomly zeroes entire embedding vectors along the sequence dimension, yielding

X′ = S(X , γ). (5)

We then use a Transformer Encoder E that combines multi-head attention, a feed-forward network µ

with a ReLU-like activation A, and a dense layer, alongside residual connections and layer normalization.

Let

ρ ∈ Rhd×L , (6)

be the input to themulti-head attention, where hd speci�es the hidden dimension of the Transformer output.

Each head constructs query, key, and value matrices

Qm = ρW
Q
k
, Km = ρW

K
k , Vm = ρW

V
k , (7)

and applies an attention mechanism

ν = A(Qm ,Km ,Vm). (8)

�e outputs of all heads are concatenated and passed through a function M(⋅), yielding

U(ρ) = M(ν1 , . . . , νh)WO . (9)

A two-layer feed-forward network µ(z) then takes the form

µ(z) = D(A(zW1 + b1)W2 + b2), (10)

where D includes dropout, W1 and W2 are weight matrices, and b1 and b1 are bias vectors. Residual

connections and layer normalization appear at each stage:

ρ′ = N(ρ +D(U(ρ))), ρ′′ = N(ρ′ +D(µ(ρ′))). (11)
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Consequently, the Transformer-encoded output is

ρ′′ = E(X′). (12)

We capture sequential dependencies with two recurrent layers (LSTM L and GRU R) applied to ρ′′,

yielding

hL = L(ρ′′), hR = R(ρ′′). (13)

Each recurrent layer typically applies internal dropout for additional regularization. We also use a

standalone attention mechanism

A = A(ρ′′, ρ′′), (14)

followed by global average pooling across the sequence dimension to obtain

hA =
1

L

L

∑
t=1

At . (15)

We concatenate the three feature vectors hL, hR , and hA into

hF = [ hL, hR , hA ] ∈ R fd , (16)

and pass the feature vector dimension a�er concatenation, hF , through a dense layer, resulting in

hD = D(A(hF W3 + b3)). (17)

Finally, an output layerO with a So�max Sm produces class probabilities

ĉ = Sm(hDW4 + b4) ∈ R3 , (18)

covering the three sentiment classes. Here,W3 ,W4 , b3 , and b4∈ R
3 denote the weight and bias parameters in

the �nal layers, corresponding to the three sentiment classes.

We de�ne θ as the model parameters and use sparse categorical cross-entropy as the loss function:

L = −
1

S

S

∑
i=1

3

∑
c=1

I(c i = c) log(ĉc). (19)

�e optimizer uses Adam with a learning rate of η. We further employ early stopping if the validation

loss fails to improve for three epochs, and reduce η by half if the validation loss �attens for �ve epochs.

To implement the embeddingmatrix P, we rely on pre-trained GloVe embeddings, defaulting unknown

tokens to zero vectors to handle out-of-vocabulary words. Our hybrid model integrates the embedding

layer, spatial dropout, Transformer encoder, recurrent networks, attention, and dense layers. We typically

set the hyperparameters as follows: maxwords = 10,000, max_sequence_length = 100, ed = 100, headsize = 64,

numheads = 4, and �dim = 128. A�er passing a tweet through these layers, we obtain ĉ, indicating the predicted

sentiment class. We perform training for up to �ve epochs using a batch size of 64, with early stopping and

learning rate scheduling in order to balance computational e�ciency andmodel generalization to real-world

applications. �e architecture of our deep learning model is illustrated in Fig. 2.
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Figure 2: �e architecture of the proposed hybrid model for sentiment classi�cation, which combines word embed-
dings, spatial dropout, a Transformer encoder for contextual features, LSTM and GRU layers for sequential patterns,
and an attention mechanism. Features are concatenated and passed through dense layers for sentiment prediction via
a So�max classi�er

4.1 Hyperparameter Details

We set the vocabulary size to 10,000 and themaximum input length to 100 tokens. Each token ismapped

to a 100-dimensional embedding, initialized from pre-trained GloVe vectors, and made trainable to allow

for �ne-tuning. �e Transformer encoder uses a multi-head attention mechanism with a head size of 64, a

number of heads of 4, and a feed-forward dimension of 128.We employ dropout rates of 0.1 or 0.2 in di�erent

layers (embedding, LSTM, GRU, and dense layers) to balance regularization with stable convergence. �e

LSTM and GRU layers have hidden sizes 64, each with a recurrent dropout of 0.2. We use two dense layers

for the �nal classi�cation: the �rst has 64 units with a ReLU activation, and the output layer uses So�max

to predict the sentiment class. �e learning rate is initialized at 0.001 for the Adam optimizer, with early

stopping triggered if the validation loss �attens for three epochs and a learning rate scheduler halving a�er

�ve epochs without improvement, down to a minimum of 10−6. Training is typically run for up to six epochs

with a batch size of 64, andwe store the bestmodel weights based on validation performance. Table 1 presents

the hyperparameters used in the proposed model.

Table 1: Hyperparameters used in the proposed model

Hyperparameter Value

Learning rate 0.1%

Batch size 64%

Optimizer Adam

Epochs 6 %

Activation function ReLU

Transformer heads 4

Dropout rate 0.1 or 0.2

Embedding dimension 100
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5 Results and Discussion

�roughout the six training epochs, as shown in Fig. 3, there was a clear downward trend in the training

loss L (from 0.5969 in epoch 1 to 0.1066 by epoch 6), accompanied by a steady increase in the training

accuracy α (from 0.7656 to 0.9686). �ese paired trends indicate e�ective learning: the model reduces its

predictive error and more accurately classi�es training examples.

Figure 3: Training and testing accuracies vs. training and testing loss for the six epochs

�e model showed strong performance during validation. �e validation accuracy started at 0.8565 in

the �rst epoch and rose to 0.9406 by epoch 6, which means that the model learns well. �e validation loss

decreased from 0.4104 to around 0.26–0.29 in the later epochs, with normal minor �uctuations. By the �nal

epoch, the training and validation accuracies reached the mid-90% range, indicating that the model can

capture patterns e�ectively without much over�tting. A separate test evaluation revealed a loss of 0.2614 and

an accuracy of 0.9225, con�rming that the model also performs well on new, unseen data.

Furthermore, the confusion matrix shown in Fig. 4 indicates that the model achieved 95% correctness

for neutral tweets (1124 of 1183), misclassifying only 61 as positive and 18 as negative. For positive tweets, it

reached 92% correctness (1297 of 1409), with relatively few errors (involving 19 misclassi�ed as negative and

33 as neutral). Negative tweets were misclassi�ed more o�en than others, with a 77% accuracy rate, meaning

that 125 out of 163 tweets are correctly identi�ed. Many of these tweets were incorrectly classi�ed as positive

or neutral, indicating that better methods are needed to recognize subtle negative samples.

5.1 Analysis of Tweet Length by Sentiment

Fig. 5 presents the Cumulative Distribution Function (CDF) of tweet lengths, measured by the number

of words, for the three sentiment categories: positive, negative, and neutral. On the horizontal axis, each

point indicates a particular number of words, while the vertical axis shows the fraction of tweets (from 0 to

1) that contain up to that many words. �is layout directly compares how quickly each sentiment’s tweets

accumulate across increasing word counts.



Comput Mater Contin. 2025;84(3) 4461

Figure 4: �e confusion matrix for the three sentiment classes: negative (1), positive (2), and neutral (3)

Figure 5: �e CDFs of tweet lengths for three sentiment classes: positive, negative, and neutral

�e positive class curve starts to climb at very short tweets, surpassing 50% (i.e., half of all positive

tweets) around 14–15 words. When the word count reaches roughly 30–32, the positive distribution �attens,

signifying that few tweets exceed this length.�enegative class curve increases from low to highword counts,

but initially includes a larger fraction of very short tweets (e.g., at 3–4 words) compared to the positive

distribution; it likewise peaks in the upper 20s or early 30s. Meanwhile, the neutral class curve begins near

zero (with minimal word counts) but catches up by around 16 words to encompass half of all neutral tweets.

Although neutral tweets occupy a slightly broader middle range, they also culminate at around 30–32 words

in the higher percentiles.
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Negative class tweets are somewhat briefer at the lower end, indicating concise or direct expressions of

negativity. In contrast, positive and neutral class tweets more commonly occupy moderate or slightly higher

word counts. Comparing these three sentiment curves we see that, although there is substantial overlap in

their ranges, minor di�erences appear at both the lower and upper extremes. Such observations reinforce

that the way in which sentiment is expressed on social media (e.g., concise negativity versus more elaborated

positivity) may yield additional clues for re�ning sentiment classi�ers.

5.2 Frequent Word Sequences

In addition to examining length distributions, we analyzed the dataset’s most frequent unigrams,

bigrams, and trigrams. Fig. 6 shows the top 10 items in each category on a log-log scale. �e horizontal

axis indicates their rank (from most frequent to 10th), while the vertical axis indicates their frequency. For

unigrams, the �rst few ranks exceed 8000 occurrences each, but the count drops sharply by the 10th rank.

A similarly steep decline was observed in the highest ranks for bigrams and trigrams, illustrating a typical

power-law pattern where a small set of tokens or phrases dominates in usage. At the same time, the majority

occur far less frequently.

Figure 6: �e top ten unigrams, bigrams, and trigrams on a log scale

Many social media users frequently repeat speci�c words, phrases, or hashtags, re�ecting common

language patterns. Recognizing these high-frequency terms can further assist in feature engineering or in

re�ning token-level embeddings, ultimately improving sentiment classi�cation, especially for context-driven

patterns in positive or negative expressions.

�e above �ndings highlight the e�ectiveness of our hybrid model in handling noisy, short-form

Twitter data. �e strong classi�cation results and analyses of tweet length distributions and word-sequence

frequencies revealed how di�erent sentiments manifest in varying textual styles. Negative tweets, for

instance, are typically shorter at the lower end, suggesting concise negativity, whereas positive and neutral

content o�en extends to moderately longer messages. �e prevalence of speci�c tokens across unigrams,

bigrams, and trigrams further re�ects the skewed nature of language use on Twitter, where a small set of

terms dominates.
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�ese observations provide support for our approach and indicate areas where we can make improve-

ments. We should pay special attention to short and direct complaints in order to better handle negative

tweets. Additionally, knowing common word patterns can help us to develop speci�c vocabularies or

embeddings that re�ect di�erent feelings. �ese results support our goal of creating a strong sentiment

analysis system that helps marketers to track brand discussions, spot new trends, and improve engagement

strategies in a rapidly changing social media environment.

To illustrate the e�ectiveness of our method, we compared it with various baseline models on the

same dataset. Table 2 summarizes the performance of our proposed hybrid model against several baseline

methods, all trained and evaluated using the same data split. For fair comparison, the LSTM-based model

employed the same number of epochs as our hybrid approach. As the results indicate, the hybrid model

achieved a loss of 0.2614 and an accuracy of 92.25%, outperforming the LSTMbaseline, which exhibited a loss

of 0.3792 and an accuracy of 90.29%. Meanwhile, the classical machine learning methods—namely, Logistic

Regression (86.85%), Linear SVM (88.95%), and Random Forest (84.71%)—all trailed further behind.

Table 2: Performance comparison (in terms of accuracy) between our hybrid model and baseline models

Model Accuracy

LSTM 90.29%

Logistic regression 86.85%

Linear SVM 88.95%

Random forest 84.71%

Our hybrid model 92.25%

Compared to general-purpose models such as BERT [42] or RoBERTa [43], these methods require

signi�cantly more memory and training time due to their large transformer backbones. Our hybrid model

o�ers a more resource-e�cient solution while maintaining a competitive performance.

�is performance gap indicates that our hybrid design can capture text patterns better than a single

LSTM or simpler classi�ers. �e baseline LSTM achieved a good accuracy, but the hybrid system’s deeper

layers and specialized feature extraction signi�cantly improved its classi�cation results. �e fact that all

models shared identical training/testing partitions and epochs ensured that the observed performance

improvements derived from architectural enhancements, rather than di�erences in data.

5.3 Limitations of the Study

Despite the promising performance of the proposed hybrid model, several limitations warrant consid-

eration. First, the used dataset included numerous missing values in non-textual metadata �elds (e.g., title,

comments, and social echo), which were excluded during pre-processing. �is exclusion may have limited

the model’s ability to leverage potentially valuable contextual cues. Future research could explore imputation

techniques or metadata-aware architectures to better utilize this information. Second, although sentiment

labels were manually annotated—thus contributing to higher labeling accuracy—this process is inherently

subjective and may have introduced bias or inconsistency. To enhance the reliability of labels, future studies

could adopt more advanced methods. �ird, the model was trained exclusively on fashion-related tweets

in the English language, which restricts its generalizability across other languages. Extending the model to

include multilingual datasets could broaden its global applicability.
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Additionally, the confusion matrix revealed that the model underperformed in detecting negative

sentiment, which is o�en expressed through subtlety, irony, or sarcasm. Incorporating sarcasm detection

modules or a�ective feature extraction techniques may enhance the model’s sensitivity to such nuanced

emotional expressions. Finally, while the proposed hybrid architecture is more e�cient than large-scale

transformer-only models such as BERTweet, it still introduces greater complexity when compared to

lightweight models. Future work may consider model distillation, pruning, or quantization to reduce the

model’s computational overhead without compromising its predictive performance, making it more suitable

for real-time applications.

6 Conclusion

�is study presented and evaluated a deep learning-based sentiment analysis model tailored for short,

noisy Twitter data, a critical source of brand and consumer engagement signals. Integrating pre-trained

word embeddings, a Transformer encoder, recurrent neural networks, and attention mechanisms, the

proposed model achieved a strong performance (over 92% accuracy on the test set). �e obtained results

underscore its e�ectiveness in classifying tweets into positive, neutral, or negative sentiment, with particular

strength in recognizing neutral and positive posts. However, the analysis also revealed the model’s weaker

performance on negative content, highlighting the nuanced language o�en used to express dissatisfaction.

For digital marketers, these insights are paramount: timely recognition of negative trends can mitigate

reputational risks, while understanding consumers’ positive responses guides the ampli�cation of successful

campaigns. Future work could explore domain-speci�c vocabularies or custom lexicons to capture the slang

and emotional cues typical in fashion- or product-related discussions on Twitter. Advanced text mining

techniques, supported by context-aware models, o�er a scalable solution to monitor brand sentiment,

identify emerging trends, and empower data-drivenmarketing strategies in an era where consumer feedback

unfolds continuously and publicly on social networks. In addition, there is still room for improvement in

terms of the model’s accuracy, especially regarding the classi�cation of negative emotions, which remains

more challenging due to the nature of negative expressions o�en seen on social media.
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