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ABSTRACT: This study proposes an automatic control system for Autonomous Underwater Vehicle (AUV) docking,
utilizing a digital twin (DT) environment based on the HoloOcean platform, which integrates six-degree-of-freedom
(6-DOF) motion equations and hydrodynamic coefficients to create a realistic simulation. Although conventional
model-based and visual servoing approaches often struggle in dynamic underwater environments due to limited
adaptability and extensive parameter tuning requirements, deep reinforcement learning (DRL) offers a promising
alternative. In the positioning stage, the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm is
employed for synchronized depth and heading control, which offers stable training, reduced overestimation bias,
and superior handling of continuous control compared to other DRL methods. During the searching stage, zig-zag
heading motion combined with a state-of-the-art object detection algorithm facilitates docking station localization.
For the docking stage, this study proposes an innovative Image-based DDPG (I-DDPG), enhanced and trained in a
Unity-MATLAB simulation environment, to achieve visual target tracking. Furthermore, integrating a DT environment
enables efficient and safe policy training, reduces dependence on costly real-world tests, and improves sim-to-real
transfer performance. Both simulation and real-world experiments were conducted, demonstrating the effectiveness of
the system in improving AUV control strategies and supporting the transition from simulation to real-world operations
in underwater environments. The results highlight the scalability and robustness of the proposed system, as evidenced
by the TD3 controller achieving 25% less oscillation than the adaptive fuzzy controller when reaching the target
depth, thereby demonstrating superior stability, accuracy, and potential for broader and more complex autonomous
underwater tasks.

KEYWORDS: Autonomous underwater vehicle; docking maneuver; digital twin; deep reinforcement learning; twin
delayed deep deterministic policy gradient

1 Introduction
The ocean, covering over 70% of the Earth’s surface, offers valuable resources that have driven the

increasing deployment of Autonomous Underwater Vehicles (AUVs) for safe and efficient exploration and
development. AUVs are widely utilized for a variety of tasks, including seabed resource exploration, marine
habitat monitoring, and deep-sea structure inspections [1,2]. Their high safety, reliability, and controllability
make them indispensable in missions such as seabed mapping [3], underwater equipment inspection [4],
and mine detection [5]. As underwater missions become more complex and prolonged, long-term endurance
has become a critical requirement for AUV operations. To meet this demand, underwater docking stations
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have been developed to provide power recharging and data transmission capabilities, which are essential
for extending mission duration and enhancing autonomy. However, achieving reliable docking remains a
significant challenge. Environmental uncertainties such as ocean currents, limited visibility, and posture
deviations between the AUV and docking station introduce substantial difficulties for precise motion control
during docking maneuvers [6,7]. Although vision-based guidance systems, such as the one proposed by Li
et al. [8], have improved docking accuracy and achieved up to 80% success rates, many early studies were
limited by controlled test environments and simplified motion models. These constraints have restricted the
applicability of such methods to fully autonomous and precise docking operations in more dynamic and
unpredictable underwater settings.

With the development of hardware like cameras, visual information has become a crucial source
for decision-making and judgment in AUV monitoring and identification tasks. DL has improved image
processing, making image recognition for docking missions widely adopted. Singh et al. [9] used YOLO
(short for You Only Look Once) to identify the LED light rings of target docking stations for positioning.
Sans-Muntadas et al. [10] employed a Convolutional Neural Network (CNN) to map camera inputs to error
signals for controlling the docking of AUVs, demonstrating the feasibility of autonomous docking using only
camera lenses as sensors.

The AUV docking process comprises the return and docking phases, with a reliable return control
system crucial for successful docking. Li et al. [6] developed a hybrid method integrating ultra-short baseline
and computer vision to enhance accuracy and stability during final docking. Standard controllers, such as
PID and fuzzy controllers, are capable of controlling a stable, fast and accuracy performance. However, with
the nonlinear nature of underwater environments, the performance of fixed parameters can be limited [11]. In
this case, machine learning (ML) is increasingly applied to AUV control strategies. Reinforcement Learning
(RL) has gained prominence for its ability to learn through environmental interactions and feedback,
improving performance over traditional methods. Yu et al. [12] demonstrated that DRL offers superior
accuracy in AUV trajectory tracking compared to PID methods.

To overcome the inherent limitations of conventional PID methods in dealing with nonlinear and uncer-
tain underwater environments, the sigmoid PID controller incorporates nonlinear modulation through
a sigmoid function, which significantly improves control adaptability and stability [13]. BELBIC PID
controllers, inspired by brain emotional learning, have been employed to manage dynamic behaviors in
AUVs more effectively [14]. Neuroendocrine PID controllers, integrating neural networks with endocrine
mechanisms, have also demonstrated robustness under uncertain conditions [15]. Although these intelligent
PID controllers improve adaptability and control precision, they still require extensive parameter tuning and
exhibit limited generalization across diverse scenarios. Their ability to handle highly dynamic, unstructured
environments, such as those encountered in autonomous docking, remains constrained.

In recent years, deep reinforcement learning (DRL) has attracted significant attention in the field
of AUV control, offering promising solutions for complex and dynamic underwater environments. The
Deep Deterministic Policy Gradient (DDPG) algorithm, which combines Deep Q-Network (DQN) tech-
niques with an Actor-Critic architecture to output deterministic actions, has demonstrated its ability to
handle continuous state and action spaces effectively [16]. Carlucho et al. [17] applied DDPG to address
AUV path navigation, while Yao and Ge [18] further enhanced the method by incorporating an adaptive
multi-restrictive reward function, achieving better results in three-dimensional path tracking and obstacle
avoidance. Despite its advantages, DDPG presents limitations such as instability in policy updates and
overestimation of action-value functions, which hinder its reliability in more challenging scenarios. To
overcome these issues, Fujimoto et al. [19] proposed the Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm, introducing twin critics, delayed policy updates, and target policy smoothing to stabilize
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learning and improve control accuracy. Li and Yu [20] later applied TD3 for real-time trajectory planning in
multi-AUV charging navigation, ensuring timely and collision-free arrival at charging stations. Beyond DRL
approaches, recent studies have explored hybrid control strategies. For instance, an adaptive PID controller
based on Soft Actor–Critic (SAC) has been proposed to enhance interpretability and performance in AUV
path following tasks [21]. Additionally, the integration of fuzzy logic with PID control has been investigated to
address nonlinearities and uncertainties in AUV dynamics [22]. Model Predictive Control (MPC) methods
have also been advanced, with recent work incorporating Gaussian Processes to improve trajectory tracking
and obstacle avoidance capabilities in dynamic ocean environments [23]. These developments underscore
the rapid evolution of control techniques for AUVs. However, while these methods perform well in simulated
settings, further integration with digital twin (DT) systems remains necessary to ensure robust and reliable
transfer to real-world docking operations.

In addition to DRL, several advanced tuning algorithms have been proposed to optimize controllers
in nonlinear systems. The Memorizable Smoothed Functional Algorithm (MSFA) enhances convergence
and reduces computational cost through memory-based search [24], while Norm-Limited Simultaneous
Perturbation Stochastic Approximation (NL-SPSA) stabilizes gradient estimates for systems with nonlineari-
ties [25]. Smoothed functional variants have also improved reinforcement learning convergence in off-policy
tasks [26]. However, these methods mainly target static or simplified scenarios and remain limited in han-
dling sequential decision-making and sim-to-real transfer, which are essential for AUV docking. Compared
to these approaches, DRL algorithms offer distinct advantages in addressing sequential decision-making and
sim-to-real transfer challenges, which are critical for AUV docking in dynamic underwater environments.

Underwater vehicle performance is affected by payload and environmental changes, complicating
parameter design and accurate mathematical modeling. Additionally, advancements in image recognition
have outpaced simple numerical simulations, leading to increased focus on developing high-fidelity sim-
ulation environments. Manhães et al. [27] proposed an Unmanned Underwater Vehicle (UUV) simulator
based on the open-source robot simulation platform Gazebo. This simulator allows for collaborative task
simulations for multiple AUVs and simulates underwater operation interaction tasks using robotic arms.
However, the visual quality of UUV Simulator is relatively low, makes it lacks authenticity when processing
image. Henriksen et al. [28] proposed an open-source simulator for underwater vehicles, MORSE. This
simulator supports ROS and Python, making it suitable for academic research and sensor simulation.
However, it has relatively simple graphics, and its underwater physics engine lacks accuracy. Potokar
et al. [29] proposed HoloOcean, an open-source underwater vehicle simulator based on Unreal Engine 4
(UE4). This simulator can be easily installed through simple steps and quickly execute simulations through
the Python interface, with reliable physics engine and visual quality. It also allows easy construction of the
required underwater environment within the UE4 software.

This study establishes a DT system characterized by synchronized interaction between the physical and
virtual environments and the transfer of control algorithms from simulation to real-world applications (sim-
to-real transfer). The digital twin system in this study is defined based on the triad architecture proposed by
Grieves [30]. Sharma et al. [31] noted that DT technology offers advantages such as real-time monitoring,
simulation, optimization, and accurate prediction, but its theoretical framework and practical applications
have not yet been widely realized. Liu et al. [32] established a DT system for a physical robot using DT
technology to transfer DRL algorithms to real-world robots. Their experimental results confirmed the
effectiveness of intelligent grasping algorithms and the virtual-to-real transfer methods and mechanisms
based on digital twins.

Recently, DT technology has been increasingly applied in various fields [33], further demonstrating its
potential to bridge virtual models with real-world systems. Additionally, several studies have made notable
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progress in advancing DT technologies and reinforcement learning methods for underwater robotics. Chu
et al. [34] proposed an adaptive reward shaping strategy to enhance DRL for AUV docking, addressing the
challenges of complex environmental dynamics. Patil et al. [35] systematically benchmarked several DRL
algorithms for underwater docking, confirming the effectiveness of TD3 in achieving high success rates, yet
their work remained limited to simulation environments without full sim-to-real validation. Chu et al. [36]
introduced MarineGym, a reinforcement learning benchmark platform designed for underwater tasks,
which emphasized training efficiency and reproducibility, but did not focus on docking or transfer to real-
world applications. Yang et al. [37] integrated DT technology with reinforcement learning for autonomous
underwater grasping, demonstrating the potential of sim-to-real transfer, albeit in tasks other than docking.
Havenstrøm et al. [38] investigated DRL-based control for AUV path following and obstacle avoidance, yet
without incorporating DT systems or addressing docking scenarios.

This study aims to build an asynchronous AUV digital twin simulation system as an initial step toward
a complete DT system, addressing limitations in real-time underwater communication. After evaluating
various open-source platforms, HoloOcean was selected to develop the 3D AUV simulation system, using
the UE4 engine to simulate 6-DOF motion and visualize vehicle movement. Experimental hydrodynamic
coefficients were integrated into the model to ensure realistic simulation results. Although DRL and
simulation platforms have been widely adopted in AUV control studies, most remain limited to purely
simulated environments without addressing the gap to real-world operations. To overcome this limitation,
this study proposes a DT system that integrates the physics-based simulation platform and DRL algorithms,
enabling not only control strategy training but also seamless sim-to-real transfer. The developed controllers
were successfully validated in real AUV docking experiments, demonstrating the practicality and reliability
of our approach. Thus, the system serves both as a DRL training environment and as a bridge to real-world
deployment. This research not only enhances AUV control but also provides insights for future AUV digital
twin development.

Table 1 summarizes the differences between the proposed method and other state-of-the-art approaches
for AUV docking control. Compared to conventional methods relying on hand-crafted control laws or visual
servoing techniques, our DT-based DRL control system offers improved adaptability, reduced dependency
on real-world trials, and demonstrated robustness through successful sim-to-real transfer. This comparative
analysis highlights the potential of the proposed approach as a scalable and efficient solution for autonomous
underwater docking missions.

Table 1: Comparison of AUV docking control approaches

Approach Control strategy Adaptability to
dynamic

environments

Real-world
experiment required

Sim-to-real
transferability

Remarks

Model-based
control (PID,

LQR, etc.) [39]

Predefined control
laws based on

mathematical models

Limited (requires
accurate models;

sensitive to
disturbances)

Yes (necessary for
model tuning and

validation)

Poor Traditional
method with low

flexibility

Visual servoing
control [40]

Image-based feedback
with control rules

Moderate (tolerant to
visual target issues

but limited learning
capability)

Yes (needs parameter
tuning and
validation)

Poor to moderate Depends on good
visual conditions

DRL-based
control without

DT [41]

Deep reinforcement
learning trained in
simple simulators

Moderate (learns
from environment

but suffers from
sim-to-real gap)

Yes (real-world
tuning needed for

transfer)

Limited Lower
reproducibility

and
generalization

(Continued)
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Table 1 (continued)

Approach Control strategy Adaptability to
dynamic

environments

Real-world
experiment required

Sim-to-real
transferability

Remarks

DRL-based
control with DT

(This work)

Deep reinforcement
learning trained in a

high-fidelity DT
environment

High (trained with
realistic dynamics

and sensor/simulator
characteristics)

Reduced (trained in
DT first)

Good
(demonstrated

successful
transfer)

High
reproducibility
and scalability

This study proposes a DT system integrated with DRL to achieve adaptive and transferable AUV docking
control. A hybrid control strategy combining TD3 and a novel image-based I-DDPG is developed and
successfully validated through both simulation and real-world experiments, demonstrating robust sim-to-
real transfer. Furthermore, comprehensive quantitative evaluations confirm the reliability and effectiveness of
the proposed method in handling nonlinear and uncertain underwater environments. The remainder of this
study is organized as follows: Section 2 elaborates on the methodologies related to AUVs, docking devices,
and DRL-based continuous motion control. Section 3 outlines the framework of the 3D AUV maneuvering
system. In Section 4, the control methods and experimental design are introduced. Section 5 validates
the feasibility of the simulation and experimental results, along with the data analysis. Finally, Section 6
concludes the study and discusses future work.

2 Methodology
To accurately describe the motion of the AUV, it is necessary to define coordinate systems, including

the earth-fixed coordinate system and the body-fixed coordinate system, as shown in Fig. 1. [u, v , w , p, q, r]
represents the linear and angular velocities relative to the body-fixed coordinate system, while [x , y, z]
denotes the AUV’s position in the earth-fixed coordinate system. The Euler angles ϕ, θ, and ψ refer to the
AUV’s orientation relative to the earth-fixed coordinate system.

Figure 1: The schematic of the earth-fixed and body-fixed coordinate systems

2.1 Design of MateLab AUV
The MateLab AUV features capabilities such as image identification, 6-DOF motion control, depth-

keeping, and heading stabilities. The AUV’s hull design is based on the model proposed by Myring [42],
with a total length of 1.7 m and a diameter of 0.17 m, resembling a torpedo shape, as shown in Fig. 2a. It
weighs 40 kg, with positive buoyancy adjusted to 0.15 kg to ensure it can float to the surface in case of a
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system shutdown. The AUV is composed of three sections: the bow compartment, the control compartment,
and the stern compartment. The bow compartment is equipped with a wide-angle camera, a stereo camera
module, LED lights, and a pressure sensor module; the control compartment houses a mini-industrial
computer, batteries, and various control modules; the stern compartment features propulsion provided by
a DC brushless motor paired with a four-blade propeller and includes four independent servos for rudder
operation, with each rudder’s axis control range being±30○. Detailed configurations are illustrated in Fig. 2b.
In this study, the mini-industrial computer integrates several key modules through serial communication
methods such as RS232. These modules include the depth measurement module, the attitude and heading
reference system (AHRS), the imaging module, the Bluetooth module, the propulsion control system, and
the power management system, as shown in Fig. 2c.

Figure 2: (Continued)
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Figure 2: MateLab AUV: (a) geometric appearance; (b) internal configuration diagram; (c) comprehensive system
block diagram

2.2 Equation of Motion for AUV
The motion model of an AUV integrates rigid-body dynamics with kinematic equations, typically

expressed using hydrodynamic coefficients. The vehicle’s motion is primarily influenced by factors such as
body inertia, hydrodynamic forces, propeller thrust, and rudder forces. The hydrodynamic coefficients vary
depending on hull type and operational conditions, and their selection is often based on empirical determi-
nation. This study employs the six-degree-of-freedom motion equation model proposed by Fossen [43], as
represented in Eq. (1).

Mν̇ + C (ν) ν + D (ν) ν + g (η) = τ (1)

where M represents the system inertia matrix of the AUV (including added mass), C(v)denotes the Coriolis-
centripetal matrix (including added mass), D(v) is the damping matrix of the AUV, g(η) represents the
restoring force and moment matrix due to gravity and buoyancy, and τ represents the vector of control input.
Since ν represents the velocity state vector of the AUV in the body-fixed coordinate system, while η denotes
the position and orientation state vector in the Earth-fixed coordinate system, a transformation between
these two representations is required.

(1) System inertia matrix

The system inertia matrix M is defined in Eq. (2). Assuming the AUV is fully submerged, M is positive
definite and constant.

M = MRB +MA, M = MT > 0, Ṁ = 0 (2)



4914 Comput Mater Contin. 2025;84(3)

The matrix M comprises the rigid-body system inertia matrix MRB and the added mass system inertia
matrix MA, which are defined in Eq. (3).

MRB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ix −Ix y −Izx

mzg 0 −mxg −Ix y Iy −Iyz
−myg mxg 0 −Izx −Iyz Iz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

MA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xu̇ −Xv̇ −Xẇ −Xṗ −Xq̇ −Xṙ
−Xv̇ −Yv̇ −Yẇ −Yṗ −Yq̇ −Yṙ
−Xẇ −Yẇ −Zẇ −Zṗ −Zq̇ −Zṙ
−Xṗ −Yṗ −Zṗ −Kṗ −Kq̇ −Kṙ
−Xq̇ −Yq̇ −Zq̇ −Kq̇ −Mq̇ −Mṙ
−Xṙ −Yṙ −Zṙ −Kṙ −Mṙ −Nṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where m represents the total mass of the vehicle; Ix , Iy , Iz denote the mass moments of inertia of the vehicle
relative to the body-fixed coordinate system along the respective axes of rotation; xg , yg , zg denote the
position of the AUV’s center of gravity. The added mass system inertia matrix MA is composed of the vehicle’s
hydrodynamics coefficients. Relevant symbols and parameters are listed in the Nomenclature. Since the
AUV used in this study is symmetrical about the vertical axis, yg = Ix y = Iyz = 0, and the matrix M can be
simplified as shown in Eq. (4).

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m − Xu̇ 0 −Xẇ
0 m − Yv̇ 0
−Xẇ 0 m − Zẇ

0 −mzg − Yṗ 0
mzg − Xq̇ 0 −mxg − Zq̇

0 mxg − Yṙ 0

0 mzg − Xq̇ 0
−mzg − Yṗ 0 mxg − Yṙ

0 −mxg − Zq̇ 0
Ix − Kṗ 0 −Izx − Kṙ

0 Iy −Mq̇ 0
−Izx − Kṙ 0 Iz − Nṙ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

(2) Coriolis-centripetal matrix

The Coriolis-centripetal matrix C(v) arises from the rotational coupling between the Earth-fixed and
body-fixed coordinate systems, as defined in Eq. (5). For a rigid body moving through an ideal fluid, C(v)
is parameterized to exhibit skew symmetry.

C (ν) = CRB (ν) + CA (ν) (5)

C (ν) = −CT (ν) , ν ∈ R6

The matrix C(v) comprises the rigid-body Coriolis-centripetal matrix CRB(v) and the added mass
Coriolis-centripetal matrix CA(v), where CA(v) represents the fluid forces induced by the rigid body’s
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motion through an ideal fluid. The matrices CRB(v) and CA(v) are defined in Eqs. (6a,b).

CRB (ν) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

−m (yg q + zgr) m (yg p +w) m (zg p − v)
m (xg q −w) −m (zgr + xg p) m (zg q + u)
m (xgr + v) m (ygr − u) −m (xg p + yg q)

(6a)

m (yg q + zgr) −m (xg q −w) −m (xgr + v)
−m (yg p +w) m (zgr + xg p) −m (ygr − u)
−m (zg p − v) −m (zg q + u) m (xg p + yg q)

0 −Iyx q − Ixz p + Izr Iyzr + Ix y p − Iy q
Iyx q + Ixz p − Izr 0 −Ixzr − Ix y q + Ix p
−Iyzr − Ix y p + Iy q Ixzr + Ix y q − Ix p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

CA (ν) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗ p
−Yv̇v Xu̇u 0 −Mq̇q Kṗ p 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6b)

(3) Damping matrix

The fluid dynamic damping in an AUV is inherently nonlinear and coupled. To approximate the
damping matrix D(v), it is commonly assumed to be diagonal, comprising the products of damping
coefficients and their respective velocity components, as shown in Eq. (7).

D (ν) = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X∣u∣u ∣u∣ 0 0 0 0 0
0 Y∣v∣v ∣v∣ 0 0 0 Y∣r∣r ∣r∣
0 0 Z∣w∣w ∣w∣ 0 Z∣q∣q ∣q∣ 0
0 0 0 K∣p∣p∣p∣ 0 0
0 0 M∣w∣w ∣w∣ 0 M∣q∣q ∣q∣ 0
0 Y∣v∣v ∣v∣ 0 0 0 N∣r∣r ∣r∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

(4) Restoring force and moment matrix

The matrix g(η) represents the restoring forces and moments of the AUV, arising from gravity and
buoyancy, as defined in Eq. (8). WAU V denotes the weight acting on the AUV, while BAUV represents the
buoyancy force. The coordinates xb , yb , zb indicate the position of the AUV’s buoyancy center, whereas
xg , yg , zg denote the position of its center of gravity.

g (η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(WAU V − BAUV) sin θ
−(WAU V − BAUV) cos θ sin ϕ
−(WAU V − BAUV) cos θ cos ϕ

−(ygWAU V − yb BAU V) cos θ cos ϕ + (zgWAUV − zb BAUV) cos θ sin ϕ
(zgWAU V − zb BAU V) sin θ + (xgWAUV − xb BAUV) cos θ cos ϕ
−(xgWAU V − xb BAU V) cos θcosϕ − (ygWAUV − yb BAUV) sin θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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(5) Control input vector

In this study, the AUV regulates its attitude using two vertical and two horizontal control fins,
complemented by a thruster. Establishing a mapping between the vehicle control inputs and the resulting
forces and moments is therefore essential. This research adopts the control input model proposed by Harris
and Whitcomb [44]. The position of the ith fin in the vehicle frame is denoted by pi V , as defined in Eq. (9).

pi V = ∣
ri V
ϕi V
∣ ∈ R6 (9)

where ri V denotes the vector from the vehicle’s center to the center of the ith fin, and ϕi V represents the
angular position of the ith fin in the vehicle frame.

(6) AUV Hydrodynamics

By substituting Eqs. (2) and (5) into Eqs. (1), (10) is obtained:

MRB ν̇ + CRB (ν) ν = τ −MAν̇ − CA(ν)ν − D (ν) ν − g (η) (10)

where the left-hand side represents the inertial forces and moments acting on the AUV, while the right-
hand side comprises external forces, including hydrodynamic forces, restoring forces, and control inputs.
The hydrodynamic forces and moments acting on the AUV, denoted by FHD6×1 , are expressed in Eq. (11):

FHD6×1 = −MAν̇ − CA (ν) ν − D (ν) ν (11)

The hydrodynamic force components along six degrees of freedom are expanded in terms of dimen-
sionless hydrodynamic coefficients, as presented in Eqs. (12)–(17). These equations enable the calculation of
hydrodynamic forces and moments acting on the AUV across six degrees of freedom.
Surge:

FHD 1 =
ρ
2

L4 [X
′

qqq2 + X
′

rrr2 + X
′

r pr p] + ρ
2

L3 [X
′

u̇ u̇ + X
′

vrvr + X
′

wqwq] + ρ
2

L2 [X
′

uuu2 + X
′

vvv2 + X
′

www2]
(12)

Sway:

FHD2 =
ρ
2

L4 [Y
′

ṗ ṗ + Y
′

ṙ ṙ + Y
′

pq pq + Y
′

p∣p∣p ∣p∣]

+ ρ
2

L3 [Y
′

v̇ v̇ + Y
′

w pw p + Y
′

v∣r∣
v
∣v∣ ∣
(v2 +w2)

1
2 ∣ ∣r∣ + Ypup + Yrur]

+ ρ
2

L2 [Y
′

uuu2 + Y
′

v uv + Y
′

v∣v∣v ∣(v2 +w2)
1
2 ∣ + Ywvwv] (13)

Heave:

FHD3 =
ρ
2

L4 [Z
′

q̇ q̇ + Z
′

rrr2 + Z
′

r pr p] + ρ
2

L3 [Z
′

ẇẇ + Z
′

vrvr + Z
′

v pv p]

+ ρ
2

L3 [Z
′

quq + Z
′

w∣q∣
w
∣w∣ ∣
(v2 +w2)

1
2 ∣ ∣q∣]

+ ρ
2

L2 [Z
′

uuu2 + Z
′

wuw + Z
′

w∣w∣w ∣(v2 +w2)
1
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Roll:
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Pitch:
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Yaw:
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The right-hand sides of the equations present the expanded forms of the hydrodynamic forces expressed
in terms of dimensionless hydrodynamic coefficients. ρ denotes the fluid density, and L represents the
vehicle length. The hydrodynamic coefficients adopted in this study are based on our previous study [45],
which established the coefficients through towing tank experiments and validated the model’s accuracy in
reproducing real AUV motion responses. The details of these coefficients are provided in Appendix A.

2.3 The Docking System
The docking system offers an effective solution to recovering the AUV to the mother ship, providing

greater flexibility and ease of repositioning compared to more expensive fixed docking systems. The
movable docking system is illustrated in Fig. 3. This study utilizes our developed docking device featuring a
rectangular frame as its main structure. The conical docking entrance is constructed from aluminum alloy
bars, with an opening at the top to accommodate an antenna or sail. The rear end is equipped with an
adjustable support bracket, allowing it to accommodate AUVs of various lengths. The entrance is equipped
with LED ring lights to serve as targets for AUV visual recognition and positioning tracking. Additionally, a
fixed bracket for a variable information light disc is positioned above the entrance, though this study focuses
on using the LED ring for docking information.
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Figure 3: The schematic of the movable docking system

2.4 YOLOv7 Deep Learning Object Recognition Algorithm
YOLO [46] differs from traditional object detection models by framing the object detection problem

as a single regression task, combining all aspects of object detection into one unified neural network. This
approach enables YOLO to detect and locate all objects in an image in a single pass, offering faster and more
comprehensive inferences on the entire image while predicting both the categories and locations of objects.
Building upon YOLOv4, Wang et al. [47] introduced the YOLOv7 algorithm with several enhancements and
optimizations. YOLOv7 adopts a different CNN structure, incorporating extended efficient layer aggregation
networks (ELAN) and model scaling techniques to improve both inference speed and accuracy. The
processing flow of the YOLO algorithm is illustrated in Fig. 4.

Figure 4: Illustration of the YOLO processing flow

To adapt the YOLOv7 model for underwater docking scenarios, a domain-specific dataset was created
using synthetic images from the UE4-based digital twin environment and real-world images from basin
experiments. The dataset included various perspectives and lighting conditions of the docking station’s
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LED light ring. The YOLOv7 model, initialized with COCO-pretrained weights, was subsequently fine-
tuned on this dataset. Through transfer learning and hyperparameter tuning, the model achieved a balance
between detection accuracy and real-time performance, enabling robust target localization during the
docking maneuvers. This study applies the YOLOv7 object detection method to achieve target recognition
and localization in docking missions, serving as the perception module within the I-DDPG control system.

2.5 DRL-Based Continuous Motion Control
DRL utilizes deep neural networks to approximate value functions or control policies, improving

learning accuracy and enabling applications in more complex interactive environments. This study employs
two DRL algorithms, DDPG and TD3, for docking control and depth-heading control in docking tasks.

2.5.1 The Architecture and Algorithm of DDPG
The DDPG algorithm is a DRL method specifically designed for continuous control problems. Based

on the Actor-Critic framework, DDPG utilizes deep neural networks and policy gradient methods to output
deterministic actions, making it well-suited for continuous action spaces and high-dimensional state spaces.
The architecture of the DDPG network is illustrated in Fig. 5, where the temporal difference error (TD-error)
represents the discrepancy between the predicted and target values.

Figure 5: The architecture of the DDPG network

2.5.2 The Architecture and Algorithm of TD3
DDPG has been successfully applied to many continuous control problems. However, it faces challenges

such as unstable policy updates and overestimation of Q-values. To address these issues, Fujimoto et al. [19]
proposed the TD3 algorithm. TD3 is an optimized version of DDPG, incorporating three key improvements:
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target policy smoothing, clipped double-Q Learning, and delayed policy updates. Target policy smoothing
enhances algorithm stability by smoothing the target Q-values, clipped double-Q learning prevents overly
optimistic value estimates, improving policy reliability, and delayed policy updates reduce fluctuations in
the policy network, enhancing learning stability. These enhancements enable TD3 to demonstrate superior
performance across various control tasks, particularly in applications such as robotics control, autonomous
driving, and game AI.

As shown in Fig. 6, the TD3 agent in this study follows a similar framework to DDPG for continuous
AUV control, where AUV motion states serve as input to the Actor-Critic networks. The agent outputs
control actions that directly command the rudder and thruster, forming the control inputs to the AUV
dynamic model. The closed-loop interaction is reinforced through reward feedback, enabling the DRL agent
to learn effective control policies suited for underwater docking tasks.

Figure 6: The network architecture of TD3

3 AUV Simulation and Control System Architecture
In this study, an integrated 3D AUV simulation and control system was developed using the open-

source underwater robot simulator HoloOcean, which is based on the reinforcement learning simulator
Holodeck [48] and Unreal Engine 4 (UE4). UE4 offers a robust platform that provides accurate physics
simulation, high-fidelity visual rendering, and flexible environment customization through its C++ and
Blueprint interfaces. By using these capabilities, the proposed simulation system integrates the AUV motion
model as the core simulation component and serves as the virtual environment for DRL training and
control validation, as illustrated in Fig. 7. In this system architecture, the AUV receives control commands,
rudder deflection angles (δV , δH) and thruster speed (r pmthrust), directly from the DRL agent imple-
mented in Python. These control actions are applied to the AUV dynamic model within the simulation,
which computes the resulting motion states at the next time step, including velocities and orientations
([u, v , w , p, q, r, X , Y , Z , ϕ, θ , ψ]). The updated states are then fed back to the DRL agent as observations,
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forming a closed-loop control cycle that enables continuous policy learning and refinement. This simulation
and control integration not only supports efficient DRL training, but also ensures that the learned control
policies are aligned with the dynamic behaviors of the real AUV, thus enhancing sim-to-real transferability.
This simulation platform serves as the DT environment for AUV control development, fulfilling the real-time
feedback loop between simulation and physical experimentation.

Figure 7: Architectural diagram of the digital twin system environment

3.1 Motion Simulation in HoloOcean
The numerical integration method commonly used in physics engines to approximate these results is the

semi-implicit Euler method. It combines the simplicity of the explicit Euler method with the stability of the
implicit Euler method, providing a balance of low computational cost and stability. Therefore, in HoloOcean,
external forces such as buoyancy, gravity, and propeller thrust are applied to the AUV model in each frame,
as shown in Fig. 8. The physics engine then computes the AUV’s position and attitude based on these applied
forces, simulating the AUV’s motion through this process.

Figure 8: Schematic of the HoloOcean simulation method
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3.2 UE4 Visualization and AUV Simulation Setup
First, the 3D model of the AUV needs to be imported into UE4, and its surface materials must be

configured (as shown in Fig. 9a) to closely match its real-world appearance. The sensor modules, including
the forward-looking camera, depth sensor, and INS, are then positioned according to the actual AUV system
architecture. By utilizing UE4’s terrain tools and water plugins, a realistic underwater environment can be
created. This study employs the capabilities of the UE4 game development platform to construct the virtual
underwater environment used in the simulation system, as shown in Fig. 9b.

(a) (b) 

Figure 9: (a) 3D model of the AUV in UE4; (b) the virtual underwater environment

After importing the model into UE4, interaction functionalities can be implemented either by editing
character blueprints or using C++. In this study, the AUV model is developed using C++ code. The initial
step involves setting the basic specification parameters of the AUV, including the center of gravity, center of
buoyancy, weight, and volume. Additionally, the positions of the propeller and rudder need to be set, as they
will be used to apply propeller thrust and rudder forces, respectively. The positions of the center of buoyancy
and center of gravity are defined relative to the vehicle’s coordinate center.

This study employs the numerical simulation method [49] for the AUV, using hydrodynamic equations
to compute the hydrodynamic forces [FHD1 , FHD2, FHD3, FHD4, FHD5, FHD6] acting on the AUV. To ensure
the fidelity of the simulation environment, the DT system integrates multiple sources of real-world data.
Experimental hydrodynamic coefficients, derived from prior towing tank tests [45], were embedded into the
simulation model to replicate realistic underwater dynamics. In addition, sensor characteristics, including
camera parameters, pressure sensor accuracy, and AHRS update rates, were incorporated to emulate real
sensor performance. Finally, by enabling the ‘Simulate Physics’ feature within the character blueprint, the
PhysX physics engine is used to solve for the AUV’s velocity, angular velocity, position, and attitude. The
computed data is then rendered into visual imagery using the GPU. Furthermore, the results from real-
world AUV docking experiments were used to validate and fine-tune the simulation outputs, establishing a
continuous feedback mechanism that enhances the accuracy and reliability of the digital twin framework. The
basic parameters are determined by referencing the previously established AUV numerical motion model
descripted in Section 2.2, which creates a numerically accurate model of the AUV in UE4 environment.

3.3 Simulation System Interface and Workflow
The Python interface of HoloOcean in this study emulates the design of OpenAI Gym [50], enabling

simulations to be executed with only a few lines of code. This environment facilitates parameter adjustment,
data collection and integration, simulation control, DRL training, and result output. Action commands
are transmitted from Python to the simulation system, which subsequently computes the AUV’s state
information for the next time step. The computed state information is returned to Python, serving as input for
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the DRL model during training. Furthermore, data displayed on the simulation window provides real-time
feedback on the current simulation status of the AUV. The simulation process is illustrated in Fig. 10.

Figure 10: Simulation process of the Python interface

4 Control Methods and Experimental Design
The AUV’s docking process is divided into three stages: positioning (surface sailing and diving states),

searching (depth-keeping and searching states), and docking (object-tracking state), enabling the AUV to
locate the docking device and complete the docking task. This study focuses on evaluating the control
performance of the DT system during this planned docking process and its virtual-to-real conversion. For the
positioning and searching stages, the TD3 algorithm is implemented to control both the depth and heading
of the AUV. The input states include real-time depth, pitch, and yaw angles, while the actions consist of
horizontal and vertical rudder commands. The reward function is designed to minimize depth and heading
errors while maintaining smooth control. Except for the docking stage, TD3 is employed for horizontal plane
heading control and vertical plane depth control, as illustrated in Fig. 11a. During the docking stage, the
I-DDPG algorithm is applied, using the bounding box coordinates of the detected target object as input states
to generate rudder control commands. The reward structure focuses on target alignment accuracy while
penalizing abrupt actions to ensure stable docking maneuvers. The overall control process and transition
among the stages are depicted in Fig. 11b.
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Figure 11: (a) Diagram of AUV control stages; (b) process of the docking task
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TD3 adopts two critic networks to mitigate Q-value overestimation by averaging the outputs, thereby
enhancing stability and accuracy. In contrast, DDPG uses a single critic network, which may lead to over-
estimation and less stable learning. This structural difference allows TD3 to outperform DDPG, particularly
in complex environments. During the searching stage, both the thruster and rudder require high-precision
control, whereas in the docking stage, only the rudder is needed once the AUV is sufficiently close to the
dock. Detailed discussions on each method are presented in the following sections.

4.1 TD3 Depth and Heading Control Method
In the positioning stage, when the target is out of visibility range and cannot be tracked, specifically

during the surface sailing and diving states, this study uses depth information (h) obtained from the pressure
sensor and the pitch angle (θ) and yaw angle (ψ) obtained from the AHRS as inputs to the TD3 model.
This allows the AUV to simultaneously maintain heading control while diving to the target depth. In such a
complex task involving synchronized control in both the horizontal and vertical planes, DRL is particularly
advantageous. It can determine the optimal control actions under various states, enabling the AUV to
approach the target’s visibility range with a stable posture.

To achieve stable depth and heading control during the positioning stage, this study utilizes the proposed
maneuvering simulation system to train TD3 to control the AUV during this phase. In the simulation
environment, the AUV’s initial position is set at the origin of the world coordinates with the bow oriented
at a heading angle of 0○. At the beginning of the simulation, the AUV is in an unstable state. Therefore, each
round begins with a 10-s stabilization period to allow the AUV to reach a stable state before starting the 60-s
control operation. To maintain stable depth and heading control during the positioning stage, this study sets
tracking targets in both the vertical and horizontal planes: a target depth of 0.7 m and a target heading angle
of 0○.

The training process of interacting TD3 with the AUV 3D maneuvering simulation system is illustrated
in Fig. 12. In each step, the agent generates a set of horizontal and vertical rudder angle actions a based on the
input AUV depth and attitude state s. The action is then input into the simulation environment, producing
the next state s′, the reward value r calculated according to the reward function, and the signal d indicating
whether the episode has ended. This data (s, a, r, s′ , d) is immediately stored in the replay buffer. These steps
are repeated 60 times in each training episode, with each episode considered one voyage. Unlike DDPG,
TD3 does not wait for the replay buffer to be filled before updating; instead, it begins updating the network
parameters as soon as the number of data points exceeds the set batch size and continues until the training
is complete.

Figure 12: TD3 training process
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During the TD3 training process, the environmental states consist of the AUV’s current depth infor-
mation (h), pitch angle (θ), and yaw angle (ψ). These pieces of information form the basis for TD3’s
control decisions. The output actions are the angles of the AUV’s horizontal rudders (δH) and vertical
rudders (δV). The reward function of the TD3 model was designed to achieve stable and accurate control
during the positioning and searching stages. To this end, the reward formulation considers depth error,
heading angle error, and control effort (rudder angles), aiming to minimize deviations from the target states
while encouraging smooth and stable control actions. The specific design of the reward function is shown
in Eq. (18).

rT = rh + eδH + rψ + ry

rh =
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where rT represents the total reward. rh is the reward value for depth, with higher values indicating closer
proximity to the target depth. eδH is a penalty applied based on the actual situation to prevent excessive
horizontal rudder angles during navigation, as this could cause the AUV’s tail to rise and reduce propulsion
speed. rψ is the reward value for the yaw angle, where smaller changes in the yaw angle indicate more stable
navigation. The yaw angle is multiplied by xbow

180○ π to convert the yaw angle error into the swept arc length.
xbow is the distance from the bow to the center of gravity, measured at 1.05 m. ry is the reward value for lateral
distance, which helps in better understanding the AUV’s heading control performance.

The training parameters are listed in Table 2. The model is trained for 3000 episodes, which is deemed
sufficient for learning various environmental features based on the complexity of the task. Each episode
has a maximum of 60 steps, which is appropriate for the target docking task. The batch size for updates is
set to 64, striking a balance between training stability and computational efficiency. The reward discount
factor, γ, is set to 0.9, prioritizing long-term rewards while preventing premature convergence to short-term
solutions. The number of initial random action explorations is set to 500 steps, allowing the model to explore
diverse possibilities and mitigate the risk of local minima. Action noise, implemented using Gaussian noise,
is introduced to enhance action diversity and improve the robustness of the learned policy. The learning rates
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for both the actor and critic networks are set at 0.0003, with the Adam optimizer employed for parameter
updates to ensure stable and efficient convergence.

Table 2: TD3 training parameters

Train episodes 3000
Max. steps 60
Batch size 64

Explore steps 500
Explore noise scale 1

Evaluation noise scale 0.5
Replay buffer size 10,000

Size of hidden layers 64
Reward scale 1

Actor learning rate 0.0003
Critic learning rate 0.0003

Update interval 3
Reward discount 0.9

4.2 I-DDPG Image Target Tracking Control Method
This study employs the I-DDPG method as the docking control approach during the docking stage.

I-DDPG is a DRL algorithm based on DDPG, which integrates Image-based Visual Servoing (IBVS) object
detection as the target input. In this study, the YOLO algorithm is employed for detecting the target LED ring.
The tracking process of the I-DDPG control is illustrated in Fig. 13a. After the camera captures images of the
target, YOLO is used for identification and localization, obtaining target information, including the bounding
box center coordinates and dimensions (TU , TV , wb , hb), as shown in Fig. 13b. The image resolution is
1280 × 720 pixels, and all four parameters are normalized by dividing the pixel coordinates by the image
resolution. The normalized target image information is then used as the state input for the I-DDPG image
target tracking model, forming the basis for the control decisions of the AUV’s rudder actions (aD) to track
and dock with the target device. The action aD consists of two elements: δV , representing the vertical rudder
angle, and δH , representing the horizontal rudder angle. Specific settings are detailed in Table 3. The reward
function is designed to minimize the distance between the target bounding box center and the image center,
while also penalizing excessive rudder actions to ensure smooth control performance.



4928 Comput Mater Contin. 2025;84(3)

Figure 13: (a) Process of I-DDPG image-object-tracking control; (b) illustration of the target located within the AUV’s
field of view

Table 3: State and action of I-DDPG object tracking control

I-DDPG parameter Value range
sD = [TU , T V , wb , hb] −1 ≤ TU , TV ≤ 1, 0 ≤ wb , hb ≤ 1

aD = [δV , δH] −30○ ≤ δV , δH ≤ 30○

To ensure the successful docking of the AUV with the target dock, the goal is to keep the target object
as close to the center of the AUV’s camera frame as possible by controlling [δV , δH]. Accordingly, the reward
function was designed to reflect visual tracking performance and control smoothness. It rewards the AUV for
aligning the target LED ring close to the center of the camera’s field of view, while penalizing sudden or large
rudder adjustments to maintain smooth motion. In addition, failure to detect the target is heavily penalized
to drive the policy towards reliable and continuous object detection. These design principles ensure that
the AUV can precisely and steadily complete the docking process. The reward function used in the training
process is designed as shown in Eq. (19).

rT = rA + ro + rδV + rδH + rb + rX

ro =
⎧⎪⎪⎨⎪⎪⎩

0, Ob ject is detected
−10, Ob ject is not detected

rδV =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, ∣δV ∣ ≤ Thresr

−∣δV ∣ − 2.5
2.5

, ∣δV ∣ > Thresr

(19)

rδH =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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−∣δH ∣ − 2.5
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rb =
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0, el se

rX =
XDock − XAU V

4
where rA represents the reward for the target object’s position, determined based on the region where the
center coordinates [TU , TV ] are located. The closer these coordinates are to the center of the image, the higher
the reward value, as illustrated in Fig. 14. ro denotes the negative reward associated with target detection.
If YOLOv7 fails to detect the target object, it is considered to be outside the image range, and a significant
negative reward is assigned to discourage this scenario. rδV and rδH are the rewards based on the rudder
angle. Positive rewards are given if the AUV maintains stable navigation with a smaller rudder angle during
tracking. Conversely, negative rewards are assigned to discourage excessive rudder angles, which could lead
to oscillations in the navigation path, thereby enhancing navigation stability. The rudder angle threshold,
denoted as Thresr , is set to 10○. rb represents the negative reward given when boundary conditions are
triggered to prevent the AUV from colliding with obstacles or reaching the bottom. rX is the reward for the
distance to the target object, with higher rewards given as the AUV approaches the docking device.

Figure 14: Illustration of the reward based on the target object’s position

I-DDPG is built upon the DDPG algorithm and is trained within the visualization simulation environ-
ment combining Unity and MATLAB. At each step, the model determines the angles for the horizontal and
vertical rudders, denoted as at , based on the input environmental state st , and receives the next state st+1
along with the reward rt . The interaction results (st , at , rt , st+1) are stored in the Replay Buffer. This process
is repeated until the episode reaches the maximum number of steps or the AUV reaches the target location.
Before the Replay Buffer is sufficiently populated with data, the parameters of the decision network and
evaluation network are not updated. Once a sufficient amount of data is collected, 32 samples are randomly
drawn from the Replay Buffer to update and optimize the network parameters. After training, model weight
files for the decision network and evaluation network are generated. These files can then be loaded into the
AUV control program to perform target tracking tasks. The training process flowchart is illustrated in Fig. 15.
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Figure 15: Interactive illustration of I-DDPG and digital twin

The training parameters for I-DDPG are presented in Table 4. The complexity of the environment
states and the high-dimensional action space in the target tracking task necessitate long training times for
convergence. Consequently, the number of training episodes was set to 3000. As illustrated in Fig. 16, which
depicts the relationship between reward values and the number of episodes, the reward value begins to
increase toward a local maximum only after approximately 500 episodes. Subsequently, the reward values
continue to fluctuate before stabilizing at around 2500 episodes. To alleviate convergence difficulties arising
from this complexity, the size of the experience replay buffer was reduced, enabling more frequent updates
to the network parameters and thereby accelerating the convergence rate.

Table 4: I-DDPG training parameters

Training episodes 3000
Max. steps 200

Reward discount 0.9
Replay Buffer size 4000

Batch size 32
Control exploration 4

Exploration rate decay rate 0.9995
Actor learning rate 0.001
Critic learning rate 0.002

Soft replacement rate 0.01
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Figure 16: Variation in the reward during the I-DDPG training process

4.3 Design of the Underwater Docking Experiment
To validate the control effectiveness of the TD3 controller, which was trained using the developed 3D

AUV maneuvering simulation system for tracking target depth and heading control, and to assess its impact
on the subsequent docking stage, this study conducted both simulations and practical experiments on an
AUV underwater docking task. The practical experiments were carried out in a water basin at National Cheng
Kung University, measuring 50 m in length, 25 m in width, and with a water depth of 2 m.

The equipment setup for the underwater docking task in this study is as follows: The center of the
docking device’s entrance was submerged to a depth of 1 m below the water surface, with the initial distance
for the task set at 50 m. Both the simulation and experimental environments were configured according to
these parameters. The simulation environment was based on the maneuvering simulation system, as shown
in Fig. 17a. The key difference between the actual experiment and the simulation is that the experimental
environment does not include a movable platform. As a result, only the docking device was placed in the
water during the experiment. The docking device remained afloat due to its buoyancy, provided by the
attached floats. By adjusting the position of these floats, the center of the docking device’s entrance was
maintained at a depth of 1 m below the water surface. The experimental environment setup is illustrated
in Fig. 17b.

Figure 17: The equipment setup in (a) the simulation environment, and (b) the experimental environment
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5 Result and Discussion
In the underwater docking task, TD3 is applied to control the depth and heading during the positioning

stage, enabling the AUV to stably descend to a position suitable for searching the docking device. During
the searching stage, zig-zag heading motion control is used in combination with YOLOv7 to capture the
position of the docking device. In the final docking process, the I-DDPG image target control system
is used to navigate the AUV toward the docking device and adjust its posture to align with the target
device. Subsequently, the feasibility of TD3 is validated by comparing simulation and experimental results.
Eventually, the total performance and stability of the docking task will be evaluated via automatic docking
experiments and data analysis.

5.1 Training Results of TD3 for Synchronous Control of Depth and Heading
This study utilizes a maneuvering simulation system to train TD3 for simultaneous depth and heading

control. This training process optimizes the controller for horizontal and vertical rudder adjustments
during the positioning stage of the subsequent underwater docking task. Fig. 18 illustrates the variation in
reward values throughout the training process. Due to the complexity of achieving simultaneous control
in both horizontal and vertical planes, this continuous control task presents significant challenges for the
convergence of the reward function. It is not until after 1500 episodes that the reward values increase
significantly and converge to a higher value range. Despite this, significant fluctuations remain in the later
stages of training.

Figure 18: Variation in the reward during the TD3 training process

After 3000 training episodes, the TD3 model demonstrates effective performance in controlling both
depth and heading in a real-world system experiment. Fig. 19a–c illustrates the time series for depth (h),
pitch angle (θ), and horizontal rudder angle (δH) for vertical plane control of the AUV. Fig. 19d–f presents
the results of horizontal plane control, including the relationship between lateral displacement (y) and
distance (x), the time series of yaw angle (ψ), and vertical rudder angle (δV). The depth results in Fig. 19a
indicate that the TD3 model successfully stabilizes the AUV at the target depth. Fig. 19b shows that the
AUV maintains a smooth pitch angle during diving and converges to stability in the depth-keeping state.
However, the horizontal rudder angle in Fig. 19c indicates that the model generates suboptimal control
actions with reduced smoothness due to the reward function not incorporating action smoothness. Fig. 19d
presents the XY-plane trajectory, and Fig. 19e shows the yaw angle, both confirming that the AUV effectively
maintains the target heading throughout its journey. Finally, Fig. 19f shows that the vertical rudder angle
exhibits fluctuations, which are similarly attributed to the reward function’s design not incorporating
action smoothness.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 19: Training results for TD3 depth and heading control: (a) AUV’s depth; (b) pitch angle; (c) horizontal rudder
angle; (d) XY plane position; (e) yaw angle; (f) vertical rudder angle
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The depth control performance of the TD3 model can be compared with that of other studies. Lin
et al. [51] conducted an AUV depth-keeping study using an adaptive fuzzy controller, which demonstrated
AUV depth-keeping performance with a target depth of 1 m. The red line in Fig. 20 represents the depth-
keeping performance of the TD3 controller, while the blue line represents that of the adaptive fuzzy controller.
The presented data is normalized with respect to the target depth. The results clearly show that the TD3
controller enables the AUV to reach the target depth faster and maintain stability more effectively than the
adaptive fuzzy controller.

Figure 20: Comparison between the TD3 controller and the adaptive fuzzy controller (htar : Target depth)

It should be noted that the response of the TD3 controller is displayed over a 60-s period, which
corresponds to the typical duration of the positioning and searching stages. Within this time frame, the
controller’s transient response, convergence speed, and steady-state accuracy can be sufficiently demon-
strated. Furthermore, this duration reflects practical constraints imposed by the physical dimensions of the
test environments, including the towing tank and plane water basin. Additionally, a zoom-in subplot has
been added to highlight the transient response within the first 60 s, where performance differences are most
pronounced. In general, Fig. 20 indicates the superior performance of the TD3 controller in terms of response
speed and depth-keeping stability, achieving 25% less oscillation than the adaptive fuzzy controller when
reaching the target depth, which highlights its enhanced stability, accuracy, and potential scalability for more
complex autonomous underwater tasks.

In addition to the qualitative comparison illustrated in Fig. 20, a quantitative analysis has been con-
ducted to further evaluate the performance of the TD3 controller. Table 5 summarizes key time response
specifications, including rise time and settling time, calculated from the depth control experiments. These
indicators provide a more detailed assessment of the controller’s dynamic performance and stability.
Moreover, as shown in the experimental results, the TD3-based control method achieves faster convergence
and better steady-state accuracy compared to the conventional adaptive fuzzy controller. This clearly
demonstrates the superiority of the proposed method in handling complex underwater docking tasks.

Table 5: Comparison of depth control performance between TD3 and adaptive fuzzy controller

Control method Rise time (s) Settling time (s) Overshoot (%) Steady-state error
TD3 controller 6 20 15 0.02

(Continued)
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Table 5 (continued)

Control method Rise time (s) Settling time (s) Overshoot (%) Steady-state error
Adaptive fuzzy

controller
12 50 5 0.08

5.2 Simulation and Experimental Results of AUV Underwater Docking
Prior to conducting the actual underwater docking experiments, this study first designed and simulated

the entire docking control process using a maneuvering simulation system. The subsequent underwater
docking experiments were conducted following this planned process to validate both the TD3 model’s control
capability in real underwater environments and the feasibility of the planned task flow in simulation, as
illustrated in Fig. 21a,b. The docking process was divided into the following stages: 0–15 s for positioning,
15–50 s for searching (transitioning earlier to docking if the target is detected), and 50 s onward for docking.

(a) (b)

Figure 21: The recodes of (a) simulation, and (b) experiments

Fig. 22a–g presents the recorded data from the underwater docking task simulation and actual exper-
iments, including yaw angle (ψ), depth (h), pitch angle (θ), vertical rudder angle (δV), horizontal rudder
angle (δH), and the horizontal (TU ) and vertical (TV ) coordinates of the detected target center in the
image. In Fig. 22a, the yaw angles during the first 15 s of the positioning stage show similar patterns across
all experimental cases, consistent with the simulation results. This is due to the AUV’s single-propeller
propulsion system, where surface sailing causes the pitch angle to expose part of the propeller above water,
generating a lateral force at the tail and resulting in a leftward yaw deviation. For depth control, as shown
in Fig. 22b, both the simulation and experiments demonstrate successful diving. However, the experiments
took longer to stabilize at the target depth compared to the simulation, as the simulation did not account
for the propeller emerging from the water, which in reality reduces thrust efficiency. The pitch angle results
in Fig. 22c show significant changes when the AUV reached the target depth, prompting TD3 to apply large
corrective horizontal rudder angles (Fig. 22d), resulting in overshoot in the simulation. While this affected
depth-holding performance, TD3 still stabilized the AUV at a fixed depth with minimal pitch deviations in
both the simulation and experiments during the searching stage. Although Fig. 22e shows TD3 attempting to
correct the yaw deviation by adjusting the rudder to the right, this correction was limited as half of the vertical
rudder was exposed above water, reducing its effectiveness. Fig. 22f indicates that the AUV successfully
adjusted its position toward the center of the image frame. In Fig. 22g, the target object’s vertical coordinates
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remained centered in the image during the simulation. However, in the experiments, since the docking device
was positioned at a depth of 1 m, the target object appeared only in the upper portion of the image when
viewed from a distance. To maintain stable navigation, the control logic was adjusted to place the target
object at the upper horizontal center of the image, around pixel position (640, 90). This result confirms
that all experimental cases successfully adjusted the vertical coordinate of the target object to align with the
revised center.

Figure 22: (Continued)
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Figure 22: Time series of AUV’s docking tasks: (a) yaw angle; (b) depth; (c) pitch angle; (d) horizontal rudder angle;
(e) vertical rudder angle; (f) horizontal image coordinate of the target; (g) vertical image coordinate of the target

5.3 Data Analysis
In this study, TD3 was employed for the synchronous control of depth and heading angle during the

positioning stage. In the searching stage, TD3 continued to control depth, while heading control was switched
to the zig-zag method. The effectiveness of these control strategies was evaluated by plotting the depth and
heading angle distributions in the visual coordinate system for both the simulation and all experimental
cases during the positioning and searching stages, as shown in Fig. 23a–d. The horizontal axis represents the
AUV’s heading angle (ψ), the vertical axis represents the depth (h), and the color bar represents the temporal
evolution of the AUV’s position. In Fig. 23a, the simulation begins at 0 s and continues until the planned
50 s, before the simulation transitions to the docking control phase. During this period, the AUV steadily
dives to the predetermined depth and maintains the heading angle within the pre-set range throughout the
searching phase. Fig. 23b–d shows that, despite initial heading deviations in all experimental cases, the AUV
successfully dives to a stable depth and maintains the heading angle within the pre-set range as dictated by
the searching strategy. Finally, in C1, C2, and C3, the target was detected at 39, 40, and 30 s, respectively,
resulting in an earlier transition to the docking control phase.

Figure 23: (Continued)
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Figure 23: Distributions of depth (h) and yaw angle (ψ) during the positioning and searching stages in (a) simulation;
(b) C1; (c) C2; and (d) C3

In this study, image coordinates were used as the main control parameters during the docking stage.
The tracking results were evaluated based on the distribution of the target image center on visual coordinates
for both the simulation and all experimental cases during the docking stages, as shown in Fig. 24a–d. The
horizontal axis represents the image’s horizontal coordinate (TU ), the vertical axis represents the image’s
vertical coordinate (TV ), and the color bar indicates time. Red boxes mark the 25% and 50% areas of the
image center, showing different distribution intervals within the image coordinates. Due to adjustments in
the control logic, the image center coordinates shifted upwards during the experiment, moving from the
dashed section to the solid section, as shown in Fig. 24b–d. Fig. 24a shows that during the entire docking
stage in the simulation, the target image center coordinates were consistently maintained within the 25%
area. This is because there were no significant heading deviations during the simulation’s searching phase,
and the depth-maintaining posture was stable with a relatively small pitch angle. Fig. 24b–d demonstrates
that, although the target image center distribution was not as concentrated as in the simulation, it generally
remained within the 50% area in all experimental cases. As the AUV approached the docking device, the
coordinates were corrected to within the 25% area. This discrepancy might be related to inferences regarding
thrust, inertia, and resistance, which could have caused greater oscillations in the AUV’s posture during the
docking control phase, affecting the stability of the docking process.

Figure 24: (Continued)
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Figure 24: Trajectory of the dock’s image center in the image coordinate system during the docking stage in (a) the
simulation, (b) C1, (c) C2, and (d) C3

The docking initiation times in the simulation and all experimental cases varied due to differences in
image recognition results. Therefore, only the first 15 s of the docking task, where the duration was identical,
were analyzed and compared to assess TD3’s control performance during the positioning stage. This study
followed the method proposed by Herlambang et al. [52], employing the integral of absolute error (IAE)
and mean absolute error (MAE) to quantify the results. Data on depth, pitch angle, and yaw angle from the
positioning stage were analyzed to evaluate TD3’s control performance in both the simulation and actual
experiments, as shown in Eqs. (20)–(25).

IAEh =
t
∑
i=1
∣h (t) − htrain (t)∣ (20)

IAEθ =
t
∑
i=1
∣θ (t) − θtrain (t)∣ (21)

IAEψ =
t
∑
i=1
∣φ (t) − φtrain (t)∣ (22)

MAEh =
1
n

t
∑
i=1
∣h (t) − htrain (t)∣ (23)

MAEθ =
1
n

t
∑
i=1
∣θ (t) − θtrain (t)∣ (24)

MAEψ =
1
n

t
∑
i=1
∣φ (t) − φtrain (t)∣ (25)

where IAEh represents the depth IAE, IAEθ represents the pitch angle IAE, and IAEψ represents
the yaw angle IAE. Similarly, MAEh represents the depth MAE, MAEθ represents the pitch angle
MAE, and MAEψ represents the yaw angle MAE. The variable n denotes the number of samples.
The depth of the AUV is represented as h, while htrain denotes the depth result after 3000 training episodes.
Likewise, θ and ψ represent the AUV’s pitch and yaw angles, respectively, with θtrain and ψtrain referring to
their corresponding values after 3000 training episodes.
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Additionally, this study converts the IAE and MAE of the pitch and yaw angles into the arc length
traversed by the AUV and integrates them with the depth IAE and MAE to compute the overall IAE (IAET )
and total MAE (MAET ), which account for pitch, yaw, and depth deviations, as shown in Eqs. (26) and (27).

IAET = IAEh + IAEψ ⋅
xbow

180○
π + IAEθ ⋅

xbow

180○
π (26)

MAET = MAEh +MAEψ ⋅
xbow

180○
π +MAEθ ⋅

xbow

180○
π (27)

where xbow denotes the distance between the bow and the center of gravity, which is given as 1.05 m.
The results of IAET and MAET shown in Fig. 25a,b indicate that the simulation (Sim) achieved the

lowest values, while all experimental cases exhibited higher IAET and MAET values. This discrepancy
suggests that differences remain between the simulation and real-world environments, mainly due to
environmental disturbances and physical factors not fully captured in the virtual model. However, a detailed
correlation analysis of the experimental data further reveals the high consistency between the two domains.
Specifically, the depth correlation coefficient between C1 and C2 is 0.9973, the pitch angle correlation
coefficient is 0.9708, and the yaw angle correlation coefficient is 0.9849. For C3, the depth correlation
coefficients with C1 and C2 are 0.9793 and 0.9754, respectively, while the pitch angle correlation coefficients
are 0.9115 and 0.8270, and the yaw angle correlation coefficients are 0.9841 and 0.9842, respectively. To
objectively assess the consistency, these high correlation values demonstrate that the overall control trends
and response patterns between the simulation and experimental results remain highly aligned. Despite minor
deviations caused by real-world uncertainties, the results confirm the high reproducibility and reliability of
the TD3 controller trained in the DT environment for controlling both the vertical and horizontal planes
during real-world underwater docking tasks.

(a) (b)

Figure 25: (a) Total IAE values; (b) total MAE values for different cases in the docking task

5.4 Discussion
Although the TD3 controller demonstrated commendable performance in stabilizing the AUV’s depth

and heading in both simulation and experimental tests, the results also revealed several limitations, particu-
larly when operating in the more unpredictable conditions of real-world environments. A critical discussion
of these challenges offers valuable insights into the current system’s capabilities and areas where further
refinement is necessary.
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One of the most evident challenges arose from environmental disturbances inherent to real-world
operations. Unlike the controlled simulation scenarios, actual underwater environments introduced addi-
tional complexities such as surface waves, ambient currents, and turbulent flows. These factors occasionally
perturbed the AUV’s trajectory, resulting in minor deviations from the planned path and affecting response
stability, especially during transitions between maneuvering states.

In addition to external disturbances, sensor noise and latency emerged as significant factors influencing
control precision. When sensor models in the simulation could approximate idealized conditions, real-world
measurements inevitably suffered from noise and delays. These imperfections were particularly noticeable in
yaw control, where small but persistent fluctuations in heading were observed, underscoring the sensitivity
of the TD3 controller to measurement uncertainties.

Another issue relates to the smoothness of control actions. Although the reward function was explicitly
designed to promote stable and gradual rudder adjustments, the controller occasionally issued abrupt control
commands, particularly when reacting to sudden changes in the environment. While such instances did not
compromise the docking mission, they suggest that the policy could be further optimized to enhance control
stability under dynamically changing conditions.

In general, these observations indicate that when the TD3 controller effectively manages the primary
control objectives in relatively stable scenarios, its robustness in highly dynamic or uncertain environments
remains an area for improvement. Future work should therefore consider strategies such as incorporating
disturbance observers, refining reward structures, or exploring more advanced reinforcement learning
algorithms to further improve adaptability and resilience. Addressing these issues will be essential to advance
the DT system towards practical deployment in complex real-world underwater missions.

6 Conclusions
This study presents a control system that integrates DT technology and DRL to advance AUV docking

from simulation toward practical application. The approach involves training the TD3 DRL controller
in a realistic simulation environment and validating its performance through actual underwater docking
experiments. Results demonstrate that the control strategy is effective and exhibits strong reproducibility
across both virtual and physical conditions, offering a promising direction for underwater robotics.

The control system monitors real-time motion states of the AUV and makes decisions for operating
the vertical and horizontal rudders, particularly during the positioning stage of the docking process. The
entire docking sequence is pre-planned within the simulation platform, and then executed in physical
environments following the same procedure. This method addresses the challenge of transferring algorithms
from simulation to field application and reduces the need for trial-and-error experimentation. During the
operational phases, TD3 is responsible for depth and heading control, YOLOv7 assists in detecting the
docking station through visual cues during the searching phase, and the I-DDPG algorithm adjusts the final
approach and alignment to complete the docking task.

Some real-world issues were also encountered, such as the AUV’s forward-tilted bow caused by buoy-
ancy, which limited its field of view. This required an adjustment to the control algorithm’s visual reference
point. In addition, differences in dynamic behavior between the simulated and physical environments,
possibly due to unexpected rudder force or unmodeled hydrodynamic inertia, were observed. Despite these
challenges, all test cases successfully completed the docking process, and reliable navigation data including
depth, attitude, and image tracking was collected.

Although discrepancies were observed between simulation and real-world results based on IAE and
MAE indicators, the consistency observed through correlation analysis confirms that the trained control
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policy performs reliably in practical environments. Furthermore, the modular structure of the proposed
control system allows for flexible adaptation to different AUV configurations and complex underwater
conditions. With the ability to update model parameters and retrain policies in the simulation, the system can
be extended to accommodate diverse docking scenarios. Future work will explore more advanced learning
algorithms and adaptive training techniques to improve performance under dynamic marine conditions and
expand its applicability to a broader range of autonomous underwater missions.
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Nomenclature
u Surge velocity
v Sway velocity
w Heave velocity
p Roll rate
q Pitch rate
r Yaw rate
x AUV’s global x-coordinate
y AUV’s global y-coordinate
z AUV’s global z-coordinate
ϕ Roll angle
θ Pitch angle
ψ Yaw angle
M System inertia matrix of the AUV
C(v) Coriolis-centripetal matrix
D(v) Damping matrix of the AUV
g(η) Restoring force and moment matrix
τ Vector of control input
η Position and orientation state vector in the Earth-fixed coordinate system
MRB Rigid-body system inertia matrix
MA Added mass system inertia matrix
Xu̇ Hydrodynamic added mass force along the x axis due to an acceleration u̇
Xv̇ Hydrodynamic added mass force along the x axis due to an acceleration v̇
Xẇ Hydrodynamic added mass force along the x axis due to an acceleration ẇ
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Xṗ Hydrodynamic added mass force along the x axis due to an acceleration ṗ
Xq̇ Hydrodynamic added mass force along the x axis due to an acceleration q̇
Xṙ Hydrodynamic added mass force along the x axis due to an acceleration ṙ
Yv̇ Hydrodynamic added mass force along the y axis due to an acceleration v̇
Yẇ Hydrodynamic added mass force along the y axis due to an acceleration ẇ
Yṗ Hydrodynamic added mass force along the y axis due to an acceleration ṗ
Yq̇ Hydrodynamic added mass force along the y axis due to an acceleration q̇
Yṙ Hydrodynamic added mass force along the y axis due to an acceleration ṙ
Yẇ Hydrodynamic added mass force along the y axis due to an acceleration ẇ
Yṗ Hydrodynamic added mass force along the y axis due to an acceleration ṗ
Yq̇ Hydrodynamic added mass force along the y axis due to an acceleration q̇
Yṙ Hydrodynamic added mass force along the y axis due to an acceleration ṙ
Zẇ Hydrodynamic added mass force along the z axis due to an acceleration ẇ
Zṗ Hydrodynamic added mass force along the z axis due to an acceleration ṗ
Zq̇ Hydrodynamic added mass force along the z axis due to an acceleration q̇
Zṙ Hydrodynamic added mass force along the z axis due to an acceleration ṙ
Kṗ Coupling effects around the roll axis due to angular acceleration ṗ
Kq̇ Coupling effects around the roll axis due to angular acceleration q̇
Kṙ Coupling effects around the roll axis due to angular acceleration ṙ
Mq̇ Added moment of inertia due to angular acceleration q̇
Mṙ Added moment of inertia due to angular acceleration ṙ
Nṙ Added moment of inertia around the yaw axis due to angular acceleration ṙ
CRB(v) Rigid-body Coriolis-centripetal matrix
CA(v) Fluid forces induced by the rigid body’s motion
pi V Position of the i th fin in the vehicle frame
ri V Vector from the vehicle’s center to the i th fin’s center
ϕi V Angular position of the i th fin in the vehicle frame
FHD6×1 Hydrodynamic forces and moments acting on the AUV
s Environment state
a Agent action
(al ow , ahi gh) Bounds of the action
θ μ Parameters of the Actor network
θQ Parameters of the DDPG Critic network
θϕ Parameters of the TD3 Critic network
θ μ′ Parameters of the target Actor network
θQ′ Parameters of the DDPG target Critic network
θϕ′ Parameters of the TD3 target Critic network
μ(s∣θ μ) Action chosen by the Actor network
Q(s, a) Q-value evaluated by the Critic network
yi Update target value
τso f t Update ratio constant used for soft update
rT Total reward
rh Reward for depth
eδH Punishment for δH
rψ Reward for yaw angle
ry Reward lateral distance
δH AUV’s horizontal rudders
δV AUV’s vertical rudders
h AUV’s depth
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xbow Distance between the bow and the center of gravity
(TU , TV) Center coordinate of recognition bounding box
(wb , hb) Width and height of recognition bounding box
sD I-DDPG input state
aD I-DDPG output action
rA Reward for target object position
ro Reward for target detection
rδV Reward for vertical rudder angle
rδH Reward for horizontal rudder angle
rb Reward for boundary condition
rX Reward for distance to the target object
htrain the depth result after 3000 training episodes
θtrain the pitch angle result after 3000 training episodes
ψtrain the yaw angle result after 3000 training episodes
IAEh Integral of the absolute depth error for the AUV
IAEθ Integral of the absolute pitch angle error for the AUV
IAEψ Integral of the absolute yaw angle error for the AUV
IAET Total integral of the absolute total error for the AUV
MAEh Mean absolute error of the AUV depth
MAEθ Mean absolute error of the AUV pitch angle
MAEψ Mean absolute error of the AUV yaw angle
MAET Total mean absolute error of the AUV
BAU V Bouyancy
WAU V Gravity
L AUV’s length
m AUV’s mass
xg Center of Gravity in the x-direction
yg Center of Gravity in the y-direction
zg Center of Gravity in the z-direction
xb Buoyancy Center in the x-direction
yb Buoyancy Center in the y-direction
zb Buoyancy Center in the z-direction
Ix Mass Moment of Inertia about the x-direction
Iy Mass Moment of Inertia about the y-direction
Iz Mass Moment of Inertia about the z-direction
Ix y Inertia Moment on the x y-plane
Iyz Inertia Moment on the yz-plane
Izx Inertia Moment on the zx-plane

Appendix A
Dimensionless hydrodynamics coefficients.

A. Surge
X
′

qq Surge coefficient for the q2 function 0.00171
X
′

rr Surge coefficient for the r2 function 0.00291

(Continued)
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(continued)

X
′

vr Surge coefficient for the vr function 0.00115
X
′

uu Surge coefficient for the u2 function −0.00325
X
′

vv Surge coefficient for the v2 function −0.19844
X
′

ww Surge coefficient for the w2 function −0.19202
X
′

wq Surge coefficient for the wq function 0.0161
X
′

u̇ Surge coefficient for the u̇ function 0.00082
X
′

u∣u∣ Damping coefficient of x for yaw motion −0.00324

B. Sway
Y
′

ṗ Sway coefficient for the ṗ function −0.01051
Y
′

ṙ Sway coefficient for the ṙ function −1.32E−14

Y
′

v∣r∣ Sway coefficient for the v
∣v∣ ∣(v

2 +w2)1/2∣ ∣r∣ function 0.00329

Y
′

v Sway coefficient for the v function −0.02148
Y
′

v∣v∣ Sway coefficient for the v ∣(v2 +w2)1/2∣ function −0.10875
Yp Sway coefficient for the p function 3.51E−14
Y
′

v̇ Sway coefficient for the v̇ function 0.0023
Yr Sway coefficient for the r function 0.0261
Y
′

r∣r∣ Damping coefficient of y for yaw motion 0.00247
Y
′

∣v∣r Damping coefficient of y for yaw motion with drift angles −0.0109

C. Heave
Z
′

q̇ Heave coefficient for the q̇ function −9.41E−15
Z
′

q Heave coefficient for the uq function 0.0302

Z
′

w∣q∣ Heave coefficient for the w
∣w∣ ∣(v

2 +w2)1/2∣ ∣q∣ function −0.00439

Z
′

w∣w∣ Heave coefficient for the w∣ (v2 +w2)1/2 ∣ function −0.1225
Z
′

w Heave coefficient for the uw function −0.02727
Z
′

ẇ Heave coefficient for the ẇ function 0.00794
Z
′

q∣q∣ Damping coefficient of z for pitch motion −0.00152
Z
′

∣q∣w Damping coefficient of z for pitch motion with drift angles 0.0129

D. Roll
K
′

ṗ Roll coefficient for the ṗ function 3.02134E−7
K
′

p∣p∣ Roll coefficient for the p∣p∣ function −9.38E−17
K
′

p Roll coefficient for the up function −1.46E−9

E. Pitch
M
′

q Pitch coefficient for the uq function −0.0094

M
′

∣w∣q Pitch coefficient for the ∣(v2 +w2)1/2∣ q function 0.00125

M
′

ẇ Pitch coefficient for the ẇ function 0.00105

(Continued)
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(continued)

M
′

w∣w∣ Pitch coefficient for the w ∣(v2 +w2)1/2∣ function 0.0139

M
′

w Pitch coefficient for the uw function 0.0027
M
′

q̇ Pitch coefficient for the q̇ function 0.00212
M
′

q∣q∣ Damping coefficient for pitch motion 0.000255
M
′

w∣q∣ Damping coefficient for pitch motion with drift angles 0.0245

F. Yaw
N
′

r Yaw coefficient for the ur function −0.00873

N
′

∣v∣r Yaw coefficient for the ∣(v2 +w2)1/2∣ r function −0.000527

N
′

v̇ Yaw coefficient for the v̇ function −0.000376
N
′

v∣r∣ Yaw coefficient for the ∣(v2 +w2)1/2∣ function 0.0259

N
′

v Yaw coefficient for the uv function −0.00214
N
′

v∣v∣ Damping coefficient for straight line yaw motion −0.00372
N
′

r∣r∣ Damping coefficient for yaw motion −0.00204
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