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ABSTRACT: Artificial intelligence is reshaping radiology by enabling automated report generation, yet evaluating
the clinical accuracy and relevance of these reports is a challenging task, as traditional natural language generation
metrics like BLEU and ROUGE prioritize lexical overlap over clinical relevance. To address this gap, we propose a
novel semantic assessment framework for evaluating the accuracy of artificial intelligence-generated radiology reports
against ground truth references. We trained 5229 image–report pairs from the Indiana University chest X-ray dataset
on the R2GenRL model and generated a benchmark dataset on test data from the Indiana University chest X-ray and
MIMIC-CXR datasets. These datasets were selected for their public availability, large scale, and comprehensive coverage
of diverse clinical cases in chest radiography, enabling robust evaluation and comparison with prior work. Results
demonstrate that the Mistral model, particularly with task-oriented prompting, achieves superior performance (up to
91.9% accuracy), surpassing other models and closely aligning with established metrics like BERTScore-F1 (88.1%) and
CLIP-Score (88.7%). Statistical analyses, including paired t-tests (p < 0.01) and analysis of variance (p < 0.05), confirm
significant improvements driven by structured prompting. Failure case analysis reveals limitations, such as over-reliance
on lexical similarity, underscoring the need for domain-specific fine-tuning. This framework advances the evaluation
of artificial intelligence-driven (AI-driven) radiology report generation, offering a robust, clinically relevant metric for
assessing semantic accuracy and paving the way for more reliable automated systems in medical imaging.

KEYWORDS: Semantic assessment; AI-generated radiology reports; large language models; prompt engineering;
semantic score evaluation

1 Introduction
The integration of artificial intelligence (AI) in healthcare has transformed and strengthened clinical

data analysis and interpretation. Among its many applications, automating radiology report generation
has emerged as a promising approach to streamline workflow and reduce the burden on radiologists [1,2].
In particular, generating precise and semantically accurate reports from medical images such as chest X-
rays is essential for supporting timely and informed clinical decision-making [1,3]. Recent advances have
emphasized not only the syntactic generation of observations but also the importance of modeling fine-
grained attributes (e.g., small pleural effusion) and temporal progression to ensure clinically meaningful
outputs [1]. Comprehensive surveys have further highlighted the development of dataset benchmarks,
diverse deep learning approaches, and multimodal fusion techniques aimed at improving the performance
and reliability of automatic radiology report generation systems [3]. Despite advances in natural language
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generation (NLG) and Clinical Efficacy (CE) metrics, assessing the semantic accuracy of these reports
remains difficult, especially in high-stakes fields such as medicine.

Radiology reports require a high level of accuracy since they include critical diagnostic information
such as lung volumes, pleural effusion, heart size, and lung markings. Any deviation or absence in the
generated reports can result in incorrect diagnosis or inadequate treatment options [4]. Diagnostic imaging
is an essential and indispensable part of medical diagnosis and treatment, and diagnostic errors or biases are
also common in the department of radiology, sometimes even having a severe impact on the diagnosis and
treatment of patients [5]. To counter this, it is critical to have a strong evaluation mechanism that goes beyond
the traditional NLG metrics such as BLEU [6], METEOR [7], ROUGH [8], and CIDEr [9], which do not
consider the semantic level of similarity and only focus on the surface lexical similarity. Semantic alignment
with ground truth reports must be emphasized to effectively assess the clinical relevance of generated reports.

Recent developments, specifically in the form of large language models (LLMs), give a good solution
to counter the problem of measuring the accuracy of AI-generated radiology reports. By leveraging the
true potential of LLMs such as Llama [10], Mistral 7B [11], Gemma 2 [12], and Phi [13], etc., the gap
between linguistic fluency and domain-specific clinical relevance between the ground truth radiological and
generated radiological reports can be minimized. Moreover, LLMs have shown significant promise in disease
and cancer detection, enhancing diagnostic accuracy and clinical decision-making. For instance, specialized
LLMs like CancerLLM [14] have been developed to extract cancer phenotypes, generate diagnoses, and
propose treatment plans, leveraging pre-training on extensive clinical notes and pathology reports across
multiple cancer types. These models improve the precision of oncology workflows by providing efficient and
contextually relevant insights [15]. In addition to this, different prompt engineering techniques [16] can also
be employed to enhance the accuracy of the generated reports.

In this study, we address the critical challenge of evaluating the semantic accuracy of AI-generated
radiology reports by introducing a novel evaluation framework that leverages LLMs and advanced prompt
engineering techniques. This proposed framework has the potential to use as an evaluation metric while
testing the models in the domain of medical report generation, as traditional metrics mostly don’t consider
semantic meaning. Using the IU-Xray dataset and the R2GenRL [17] model, we trained a model and a
benchmark dataset using MIMIC-CXR and test data of IU-Xray, and employ LLMs (Llama 3.2, Mistral
7B, Phi 3 Medium, and Gemma 2) to assess the semantic alignment of generated reports with ground
truth reports. Our approach integrates three distinct prompt engineering strategies, i.e., Zero shot, Chain of
Thought [18], and Tree of Thoughts [19], to enhance the precision of semantic scoring. This work advances
the state-of-the-art by proposing a semantic scoring metric (0 to 10 scale) that bridges the gap between
traditional syntactic metrics (e.g., BLEU, ROUGE) and clinical relevance, ensuring generated reports are
both accurate and contextually meaningful. By systematically comparing LLM performance and prompt
impacts, we provide a robust methodology for evaluating natural language generation (NLG) systems in
radiology, setting a new standard for automated medical report generation. Our contributions to this paper
are stated below:

1. We evaluate the semantic performance of four distinct large LLMs–Llama 3.2, Mistral 7B, Phi 3 Medium,
and Gemma 2–by systematically comparing their ability to analyze the semantic relationships between
generated reports from the R2GenRL model.

2. We integrate prompt engineering into the score evaluation framework, implementing three distinct
prompting techniques to assess their influence on LLM performance and the score evaluation mecha-
nism, thereby providing insights into the role of prompts in medical report generation.
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3. We propose the use of semantic scoring (on a scale of 0–10) as a novel quality metric, leveraging LLMs
and prompt engineering to bridge the gap between syntactic and contextual evaluation, ensuring that the
generated reports are both semantically accurate and contextually relevant.

4. We conduct a comprehensive multi-model comparison within the specialized domain of radiology,
emphasizing the performance of LLMs in the context of medical report generation, which serves as a
foundation for informed model selection in healthcare applications.

2 Literature Review
Automated radiology report generation has emerged as a critical task in medical artificial intelligence,

driven by the need to streamline radiological workflows and reduce the burden on clinicians. Four key
research areas collectively address the challenges of generating and evaluating radiology reports. These
areas include Generative AI and Multimodal Models, Natural Language Generation (NLG) in radiology,
evaluation metrics and LLMs in Medical Natural Language Processing (NLP).

2.1 Generative AI and Multimodal Models
Generative AI, a rapidly evolving field, encompasses models that produce high-quality, human-like

content, including text, images, and multimodal outputs. The AI research community often focuses on
complex generative models that create realistic outputs, though the term “Generative AI” lacks a universal
definition, leading to varied interpretations across domains [20]. In medical imaging, generative AI has
driven advancements in radiology report generation and image analysis. The growth of generative AI for
synthetic multimedia content, such as images and videos, emphasizing techniques like diffusion models
and the need for robust datasets to support multimodal tasks [21]. Over the years, various models [22–25]
have been proposed to generate structured, coherent, and clinically meaningful reports from radiographic
images. While these models, such as R2GEN [26] and its variants [22,27–29] leverage encoder-decoder
architectures to translate radiographic images into textual reports, integrating visual and textual information.
Complementary approaches, such as contrastive learning with Momentum Contrast (MoCo) and ResNet
backbones, enhance feature extraction for chest X-ray classification, particularly in data-scarce settings [30].
Bougueffa et al. (2024) underscore the importance of datasets for training such models and the potential
of multimodal generative AI to advance medical imaging tasks [21]. Additionally, preprocessing techniques
like Reinhard and Macenko normalization improve image quality, further boosting model performance [31].
This area appeals to AI and medical imaging researchers exploring multimodal generative systems.

2.2 Natural Language Generation (NLG) in Radiology
NLG focuses on producing coherent, contextually relevant text from structured or unstructured data,

a critical capability for radiology report generation. Models like R2GenRL [22] combine visual feature
extraction with language generation to produce structured reports from chest X-rays. However, generating
reports that capture complex medical semantics remains challenging, as slight phrasing differences can alter
clinical meaning. Traditional NLG evaluation metrics—BLEU [6], ROUGE [8], METEOR [7], and CIDEr
[9]—prioritize lexical overlap, often failing to assess semantic accuracy or clinical relevance. This limitation
has drawn attention from NLP and medical informatics researchers seeking evaluation methods that align
with the diagnostic needs of radiology.

2.3 Semantic Evaluation Metrics
Evaluating radiology reports requires metrics that prioritize semantic alignment over surface-level sim-

ilarity. Early approaches used static embeddings like Word2Vec [32] and GloVe [33] to measure conceptual
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similarity. More recently, transformer-based models, such as BERT [34], BERTScore [35], BLEURT [36],
and CLIPScore [37], have enabled more nuanced semantic comparisons. For instance, Phan et al. (2024)
[38] employed BERTScore and CLIPScore to assess medical image captions in the ImageCLEFmedical
2024 challenge, highlighting their effectiveness for multimodal tasks. Raj et al. (2023) [39] proposed the
Ask-to-Choose (A2C) prompting strategy to improve semantic consistency in text generation, addressing
limitations of lexical metrics. These advancements attract researchers in NLP and clinical informatics focused
on developing robust evaluation frameworks for medical texts.

2.4 Large Language Models in Medical NLP
LLMs, such as GPT-based models [40–42], have revolutionized NLP by capturing complex contextual

relationships and generating human-like text. Thirunavukarasu et al. (2023) emphasized the potential
of LLMs like ChatGPT and Med-PaLM 2 in clinical settings, noting their ability to process domain-
specific text (e.g., patient notes, medical guidelines) and improve performance in biomedical NLP tasks
[43]. In radiology, LLMs excel in zero-shot or few-shot settings, enabling flexible evaluation of generated
reports without extensive fine-tuning [44]. For example, Doshi et al. (2024) [45] demonstrated that LLMs
like ChatGPT-4 and Gemini can simplify radiology report impressions, with prompt design significantly
influencing performance. However, challenges such as LLMs’ struggles with conciseness and verisimilitude
in medical summarization, underscoring the need for task-specific fine-tuning and human oversight in high-
stakes settings [43]. Hu et al. (2024) [46] further highlighted limitations in LLMs’ ability to summarize
radiology reports accurately. These findings engage AI and medical NLP researchers exploring LLMs’ role
in clinical applications.

2.5 Research Gap and Technical Problem
Despite these advancements, significant gaps remain in evaluating the semantic accuracy of AI-

generated radiology reports. Traditional metrics like BLEU and ROUGE fail to capture clinical relevance,
while semantic evaluation methods often lack the flexibility and domain-specific understanding required
for medical texts. By incorporating domain-specific text and task-specific fine-tuning LLMs performance
can be enhanced, but current approaches rarely integrate these with systematic prompt engineering [43].
Moreover, while models like R2GenRL excel in report generation, their evaluation has relied on limited
metrics or general-purpose models, hindering clinical adoption. Our work addresses this gap by proposing
a novel LLM-based framework that leverages R2GenRL-generated reports and LLMs, and employs carefully
designed prompt templates to assign semantic similarity scores (0–10) between generated and ground truth
reports. Our framework proposed the role of LLMs in semantic evaluation, advancing the reliability of
AI-driven medical text generation.

3 Methodology
This section outlines the proposed systematic approach used to evaluate the semantic meaning of the

AI-generated report with the ground truth. We used the R2GenRL model to train the model on IU-Xray
and predict the report on the test data of IU-Xray and MIMIC-CXR dataset, and by using large language
models and prompt engineering techniques, we calculated the accuracy score based on semantic alignment.
An overview of our proposed semantic score evaluation method is shown in Fig. 1.
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Figure 1: The overall architecture of our proposed semantic evaluation method, where the R2GenRL model in a
simplified version is shown in gray dash boxes, while the Evaluation method is illustrated in blue dash line

3.1 Data Preprocessing
In the data preprocessing step, the document was first converted to lowercase. After converting the text,

the reports were tokenized. Furthermore, irrelevant or extraneous characters, such as special symbols, were
removed. After cleaning, the dataset was split into train (70%), validation (15%) and test (15%) sets.

3.2 Report Generation
Automatic report generation is quite a hectic task. We used a model (a reinforced cross-modal alignment

approach) that was already built by [17]. This model is also known as R2GenRL. We trained this model
on the IU-Xray dataset by changing different parameters, specifically the report’s length. By changing the
parameters like token length and evaluating the result using natural language generation (NLG) metrics, we
obtained a Bleu-4 score of 26.3 for the test data, which is quite good compared to other models, as shown
in Table 1.

Table 1: Performance comparison of different existing methods on the test set of IU-Xray dataset with respect to NLG
metrics

Method Bleu1 Bleu2 Bleu3 Bleu4 Rouge_L
R2GenCMN [22] 0.470 0.304 0.219 0.165 0.371
SentSAT+KG [47] 0.441 0.291 0.203 0.147 0.367

XPRONET [24] 0.525 0.357 0.262 0.199 0.411
KiUT [48] 0.525 0.360 0.251 0.185 0.409

R2GenRL [17] 0.482 0.365 0.302 0.263 0.451



5450 Comput Mater Contin. 2025;84(3)

In the next step, we generated the report on the test data of the IU-Xray dataset and a small subset of
MIMIC-CXR data using the above-trained model. After that, we created a benchmark dataset by combining
the generated AI reports from the model with the ground truth of the IU-Xray test and MIMIC-CXR data.
The benchmark dataset is used further in our semantic score evaluation mechanism.

3.3 Large Language Model Selection
Four cutting-edge LLMs, i.e., Llama 3.2, Mistral, Phi 3 Medium, and Gemma 2, were selected for this

study to introduce the semantic evaluation mechanism. In addition to this, the comparative performance
of these four LLMs was also analyzed in this semantic score evaluation process. The primary reason
for choosing these models for the evaluation process is because of their open-source availability. Unlike
proprietary LLMs, such as OpenAI’s GPT series, the selected models allow for full transparency and
adaptability. Open-source models facilitate fine-tuning, making them more practical for specific applications
like medical report generation. Furthermore, their open availability ensures the reproducibility of results,
a cornerstone of scientific research. While GPT-4 and similar proprietary models demonstrate advanced
linguistic capabilities, their restricted access, and reliance on paid APIs make them less suitable for academic
investigations, particularly in healthcare contexts where reproducibility is paramount. The Table 2 shows the
parameters of the LLM model we used in our method.

Table 2: LLM models and their parameters used in our methodology

Model Parameters (Billion) Size of model (GB)
Llama 3.2 3 B 2.0 GB

Mistral 7 B 4.1 GB
Phi 3 medium 14 B 7.9 GB

Gemma 2 9 B 5.5 GB

3.4 Prompt Engineering
Prompt design plays a pivotal role in determining the quality and accuracy of the generated text. The

key features of these prompts we used in our methodology are:

1. Role Definition: AI is instructed to adopt the role of an expert medical evaluator.
2. Input Context: The comparison is between two specific texts: the Ground Truth (reference) and the

Predicted Report.
3. Evaluation Focus: Specifies clinical areas of focus, such as “lung volumes,” “pleural effusion,” “heart size,”

and “lung markings.”
4. Scoring Criteria: Provides a clear rubric for assigning a score (0–10) based on the level of similarity and

detail accuracy.
5. Output Format: Enforces a structured response format: [Score: Obtained Score/10, Reason:

explanation].
6. Context-Specific Guidance: Ensures relevance to the medical domain, emphasizing key clinical findings

over peripheral content.

Three distinct prompts were developed to assess how variations in prompt design influence the
performance of the models:
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1. Zero-Shot Prompt: This prompt adopts a direct approach where the model is instructed to compare
Ground Truth and Predicted Reports based on key clinical findings such as “lung volumes,” “pleural
effusion,” and “heart size.” It guides the model to evaluate the semantic similarity and assign a score (0–10)
based on a clear rubric, ensuring a concise and structured output format.

2. Chain of Thought Prompt: This version introduces a more detailed internal reasoning framework,
breaking the evaluation process into stages such as key element analysis, critical differences assess-
ment, and impact evaluation. While maintaining the output simplicity, it enhances the robustness and
consistency of the model’s reasoning process across different scenarios.

3. Tree of Thoughts Prompt: This advanced prompt structures the evaluation into hierarchical branches,
focusing on structural analysis, clinical findings, and implications. Each branch assesses specific aspects
like terminology usage, clinical alignment, and treatment impact, with scores synthesized into a weighted
final evaluation. This method captures nuanced details while prioritizing clinically significant findings.

Defining Semantic Scoring
In this study, the semantic scoring is defined as the degree to which the AI-generated report accurately

captures the clinical findings of the ground truth report, as assessed by the LLMs on a 0–10 scale. The
precision emphasizes semantic alignment and prioritizes the inclusion of critical diagnostic features like lung
volumes, heart size, pleural effusion etc., over lexical overlap. For example:

• A perfect score of 10 was given when the generated report described clear lungs, no infiltrates, and a
normal cardiac silhouette, matching the ground truth exactly in clinical content.

• A low score of 2 was assigned when the ground truth noted pulmonary edema and interstitial disease,
but the model generated findings like low lung volumes and bibasilar disease.

These examples illustrate how omission or misrepresentation of critical findings impacts semantic
alignment. Additionally, several quantitative metrics were used to support these semantic evaluations.
BERTScore-Precision (0.877), which measures token-level embedding similarity, serves as a complementary
metric to LLM-based semantic precision.

Each model was tested using all three prompts, and the outputs were analyzed to identify prompt
sensitivity. In the same way, the semantic score of each predicted report is compared with the ground truth
report, and the score is calculated using the LLM and prompts.

4 Experiment
The proposed semantic score evaluation mechanism for medical report generation was tested on the

IU–Xray dataset. Furthermore, we used NVIDIA RTX A5000 24 GB to train the report generation model.
For the semantic score evaluation process, where we implemented different LLM models, we used the free
resource of Google Colab GPU.

Dataset
The dataset we used for test purpose in this frame work are IU-Xray and MIMIC-CXR. These datasets

were selected due to their widespread adoptionin the field of medical report generation. According to the
survey presented in [49], the IU X-Ray dataset has been utilized in over 71 research papers, while MIMIC-
CXR has been used in 68 studies. This high frequency of use reflects their credibility, diversity, and relevance,
making them suitable benchmarks for evaluating the effectiveness of medical report generation models.
IU X-ray includes 3995 reports with 7470 chest X-ray images, split into 70% training (∼5229 images), 15%
validation (∼1120 images), and 15% testing (∼1120 images), generating 1117 benchmark reports. As we have
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trained R2GENRL model on the IU-Xray dataset, so the large portion of the dataset was used in training and
evaluation, and only 1117 reports were limited to use for the the semantic evaluation framework. In the same
way, MIMIC-CXR contains around 227,835 reports with around 377,110 images. In our case to standardize the
practice and evaluate the result, we randomly used 1120 test reports (∼1120 images) sampled for evaluation
from the MIMIC-CXR, so that both dataset must contain the same number of reports. The selection of a
limited number of data also helped us in evaluating the semantic scores using the different models, as we
used the free version of the Google Colab GPU. As there is some limitation of the Colab Free tier, like idle
timeout, as if the system remain inactive (30–90 min), the session will automatically disconnect. So due to
computational complexity, the choice of limited data was also a good choice.

5 Results and Analysis
This analysis was formulated to assess the LLM model’s behavior, evaluate the semantic score on

a scale of 0 to 10, and understand how different LLM models perform based on different prompting
techniques. Figs. 2–4 show the experimental results of different LLM models with different prompts on
the created benchmark dataset. The score distribution across the figures was derived from the semantic
similarity calculations from the predicted and ground truth reports. These figures reflect the performance
of the Llama 3.2, Mistral, Phi 3 Medium, and Gemma 2 models. Mistral model demonstration in the
whole process indicates a high degree of semantic alignment and consistency between the reports, with
scores predominantly concentrated at the maximum value of 10. Similarly, the Phi 3 Medium model, with
most scores clustering between 9.0 and 10.0, reflects robust semantic matching capabilities. In contrast,
the Gemma 2 model displays a slightly broader range of scores, typically centered between 8.0 and 9.0,
with somewhat less optimal semantic alignment than Mistral and Phi 3 Medium. The Llama 3.2 model,
however, exhibits a peak around 8.0 with more variability, suggesting a less consistent semantic similarity
between the predicted and ground truth reports. Some of the semantic scores significantly deviating from
the typical ranges (e.g., Gemma 2: 8.0–9.0, Llama 3.2: 8.0 with broader spread, as shown in Figs. 2–4), were
included in the analysis without removal to preserve the integrity of the 1117-report benchmark dataset. The
broader score distributions for Gemma 2 and Llama 3.2 (e.g., lower tails in Fig. 2a for Llama 3.2) indicate less
consistent semantic alignment, potentially due to sensitivity to prompt variations or lack of radiology-specific
fine-tuning. Mean scores such as 0.768 for Gemma 2 and 0.801 for Llama 3.2 under the TOT prompting
approach incorporate these outliers, reflecting overall model performance. No statistical outlier detection
methods (e.g., interquartile range) were applied, as the study prioritized raw score distributions to capture
model variability.

Figure 2: Semantic score distribution (0–10) of AI-generated reports using zero-shot prompting: (a) Llama 3.2 shows
high variance, (b) Mistral and (c) Phi 3 peak at 10, (d) Gemma 2 shows moderate consistency
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Figure 3: Semantic score distribution using Chain of Thought prompting. (b) Mistral, (c) Gemma 2, and (d) Phi 3
Medium show significant clustering near maximum scores (9.0–10.0), demonstrating superior semantic alignment
compared to (a) Llama 3.2

Figure 4: Score distributions under Tree of Thoughts prompting. All models shift toward higher scores compared
to Fig. 3, with (a) Llama 3.2 peaking at 8–9, (b) Mistral and (d) Phi 3 Medium showing marked improvements, and
(c) Gemma displaying a more balanced shift in semantic alignment

In addition, Fig. 5 presents a comparative analysis of four different language models, Llama 3.2, Mistral,
Gemma 2, and Phi 3 Medium, with respect to three prompting strategies: Zero-Shot, Chain of Thought
(COT), and Tree of Thoughts (TOT). The results highlight that Mistral has consistently outshone all other
models, scoring the maximum in all prompting strategies with 86.71% in Zero-Shot, 90.02% in COT, and
91.97% in TOT. Llama 3.2 consistently improved with the prompts from 74.41% in Zero-Shot to 78.30% in
COT and finally 80.13% in TOT. While Gemma 2 and Phi 3 Medium showed similar performance trends,
they lagged Mistral and Llama 3.2. The improvement in performance levels for COT and TOT means that
some form of structured reasoning is aiding the responses of a model, and the improvements seem to be
the most substantial with Mistral. Note that while it appears all models become more capable of detailed
prompts, the differences in performance between COT and TOT have not been very pronounced, meaning
that the extra reasoning structure from switching from sequential to tree-based does not provide substantial
extra value.

Similarly, Fig. 6 reorganizes the results from the perspective of putting them in groups based on
models rather than by prompting strategies, thus illustrating the relative strength of each model across
all prompts. From these, Mistral appears to have improved more by using structured reasoning, with a
great jump from Zero-Shot to COT and a slight increase from COT to TOT. Llama 3.2 has also improved
significantly with advanced prompting, while Gemma 2 and Phi 3 Medium appear to have improved rather
slightly. Interestingly, it is worth mentioning that Phi 3 Medium declined mildly from COT (81.91%) to TOT
(80.62%), which suggests that tree-based reasoning may not be all that helpful occasionally, depending on
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the architectural set-up of the model. Across all four models, COT and TOT are inarguably better than Zero-
Shot, thus further stacking credence on the strength of structured prompting strategies for large language
model performance.

Figure 5: Performance comparison of models (Llama 3.2, Mistral, Gemma 2, Phi 3 Medium) across three prompting
strategies: zero-shot, Chain of Thoughts (COT), and Tree of Thoughts (TOT)

Figure 6: The average performance of three prompting strategies, Zero-Shot, Chain of Thoughts (COT), and Tree of
Thoughts (TOT), across different LLMs (Llama 3.2, Mistral, Gemma 2, Phi 3 Medium)

To further validate our findings, we evaluated the models using the MIMIC-CXR dataset. The Table 3
presents the semantic scores for different prompting strategies. Although the scores on MIMIC-CXR are
slightly lower. For instance, Mistral achieved approximately 90.0% in the Tree of Thoughts (ToT) prompt, this
is likely due to the increased variability and complexity of findings in the MIMIC-CXR dataset. Nevertheless,
the overall performance ranking remained consistent, with Mistral performing the best, followed by Phi 3
Medium, Gemma 2, and Llama 3.2.

To evaluate and understand the rationale behind the scores assigned by LLM models to predicted reports
compared to the ground truth, we also generate explanations alongside the respective scores. This approach
provides insights into the model’s decision-making process and helps assess the alignment between predicted
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outputs and reference reports. Table 4 shows a few examples of the reasons behind the scores assigned
to reports.

Table 3: Semantic similarity scores on UI-Xray and MIMIC-CXR dataset across prompting strategies

Model DataSet Zero shot COT TOT
Llama 3.2 IU X-ray 74.4 78.3 80.1
Llama 3.2 MIMIC-CXR 73.0 77.0 79.0
Mistral 7B IU X-ray 86.7 90.0 91.9
Mistral 7B MIMIC-CXR 85.0 88.0 90.0
Gemma 2 IU X-ray 74.0 76.8 76.8
Gemma 2 MIMIC-CXR 73.0 75.0 75.0

Phi 3 medium IU X-ray 77.2 81.9 80.6
Phi 3 medium MIMIC-CXR 76.0 80.0 79.0

Table 4: Performance comparison of LLMs with reasons for assigned scores on radiological report alignment (Few
examples)

Ground truth (Summary) Predicted (Summary) Score (Out
of 10)

Reason by LLM
(Summary)

LLM model

Normal chest: clear lungs, no
abnormality.

Also clear lungs, normal heart
and bones.

9 Key findings match; minor
phrasing differences.

Llama 3.2

Findings include calcified
granuloma in lung.

No mention of granuloma. 4 Misses important lung
detail (granuloma).

Llama 3.2

Clear lungs, no infiltrates,
normal silhouette.

Similar findings, minor detail
differences.

10 Fully aligned in meaning
despite minor omissions.

Mistral

Emphysema, patchy opacities
in lower lobe.

Cardiomegaly and edema;
different focus.

3 Important findings differ;
focus mismatch.

Mistral

Cardiomegaly with
pulmonary edema over

chronic interstitial disease.

Low lung volumes with
bibasilar disease and

bronchovascular crowding.

2 Major findings differ:
edema and interstitial
changes in GT vs. low
volumes in prediction.

Phi 3
Medium

No acute findings; normal
heart and lungs. Notes

surgical clips.

No acute findings; heart and
lungs normal. Surgical clips not

mentioned.

9 All major findings match;
minor omission of surgical

clips.

Gemma 2

Furthermore, Table 5 presents a comparative analysis of the performance of various models when
evaluating the semantic score using different prompt techniques (zero-shot, COT, and TOT) on the same
predicted report. This evaluation highlights the impact of prompt engineering, although the difference is not
that much, as we didn’t change the overall context in the prompt templates.

Tables 6 and 7 support our study that LLMs can be used as semantic evaluation metrics. Table 6
shows the semantic similarity scores (percentage accuracy) calculated by the LLMs when generated reports
and ground truth reports were given to the LLMs. In the same way, Table 7 provides the accuracy of the
established metrics on the same reports generated by the R2GenRL model. The LLMs’ scores in Table 6,
especially Mistral’s (up to 91.9%) and Phi 3 medium’s (up to 81.9%), are very close to or even exceed the
BERTScore-F1 (88.1%) and CLIP-Score (88.7%), showing that these LLMs can evaluate semantic similarity
as well as or better than traditional metrics. Even Llama 3.2 and Gemma 2, with lower scores (74.0% to
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80.1%), are not far from the conventional metrics, indicating they are still effective. This close alignment with
established metrics supports the proposal that LLMs can be reliable semantic evaluation metrics. However,
the lower BLEURT score (39.6%) suggests they may need improvement in capturing fine-grained details.

Table 5: Performance comparison of LLMs using different prompt techniques on radiological report alignment (Few
examples)

Ground truth Predicted Score Prompt

Llama
3.2

Mistral Gemma
2

Phi 3
Medium

Low lung volumes with increased
lung markings particularly in the

left perihilar region xxxx related to
history of bronchitis. no acute

infiltrate. the heart is normal in
size. the mediastinum is within

normal limits the lungs are
hypoaerated. there is mild increase
in perihilar markings xxxx related
to patient’s history bronchitis. no
acute infiltrate or pleural effusion

are seen.

No acute cardiopulmonary
findings the cardiomediastinal

silhouette and pulmonary
vasulature are within normal

limits in size. the lungs are clear
of focal airspace disease

pneumothorax or pleural
effusion. there are no acute

bony findings.

8 9 7 5 Zero-
Shot

8 7 7 7 COT
8 9 7 7 TOT

No radiographic evidence of acute
cardiopulmonary disease heart
xxxx mediastinum xxxx bony
structures and lung xxxx are

unremarkable. stable small calcified
granuloma left base. no xxxx acute
findingsopacitiesinfiltrates noted.

No acute cardiopulmonary
abnormality. the lungs are clear

bilaterally. specifically no
evidence of focal consolidation

pneumothorax or pleural
effusion. cardio mediastinal
silhouette is unremarkable.

visualized osseous structures of
the thorax are without acute

abnormality.

4 8 7 7 Zero-
Shot

6 9 6 8 COT
7 9 8 7 TOT

Table 6: Performance metrics of various LLMs with different prompting techniques

Model
Llama 3.2 Mistral Gemma 2 Phi 3 medium

Zero-
Shot

COT TOT Zero-
Shot

COT TOT Zero-
Shot

COT TOT Zero-
Shot

COT TOT

Score 0.744 0.783 0.801 0.867 0.900 0.919 0.740 0.768 0.768 0.772 0.819 0.806

Table 7: Evaluation metrics for radiology report generation

BERTScore-Precision BERTScore-Recall BERTScore-F1 CLIP-Score BLEURT
0.877 0.885 0.881 0.887 0.396
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To further validate the results, we performed a statistical test to verify that the differences in semantic
scores across models and prompt types are significant, not due to random variation. The paired t-test
analysis revealed in Table 8 statistically significant differences in semantic scores between most model pairs.
The statistical comparison of model performances revealed that Mistral significantly outperforms all other
models, including Llama 3.2, Gemma 2, and Phi 3 Medium, as indicated by highly significant p-values
(p < 0.01) in all related pairwise t-tests. This performance gap is likely due to Mistral’s better adaptation to
medical image-text tasks, as reflected in its higher semantic scores across both IU X-ray and MIMIC-CXR
datasets. In contrast, no statistically significant differences were found between Llama 3.2, Gemma 2, and
Phi 3 Medium (p > 0.1), suggesting comparable capabilities among these models. These findings support
the conclusion that while lightweight models like Phi 3 Medium and Gemma 2 offer competitive baseline
performance, Mistral provides a clear advantage for tasks demanding higher semantic accuracy in medical
report generation.

Table 8: Statistical comparison of model performance

Model pair t-statistic p-value
Llama 3.2 vs. Mistral −64.30 0.00024

Llama 3.2 vs. Gemma 2 2.05 0.17678
Llama 3.2 vs. Phi 3 Medium 0.885 0.13171

Mistral vs. Gemma 2 18.69 18.69
Mistral vs. Phi 3 Medium 10.40 0.00912

Gemma 2 vs. Phi 3 Medium −7.19 0.01879

To assess the effect of prompt variation on model performance, we conducted an ANOVA test for each
model, considering the three prompts we used in our framework. The results, as shown in the Table 9, reveal a
statistically significant difference in performance across different prompts. For example, in the case of Llama
3.2 (F = 26.80, p = 0.00102) and Phi 3 Medium (F = 23.92, p = 0.00138) showed highly significant sensitivity
to prompt variations, suggesting the effect of prompt-dependent behavior. Mistral also demonstrated a
significant effect (F = 10.64, p = 0.01065), while Gemma 2 displayed a marginally significant difference
(F = 5.35, p = 0.04637), indicating a weaker but still noticeable impact of prompt choice. These findings
highlight the importance of prompt engineering when using LLMs for medical report result evaluation, as
the model outputs are meaningfully influenced by the prompts.

Table 9: Statistical comparison of model performance using ANOVA across different prompts

Model F-statistic p-value
Llama 3.2 26.800 0.00102

Mistral 10.64 0.01065
Gemma 2 5.35 0.04637

Phi 3 Medium 23.92 0.00138

While overall performance was promising, a detailed failure case analysis was performed to uncover
critical weaknesses in the LLMs’ scoring behavior. We examined cases where LLMs assigned misleading
scores, revealing critical limitations as summarized in Table 10. Several examples illustrate common error
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patterns. For instance, one report received a high score of 9/10 despite omitting the clinically significant
mention of “mildly diminished lung volumes.” In another case, a report scored 8/10 even though it failed
to capture key chronic findings such as emphysema and granuloma. Additionally, one model assigned a
high score based largely on lexical overlap with the reference report, despite introducing a false positive
observation, such as an inaccurately enlarged heart. These errors can be seen primarily because of excessive
dependence on surface-level similarity, and prompt ambiguity. These findings highlight the need for
improved prompt engineering or model fine-tuning to better align automated scoring with clinical accuracy.

Table 10: Failure cases highlighting common error patterns in LLM-generated clinical report scores

Ground truth Predicted Predicted
score

No acute cardiopulmonary findings.
Mildly diminished lung volumes. Normal
cardiac silhouette, mediastinal contour,

pulmonary vasculature. No focal
consolidation, pleural effusion.

No acute cardiopulmonary abnormality.
Lungs clear bilaterally. Normal cardiac

silhouette. No focal consolidation,
pneumothorax, or pleural effusion.

Mediastinal contours unremarkable.

9/10
(Mistral)

Hyperexpanded lungs consistent with
emphysema. No active disease. Normal

heart size, pulmonary vascular. Calcified
lymph and granuloma noted. No focal

airspace disease, pleural effusion, or
pneumothorax.

No acute cardiopulmonary findings.
Lungs clear bilaterally. Normal heart size.
No focal consolidation, pneumothorax, or

pleural effusion. Mediastinal contours
unremarkable.

8/10 (Phi 3
Medium)

No acute cardiopulmonary process.
Normal cardiomediastinal silhouette.
Lungs clear without consolidation. No

pneumothorax, large pleural effusion, or
bone abnormality.

No acute cardiopulmonary findings.
Lungs clear bilaterally. Heart size slightly

enlarged. No focal consolidation,
pneumothorax, or pleural effusion.

Normal mediastinal contours.

8/10 (Llama
3.2)

Pulmonary vascular congestion,
emphysema, bibasilar streaky opacities,

borderline enlarged heart, aortic
calcifications, hyperinflated lungs,

chronic interstitial markings. No focal
airspace disease or acute bony

abnormality.

No acute cardiopulmonary findings.
Hyperinflated lungs consistent with

emphysema. Normal heart size. No focal
consolidation, pneumothorax, or pleural
effusion. Normal mediastinal contours.

7/10 (Phi 3
Medium)

6 Discussion
This study presents a novel framework for evaluating the semantic accuracy of AI-generated radiology

reports, addressing the shortcomings of traditional lexical metrics like BLEU and ROUGE, which often
overlook clinical relevance. By employing large language models (LLMs) and advanced prompt engineering–
Zero-Shot, Chain of Thought (COT), and Tree of Thoughts (TOT)—we developed a semantic scoring system
(0–10 scale) prioritizing diagnostic accuracy. Experiments on IU X-ray and MIMIC-CXR datasets show
Mistral 7B, especially with TOT prompting, achieving superior semantic alignment (91.9%), outperforming
Llama 3.2, Phi 3 Medium, and Gemma 2. Statistical analyses, including paired t-tests (p < 0.01) and
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ANOVA (p < 0.05), confirm the significant impact of structured prompting. Our semantic scoring correlates
closely with BERTScore-F1 (88.1%) and CLIP-Score (88.7%), surpassing lexical metrics by evaluating clinical
equivalence. However, failure cases, reveal issues like over-reliance on lexical overlap, as seen in inflated
scores for reports missing key findings (e.g., “emphysema”), highlighting the need for radiology-specific
fine-tuning. Limitations include reliance on small portion of test data, potentially limiting generalizability,
and lack of radiologist validation. Additionally, computational constraints from Google Colab’s free-tier
GPU also restricted experiment scale. Future work should diversify datasets, integrate expert feedback, and
explore dynamic prompting. Fine-tuning on radiology corpora and incorporating multimodal inputs, could
enhance performance. Lightweight LLMs may improve scalability for clinical use. This framework advances
medical NLP by offering a clinically relevant evaluation metric, setting a foundation for reliable AI-driven
radiology systems.

7 Conclusion
In this paper, we introduced a novel approach for evaluating the semantic accuracy of the AI-generated

radiology reports using LLMs and advanced prompt engineering techniques. Using a semantic scoring
value (0–10), this framework focused on diagnostic relevance, which addresses the limitations of traditional
evaluation methods by prioritizing clinical correctness over surface-level text similarity. Experimental
results on the IU X-ray and MIMIC-CXR datasets show that Mistral 7B, particularly when guided by the
Tree of Thoughts (ToT) prompting strategy, achieves superior semantic alignment scores (up to 91.9%),
outperforming Llama 3.2, Phi 3 Medium, and Gemma 2. These findings are further supported by strong
correlation with established metrics such as BERTScore-F1 (88.1%) and CLIP-Score (88.7%). The statistical
analyses, including paired t-tests (p < 0.01) and ANOVA (e.g., p = 0.00102 for Llama 3.2), also demonstrate the
significant impact of prompt engineering, with TOT and COT strategies enhancing performance across all
models. Despite these improvements, failure cases reveal persistent challenges such as over-reliance on lexical
overlap, and prompt ambiguity, highlighting the ongoing need for domain-specific fine-tuning. These results
underscore the potential of LLMs, when appropriately guided, enhances the reliability and clinical validity
of automated radiology report generation, and set a foundation for more trustworthy and context-aware AI
systems in medical imaging.
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